Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5733542 A
Publication typeGrant
Application numberUS 08/377,771
Publication date31 Mar 1998
Filing date24 Jan 1995
Priority date16 Nov 1990
Fee statusPaid
Also published asWO1996023058A1
Publication number08377771, 377771, US 5733542 A, US 5733542A, US-A-5733542, US5733542 A, US5733542A
InventorsArnold I. Caplan, Stanton L. Gerson, Stephen E. Haynesworth, Hillard M. Lazarus
Original AssigneeHaynesworth; Stephen E., Caplan; Arnold I., Gerson; Stanton L., Lazarus; Hillard M.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Enhancing bone marrow engraftment using MSCS
US 5733542 A
Abstract
Method and preparations for enhancing bone marrow engraftment in an individual by administering (i) a culturally expanded mesenchymal stem cell preparation and (ii) a bone marrow graft. The mesenchymal stem cells are administered in an mount effective to promote engraftment of the bone marrow.
Images(5)
Previous page
Next page
Claims(8)
What is claimed is:
1. A method for enhancing bone marrow engraftment in an individual in need thereof which comprises administering to said individual (i) isolated, homogeneous mesenchymal stem cells and (ii) a bone marrow graft, wherein said mesenchymal stem cells are administered in an amount effective to promote engraftment of said bone marrow in said individual.
2. The method of claim 1 wherein the mesenchymal stem cells are administered by intravenous injection or by injection directly to the site of intended activity.
3. The method of claim 1 wherein at least one of (i) the mesenchymal stem cells and (ii) the bone marrow graft is administered intravenously.
4. The method of claim 1 wherein at least one of (i) the mesenchymal stem cells and (ii) the bone marrow graft is injected into said cavity.
5. The method of claim 1 wherein the mesenchymal stem cells are autologous.
6. The method of claim 1 wherein the mesenchymal stem cell preparation is administered concurrently with the bone marrow graft.
7. The method of claim 6 wherein the mesenchymal stem cells are introduced into said individual in a cell suspension also containing bone marrow graft cells.
8. The method of claim 1 wherein the mesenchymal stem cell preparation is administered to the individual prior to administration of the bone marrow graft.
Description

This is a continuation-in-part of U.S. Ser. No. 08/193,262, filed Feb. 8, 1994 (U.S. Pat. No. 5,486,359 issued on Jan. 23, 1996), which is a continuation-in-part of U.S. Ser. No. 08/034,272, filed Mar. 22, 1993 (abandoned), which is a continuation-in-part of U.S. Ser. No. 07/716,917 filed Jun. 18, 1991 (abandoned), which is a continuation-in-part of U.S. Ser. No. 07/615,430 filed Nov. 16, 1990 (abandoned); and a continuation-in-part of U.S. Ser. No. 08/038,517, filed Mar. 29, 1993 (abandoned), which is a divisional of U.S. Ser. No. 07/614,912, filed Nov. 16, 1990 (U.S. Pat. No. 5,226,914 issued on Jul. 13, 1993); and a continuation-in-part of U.S. Ser. No. 08/038,512, filed Mar. 29, 1993 (abandoned), which is a divisional of 07/614,915, filed Nov. 16, 1990 (U.S. Pat. No. 5,197,985 issued on Mar. 30, 1993).

The present invention is directed to various methods and devices for using mesenchymal stem cells (MSCs) to enhance bone marrow engraftment. Mesenchymal stem cells are the formative pluripotent blast cells found in the bone that are capable of differentiating into any of the specific types of connective tissues (i.e., the tissues of the adipose, areolar, osseous, cartilaginous, elastic, and fibrous connective tissues) depending upon various environmental influences. Although these cells are normally present at very low frequencies in bone marrow and other mesenchymal tissues, the inventors of the present invention have discovered a process for isolating, purifying, and greatly replicating the mesenchymal stem cells in culture, i.e. in vitro. This discovery is the subject of co-pending U.S. patent application Ser. No. 193,262, filed Feb. 8, 1994. The methods and devices of the invention utilize such isolated and culture-expanded mesenchymal stem cells (MSCs). Under selected conditions, they can be induced to differentiate into different types of skeletal and connective tissues such as bone, cartilage, tendon, ligament, muscle, other connective tissues and marrow stroma.

The marrow stroma provides the scaffolding as well as soluble factors which direct and support blood cell synthesis, i.e., hematopoiesis. The present invention is directed to a method to improve the process of bone marrow transplantation which is used to regenerate blood cells and marrow tissue in patients where their marrow is depleted or destroyed, such as, for example, during intensive radiation and chemotherapy treatment. Along this line, the inventors have discovered that, after lethal doses of radiation, culture-expanded MSCs can increase survival and decrease the time of blood and marrow cell regeneration when transplanted with complete bone marrow.

The present invention provides a method for enhancing the regeneration of marrow tissue through improved bone marrow transplantation using MSCs. The method for enhancing bone marrow engraftment comprises administering to an individual in need thereof, (i) mesenchymal stem cells and (ii) a bone marrow graft, wherein said mesenchymal stem cells are administered in an amount effective to promote engraftment of the bone marrow in the individual. More particularly, one embodiment of the invention is directed to a method for using a culture medium comprised of Dulbecco's Modified Essential Medium with low glucose (DMEM-LG) or medium 199 plus 1% human albumin as a vehicle or carrier for MSCs which, when administered systemically, will migrate, or home, to the marrow cavity and differentiate into marrow stroma, thereby regenerating the marrow stroma. The MSCs can be administered systemically, e.g., intravenously, into various delivery sites or directly into the bone.

A further aspect of the present invention is directed to the timing of injection of the MSCs into the patient relative to the bone marrow transplantation. In one embodiment, the MSCs are injected simultaneously with the bone marrow. In another embodiment, the MSCs are administered before or after the injection of bone marrow.

The present invention is useful to enhance the effectiveness of bone marrow transplantation as a treatment for cancer. The treatment of cancer by x-irradiation or alkylating therapy destroys the bone marrow microenvironment as well as the hematopoietic stem cells. The current treatment is to transplant the patient after marrow ablation with bone marrow which has been previously harvested and cryopreserved. However, because the bone marrow microenvironment is destroyed, bone marrow engraftment is delayed until the stromal environment is restored. As a result, a critical aspect of the present invention is directed to the advantages of transplanting isolated, purified, culture-expanded MSCs to accelerate the process of stromal reconstitution and ultimately marrow engraftment.

Modes of administration of the MSC preparation include but are not limited to systemic intravenous injection and injection directly to the intended site of activity. The preparation can be administered by any convenient route, for example by infusion or bolus injection and can be administered together with other biologically active agents. Administration is preferably systemic.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of the MSCs, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to medium 199 plus 1% serum albumin, saline, buffered saline, dextrose, water, and combinations thereof. The formulation should suit the mode of administration.

In a preferred embodiment, the MSC preparation or composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a local anesthetic to ameliorate any pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a cryopreserved concentrate in a hermetically sealed container such as an ampoule indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The method of the invention can be altered, particularly by (1) increasing or decreasing the time interval between injecting MSCs and implanting the tissue; (2) increasing or decreasing the amount of MSCs injected; (3) varying the number of MSC injections; (4) varying the method of delivery of MSC; or (5) varying the source of MSCs. Although MSCs derived from the tissue donor is preferable, the MSCs can be obtained from other individuals or species, or from genetically-engineered inbred donor strains, or from in vitro cell culture.

The MSC preparation is used in an amount effective to promote engraftment of bone marrow in the recipient. In general, such amount is at least 1 more than 7 2 be more than about 7 administered concurrently with the bone marrow transplant or for a period prior to graft introduction of at least about 7 days but generally not to exceed 30 days, with a typical therapeutic treatment period of 7 to 14 days. The MSC preparation preferably is administered either intravenously one to three times per day, and may be adjusted to meet optimal efficacy and pharmacological dosing.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical preparation of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

EXAMPLE 1 Isolation, Purification and Cultural Expansion of Marrow-Derived Mesenchymal Stem Cells

Marrow in femoral head cancellous bone pieces was obtained from patients with degenerative joint disease during hip or knee joint replacement surgery. In addition, marrow was also obtained by iliac aspirate from normal donors and oncology patients who were having marrow harvested for future bone marrow transplantation. All of the oncology patients had malignancies unrelated to the stromal cells and the stromal cells expressed normal karyotype.

Marrow for cell culture was prepared from plugs of cancellous bone marrow as follows. Plugs of cancellous bone marrow (0.5-1.5 ml) were transferred to sterile tubes to which 25 ml Dulbecco's Modified Eagles Medium with low glucose (DMEM-LG) (GIBCO, Grand Island, N.Y.) with selected batches of 10% fetal bovine serum (complete medium) was added. The tubes were vortexed to disperse the marrow, then spun at 1000 rpm for 5 minutes to pellet cells and bone pieces. The supernatant and fat layer were removed and the marrow and bone were reconstituted in 5 ml complete medium and vortexed to suspend the marrow cells. The suspended cells were collected with a 10 ml syringe fitted with a 16 gauge needle and transferred to separate tubes. Bone pieces were reconstituted in 5 ml of complete medium and the marrow cells were collected as before. Collection of marrow cells was considered complete when a pellet of yellowish-white cancellous bone pieces was all that remained in the original tube. Marrow cells were separated into a single cell suspension by passing them through syringes fitted with 18 and 20 gauge needles. Cells were spun at 1000 which the fat layer and supernatant were removed. Cells were reconstituted in complete medium, counted with a hemocytometer (red blood cells were lysed prior to counting with 4% acetic acid), and plated in 100 mm dishes at 50

Marrow for cell culture was prepared from aspirated bone marrow as follows. Aspirate marrow (5-10 ml) was transferred to sterile 50 ml plastic centrifuge tubes to which 20 ml complete medium was added. The tubes were spun at 1,500 rpm for 5 minutes to pellet the cells. The supernatant and fat layer were removed and the cell pellets were resuspended to 5 ml with complete medium. The cell suspensions then were loaded onto 70% Percoll (Sigma, St. Louis, Mo.) gradients with a 10 ml pipette and spun at 2,000 rpm (460 cells, the tube is marked just below the high concentrated band of platelets, about 25% to 35% of the way down the tube. (Pooled density=1.03g/ml.) Using a 10 ml pipette, the medium is aspirated off from the top down to the marked line (approximately 12-14 ml). the collected fraction is transferred to a 50 ml conical plastic tube. 30 ml of complete medium then is added to the tube and centrifuged for 5 minutes at 1,500 rpm. The supernatant then is removed and discarded.

The cells then are resuspended in 7 ml of complete medium, and a uniform cell suspension is generated by piperting cells up and down with a 10 ml pipette. The cells are counted by taking 20 μl of uniform cell suspension, and adding 20 μl of 4% acetic acid to the cell suspension. The suspension is mixed and transferred to a hemocytometer, and the cells are counted.

Cell concentration then is adjusted with complete medium to 50 then are plated per 100 mm culture plate.

The marrow mesenchymal stem cells were purified and expanded as follows. Marrow cells from either the femoral head cancellous bone or the iliac aspirate were cultured in complete medium (i.e., DMEM-LG medium with 10% fetal bovine serum) at 37 95% air and 5% CO.sub.2. On day 3 after plating, nonadherent cells were removed from the cultures by aspirating the original medium from the plates and replacing the original medium with 7 ml of fresh complete medium. Subsequent medium changes were performed every 3 to 4 days. This process of removing the non-adherent cells during culture media changes results in purification of the mesenchymal stem cells which selectively adhere to the culture plates. When primary culture dishes became nearly confluent, the medium was removed and each plate rinsed with 7 ml of sterile Tyrode's solution. The cells were detached with 4 ml of 0.25% trypsin with 0.1 mM EDTA (GIBCO) for 5 minutes at 37 of trypsin was stopped with 2 ml of calf serum. The cells then were collected with a 10 ml pipette and centrifuged for 5 minutes at 1,500 rpm. The supernatant then is removed, and the cells resuspended from each plate in 21 ml complete medium, and a uniform cell suspension is generated by gently pipetting the cells up and down in the pipette. The cells from each culture then are counted and plated in three new 100 ml plates in 7 ml complete medium. The three new plates of cells are termed first passage cultures. First passage cells then were allowed to expand until they became near confluent, and were then replated as described above to create second passage cultures. At each passage, aliquots of cells were cryopreserved in 90% fetal bovine serum with 10% DMSO (freezing medium).

EXAMPLE 2

Mesenchymal stem cells were obtained from 10 ml of autologous human bone marrow collected either at the time of autologous bone marrow harvest, or during a routine diagnostic bone marrow examination, from the iliac crest. These mesenchymal stem cells were culture expanded and infused into 14 patients who had hematologic malignancies, but had no evidence of active malignancy, and had not received chemotherapy or radiation therapy for at least 4 weeks before collection of mesenchymal stem cells. Five patients each received 1 million autologous mesenchymal stem cells, five patients each were given 10 million mesenchymal stem cells, and four patients each received 50 million mesenchymal stem cells. Toxicity for each patient was determined according to the National Cancer Institute toxicity grading scale. The toxicity grading scale was the same as that based upon the common toxicity criteria for a Phase II trial of high-dose sequential chemotherapy and peripheral blood stem cell autologous transplantation as initial therapy for patients with poor prognosis non-Hodgkin's lymphoma. (National Cancer institute document, draft 4/94: E2493.) Toxicity was graded on a scale from 0 to 4. No Grade 2 or greater toxic effects were observed, and in two patients that received 10 million mesenchymal stem cells, there appeared to be an increase in bone marrow cellularity.

EXAMPLE 3 Administration of Bone Marrow Cells and Mesenchymal Stem Cells to Breast Cancer Patients Treated with Chemotherapy

A breast cancer patient undergoes a diagnostic posterior iliac crest bone marrow aspiration and biopsy using a local anesthetic. A small portion (2 to 3 ml) of the aliquot (10 to 20 ml) of marrow is submitted for routine histologic testing and determination of tumor content using immunoperoxidase testing of cells grown in semisolid agar as described in Ross, et al., Blood., Vol. 82, pgs. 2605-2610 (1993). The remainder of the cells are cultured as hereinabove described. After at least 3 weeks in culture, samples of the mesenchymal stem cells are submitted for cell counting, cell viability (Trypan Blue), and cell surface immunophenotyping (testing with monoclonal antibodies SH2, SH3, and SH4). SH2 is produced by a hybridoma cell line assigned ATCC Accession No. HB10743. SH3 is produced by a hybridoma cell line assigned ATCC Accession No. HB10744. SH4 is produced by a hybridoma cell line assigned ATCC Accession No. HB10745. Samples also are submitted for detection of occult breast cancer.

The patient also undergoes placement of a pheresis central venous catheter, and receives subcutaneous injections of G-CSF (filgrastin) 10 μg/kg/day as described in Peters, et al., Blood, Vol. 81, pgs. 1709-1719 (1993); Chao, et al., Blood, Vol. 81, pgs. 2031-2035 (1993); Sheridan, et al., The Lancet, Vol. 2, pgs. 891-895 (1989); and Winter, et al., Blood, Vol. 82, pg. 293a (1993). G-CSF injections begin at least 3 days before the first pheresis is initiated. G-CSF therapy is withheld if the white blood cell count rises above 40,000/μL and is resumed once the white blood cell count drops to less than 20,000/μL.

If the patient is receiving only G-CSF as the vehicle for "mobilization" of peripheral blood progenitor cells, the patient must not have received chemotherapy within 4 weeks of the planned pheresis. If the patient has received both conventional chemotherapy and G-CSF treatment for mobilization, the patient must not have received chemotherapy within 10 days of the planned pheresis, and the white blood cell count must be at least 800/μL and the platelet count at least 30,000/μL.

Daily pheresis procedures are performed using a Cobe Spectra instrument (Cobe, Lakewood, Col.), and each cellular collection is cryopreserved using a controlled-rate liquid nitrogen freezer, until at least 15 Bone Marrow Transplant, Vol. 7, pgs. 241-246 (1991)). Each peripheral blood progenitor cell will be processed and cryopreserved according to previously published techniques. (Lazarus, et al., J. Clin, Oncol., Vol. 10, pgs, 1682-1689) (1992); Lazarus et al., (1991)).

Eight days before the patient is infused with the autologous peripheral blood progenitor cells, the patient receives chemotherapy over a period of 96 hours (4 days), with the following chemotherapy agents:

1. Cyclophosphamide in a total dosage of 6 g/m.sup.2 (1.5 g/m 2/day for 4 days) is given via continuous intravenous infusion at 500 mg/m.sup.2 in 1,000 ml normal saline every 8 hours.

2. Thiotepa in a total dosage of 500 mg/m.sup.2 /day for 4 days) is given via continuous intravenous infusion at 125 mg/.sup.2 in 1,000 ml normal saline every 24 hours.

3. Carboplatin in a total dosage of 1,800 mg/m.sup.2 (200 mg/m.sup.2 /day for 4 days) is given via continuous intravenous infusion at 200 mg/m.sup.2 in 1,000 ml of 5% dextrose in water every 24 hours.

The patient also receives 500 mg of mesna in 50 ml normal saline IV over 15 minutes every 4 hours for 6 days (144 hours), beginning with the first dose of cyclophosphamide.

At least 72 hours after the completion of the chemotherapy, the mesenchymal stem cells are harvested from tissue culture flasks. Cells are collected using bovine trypsin (which is deactivated with soybean trypsin inhibitor), suspended at 10 human serum albumin (infusion medium), washed twice in infusion medium, resuspended at approximately 10.sup.6 cells/ml, and injected slowly intravenously over 15 minutes to provide a total dosage of from 10 to about 5

The day after the patient receives the mesenchymal stem cells, the frozen autologous peripheral blood progenitor cells are removed from the liquid nitrogen refrigerator, transported to the patient in liquid nitrogen, submersed in a 37 infused rapidly intravenously without additional filtering or washing steps. GM-CSF in an amount of 250 μg/m.sup.2 then is given as a daily subcutaneous injection, beginning 3 hours after completion of the autologous blood progenitor cell infusion. The GM-CSF is given daily until the peripheral blood neutrophil count exceeds 1,000/μL for three consecutive days.

It is to be understood, however, that the scope of the present invention is not to be limited to the specific embodiments described above. The invention may be practiced other than as particularly described and still be within the scope of the accompanying claims.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5226914 *16 Nov 199013 Jul 1993Caplan Arnold IMethod for treating connective tissue disorders
US5461034 *18 Jun 199324 Oct 1995Yissum Research Development Company Of The Hebrew University Of JerusalemOsteogenic growth polypeptides identified from regenerating bone marrow
Non-Patent Citations
Reference
1 *Hard. Demonstration of the tumorigenicity of transformed rat kidney cell lines by intravenous allotransplantation in the neonate. Int. Cancer: 30, 197 202 (1982).
2Hard. Demonstration of the tumorigenicity of transformed rat kidney cell-lines by intravenous allotransplantation in the neonate. Int. Cancer: 30, 197-202 (1982).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5942225 *23 Jul 199724 Aug 1999Case Western Reserve UniversityLineage-directed induction of human mesenchymal stem cell differentiation
US6010696 *25 Mar 19984 Jan 2000Osiris Therapeutics, Inc.Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells
US632896012 Mar 199911 Dec 2001Osiris Therapeutics, Inc.Mesenchymal stem cells for prevention and treatment of immune responses in transplantation
US664572725 May 200111 Nov 2003Stemcell Technologies Inc.Antibody compositions for preparing enriched mesenchymal progenitor preparations
US672313128 Feb 200120 Apr 2004The Cleveland Clinic FoundationComposite bone marrow graft material with method and kit
US693022222 Aug 200116 Aug 2005The Scripps Research InstituteIn vivo animal model of human leukemia
US693628121 May 200130 Aug 2005University Of South FloridaHuman mesenchymal progenitor cell
US70490723 Oct 200223 May 2006University Of South FloridaGene expression analysis of pluri-differentiated mesenchymal progenitor cells and methods for diagnosing a leukemic disease state
US7098027 *23 Dec 200229 Aug 2006Renomedix Institute, Inc.Method for remyelinating a demyelinized lesion due to injury in the brain or spinal cord
US71827811 Nov 200027 Feb 2007Regeneration Technologies, Inc.Cervical tapered dowel
US725587912 Aug 200314 Aug 2007Anthrogenesis CorporationPost-partum mammalian placenta, its use and placental stem cells therefrom
US730376910 Feb 20054 Dec 2007University Of South FloridaMethod for purifying pluri-differentiated mesenchymal progenitor cells
US731190413 Feb 200225 Dec 2007Anthrogenesis CorporationTissue matrices comprising placental stem cells, and methods of making the same
US731190513 Feb 200325 Dec 2007Anthrogenesis CorporationEmbryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
US74423909 Jul 200428 Oct 2008University Of South FloridaMethod for enhancing engraftment of cells using mesenchymal progenitor cells
US746827622 Jun 200423 Dec 2008Anthrogenesis CorporationPlacental stem cells
US747053824 Jun 200430 Dec 2008Case Western Reserve UniversityCell-based therapies for ischemia
US74913884 Nov 199917 Feb 2009Osiris Therapeutics, Inc.Uses of fibroblasts or supernatants from fibroblasts for the suppression of immune responses in transplantation
US768280313 Oct 200623 Mar 2010Anthrogenesis CorporationImmunomodulation using placental stem cells
US76914154 Dec 20076 Apr 2010University Of South FloridaMethod for preventing, or reducing the severity of, graft-versus-host disease using pluri-differentiated mesenchymal progenitor cells
US770009028 Dec 200620 Apr 2010Anthrogenesis CorporationCo-culture of placental stem cells and stem cells from a second source
US786304518 Jul 20084 Jan 2011Tigenix N.V.Isolation of skeletal precursor cells
US791477929 Oct 200729 Mar 2011Anthrogenesis CorporationTissue matrices comprising placental stem cells, and methods of making the same
US797683622 Dec 200812 Jul 2011Anthrogenesis CorporationTreatment of stroke using placental stem cells
US79939183 Aug 20079 Aug 2011Anthrogenesis CorporationTumor suppression using placental stem cells
US805778828 Dec 200615 Nov 2011Anthrogenesis CorporationPlacental stem cell populations
US805778931 Oct 200715 Nov 2011Anthrogenesis CorporationPlacental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
US805782619 May 200815 Nov 2011University Of South FloridaMethods for reducing graft-versus-host disease using pluri-differentiated mesenchymal progenitor cells
US81780848 Sep 200315 May 2012Quy Biosciences LimitedPharmaceutical kits comprising mesenchymal stem cells
US820270330 Jul 201019 Jun 2012Anthrogenesis CorporationPlacental stem cell populations
US821656614 Jan 201010 Jul 2012Anthrogenesis CorporationTreatment of multiple sclerosis using placental stem cells
US826306529 Sep 200811 Sep 2012Anthrogenesis CorporationTumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells
US829322330 Sep 201123 Oct 2012Anthrogenesis CorporationTreatment of organ injuries and burns using placental stem cells
US8334135 *31 Jul 200318 Dec 2012Yves Saint Laurent ParfumsStem cells from adipose tissue, and differentiated cells from said cells
US835437016 Jun 200815 Jan 2013Garnet Biotherapeutics, Inc.Administering a biological composition or compositions isolated from self-renewing colony forming somatic cell growth medium to treat diseases and disorders
US836740919 Nov 20095 Feb 2013Anthrogenesis CorporationAmnion derived adherent cells
US843578824 Jun 20107 May 2013Anthrogenesis CorporationTissue matrices comprising placental stem cells
US845525028 Dec 20064 Jun 2013Anthrogenesis CorporationCo-culture of placental stem cells and stem cells from a second source
US846065012 Feb 200811 Jun 2013Anthrogenesis CorporationTreatment of inflammatory diseases using placental stem cells
US848669610 Feb 200516 Jul 2013Garnet Biotherapeutics, Inc.Cell populations which co-express CD49c and CD90
US854583316 May 20111 Oct 2013Anthrogenesis CorporationTreatment of radiation injury using placental stem cells
US856297223 Oct 200722 Oct 2013Anthrogenesis CorporationMethods and compositions for treatment of bone defects with placental cell populations
US85629736 Apr 201122 Oct 2013Anthrogenesis CorporationTreatment of sarcoidosis using placental stem cells
US858056327 Oct 200812 Nov 2013Anthrogenesis CorporationPlacental stem cells
US85863601 Jul 201019 Nov 2013Anthrogenesis CorporationMethod of producing erythrocytes without feeder cells
US859188316 May 201226 Nov 2013Anthrogenesis CorporationPlacental stem cell populations
US860346231 Mar 200410 Dec 2013University Of Utah Research FoundationStem-cell, precursor cell, or target cell-based treatment of multi-organ failure and renal dysfunction
US86141912 Feb 201224 Dec 2013Medipost Co., Ltd.Use of ICAM-1 for prevention or treatment of neurological diseases
US86175353 Nov 200631 Dec 2013Anthrogenesis CorporationCytotherapeutics, cytotherapeutic units and methods for treatments using them
US20090291061 *21 May 200926 Nov 2009Riordan Neil HStem cell therapy for blood vessel degeneration
US20100098671 *7 Jun 200722 Apr 2010Modern Cell & Tissue Technologies Inc.composition for prevention or treatment of bone marrow damage
US20110171659 *19 Oct 201014 Jul 2011Abt Holding CompanyMultipotent Adult Stem Cells, Sources Thereof, Methods of Obtaining and Maintaining Same, Methods of Differentiation Thereof, Methods of Use Thereof and Cells Derived Thereof
US20110177595 *7 Mar 201121 Jul 2011Abt Holding CompanyMultipotent Adult Stem Cells, Sources Thereof, Methods of Obtaining and Maintaining Same, Methods of Differentiation Thereof, Methods of Use Thereof and Cells Derived Thereof
US20110262393 *16 Nov 200927 Oct 2011Medipost Co., Ltd.Composition comprising mesenchymal stem cells or culture solution of mesenchymal stem cells for the prevention or treatment of neural diseases
EP2204442A113 Oct 20087 Jul 2010Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Method of enriching stem cells in culture
EP2607477A15 May 200826 Jun 2013The Brigham and Women's Hospital, Inc.Multipotent stem cells and uses thereof
WO2001094541A2 *21 May 200113 Dec 2001Univ South FloridaHuman mesenchymal progenitor cell
WO2002016559A2 *21 Aug 200128 Feb 2002Novartis AgIn vivo animal model of human leukemia
WO2003029432A2 *3 Oct 200210 Apr 2003Univ South FloridaHuman mesenchymal progenitor cell
WO2006092650A2 *22 Jul 20058 Sep 2006Nat Ct For Cell SciencesA composition for creating an artificial bone -marrow like environment and use thereof
Classifications
U.S. Classification424/93.7, 435/372, 424/423, 424/422
International ClassificationA61F2/30, C07K16/28, C12N5/20, C12N5/00, A61L31/00, A61K35/12, A61K35/28, A61L27/38, A61F2/28, C12N5/077, C12N5/0775
Cooperative ClassificationC12N2501/39, A61F2/30756, A61L2430/10, C07K16/28, A61K35/28, A61F2/28, A61L31/005, A61L27/3834, A61L27/3843, C12N2533/18, A61K2035/124, C12N5/0663, A61L27/3895, C12N2501/2301
European ClassificationA61L27/38B14, A61L27/38H, A61L27/38D2, C12N5/06B13P1, C12N5/00S, A61K35/28, A61F2/28, C07K16/28, C12N5/06B21P, A61L31/00F
Legal Events
DateCodeEventDescription
1 Nov 2013ASAssignment
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSIRIS THERAPEUTICS, INC.;REEL/FRAME:031533/0828
Effective date: 20131010
Owner name: MESOBLAST INTERNATIONAL S?RL, SWITZERLAND
Owner name: MESOBLAST INTERNATIONAL SARL, SWITZERLAND
25 Sep 2009FPAYFee payment
Year of fee payment: 12
30 Sep 2005FPAYFee payment
Year of fee payment: 8
28 Sep 2001FPAYFee payment
Year of fee payment: 4
15 Jul 1999ASAssignment
Owner name: OSIRIS THERAPEUTICS, INC., MARYLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CASE WESTERN RESERVE UNIVERSITY;REEL/FRAME:010086/0736
Effective date: 19990706
9 Jun 1998CCCertificate of correction
24 Jan 1995ASAssignment
Owner name: CASE WESTERN RESERVE UNIVERSITY, OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYNESWORTH, STEPHEN E.;CAPLAN, ARNOLD I.;GERSON, STANTON L.;AND OTHERS;REEL/FRAME:007326/0476
Effective date: 19950113