US5715387A - Method and system for loading and confirming correct operation of an application program in a target system - Google Patents

Method and system for loading and confirming correct operation of an application program in a target system Download PDF

Info

Publication number
US5715387A
US5715387A US08/742,632 US74263296A US5715387A US 5715387 A US5715387 A US 5715387A US 74263296 A US74263296 A US 74263296A US 5715387 A US5715387 A US 5715387A
Authority
US
United States
Prior art keywords
program
target system
target
application
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/742,632
Inventor
Michael A. Barnstijn
Mark E. Church
Barry W. Linkert
Mihal Lazaridis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BlackBerry Ltd
Original Assignee
Research in Motion Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research in Motion Ltd filed Critical Research in Motion Ltd
Priority to US08/742,632 priority Critical patent/US5715387A/en
Application granted granted Critical
Publication of US5715387A publication Critical patent/US5715387A/en
Assigned to BLACKBERRY LIMITED reassignment BLACKBERRY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/3664Environments for testing or debugging software

Definitions

  • the present invention is a system and method for verifying the correct operation of computer application programs.
  • the invention is associated generally with the fields of application debugging or program debugging, but is particularly relevant to the development, optimization and debugging of special purpose or embedded microprocessor systems.
  • the present invention relates to a method and system for confirming the correct operation of a computer program that is to be executed on a computer system (the "target system” or “remote system”) that is different than the computer system on which the application code is being developed (the "host system” or “development system”).
  • CPU Emulator Another popular method of developing target system applications is though use of a processor or Central Processing Unit Emulator (“CPU Emulator"). This method requires that the CPU for the target system be replaced during the development phase with a device that emulates the functions of the CPU. Although such a system may provide an application program developer with the ability to examine the internal status of the CPU and to control extensively the operations of the CPU, such emulation systems are physically large, expensive and often require special or application-specific hardware and software. Frequently, special adapters and wiring harnesses are also required to attach the emulators to the target systems.
  • CPU Emulator Central Processing Unit Emulator
  • a further well-known method of debugging target system applications is by the use of software debuggers such as Microsoft's CodeView® and Borland's Turbo Debugger® in the IBM PC® compatible development environments.
  • software debuggers such as Microsoft's CodeView® and Borland's Turbo Debugger® in the IBM PC® compatible development environments.
  • these debugging programs enable the developer to control the execution of the program and provide information to the developer about internal program states.
  • This debugging method requires that the target system be IBM PC compatible, DOS operating system compatible and that the target system include compatible video display, keyboard, and disk system hardware and software.
  • the need to provide extra hardware and software for merely debugging purposes renders such an approach economically infeasible.
  • the application program is down-loaded to and stored on the target system after it is determined through one of the above prior art methods that the application program is functioning at some acceptable level of accuracy or efficiency.
  • the program instructions are typically generated using prior art methods by a compiler or assembler with relative address references for both code and data.
  • the problem of locating the instructions on the target system is resolved through use of a table of values to "fix up” or convert the address references to references required by the target system.
  • Such a "relocation table” is generated in compilers and assemblers in conjunction with the generation of executable instructions. This approach, however, requires that all addresses or locations be resolved to a specific location before the program can be run.
  • the first method is widely used in many popular computing environments such as the IBM PC but has the drawback of requiring that the target system have the relocation table in memory to perform the required address resolution.
  • the second approach is typically used in relocating an application designed for small operating systems.
  • relocation decisions are made manually at program build time, and the relocation is performed with the presumption that the program my occupy a fixed address in the target system without conflict.
  • This method is adequate for single application environments, but when the method is extended to target systems capable of running multiple applications, difficulties arise. If one or more applications are loaded onto the target system, the relocation must be performed manually before each program load to avoid overwriting the data or code space of the other applications. Therefore, this method is cumbersome, error prone, and inappropriate for loading applications designed to operate on target systems in the field.
  • the current invention provides a method and system whereby a program intended for a target system can be developed and tested directly on the host system.
  • This approach provides a developer using the invention to observe the operation of the program in the target system as the program is being developed.
  • the method and system are particularly useful in developing applications for target systems that incorporate very austere I/0 capabilities.
  • a host system is connected to the target system in the preferred embodiment via a communications link.
  • a program is loaded onto the host computer that translates operating system calls into a number of communication signals that are transmitted over this communications link.
  • a communication program that is compatible with a communications program residing on the host system is loaded onto the target system.
  • Such a program translates the communication signals into operating system calls in the target system.
  • the operating system calls are interpreted by the operating system and the output hardware of the target system is manipulated in response to the operating system calls.
  • input from the target input hardware is processed in the preferred embodiment.
  • An input to the target system such as through the use of a keypad on the target system hardware, causes the operating system on the target system to be informed of an event.
  • the target operating system in turn sends an operating system signal to a debugging application in the target system.
  • the debugging application in the target system then sends an operating system signal to the operating system.
  • the operating system translates the operating system signal to an event signal for communication over the communications link and sends the event signal over the communications link.
  • the host system receives the event signal from the communications link and processes the event signal using a communication program resident on the host system, thereby translating the event signal into a host system operating system signal. This operating system signal is transferred to the application under development in the host system.
  • the application program is down-loaded to and stored on the target system.
  • the invention employs a method not known in the art to address the difficulties created by program instructions generated by a compiler or an assembler associated with relative address references for code and data.
  • the current invention improves upon and eliminates many of the shortcomings found in the prior art by providing a novel method for resolving the addresses in a target application.
  • the instant invention provides a special application loader program that communicates with the operating system of the target device and interrogates the status of the target systems code and data memory.
  • the application loader decides, based on the size of the application to be loaded, where the application may be stored in the target memory space. If insufficient space is available on the target system, then in the preferred embodiment of the instant invention, an error message is displayed and the download process is aborted. Otherwise, the download program proceeds to operate on the application program to resolve its addresses.
  • One additional advantage is that the development environment allows the application developer to generate, test and debug an application program that is too large for the specific memory capacity of the embedded system that is, or that comprises a part of, the target system so that the developer is not bound during application development by the physical constraints of the target system's memory. This feature is especially important if the memory limitations of the target system can be addressed by subsequently compacting the developed application code or if the field version of the target system upon which the application is to be implemented will have greater memory capacity that the target system used for testing and development.
  • this feature permits the development of applications that are meant for implementation on an extended operational system that implements I/O without an embedded system or special purpose system or in which an embedded system comprises only a subsystem of the operational system or acts only as a peripheral device, thereby allowing the testing of the input/output features of the overall operational system without necessarily testing the entire operational system.
  • FIG. 1 shows the physical appearance of the preferred embodiment of the target system of the current invention.
  • FIG. 2 shows the Operating System Modules and Interconnections for the preferred embodiment of the current invention.
  • FIG. 3 illustrates the Operating System Modules and Interconnections.
  • FIG. 4 illustrates the connection of Host System 401 to Target System 403 for purposes, in the preferred embodiment, of loading an application or for verifying the correct operation of such application.
  • FIG. 5 shows the Logical Debugging Interconnections, or the logic and control flow between the modular elements in the preferred embodiment.
  • FIG. 6 illustrates a typical, detailed sequence of events between the Target System and the Host System.
  • FIG. 7 illustrates the decision flow in the Host System Debugging TSR.
  • FIG. 8 illustrates the decision flow in the Target System Debugging Application.
  • FIG. 9 illustrates the process flow loading an Application into the Target System.
  • the preferred embodiment for the current invention is a development system for a mobile terminal marketed under the tradename MPT.
  • MPT is a hand held wireless terminal product of Research In Motion Limited, of Waterloo, Ontario, Canada that is designed to have hardware and operating system support for a wide variety of application programs.
  • the hardware and operating system support are specialized for, but not limited to, financial transaction environments and may also include a number of other capabilities including two way paging and point-to-point or broadcast messaging.
  • FIG. 1 illustrates the MPT, which is one example of a terminal that can be used with the current invention as the hardware platform for the target system. Illustrated in FIG. 1 is MPT's LCD display 101, used for displaying information to the user of the terminal, folding antenna 102 used as the antenna to contact the RF network, soft function keys 103 for application and context specific functions, function keys 104 for additional application functions, alpha-numeric telephone-style keyboard 105 for user data entry, and magnetic card reader slot 106 for reading cards with a magnetic stripe, such as credit cards.
  • MPT's LCD display 101 used for displaying information to the user of the terminal
  • folding antenna 102 used as the antenna to contact the RF network
  • soft function keys 103 for application and context specific functions
  • function keys 104 for additional application functions
  • alpha-numeric telephone-style keyboard 105 for user data entry
  • magnetic card reader slot 106 for reading cards with a magnetic stripe, such as credit cards.
  • FIG. 2 is the block diagram of the major hardware subsystems of the MPT.
  • designated as 201 is a Central Processing Unit (“CPU") that, in conjunction with its operating system software, is capable of executing one or more application programs contained in Program Storage 202, using data stored in Data Storage 203 and performing specific actions on at least one of peripherals 204-211.
  • CPU Central Processing Unit
  • Power management 204 is preferably a timer that causes liquid crystal display 210 to be powered-down and CPU 201 to operate at a slower speed.
  • the MPT remains in this power saving state until a key on keypad 211 is pressed.
  • Debug serial port 205 provides the link to the host system through which the host system sends commands to the debug application on the MPT and through which the debug application sends hardware events to the host system.
  • Tone generator 206 is a standard piezoelectric device, such as a crystal, whose frequency is controlled by CPU 201.
  • An external network can be connected through the RS-485 DIN Local Area Network Connection 207.
  • the information stored on the magnetic stripe of a credit card or other cards with such a magnetic stripe can be read by magnetic card reader 208 and sent to CPU 201 to be processed by the software.
  • CPU 201 can issue commands to an external printer or similar device via printer port 209 as may be required by a particular application.
  • LCD Liquid crystal display 210
  • CPU 201 controls the LCD 210 through its operating system as may be required by a particular application to prompt the user to enter data, or to inform the user of certain events.
  • the user of the MPT is able to enter both text and numeric data manually using keypad 211 which generates events that are decoded by the MPT operating system software.
  • FIG. 3 illustrates the operating system architecture for the preferred embodiment of the invention. This diagram illustrates the principal hardware and software entities and their primary paths of interaction.
  • User applications 301-303 communicate directly with the operating system through the BIOS (Built In Operating System) 308.
  • BIOS 308 is an interface specification that provides access to operating system services, such as displaying characters on LCD 316, or requesting data from a magnetic card swipe.
  • one application at a time runs in the foreground or is "in focus," i.e., it is the primary application to which I/O is directed.
  • the practice of defining one application as the focused application in a multi-application environment is well known in the industry and is practiced by operating systems such as Microsoft Windows, a product of Microsoft Corporation of Redmond, Washington.
  • the application that is in focus by default receives input from and delivers output to Devices 313-320.
  • items 313-320 are labelled Devices, included as items 317-319 are communication ports to which other devices may be, but need not necessarily be connected.
  • a request for output from an application is generated in the form of a call to the BIOS 308.
  • the BIOS 308 interprets and translates this output request and calls the appropriate routine in I/O Processor 310.
  • I/O Processor 310 performs the requested output on Devices 313-320.
  • Input from the user is realized as excitation of one of Devices 313-320 and causes notification of I/O Processor 310.
  • I/O Processor 310 interprets and queues the input as an "event”. Events are stored in Event Queue 305. The application that has the current focus is informed sequentially of the device excitation events in the order in which they occurred.
  • Timer 309 is a device that can be programmed by an operating system call to generate a Timer event after a known fixed time delay. This allows an application program to wait a certain amount of time for an event to happen and proceed if the time-out value is exceeded.
  • the operating system that comprises the preferred embodiment provides a BIOS function that allows an application to indicate that it requires to be informed of events from a specific device or devices, even when another application is in the foreground.
  • the application events and the devices from which they originate that are "registered" are stored in Register Event Table 312. Events from the registered devices are first checked for inclusion in Register Event Table. If they are not registered by a specific application, the events are passed on to the application that has the current focus.
  • registered events are stored in a separate event queue, Register Event Queue 306.
  • Scheduler and Application Table 307 is the process controller in the preferred embodiment of the operating system that comprises the invention.
  • the Scheduler part of item 307 in turn manages each of the queue functions in the MPT O/S.
  • Part of managing Event Queue 305 and Register Event Queue 306 involves sending messages to the appropriate application or applications.
  • the preferred operating system includes Setup Program 304 that performs general user-initiated terminal management functions.
  • Setup Program 304 permits the operator of the terminal to perform such functions as selecting which application should be the foreground application, suspending the operation of selected applications, or re-initializing applications to their starting conditions.
  • FIG. 4 illustrates the physical Debugging Interconnections between Host Computer (Host System) 401 and MPT Target (Target System) 403.
  • the interconnection method used in the preferred embodiment is a bi-directional RS-232 serial connection. This type of connection is well known in the industry as a standard method of connecting data communicating devices together, although one of ordinary skill will appreciate that other types of communication connections will suffice as well.
  • the interconnection cable 402 is a standard "null modem" connection. The specific construction of such a cable is well-known to those skilled in the art of computer communications. The nature of this specific communications channel is that signals comprising information may be transmitted in either direction over the link.
  • the instant communications link allows for the simultaneous transfer of asynchronous bitwise information, although it should be appreciated that any communications channel, cable, system or network capable of transmitting information in two directions could be substituted for Communications Link 402.
  • FIG. 5 illustrates Logical Debugging Interconnections between the Host System 401 and Target System 403 or the connection and communication paths between the various software and hardware entities in the entire system.
  • Application Program 502 under nest in the Debugging Environment 501 operates in Host System 509.
  • a well-known method of debugging applications for the IBM PC as a target system is to run the Application Program under test inside a Debugging Environment 501 such as CodeView, a product of Microsoft Corporation of Redmond, Washington or Borland Turbo Debugger, a product of Borland International Inc. of Scotts Valley, Calif.
  • These debugging environments permit a developer to inspect the application program, control its execution, halt execution of the program and examine the contents of program data storage areas.
  • the Application Program under test is run in the preferred embodiment under the supervision of the Debugging Environment.
  • a normal operating system level call is made.
  • a special Communications Program 503 is preloaded, in the instant case, as a TSR (Terminate and Stay Resident) program that accepts these operating system calls.
  • the mechanism by which operating system calls are made is via the Intel x86 software INT mechanism, defined by Intel Corporation of Santa Clara, Calif. and well known in the software development community.
  • the operating system calls from Application 502 are identical, whether the application is running on Host System 509 or is running on Target System 510.
  • both Target Operating System 506 and Communications Program 503 accept the same operating system calls through the same mechanism.
  • Both Target System 510 and Host System 509 microprocessors have identical software INT capabilities simplifies the design of Communications Program 503.
  • a simple additional translation in Communications Program 503 and/or Debug Application 507 would accommodate this difference.
  • the Communications Program 503 generates signals from the above-mentioned operating system calls and relays these signals over Physical Communications Link 504.
  • the physical communications link is a bi-directional RS-232 serial communications link.
  • the signals cross Communications Channel 511 and arrive at Physical Communications Link 505 in Target System 510.
  • Target Operating System 506 receives these signals and relays the receipt of the messages contained in the signals to Debug Application 507.
  • Debug Application 507 interprets the messages and translates them into an operating system call equivalent to the operating system call that was originally made by Application 502. This operating system call then causes Target Input/Output 508 to be exercised accordingly.
  • An example of a typical operating system call that operates in this manner in preferred implementation of the system and method in the MPT is the -- LCDputch call.
  • the -- LCDputch call displays a given character on the LCD display of the MPT.
  • Target Input/Output 508 sends a signal to Target Operating System 506.
  • This signal is then translated by Target Operating System 506 into an operating system signal.
  • the application with the current focus in this case the Debug Application 507
  • the Debug Application 507 translates the operating system message into a signal for transmission over Physical Communications Link 505.
  • the signal is then transferred over Communications Channel 511 to Physical Communications Link on Host System 509.
  • Communications Program 503 interprets the signal, and performs a corresponding translation from communications signal to operating system signal. That operating system signal is then sent to the Application 502 as a message.
  • An example of a typical operating system call that operates in this manner in the preferred operating environment of the MPT is the KEYPAD message ENTER -- KEY, which register the excitation of the enter key on the MPT key pad.
  • FIG. 6 illustrates a typical detailed sequence of events than occur when the current invention is operating and/or debugging an application program.
  • the event sequence illustrated involves a hardware event on the MPT initiating a response in the application program, which causes a corresponding output to a hardware device on the MPT.
  • a typical example of such a sequence occurs when a pressed key on the keyboard of the MPT (such as the "2" Key) would cause a "2" to appear in the next cursor position on the LCD display (101 or 210) of the MPT.
  • This sequence would occur in many applications, for example in a point of sale application during entry of a transaction amount.
  • Target System MPT 601 is connected to Host System PC 602 via Asynchronous RS-232 Serial Link 603 in the same manner as described above.
  • a hardware event causes Operating System 626 to send a message (Call Debug Application Function 604) to Debug Application 627 to execute a dispatch function.
  • Debug Application 627 in turn translates this message into a debug event packet format and sends Debug Event Packet 606 via RS-232 Serial Link 603.
  • Debug Event Packet 606 contains information concerning the type of event and may contain extra data, such as information obtained through the reading of a magnetic stripe in the case of a magnetic card read event.
  • Debug TSR 608 on PC 602 receives Debug Event Packet 606, and if the packet is received without communication error a single byte ACK 607 is returned.
  • ACK 607 is the indication to the MPT Debug Application that the Send Event 605 message has completed, allowing Debug Application 627 to continue its execution.
  • Debug Event Packet 606 The receipt of Debug Event Packet 606 by Debug TSR 608 causes Dispatch Routine With Event 610 to be called.
  • the information in Debug Event Packet 606 is transformed into the same message format as is used to communicate messages between MPT Operating System 626 and applications.
  • Application 609 which receives the indication of this event in the preferred embodiment is in CV (CodeView). As stated earlier, Application 609 is written to respond to the receipt of this event by requesting an output on the MPT, in this case a character on the LCD screen.
  • Application 609 calls MPT 0/S BIOS function 611.
  • This BIOS function call is received by Debug TSR 608, which interprets the BIOS call, initiates Send Bios Request 612 and formats and sends corresponding Debug BIOS Packet 613.
  • BIOS Packet 613 is sent over Asynchronous RS-232 Serial Link 603.
  • Debug Application 627 sends ACK packet 614 to Debug TSR 608 to indicate successful reception of Debug BIOS Packet 613.
  • Debug Application 627 Upon receiving Debug BIOS Packet 613, Debug Application 627 decodes (at 615) Debug BIOS Packet 613 and calls a corresponding MPT O/S BIOS function in the MPT (at 616). MPT Operating System 626, at this point, actually performs the requested function and returns the status of that operation as Send BIOS Response 617.
  • Send BIOS Response 617 is translated into Debug BIOS Packet Response 618 and transmitted over Asynchronous RS-232 Serial Link 603.
  • Debug TSR 608 accepts Debug BIOS Packet Response 618, and indicates correct reception of this packet with a single byte ACK packet 619.
  • Debug TSR 608 then translates Debug BIOS Packet Response 617 into a response to the original BIOS Request initiated by Application 609.
  • Debug BIOS Packet Response 618 may be simply a BIOS function completion code or it may contain additional information.
  • Application 609 has completed the processing of the original system event. If Application 609 were running inside the MPT, this causes a return of processor control to the Target (MPT) Operating System 626. This return of control allows the processing of additional events.
  • the return of control by Application 609 is indicated to Debug TSR 608 as a Return From Dispatch Function return 622 and translated into a single character (EOT) message 623 by Debug TSR 608.
  • the EOT message is sent over Asynchronous RS-232 Serial Link 603 and interpreted as a Done Event message 624 by Debug Application 627.
  • Debug Application 627 in turn returns control to MPT Operating System 626 via Return from Dispatch Function 625.
  • an additional EOT 628 is provided from PC 602 back to MPT 601 in the preferred embodiment.
  • FIG. 7 illustrates the Host System process flow. This is the sequence of program steps that define the operation of the Debug TSR 608 shown in FIG. 6.
  • the Debug TSR program begins at the Start 701 step, where it is initialized and begins program execution.
  • the Debug TSR then loads itself as a TSR at step 702, and returns control of the host system to the operating system.
  • the loading of an application program as a TSR is a well-known practice in PC-based software development. Loading an application as a TSR frees the host operating system to run the Debugging Environment and Application shown on FIG. 5 as items 501 and 502, respectively.
  • the Debug TSR then enters state 703, where it waits for either a BIOS function call from Application 501 or a serial character input from the communications link. On receipt of a serial character, the Debug TSR enters the Accumulate Serial Characters State 704. The accumulated serial characters are then examined at step 706. If the accumulated serial characters do not constitute a full debug packet, the Debug TSR returns to state 703. If the accumulated serial characters do constitute a full debug packet, then the packet is examined for a correct Cyclic Redundancy Check (CRC) check sum at step 708.
  • CRC Cyclic Redundancy Check
  • the Debug TSR If the packet does not pass the verification test at step 708, the Debug TSR returns to state 703 (label A). If the debug packet passes the checksum test, the packet is translated into an appropriate BIOS event message at step 710, and an ACK is sent across the serial link to the Debug Application on the Target System at step 712. The Debug TSR then makes a call to the dispatcher function in the Application in the Host System at step 713.
  • the Debug TSR receives a BIOS call from the Application, the Debug TSR then proceeds at step 805 to build the Debug Packet from the data supplied with the BIOS call. In the preferred embodiment, this information is supplied through register contents, although it can be supplied through any direct or indirect data storage.
  • the Debug Packet thus formed is transferred character by character through the Serial Link at step 707. After each character is sent, a test is performed at step 709 to determine if this is the final element of the packet. If the last character sent is not the last character in the packet, then the Debug TSR returns to state 707. If the last character sent is the last character in the packet, then the entire packet has been sent and the Debug TSR enters state 711.
  • the Debug TSR waits for an ACK from the Target System side of the communications channel.
  • the application returns to step 703 to wait for the next event.
  • An alternative to the simple protocol implemented in the preferred embodiment includes a mechanism or process for resending Debug Packets or control signals such as ACKs if the items to be received are not successfully received within a time-out period.
  • FIG. 8 illustrates Target System process flow. This is the sequence of program steps that define the operation of Debug Application 627 shown in FIG. 6.
  • the Debug Application program begins at the Start 801 step, where it is initialized and begins program execution.
  • the Debug Application then loads itself as an Operating System Application at step 802 and returns control to the Target Operating System 506.
  • the Debug Application then enters state 803, where it waits for either an event from the Target Operating System 506 or a serial character input from the communications link.
  • the Debug Application On receipt of a serial character, the Debug Application enters the Accumulate Serial Characters state at step 804.
  • the accumulated serial characters are then examined at step 806. If the accumulated serial characters do not constitute a full debug packet, the Debug Application returns to state 803.
  • CRC Cyclic Redundancy Check
  • the Debug Application returns to state 803 (label A). If the debug packet passes the checksum test, the packet is translated into an appropriate BIOS function call at step 810, and an ACK is sent across the serial link to the Host System Debug Application at step 812. The Debug Application then makes a call to the BIOS in the Host System at 813. Alternatively, if while in state 803, the Debug Application receives an event message from the Host System Operating System, the Debug Application then proceeds at step 805 to build the Debug Packet from the data supplied with the event message. In the preferred embodiment, this information is supplied through register contents, although can be supplied through any direct or indirect data storage.
  • the Debug Packet formed at step 805 is transferred character by character through the Serial Link at step 807. After each character is sent, a test is performed at step 809 to determine if this is the final element of the packet. If the last character sent is not the last character in the packet, then the Debug Application returns to state 807. If the last character sent was the last character in the packet, the Debug Application enters state 811. In state 811 the Debug Application waits for an ACK from the Host System side of the communications channel. When this ACK is successfully received, the application returns to state 803 to wait for the next event.
  • an alternative to the simple protocol implemented in the preferred embodiment in the Target System Debugging Application Process includes a mechanism or process for resending Debug Packets or control signals such as ACKs if the items to be received are not successfully received within a time-out period.
  • FIG. 9 illustrates the Application Loading Process Flow. This is the sequence of events that occur when an application is to be stored in the application memory space in Target System.
  • the result of the debugging or verification process is a relocatable program image. Relocatable programs have all of the internal address references unresolved, or relative to the location or locations that the application will ultimately be run from.
  • the current embodiment uses the DOS "EXE" format as output from the standard DOS application development tools such as Microsoft C/C++, a product of Microsoft Corporation of Redmond, Washington or Borland C++, a product of Borland International Inc., of Scotts Valley, Calif.
  • the Application Loader first interrogates the Target Operating System for the target system status via the Serial Link at step 902.
  • the system status returned includes, but is not limited to, a) the starting address of free code storage, b) the starting address of free data storage, c) the quantity of remaining code storage, d) the quantity of remaining data storage, e) the size of total system code storage available if no other applications were in the system, and f) the size of total system data storage available if no other applications were in the system.
  • the Application Loader opens the file that contains the Application that is to be loaded onto the Target System. This file is analyzed and the code and data space requirements are computed. The results of this computation are compared to the reported Target System storage space availability at step 905.
  • Target System does not have sufficient space to store the application, a further comparison is made at step 906 to determine if the application would fit if the other applications in Target System were removed. If there would not be sufficient space, the loading of this Application can not proceed, and the Application Loader is terminated with an appropriate warning message.
  • the operator of the Application Loader program is given the option to erase the other applications in Target System memory space at step 907. If the operator elects to not proceed, then the application terminates with appropriate annunciation. If either there is sufficient application space, or the operator elects to make sufficient application space by erasing other applications through Erase Applications step 907, the Application Loader calculates the pointer or memory reference offsets that would be required for the Application Program at the memory location offsets reported in step 902. The Application Loader then modifies the Application Offsets for the Application program at step 909, and transmits the Application to Target System at step 910. When the Target System acknowledges the successful reception and storage of the Application Program, the Application Loader terminates with a successful completion message.

Abstract

A method and system provides a special purpose or embedded system developer with the ability to confirm the correct operation of a computer program designed to operate on a target system whose processing and storage capabilities may be more austere than the host system upon which the computer program is designed and tested. A key feature of the method and the system enables a developer to execute and debug an application program on a host system while observing and testing the operation of the program through the input/output of the target system. Another feature of the method and system is an application loader that dynamically sizes and, as necessary, reconfigures the available memory to permit multiple applications to reside simultaneously on the target system by resolving addresses in the target system at the time an application of interest is downloaded to the target system.

Description

This is a continuation of application Ser. No. 08/386,528 filed Feb. 10, 1995, now U.S. Pat. No. 5,600,790.
FIELD OF THE INVENTION
The present invention is a system and method for verifying the correct operation of computer application programs. The invention is associated generally with the fields of application debugging or program debugging, but is particularly relevant to the development, optimization and debugging of special purpose or embedded microprocessor systems.
BACKGROUND OF THE INVENTION
The present invention relates to a method and system for confirming the correct operation of a computer program that is to be executed on a computer system (the "target system" or "remote system") that is different than the computer system on which the application code is being developed (the "host system" or "development system").
Several well-known methods for developing and verifying the correct operation of target system programs currently exist. One popular method is to create a software simulation of the target system to simulate the input/output (I/O) process through use of computer graphics, printed output, or other means. This method has two primary disadvantages: 1) the simulation of the target system may have inherent errors or inaccuracies and thus may not properly indicate the behavior of the target system and 2) the simulation program requires significant programming effort to generate and validate. Additionally, such simulation programs are generally cumbersome, are frequently application-dependent and usually require a significant amount of storage.
Another popular method of developing target system applications is though use of a processor or Central Processing Unit Emulator ("CPU Emulator"). This method requires that the CPU for the target system be replaced during the development phase with a device that emulates the functions of the CPU. Although such a system may provide an application program developer with the ability to examine the internal status of the CPU and to control extensively the operations of the CPU, such emulation systems are physically large, expensive and often require special or application-specific hardware and software. Frequently, special adapters and wiring harnesses are also required to attach the emulators to the target systems.
A further well-known method of debugging target system applications is by the use of software debuggers such as Microsoft's CodeView® and Borland's Turbo Debugger® in the IBM PC® compatible development environments. When the application is being designed to run on an IBM PC, these debugging programs enable the developer to control the execution of the program and provide information to the developer about internal program states. This debugging method requires that the target system be IBM PC compatible, DOS operating system compatible and that the target system include compatible video display, keyboard, and disk system hardware and software. For many target system applications, the need to provide extra hardware and software for merely debugging purposes renders such an approach economically infeasible.
In many prior art development environments, the application program is down-loaded to and stored on the target system after it is determined through one of the above prior art methods that the application program is functioning at some acceptable level of accuracy or efficiency. When the application program is to be down-loaded, the program instructions are typically generated using prior art methods by a compiler or assembler with relative address references for both code and data. In most prior art systems, the problem of locating the instructions on the target system is resolved through use of a table of values to "fix up" or convert the address references to references required by the target system. Such a "relocation table" is generated in compilers and assemblers in conjunction with the generation of executable instructions. This approach, however, requires that all addresses or locations be resolved to a specific location before the program can be run.
In prior art systems, addresses are, more specifically, resolved in one of two primary ways:
1) by having the target system compute the next available address and perform address resolution before the program is run, or
2) by providing specific memory resolution information for the target system before loading the application into the target system.
The first method is widely used in many popular computing environments such as the IBM PC but has the drawback of requiring that the target system have the relocation table in memory to perform the required address resolution.
The second approach is typically used in relocating an application designed for small operating systems. Under this second method, relocation decisions are made manually at program build time, and the relocation is performed with the presumption that the program my occupy a fixed address in the target system without conflict. This method is adequate for single application environments, but when the method is extended to target systems capable of running multiple applications, difficulties arise. If one or more applications are loaded onto the target system, the relocation must be performed manually before each program load to avoid overwriting the data or code space of the other applications. Therefore, this method is cumbersome, error prone, and inappropriate for loading applications designed to operate on target systems in the field.
SUMMARY OF THE INVENTION
In view of the deficiencies in current embedded systems development and debugging strategies, the current invention provides a method and system whereby a program intended for a target system can be developed and tested directly on the host system. This approach provides a developer using the invention to observe the operation of the program in the target system as the program is being developed. The method and system are particularly useful in developing applications for target systems that incorporate very austere I/0 capabilities.
As will be discussed in greater detail below, a host system is connected to the target system in the preferred embodiment via a communications link. A program is loaded onto the host computer that translates operating system calls into a number of communication signals that are transmitted over this communications link. A communication program that is compatible with a communications program residing on the host system is loaded onto the target system. Such a program translates the communication signals into operating system calls in the target system. The operating system calls are interpreted by the operating system and the output hardware of the target system is manipulated in response to the operating system calls.
In a similar way, input from the target input hardware is processed in the preferred embodiment. An input to the target system, such as through the use of a keypad on the target system hardware, causes the operating system on the target system to be informed of an event. The target operating system in turn sends an operating system signal to a debugging application in the target system. The debugging application in the target system then sends an operating system signal to the operating system.
The operating system translates the operating system signal to an event signal for communication over the communications link and sends the event signal over the communications link. The host system receives the event signal from the communications link and processes the event signal using a communication program resident on the host system, thereby translating the event signal into a host system operating system signal. This operating system signal is transferred to the application under development in the host system.
In this manner both input and output events are physically executed or initiated using the target system's hardware while one or more applications under development reside and are executed in the host computer development environment. Such a method and system present the additional advantage that the application developer can use the host system to engage more sophisticated diagnostic tools to aid in the application program development.
As with many prior art development environments, after the correct operation of the program is determined by the present invention, the application program is down-loaded to and stored on the target system. To accomplish this, the invention employs a method not known in the art to address the difficulties created by program instructions generated by a compiler or an assembler associated with relative address references for code and data. The current invention improves upon and eliminates many of the shortcomings found in the prior art by providing a novel method for resolving the addresses in a target application. The instant invention provides a special application loader program that communicates with the operating system of the target device and interrogates the status of the target systems code and data memory. The application loader decides, based on the size of the application to be loaded, where the application may be stored in the target memory space. If insufficient space is available on the target system, then in the preferred embodiment of the instant invention, an error message is displayed and the download process is aborted. Otherwise, the download program proceeds to operate on the application program to resolve its addresses.
In addition to the advantages immediately apparent in the design of the instant invention, further advantages that might not be as apparent also flow from the method and system described in greater detail below. One additional advantage is that the development environment allows the application developer to generate, test and debug an application program that is too large for the specific memory capacity of the embedded system that is, or that comprises a part of, the target system so that the developer is not bound during application development by the physical constraints of the target system's memory. This feature is especially important if the memory limitations of the target system can be addressed by subsequently compacting the developed application code or if the field version of the target system upon which the application is to be implemented will have greater memory capacity that the target system used for testing and development.
Additionally, this feature permits the development of applications that are meant for implementation on an extended operational system that implements I/O without an embedded system or special purpose system or in which an embedded system comprises only a subsystem of the operational system or acts only as a peripheral device, thereby allowing the testing of the input/output features of the overall operational system without necessarily testing the entire operational system.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the physical appearance of the preferred embodiment of the target system of the current invention.
FIG. 2 shows the Operating System Modules and Interconnections for the preferred embodiment of the current invention.
FIG. 3 illustrates the Operating System Modules and Interconnections.
FIG. 4 illustrates the connection of Host System 401 to Target System 403 for purposes, in the preferred embodiment, of loading an application or for verifying the correct operation of such application.
FIG. 5 shows the Logical Debugging Interconnections, or the logic and control flow between the modular elements in the preferred embodiment.
FIG. 6 illustrates a typical, detailed sequence of events between the Target System and the Host System.
FIG. 7 illustrates the decision flow in the Host System Debugging TSR.
FIG. 8 illustrates the decision flow in the Target System Debugging Application.
FIG. 9 illustrates the process flow loading an Application into the Target System.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The preferred embodiment for the current invention is a development system for a mobile terminal marketed under the tradename MPT. The MPT is a hand held wireless terminal product of Research In Motion Limited, of Waterloo, Ontario, Canada that is designed to have hardware and operating system support for a wide variety of application programs. The hardware and operating system support are specialized for, but not limited to, financial transaction environments and may also include a number of other capabilities including two way paging and point-to-point or broadcast messaging.
FIG. 1 illustrates the MPT, which is one example of a terminal that can be used with the current invention as the hardware platform for the target system. Illustrated in FIG. 1 is MPT's LCD display 101, used for displaying information to the user of the terminal, folding antenna 102 used as the antenna to contact the RF network, soft function keys 103 for application and context specific functions, function keys 104 for additional application functions, alpha-numeric telephone-style keyboard 105 for user data entry, and magnetic card reader slot 106 for reading cards with a magnetic stripe, such as credit cards.
FIG. 2 is the block diagram of the major hardware subsystems of the MPT. As shown in FIG. 2, designated as 201 is a Central Processing Unit ("CPU") that, in conjunction with its operating system software, is capable of executing one or more application programs contained in Program Storage 202, using data stored in Data Storage 203 and performing specific actions on at least one of peripherals 204-211.
Power management 204 is preferably a timer that causes liquid crystal display 210 to be powered-down and CPU 201 to operate at a slower speed. The MPT remains in this power saving state until a key on keypad 211 is pressed.
Debug serial port 205 provides the link to the host system through which the host system sends commands to the debug application on the MPT and through which the debug application sends hardware events to the host system.
Tone generator 206 is a standard piezoelectric device, such as a crystal, whose frequency is controlled by CPU 201.
An external network can be connected through the RS-485 DIN Local Area Network Connection 207.
The information stored on the magnetic stripe of a credit card or other cards with such a magnetic stripe can be read by magnetic card reader 208 and sent to CPU 201 to be processed by the software.
CPU 201 can issue commands to an external printer or similar device via printer port 209 as may be required by a particular application.
Liquid crystal display 210 ("LCD") is the primary device for displaying information to the operator of the MPT. LCD 210 is controlled by CPU 201 through its operating system as may be required by a particular application to prompt the user to enter data, or to inform the user of certain events.
The user of the MPT is able to enter both text and numeric data manually using keypad 211 which generates events that are decoded by the MPT operating system software.
FIG. 3 illustrates the operating system architecture for the preferred embodiment of the invention. This diagram illustrates the principal hardware and software entities and their primary paths of interaction. User applications 301-303 communicate directly with the operating system through the BIOS (Built In Operating System) 308. The BIOS 308 is an interface specification that provides access to operating system services, such as displaying characters on LCD 316, or requesting data from a magnetic card swipe. There are three user applications shown in the FIG. 3, but one may appreciate any number of applications, up to an artificial or physical limit imposed by the operating system or the hardware may be implemented. In the preferred embodiment, all applications are stored in the program storage area. With more powerful multitasking and threading techniques readily available more than one application may be executing in the foreground at any point in time, in the preferred embodiment one application at a time runs in the foreground or is "in focus," i.e., it is the primary application to which I/O is directed. The practice of defining one application as the focused application in a multi-application environment is well known in the industry and is practiced by operating systems such as Microsoft Windows, a product of Microsoft Corporation of Redmond, Washington. In the preferred embodiment, the application that is in focus by default receives input from and delivers output to Devices 313-320. It should be noted that although items 313-320 are labelled Devices, included as items 317-319 are communication ports to which other devices may be, but need not necessarily be connected.
A request for output from an application is generated in the form of a call to the BIOS 308. The BIOS 308 in turn, interprets and translates this output request and calls the appropriate routine in I/O Processor 310. I/O Processor 310 performs the requested output on Devices 313-320.
Input from the user is realized as excitation of one of Devices 313-320 and causes notification of I/O Processor 310. I/O Processor 310 interprets and queues the input as an "event". Events are stored in Event Queue 305. The application that has the current focus is informed sequentially of the device excitation events in the order in which they occurred.
Timer 309 is a device that can be programmed by an operating system call to generate a Timer event after a known fixed time delay. This allows an application program to wait a certain amount of time for an event to happen and proceed if the time-out value is exceeded.
In addition to the regular input and output methods described above, there is a further mechanism to route specific I/O to a specific application. The operating system that comprises the preferred embodiment provides a BIOS function that allows an application to indicate that it requires to be informed of events from a specific device or devices, even when another application is in the foreground. The application events and the devices from which they originate that are "registered" are stored in Register Event Table 312. Events from the registered devices are first checked for inclusion in Register Event Table. If they are not registered by a specific application, the events are passed on to the application that has the current focus. In the preferred embodiment, registered events are stored in a separate event queue, Register Event Queue 306.
Scheduler and Application Table 307 is the process controller in the preferred embodiment of the operating system that comprises the invention. The Scheduler part of item 307 in turn manages each of the queue functions in the MPT O/S. Part of managing Event Queue 305 and Register Event Queue 306 involves sending messages to the appropriate application or applications.
Additionally, the preferred operating system includes Setup Program 304 that performs general user-initiated terminal management functions. Setup Program 304 permits the operator of the terminal to perform such functions as selecting which application should be the foreground application, suspending the operation of selected applications, or re-initializing applications to their starting conditions.
FIG. 4 illustrates the physical Debugging Interconnections between Host Computer (Host System) 401 and MPT Target (Target System) 403. The interconnection method used in the preferred embodiment is a bi-directional RS-232 serial connection. This type of connection is well known in the industry as a standard method of connecting data communicating devices together, although one of ordinary skill will appreciate that other types of communication connections will suffice as well. The interconnection cable 402 is a standard "null modem" connection. The specific construction of such a cable is well-known to those skilled in the art of computer communications. The nature of this specific communications channel is that signals comprising information may be transmitted in either direction over the link. The instant communications link allows for the simultaneous transfer of asynchronous bitwise information, although it should be appreciated that any communications channel, cable, system or network capable of transmitting information in two directions could be substituted for Communications Link 402.
FIG. 5 illustrates Logical Debugging Interconnections between the Host System 401 and Target System 403 or the connection and communication paths between the various software and hardware entities in the entire system. Application Program 502 under nest in the Debugging Environment 501 operates in Host System 509. A well-known method of debugging applications for the IBM PC as a target system is to run the Application Program under test inside a Debugging Environment 501 such as CodeView, a product of Microsoft Corporation of Redmond, Washington or Borland Turbo Debugger, a product of Borland International Inc. of Scotts Valley, Calif. These debugging environments permit a developer to inspect the application program, control its execution, halt execution of the program and examine the contents of program data storage areas. These tools have been available for several years and have matured to the point where they are both inexpensive and support many powerful debugging features. It should be noted that while the debugging environment provides an excellent and inexpensive mechanism for controlling and observing the application under development, there is no requirement that an application under test run under such a debugging environment. It is possible, and often desirable, to run an application under test directly from the operating system of the host system. When Application 502 is running in this manner, operating system calls for Target System 510 will be directed to such system through the INT call. All other operating system calls, in the preferred embodiment, will be directed towards Host System 509. It should be appreciated by one of ordinary skill in the art, however, that all the operating system calls not associated with a target system do not necessarily have to be directed to a host system, but could be advantageously directed to a number of other systems using the INT call or a similar function. The method and system of the preferred embodiment, however, permits the display and keyboard of Host System 509 to be used under Application Program control, in concert with the I/O of Target System 510, to control the operation of and annunciate the operating status of the Application Program that is being debugged or tested.
The Application Program under test is run in the preferred embodiment under the supervision of the Debugging Environment. When the Application Program needs to send output to Target System 510, a normal operating system level call is made. In Host System 509, a special Communications Program 503 is preloaded, in the instant case, as a TSR (Terminate and Stay Resident) program that accepts these operating system calls. In the preferred embodiment, the mechanism by which operating system calls are made is via the Intel x86 software INT mechanism, defined by Intel Corporation of Santa Clara, Calif. and well known in the software development community. The operating system calls from Application 502 are identical, whether the application is running on Host System 509 or is running on Target System 510. That is, both Target Operating System 506 and Communications Program 503 accept the same operating system calls through the same mechanism. The fact that both Target System 510 and Host System 509 microprocessors have identical software INT capabilities simplifies the design of Communications Program 503. As one of ordinary skill in the art of digital communications software will appreciate, if the operating system call mechanisms differed between Host System 509 and Target System 510, a simple additional translation in Communications Program 503 and/or Debug Application 507 would accommodate this difference.
Communications Program 503 generates signals from the above-mentioned operating system calls and relays these signals over Physical Communications Link 504. As stated above, the physical communications link is a bi-directional RS-232 serial communications link. The signals cross Communications Channel 511 and arrive at Physical Communications Link 505 in Target System 510. Target Operating System 506 receives these signals and relays the receipt of the messages contained in the signals to Debug Application 507. Debug Application 507 then interprets the messages and translates them into an operating system call equivalent to the operating system call that was originally made by Application 502. This operating system call then causes Target Input/Output 508 to be exercised accordingly. An example of a typical operating system call that operates in this manner in preferred implementation of the system and method in the MPT is the -- LCDputch call. The -- LCDputch call displays a given character on the LCD display of the MPT.
Similarly, for each excitation event generated physically on Target Input/Output 508, such as a keyboard keystroke or a magnetic card swipe, Target Input/Output 508 sends a signal to Target Operating System 506. This signal is then translated by Target Operating System 506 into an operating system signal. AS in normal operation, the application with the current focus (in this case the Debug Application 507) is sent an operating system message with the appropriate information. The Debug Application 507 translates the operating system message into a signal for transmission over Physical Communications Link 505. The signal is then transferred over Communications Channel 511 to Physical Communications Link on Host System 509. Communications Program 503 then interprets the signal, and performs a corresponding translation from communications signal to operating system signal. That operating system signal is then sent to the Application 502 as a message. An example of a typical operating system call that operates in this manner in the preferred operating environment of the MPT is the KEYPAD message ENTER-- KEY, which register the excitation of the enter key on the MPT key pad.
FIG. 6 illustrates a typical detailed sequence of events than occur when the current invention is operating and/or debugging an application program. The event sequence illustrated involves a hardware event on the MPT initiating a response in the application program, which causes a corresponding output to a hardware device on the MPT. A typical example of such a sequence occurs when a pressed key on the keyboard of the MPT (such as the "2" Key) would cause a "2" to appear in the next cursor position on the LCD display (101 or 210) of the MPT. This sequence would occur in many applications, for example in a point of sale application during entry of a transaction amount.
Target System MPT 601 is connected to Host System PC 602 via Asynchronous RS-232 Serial Link 603 in the same manner as described above. A hardware event causes Operating System 626 to send a message (Call Debug Application Function 604) to Debug Application 627 to execute a dispatch function. Debug Application 627 in turn translates this message into a debug event packet format and sends Debug Event Packet 606 via RS-232 Serial Link 603. In the preferred embodiment, Debug Event Packet 606 contains information concerning the type of event and may contain extra data, such as information obtained through the reading of a magnetic stripe in the case of a magnetic card read event. Debug TSR 608 on PC 602 receives Debug Event Packet 606, and if the packet is received without communication error a single byte ACK 607 is returned. ACK 607 is the indication to the MPT Debug Application that the Send Event 605 message has completed, allowing Debug Application 627 to continue its execution.
The receipt of Debug Event Packet 606 by Debug TSR 608 causes Dispatch Routine With Event 610 to be called. The information in Debug Event Packet 606 is transformed into the same message format as is used to communicate messages between MPT Operating System 626 and applications. Application 609, which receives the indication of this event in the preferred embodiment is in CV (CodeView). As stated earlier, Application 609 is written to respond to the receipt of this event by requesting an output on the MPT, in this case a character on the LCD screen.
To initiate this output, Application 609 calls MPT 0/S BIOS function 611. This BIOS function call is received by Debug TSR 608, which interprets the BIOS call, initiates Send Bios Request 612 and formats and sends corresponding Debug BIOS Packet 613. BIOS Packet 613 is sent over Asynchronous RS-232 Serial Link 603. In a manner similar to the ACK process from Debug TSR 608, Debug Application 627 sends ACK packet 614 to Debug TSR 608 to indicate successful reception of Debug BIOS Packet 613.
Upon receiving Debug BIOS Packet 613, Debug Application 627 decodes (at 615) Debug BIOS Packet 613 and calls a corresponding MPT O/S BIOS function in the MPT (at 616). MPT Operating System 626, at this point, actually performs the requested function and returns the status of that operation as Send BIOS Response 617. Send BIOS Response 617 is translated into Debug BIOS Packet Response 618 and transmitted over Asynchronous RS-232 Serial Link 603. Debug TSR 608 accepts Debug BIOS Packet Response 618, and indicates correct reception of this packet with a single byte ACK packet 619. Debug TSR 608 then translates Debug BIOS Packet Response 617 into a response to the original BIOS Request initiated by Application 609. Debug BIOS Packet Response 618 may be simply a BIOS function completion code or it may contain additional information.
At this point, Application 609 has completed the processing of the original system event. If Application 609 were running inside the MPT, this causes a return of processor control to the Target (MPT) Operating System 626. This return of control allows the processing of additional events. The return of control by Application 609 is indicated to Debug TSR 608 as a Return From Dispatch Function return 622 and translated into a single character (EOT) message 623 by Debug TSR 608. The EOT message is sent over Asynchronous RS-232 Serial Link 603 and interpreted as a Done Event message 624 by Debug Application 627. Debug Application 627 in turn returns control to MPT Operating System 626 via Return from Dispatch Function 625. To maintain synchronization in the data flow between MPT 601 and PC 608, an additional EOT 628 is provided from PC 602 back to MPT 601 in the preferred embodiment.
FIG. 7 illustrates the Host System process flow. This is the sequence of program steps that define the operation of the Debug TSR 608 shown in FIG. 6. The Debug TSR program begins at the Start 701 step, where it is initialized and begins program execution. The Debug TSR then loads itself as a TSR at step 702, and returns control of the host system to the operating system. The loading of an application program as a TSR is a well-known practice in PC-based software development. Loading an application as a TSR frees the host operating system to run the Debugging Environment and Application shown on FIG. 5 as items 501 and 502, respectively. The Debug TSR then enters state 703, where it waits for either a BIOS function call from Application 501 or a serial character input from the communications link. On receipt of a serial character, the Debug TSR enters the Accumulate Serial Characters State 704. The accumulated serial characters are then examined at step 706. If the accumulated serial characters do not constitute a full debug packet, the Debug TSR returns to state 703. If the accumulated serial characters do constitute a full debug packet, then the packet is examined for a correct Cyclic Redundancy Check (CRC) check sum at step 708. The use of a CRC is a common method of verifying the correct reception of a complete packet of information. It would be well known to one of ordinary skill in the area of error correction and control to extend the instant invention to incorporate more intricate system checksums, delimiting characters, or any combination of additional verification means. If the packet does not pass the verification test at step 708, the Debug TSR returns to state 703 (label A). If the debug packet passes the checksum test, the packet is translated into an appropriate BIOS event message at step 710, and an ACK is sent across the serial link to the Debug Application on the Target System at step 712. The Debug TSR then makes a call to the dispatcher function in the Application in the Host System at step 713. Alternatively, if while in state 703, the Debug TSR receives a BIOS call from the Application, the Debug TSR then proceeds at step 805 to build the Debug Packet from the data supplied with the BIOS call. In the preferred embodiment, this information is supplied through register contents, although it can be supplied through any direct or indirect data storage. The Debug Packet thus formed is transferred character by character through the Serial Link at step 707. After each character is sent, a test is performed at step 709 to determine if this is the final element of the packet. If the last character sent is not the last character in the packet, then the Debug TSR returns to state 707. If the last character sent is the last character in the packet, then the entire packet has been sent and the Debug TSR enters state 711. At step 711 the Debug TSR waits for an ACK from the Target System side of the communications channel. When this ACK is successfully received, the application returns to step 703 to wait for the next event. An alternative to the simple protocol implemented in the preferred embodiment includes a mechanism or process for resending Debug Packets or control signals such as ACKs if the items to be received are not successfully received within a time-out period.
FIG. 8 illustrates Target System process flow. This is the sequence of program steps that define the operation of Debug Application 627 shown in FIG. 6. The Debug Application program begins at the Start 801 step, where it is initialized and begins program execution. The Debug Application then loads itself as an Operating System Application at step 802 and returns control to the Target Operating System 506. The Debug Application then enters state 803, where it waits for either an event from the Target Operating System 506 or a serial character input from the communications link. On receipt of a serial character, the Debug Application enters the Accumulate Serial Characters state at step 804. The accumulated serial characters are then examined at step 806. If the accumulated serial characters do not constitute a full debug packet, the Debug Application returns to state 803. If the accumulated serial characters do constitute a full debug packet, then the packet is examined for a correct Cyclic Redundancy Check (CRC) check sum at step 808. As discussed above, the use of a CRC is a common method of verifying the correct reception of a complete packet of information, and the simple error correction and control that the CRC provides in the preferred embodiment could, with little additional effort, be extended to incorporate a more extensive correction scheme.
If the packet does not pass the verification test at step 808, the Debug Application returns to state 803 (label A). If the debug packet passes the checksum test, the packet is translated into an appropriate BIOS function call at step 810, and an ACK is sent across the serial link to the Host System Debug Application at step 812. The Debug Application then makes a call to the BIOS in the Host System at 813. Alternatively, if while in state 803, the Debug Application receives an event message from the Host System Operating System, the Debug Application then proceeds at step 805 to build the Debug Packet from the data supplied with the event message. In the preferred embodiment, this information is supplied through register contents, although can be supplied through any direct or indirect data storage. The Debug Packet formed at step 805 is transferred character by character through the Serial Link at step 807. After each character is sent, a test is performed at step 809 to determine if this is the final element of the packet. If the last character sent is not the last character in the packet, then the Debug Application returns to state 807. If the last character sent was the last character in the packet, the Debug Application enters state 811. In state 811 the Debug Application waits for an ACK from the Host System side of the communications channel. When this ACK is successfully received, the application returns to state 803 to wait for the next event. As above, an alternative to the simple protocol implemented in the preferred embodiment in the Target System Debugging Application Process includes a mechanism or process for resending Debug Packets or control signals such as ACKs if the items to be received are not successfully received within a time-out period.
FIG. 9 illustrates the Application Loading Process Flow. This is the sequence of events that occur when an application is to be stored in the application memory space in Target System. The result of the debugging or verification process is a relocatable program image. Relocatable programs have all of the internal address references unresolved, or relative to the location or locations that the application will ultimately be run from. The current embodiment uses the DOS "EXE" format as output from the standard DOS application development tools such as Microsoft C/C++, a product of Microsoft Corporation of Redmond, Washington or Borland C++, a product of Borland International Inc., of Scotts Valley, Calif.
In the preferred process, the Application Loader first interrogates the Target Operating System for the target system status via the Serial Link at step 902. The system status returned includes, but is not limited to, a) the starting address of free code storage, b) the starting address of free data storage, c) the quantity of remaining code storage, d) the quantity of remaining data storage, e) the size of total system code storage available if no other applications were in the system, and f) the size of total system data storage available if no other applications were in the system. At the next step 903, the Application Loader opens the file that contains the Application that is to be loaded onto the Target System. This file is analyzed and the code and data space requirements are computed. The results of this computation are compared to the reported Target System storage space availability at step 905. If the Target System does not have sufficient space to store the application, a further comparison is made at step 906 to determine if the application would fit if the other applications in Target System were removed. If there would not be sufficient space, the loading of this Application can not proceed, and the Application Loader is terminated with an appropriate warning message.
if the Target system would have sufficient storage space with the other applications removed, the operator of the Application Loader program is given the option to erase the other applications in Target System memory space at step 907. If the operator elects to not proceed, then the application terminates with appropriate annunciation. If either there is sufficient application space, or the operator elects to make sufficient application space by erasing other applications through Erase Applications step 907, the Application Loader calculates the pointer or memory reference offsets that would be required for the Application Program at the memory location offsets reported in step 902. The Application Loader then modifies the Application Offsets for the Application program at step 909, and transmits the Application to Target System at step 910. When the Target System acknowledges the successful reception and storage of the Application Program, the Application Loader terminates with a successful completion message.

Claims (5)

What is claimed is:
1. A method of downloading and embedding a trial application program from a host system into a target system via a communication channel linking the two systems, wherein the trial application program contains unresolved address references that are not associated with specific memory locations of the target system, said method comprising the steps of:
(a) the host system interrogating the target system's program and data memory via the communication channel in order to determine the specific memory locations of the target system's memory space where the trial application may be embedded;
(b) based on the interrogation step, the host system further resolving the address references of the trial application program into memory specific address references associated with the target system's memory space; and
(c) downloading the trial application program that includes the resolved address references from the host system to the target system via the communication channel, thereby embedding the trial application into specific memory locations of the target system's memory space.
2. A method of loading a relocatable program having unresolved address references from a host system to a target system, comprising the steps of:
(a) establishing a communication link between the host and target systems;
(b) determining the storage requirements of the program to be loaded into the target system;
(c) interrogating the target system to determine the available memory capacity of the target;
(d) if the available memory capacity of the target system is greater than or equal to the storage requirements of the program, then:
(d)(1) calculating memory specific address references for the program based on the interrogation step;
(d)(2) modifying the program by converting the unresolved address references to memory specific address references; and
(d)(3) loading the modified application from the host system to the target system via the communication link.
3. The method according to claim 2, further comprising the steps of:
(e) if the available memory capacity of the target system is less than the storage requirements of the program, then:
(e)(1) determining whether there would be sufficient memory capacity in the target system if other programs already loaded into the target system are removed;
(e)(2) if there would not be sufficient memory capacity after programs are removed, then generating a warning message; and
(e)(3) if there would be sufficient memory capacity then selecting a program already loaded into the target system for deletion, deleting the selected program from the target system's memory, and returning to step (d).
4. A system for downloading and storing a relocatable program having unresolved address references from a host system to a target system via a communication link, comprising:
means for interrogating the target system in order to determine the available memory capacity of the target;
means for determining whether the program can be stored in the available memory capacity of the target;
means for converting the unresolved address references of the program into memory specific address references based upon the memory capacity of the target; and
means for downloading and storing the converted program to the memory of the target via the communication link.
5. A system for loading a relocatable program having unresolved address references comprising:
a host system;
a target system;
a communications link connecting the host and target systems; and
an application loader program executing on the host system that communicates with the target system via the communication link, determines the status of the target system's memory, converts the unresolved address references of the relocatable program into resolved address references based upon the status of the target system's memory, and loads the resolved program into the target system.
US08/742,632 1995-02-10 1996-11-01 Method and system for loading and confirming correct operation of an application program in a target system Expired - Lifetime US5715387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/742,632 US5715387A (en) 1995-02-10 1996-11-01 Method and system for loading and confirming correct operation of an application program in a target system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/386,528 US5600790A (en) 1995-02-10 1995-02-10 Method and system for loading and confirming correct operation of an application program in a target system
US08/742,632 US5715387A (en) 1995-02-10 1996-11-01 Method and system for loading and confirming correct operation of an application program in a target system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/386,528 Continuation US5600790A (en) 1995-02-10 1995-02-10 Method and system for loading and confirming correct operation of an application program in a target system

Publications (1)

Publication Number Publication Date
US5715387A true US5715387A (en) 1998-02-03

Family

ID=23525970

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/386,528 Expired - Lifetime US5600790A (en) 1995-02-10 1995-02-10 Method and system for loading and confirming correct operation of an application program in a target system
US08/742,632 Expired - Lifetime US5715387A (en) 1995-02-10 1996-11-01 Method and system for loading and confirming correct operation of an application program in a target system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/386,528 Expired - Lifetime US5600790A (en) 1995-02-10 1995-02-10 Method and system for loading and confirming correct operation of an application program in a target system

Country Status (1)

Country Link
US (2) US5600790A (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812133A (en) * 1995-11-01 1998-09-22 Allen Bradley Company, Llc Industrial controller with display of rung execution
US5881289A (en) * 1996-11-26 1999-03-09 Hewlett-Packard Company Remote compiling of source code for cross development
US5953530A (en) * 1995-02-07 1999-09-14 Sun Microsystems, Inc. Method and apparatus for run-time memory access checking and memory leak detection of a multi-threaded program
US6002871A (en) * 1997-10-27 1999-12-14 Unisys Corporation Multi-user application program testing tool
US6110223A (en) * 1996-10-28 2000-08-29 Altera Corporation Graphic editor for block diagram level design of circuits
US6141635A (en) * 1998-06-12 2000-10-31 Unisys Corporation Method of diagnosing faults in an emulated computer system via a heterogeneous diagnostic program
US20010027387A1 (en) * 2000-03-30 2001-10-04 Hideaki Miyake Debugging supporting apparatus, debugging supporting method and recording medium readable by computer with its programs recorded thereon
US6300787B1 (en) * 2000-05-01 2001-10-09 Hewlett-Packard Company System and method for observing information transmitted between two integrated circuits
EP1148420A1 (en) * 2000-04-20 2001-10-24 STMicroelectronics Limited Debugging device and method
EP1148422A1 (en) * 2000-04-20 2001-10-24 STMicroelectronics Limited Computer system with debugging routine
US20010034858A1 (en) * 2000-04-20 2001-10-25 Mark Phillips Debugging embedded systems
EP1164488A1 (en) * 2000-06-14 2001-12-19 Canal+ Technologies Société Anonyme Remote debugging in an embedded system enviroment
EP1197865A1 (en) * 2000-10-13 2002-04-17 CMG Eindhoven B.V. A system and a method for automated testing of software
US20020198887A1 (en) * 2001-03-23 2002-12-26 Mark Underseth System and method for building a database defining a plurality of communication interfaces
US20030006919A1 (en) * 2001-07-09 2003-01-09 Roger Collins System and method for compressing data on a bandwidth-limited network
US20030009595A1 (en) * 2001-07-09 2003-01-09 Roger Collins System and method for compressing data using field-based code word generation
KR100369799B1 (en) * 2000-12-30 2003-01-30 삼성전자 주식회사 Method and apparatus for managing dynamic memory of embed system
US20030037314A1 (en) * 2001-08-01 2003-02-20 International Business Machines Corporation Method and apparatus for testing and evaluating a software component using an abstraction matrix
US20030115570A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Development environment for building software applications that mimics the target environment
US20030204624A1 (en) * 2002-04-24 2003-10-30 Gary Kushner System and method for automatically updating a wireless device
US6665819B1 (en) * 2000-04-24 2003-12-16 Microsoft Corporation Data capture and analysis for embedded systems
US20040006630A1 (en) * 2001-08-07 2004-01-08 John Friend System and method for providing provisioning and upgrade services for a wireless device
US20040010734A1 (en) * 2002-07-10 2004-01-15 Marius Ghercioiu Deployment and execution of a program on an embedded device
US20040010773A1 (en) * 2002-07-10 2004-01-15 Akom Technology Corporation. Method and apparatus for displaying debug codes of a baisc input/output system
US20040030744A1 (en) * 2000-04-07 2004-02-12 Rubin Andrew E. Network portal apparatus and method
US6701522B1 (en) 2000-04-07 2004-03-02 Danger, Inc. Apparatus and method for portal device authentication
US20040054739A1 (en) * 2001-08-07 2004-03-18 John Friend System and method for maintaining wireless file folders at a wireless device
US6721804B1 (en) 2000-04-07 2004-04-13 Danger, Inc. Portal system for converting requested data into a bytecode format based on portal device's graphical capabilities
US6725449B1 (en) * 1999-08-16 2004-04-20 Advantest Corporation Semiconductor test program debugging apparatus
US20040078601A1 (en) * 2002-08-02 2004-04-22 Chris Tengwall System and method for operating a wireless device network
US6742038B2 (en) 2000-04-07 2004-05-25 Danger, Inc. System and method of linking user identification to a subscriber identification module
US6754888B1 (en) * 1999-12-30 2004-06-22 International Business Machines Corporation Facility for evaluating a program for debugging upon detection of a debug trigger point
US6760904B1 (en) 1999-09-02 2004-07-06 Unisys Corporation Apparatus and methods for translating test vectors
US6789211B2 (en) 2000-04-20 2004-09-07 Stmicroelectronics Limited Storing in a reserved memory location data indicative of a stack location which stores the entry point of a dynamically loaded file
US6834357B2 (en) 2000-04-20 2004-12-21 Stmicroelectronics Limited Establishing a pointer at a valid address location that is representative of a valid entry point of a communication routine
US20040267926A1 (en) * 2003-06-26 2004-12-30 Rothman Michael A. Accessing firmware of a remote computer system using a remote firmware interface
US20040267887A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. System and method for dynamically managing presence and contact information
US20040268265A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. Multi-mode communication apparatus and interface for contacting a user
US20040267944A1 (en) * 2002-09-30 2004-12-30 Britt Joe Freeman System and method for disabling and providing a notification for a data processing device
US6867763B2 (en) 1998-06-26 2005-03-15 Research In Motion Limited Hand-held electronic device with a keyboard optimized for use with the thumbs
US20050229160A1 (en) * 2004-03-18 2005-10-13 Rothman Michael A Method and system to provide debugging of a computer system from firmware
US7062512B1 (en) 2002-09-27 2006-06-13 Danger, Inc. System and method for processing identification codes
US7069326B1 (en) 2002-09-27 2006-06-27 Danger, Inc. System and method for efficiently managing data transports
US20060143523A1 (en) * 2004-12-24 2006-06-29 Vimicro Corporation Apparatus and method for debugging embedded software
US20060161582A1 (en) * 2005-01-18 2006-07-20 Microsoft Corporation Application object as primitive of operating system
WO2006091408A2 (en) * 2005-02-18 2006-08-31 S2 Technologies, Inc. System and method for testing devices
US20060212244A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing with time stamp compression
US20060212242A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing with time stamp compression and history buffer based compression
US20060212761A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Data and instruction address compression
US20060212243A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing using hash tables with support for dynamic address to name resolution
US7136982B2 (en) 2001-11-09 2006-11-14 Danger, Inc. Apparatus and method for allocating memory blocks
US7155483B1 (en) 2001-08-07 2006-12-26 Good Technology, Inc. Apparatus and method for conserving bandwidth by batch processing data transactions
US7155725B1 (en) 2002-03-27 2006-12-26 Danger, Inc. Apparatus and method for coordinating multiple e-mail accounts
US7162513B1 (en) 2002-03-27 2007-01-09 Danger, Inc. Apparatus and method for distributing electronic messages to a wireless data processing device using a multi-tiered queuing architecture
US20070011507A1 (en) * 2005-06-03 2007-01-11 Intel Corporation System and method for remote system support
US7178076B1 (en) 2004-06-16 2007-02-13 Sun Microsystems, Inc. Architecture of an efficient at-speed programmable memory built-in self test
US20070061227A1 (en) * 2005-09-13 2007-03-15 International Business Machines Corporation Determining a computer system inventory
US7206979B1 (en) 2004-06-28 2007-04-17 Sun Microsystems, Inc. Method and apparatus for at-speed diagnostics of embedded memories
US7243163B1 (en) 2001-08-07 2007-07-10 Good Technology, Inc. System and method for full wireless synchronization of a data processing apparatus with a messaging system
US7260759B1 (en) 2004-06-16 2007-08-21 Sun Microsystems, Inc. Method and apparatus for an efficient memory built-in self test architecture for high performance microprocessors
US7293199B1 (en) 2004-06-22 2007-11-06 Sun Microsystems, Inc. Method and apparatus for testing memories with different read/write protocols using the same programmable memory bist controller
US20070283047A1 (en) * 2002-10-01 2007-12-06 Theis Ronald L A System and method for processing alphanumeric characters for display on a data processing device
US7343179B1 (en) 2003-08-13 2008-03-11 Danger Research System and method for previewing and purchasing ring tones for a mobile device
US7342897B1 (en) * 1999-08-07 2008-03-11 Cisco Technology, Inc. Network verification tool
US7373144B1 (en) 2002-09-30 2008-05-13 Danger, Inc. System and method for automatically providing user status in a messaging service
US7383303B1 (en) 2002-09-30 2008-06-03 Danger, Inc. System and method for integrating personal information management and messaging applications
US20080154574A1 (en) * 2006-12-21 2008-06-26 Buechler Jodi A Application emulation on a non-production computer system
US20080270840A1 (en) * 2007-04-25 2008-10-30 Samsung Electronics Co., Ltd. Device and method for testing embedded software using emulator
US7464044B2 (en) * 1998-12-08 2008-12-09 International Business Machines Corporation Method and system for using emulation objects for developing point of sale
US20090103515A1 (en) * 2005-12-15 2009-04-23 Danger, Inc. System and method for preserving socket connections over a wireless network
US20090125591A1 (en) * 2002-09-30 2009-05-14 Ficus Kirkpatrick Instant messaging proxy apparatus and method
US20090138325A1 (en) * 2002-01-08 2009-05-28 Britt Jr Joe Freeman Apparatus and method for identifying and surveying subscribers
US20090138763A1 (en) * 2006-01-06 2009-05-28 Baron Arnold System and method for collecting debug data from a wireless device
US20090144167A1 (en) * 2005-02-10 2009-06-04 Pablo Calamera System and method for managing data and voice connectivity for wireless devices
US20090143059A1 (en) * 2006-05-02 2009-06-04 Danger, Inc. System and method remote servicing of a wireless data processing device
US7710912B1 (en) 2005-07-11 2010-05-04 Microsoft Corporation Managing content synchronization between a data service and a data processing device
US7743119B2 (en) 2001-08-07 2010-06-22 Motorola, Inc. System and method for mapping identification codes
US20100306743A1 (en) * 2009-05-29 2010-12-02 S2 Technologies, Inc System and method for verifying code sequence execution
US8516034B1 (en) 2002-07-08 2013-08-20 Good Technology Software, Inc System and method for modifying application behavior based on network bandwidth
US9134759B2 (en) 1998-06-26 2015-09-15 Blackberry Limited Dual-mode mobile communication device
USRE46355E1 (en) 2006-02-27 2017-03-28 Good Technology Holdings Limited Method and system for distributing and updating software in wireless devices
US9670564B2 (en) 2012-08-31 2017-06-06 Corning Incorporated Low-temperature dispersion-based syntheses of silver and silver products produced thereby
US9703390B2 (en) 1998-06-26 2017-07-11 Blackberry Limited Hand-held electronic device
US9813514B2 (en) 2002-06-12 2017-11-07 Good Technology Holdings Limited Information repository system including a wireless device and related method
US9982322B2 (en) 2012-08-30 2018-05-29 Corning Incorporated Solvent-free syntheses of silver products produced thereby
US20180267881A1 (en) * 2017-03-17 2018-09-20 Primax Electronics Ltd. Debugging system and method for embedded device

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787245A (en) * 1995-11-13 1998-07-28 Object Technology Licensing Corporation Portable debugging service utilizing a client debugger object and a server debugger object
US6158045A (en) * 1995-11-13 2000-12-05 Object Technology Licensing Corporation Portable debugging services utilizing a client debugger object and a server debugger object with flexible addressing support
US5870539A (en) * 1996-07-01 1999-02-09 Sun Microsystems, Inc. Method for generalized windows application install testing for use with an automated test tool
US5946493A (en) * 1997-03-28 1999-08-31 International Business Machines Corporation Method and system in a data processing system for association of source code instructions with an optimized listing of object code instructions
US6279123B1 (en) * 1997-09-15 2001-08-21 Lucent Technologies, Inc. System for viewing and monitoring embedded processor operation
US6356960B1 (en) 1997-10-29 2002-03-12 Sgs-Thomson Microelectronics Limited Microprocessor having an on-chip CPU fetching a debugging routine from a memory in an external debugging device in response to a control signal received through a debugging port
WO1999031584A1 (en) 1997-12-17 1999-06-24 Fujitsu Siemens Computers Gmbh Method for converting a system call
US6658486B2 (en) * 1998-02-25 2003-12-02 Hewlett-Packard Development Company, L.P. System and method for efficiently blocking event signals associated with an operating system
US6919879B2 (en) * 1998-06-26 2005-07-19 Research In Motion Limited Hand-held electronic device with a keyboard optimized for use with the thumbs
US6182246B1 (en) * 1999-01-21 2001-01-30 Bsquare Corporation Protocol acknowledgment between homogeneous system
AU5461800A (en) * 1999-06-04 2000-12-28 Bsquare Corporation Protocol acknowledgment between homogeneous systems
US6230114B1 (en) 1999-10-29 2001-05-08 Vast Systems Technology Corporation Hardware and software co-simulation including executing an analyzed user program
US6588006B1 (en) * 1999-12-16 2003-07-01 Lsi Logic Corporation Programmable ASIC
US7068381B1 (en) * 2000-02-02 2006-06-27 Raja Tuli Portable high speed internet access device
US7356570B1 (en) 2000-08-29 2008-04-08 Raja Tuli Portable high speed communication device
US7023572B2 (en) * 2000-02-02 2006-04-04 Raja Singh Tuli Portable high speed internet access device
US7289244B2 (en) 2000-02-02 2007-10-30 Raja Singh Tuli Portable high speed internet access device
US20020030843A1 (en) * 2000-02-02 2002-03-14 Tuli Raja Singh Portable high speed internet access device
US20020115477A1 (en) * 2001-02-13 2002-08-22 Raja Singh Portable high speed internet access device with scrolling
US6633314B1 (en) 2000-02-02 2003-10-14 Raja Tuli Portable high speed internet device integrating cellular telephone and palm top computer
US6941382B1 (en) 2000-02-07 2005-09-06 Raja Tuli Portable high speed internet or desktop device
US6874009B1 (en) 2000-02-16 2005-03-29 Raja Tuli Portable high speed internet device with user fees
US6842777B1 (en) 2000-10-03 2005-01-11 Raja Singh Tuli Methods and apparatuses for simultaneous access by multiple remote devices
US7191211B2 (en) * 2000-10-03 2007-03-13 Raja Tuli Portable high speed internet access device priority protocol
US6915327B1 (en) 2000-10-30 2005-07-05 Raja Singh Tuli Portable high speed communication device peripheral connectivity
US6928461B2 (en) 2001-01-24 2005-08-09 Raja Singh Tuli Portable high speed internet access device with encryption
US7155381B2 (en) * 2001-03-12 2006-12-26 Sun Microsystems, Inc. Module for developing wireless device applications using an integrated emulator
US7228566B2 (en) * 2001-07-10 2007-06-05 Core Sdi, Incorporated Automated computer system security compromise
US20030074650A1 (en) * 2001-10-17 2003-04-17 Tankut Akgul Debugger operating system for embedded systems
US6842169B2 (en) * 2001-10-19 2005-01-11 Research In Motion Limited Hand-held electronic device with multiple input mode thumbwheel
US7083342B2 (en) 2001-12-21 2006-08-01 Griffin Jason T Keyboard arrangement
WO2003056784A2 (en) * 2001-12-21 2003-07-10 Research In Motion Limited Handheld electronic device with keyboard
USD479233S1 (en) 2002-01-08 2003-09-02 Research In Motion Limited Handheld electronic device
US7277937B2 (en) * 2002-07-17 2007-10-02 Core Sdi, Incorporated Distributed computing using syscall proxying
US7073096B2 (en) * 2002-10-18 2006-07-04 Wind River Systems, Inc. File path resolving debugger
US8176428B2 (en) * 2002-12-03 2012-05-08 Datawind Net Access Corporation Portable internet access device back page cache
US20040194063A1 (en) * 2003-03-28 2004-09-30 Joel Pereira System and method for automated testing of a software module
CA2428737C (en) 2003-05-14 2006-10-17 Research In Motion Limited Mobile device with rotatable keyboard
US20040242279A1 (en) * 2003-05-28 2004-12-02 Costanzo Rito Natale Implementing direct telephone access on a multi-purpose wireless mobile electronic device
US7703078B2 (en) * 2003-09-03 2010-04-20 Cybersoft, Inc. Apparatus, methods and articles of manufacture for software demonstration
KR100970729B1 (en) * 2003-12-26 2010-07-16 삼성전자주식회사 Input management apparatus and method thereof
GB2425510A (en) * 2003-12-31 2006-11-01 Research In Motion Ltd Keyboard arrangement
SE528402C2 (en) * 2004-06-03 2006-11-07 Anders Hedberg Systems for testing computers for embedded systems
US20070192711A1 (en) * 2006-02-13 2007-08-16 Research In Motion Limited Method and arrangement for providing a primary actions menu on a handheld communication device
US8064946B2 (en) 2004-06-21 2011-11-22 Research In Motion Limited Handheld wireless communication device
US8463315B2 (en) 2004-06-21 2013-06-11 Research In Motion Limited Handheld wireless communication device
US20070259697A1 (en) * 2004-06-21 2007-11-08 Griffin Jason T Handheld wireless communication device
US7439959B2 (en) * 2004-07-30 2008-10-21 Research In Motion Limited Key arrangement for a keyboard
US20060089829A1 (en) * 2004-10-21 2006-04-27 International Business Machines Corporation Method and apparatus to efficiently access modeled memory in a logic simulation hardware emulator
US20070136726A1 (en) * 2005-12-12 2007-06-14 Freeland Gregory S Tunable processor performance benchmarking
US8537117B2 (en) * 2006-02-13 2013-09-17 Blackberry Limited Handheld wireless communication device that selectively generates a menu in response to received commands
KR101636517B1 (en) * 2009-11-13 2016-07-06 삼성전자주식회사 Computing system and method for processing debug information of computing system
CN109299011A (en) * 2018-09-26 2019-02-01 深圳壹账通智能科技有限公司 A kind of test method and system of application program

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815103A (en) * 1973-01-02 1974-06-04 Honeywell Inf Systems Memory presence checking apparatus
US4277827A (en) * 1979-01-02 1981-07-07 Texas Instruments Incorporated Microprocessor based system for the development and emulation of programmable calculator control read only memory software
US4729096A (en) * 1984-10-24 1988-03-01 International Business Machines Corporation Method and apparatus for generating a translator program for a compiler/interpreter and for testing the resulting translator program
US4730315A (en) * 1984-10-17 1988-03-08 Hitachi, Ltd. Diagrammatic method of testing program
US5046033A (en) * 1989-08-09 1991-09-03 Unisys Corporation System for transferring test program information
US5228039A (en) * 1990-05-09 1993-07-13 Applied Microsystems Corporation Source-level in-circuit software code debugging instrument
US5255385A (en) * 1990-02-26 1993-10-19 Hitachi, Ltd. Method of testing program, and compiler and program testing tool for the method
US5287512A (en) * 1990-08-06 1994-02-15 Ncr Corporation Computer memory system and method for cleaning data elements
US5293629A (en) * 1990-11-30 1994-03-08 Abraxas Software, Inc. Method of analyzing computer source code
US5363501A (en) * 1992-12-22 1994-11-08 Sony Electronics, Inc. Method for computer system development verification and testing using portable diagnostic/testing programs
US5371894A (en) * 1991-05-13 1994-12-06 International Business Machines Corporation Off-chip breakpoint system for a pipelined microprocessor
US5581695A (en) * 1990-05-09 1996-12-03 Applied Microsystems Corporation Source-level run-time software code debugging instrument

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815103A (en) * 1973-01-02 1974-06-04 Honeywell Inf Systems Memory presence checking apparatus
US4277827A (en) * 1979-01-02 1981-07-07 Texas Instruments Incorporated Microprocessor based system for the development and emulation of programmable calculator control read only memory software
US4730315A (en) * 1984-10-17 1988-03-08 Hitachi, Ltd. Diagrammatic method of testing program
US4729096A (en) * 1984-10-24 1988-03-01 International Business Machines Corporation Method and apparatus for generating a translator program for a compiler/interpreter and for testing the resulting translator program
US5046033A (en) * 1989-08-09 1991-09-03 Unisys Corporation System for transferring test program information
US5255385A (en) * 1990-02-26 1993-10-19 Hitachi, Ltd. Method of testing program, and compiler and program testing tool for the method
US5228039A (en) * 1990-05-09 1993-07-13 Applied Microsystems Corporation Source-level in-circuit software code debugging instrument
US5581695A (en) * 1990-05-09 1996-12-03 Applied Microsystems Corporation Source-level run-time software code debugging instrument
US5287512A (en) * 1990-08-06 1994-02-15 Ncr Corporation Computer memory system and method for cleaning data elements
US5293629A (en) * 1990-11-30 1994-03-08 Abraxas Software, Inc. Method of analyzing computer source code
US5371894A (en) * 1991-05-13 1994-12-06 International Business Machines Corporation Off-chip breakpoint system for a pipelined microprocessor
US5363501A (en) * 1992-12-22 1994-11-08 Sony Electronics, Inc. Method for computer system development verification and testing using portable diagnostic/testing programs

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953530A (en) * 1995-02-07 1999-09-14 Sun Microsystems, Inc. Method and apparatus for run-time memory access checking and memory leak detection of a multi-threaded program
US5812133A (en) * 1995-11-01 1998-09-22 Allen Bradley Company, Llc Industrial controller with display of rung execution
US6311309B1 (en) 1996-10-28 2001-10-30 Altera Corporation Methods and apparatus for simulating a portion of a circuit design
US6110223A (en) * 1996-10-28 2000-08-29 Altera Corporation Graphic editor for block diagram level design of circuits
US6120550A (en) * 1996-10-28 2000-09-19 Altera Corporation Design file templates for implementation of logic designs
US6161211A (en) * 1996-10-28 2000-12-12 Altera Corporation Method and apparatus for automated circuit design
US6205579B1 (en) * 1996-10-28 2001-03-20 Altera Corporation Method for providing remote software technical support
US6588004B1 (en) 1996-10-28 2003-07-01 Altera Corporation Graphic editor for block diagram level design of circuits
US5881289A (en) * 1996-11-26 1999-03-09 Hewlett-Packard Company Remote compiling of source code for cross development
US6002871A (en) * 1997-10-27 1999-12-14 Unisys Corporation Multi-user application program testing tool
US6141635A (en) * 1998-06-12 2000-10-31 Unisys Corporation Method of diagnosing faults in an emulated computer system via a heterogeneous diagnostic program
US6867763B2 (en) 1998-06-26 2005-03-15 Research In Motion Limited Hand-held electronic device with a keyboard optimized for use with the thumbs
US9134759B2 (en) 1998-06-26 2015-09-15 Blackberry Limited Dual-mode mobile communication device
US9367141B2 (en) 1998-06-26 2016-06-14 Blackberry Limited Hand-held electronic device with a keyboard optimized for use with the thumbs
US9703390B2 (en) 1998-06-26 2017-07-11 Blackberry Limited Hand-held electronic device
US10067572B2 (en) 1998-06-26 2018-09-04 Blackberry Limited Hand-held electronic device
US7464044B2 (en) * 1998-12-08 2008-12-09 International Business Machines Corporation Method and system for using emulation objects for developing point of sale
US7342897B1 (en) * 1999-08-07 2008-03-11 Cisco Technology, Inc. Network verification tool
US6725449B1 (en) * 1999-08-16 2004-04-20 Advantest Corporation Semiconductor test program debugging apparatus
US6760904B1 (en) 1999-09-02 2004-07-06 Unisys Corporation Apparatus and methods for translating test vectors
US6754888B1 (en) * 1999-12-30 2004-06-22 International Business Machines Corporation Facility for evaluating a program for debugging upon detection of a debug trigger point
US20010027387A1 (en) * 2000-03-30 2001-10-04 Hideaki Miyake Debugging supporting apparatus, debugging supporting method and recording medium readable by computer with its programs recorded thereon
US20040030744A1 (en) * 2000-04-07 2004-02-12 Rubin Andrew E. Network portal apparatus and method
US6742038B2 (en) 2000-04-07 2004-05-25 Danger, Inc. System and method of linking user identification to a subscriber identification module
US6735624B1 (en) 2000-04-07 2004-05-11 Danger, Inc. Method for configuring and authenticating newly delivered portal device
US6721804B1 (en) 2000-04-07 2004-04-13 Danger, Inc. Portal system for converting requested data into a bytecode format based on portal device's graphical capabilities
US6701522B1 (en) 2000-04-07 2004-03-02 Danger, Inc. Apparatus and method for portal device authentication
EP1148420A1 (en) * 2000-04-20 2001-10-24 STMicroelectronics Limited Debugging device and method
US6738927B2 (en) 2000-04-20 2004-05-18 Stmicroelectronics Limited Target debugging application on digital signal processor validating link connection to host computer
US7039831B2 (en) 2000-04-20 2006-05-02 Stmicroelectronics Limited Common stack system for a debugging device and method
US6948095B2 (en) 2000-04-20 2005-09-20 Stmicroelectronics Limited Methods and apparatus for dynamically loading a file on a target computer system
US20020059560A1 (en) * 2000-04-20 2002-05-16 Mark Phillips Debugging device and method
EP1148422A1 (en) * 2000-04-20 2001-10-24 STMicroelectronics Limited Computer system with debugging routine
US6834357B2 (en) 2000-04-20 2004-12-21 Stmicroelectronics Limited Establishing a pointer at a valid address location that is representative of a valid entry point of a communication routine
US6789211B2 (en) 2000-04-20 2004-09-07 Stmicroelectronics Limited Storing in a reserved memory location data indicative of a stack location which stores the entry point of a dynamically loaded file
US20010034858A1 (en) * 2000-04-20 2001-10-25 Mark Phillips Debugging embedded systems
US6665819B1 (en) * 2000-04-24 2003-12-16 Microsoft Corporation Data capture and analysis for embedded systems
US6300787B1 (en) * 2000-05-01 2001-10-09 Hewlett-Packard Company System and method for observing information transmitted between two integrated circuits
EP1164488A1 (en) * 2000-06-14 2001-12-19 Canal+ Technologies Société Anonyme Remote debugging in an embedded system enviroment
WO2001097039A1 (en) * 2000-06-14 2001-12-20 Canal+ Technologies Societe Anonyme Remote debugging in an embedded system environment
EP1197865A1 (en) * 2000-10-13 2002-04-17 CMG Eindhoven B.V. A system and a method for automated testing of software
KR100369799B1 (en) * 2000-12-30 2003-01-30 삼성전자 주식회사 Method and apparatus for managing dynamic memory of embed system
US20090217292A1 (en) * 2001-03-23 2009-08-27 S2 Technologies, Inc. System and method for testing devices
US20030061292A1 (en) * 2001-03-23 2003-03-27 Mark Underseth System and method for providing an interface for com-compliant applications to communicate with embedded systems
US20060179427A1 (en) * 2001-03-23 2006-08-10 Mark Underseth System and method for automatically generating code templates for communication via a predefined communication interface
US20020198887A1 (en) * 2001-03-23 2002-12-26 Mark Underseth System and method for building a database defining a plurality of communication interfaces
US7392526B2 (en) 2001-03-23 2008-06-24 S2 Technologies, Inc. System and method for formatting data for transmission between an embedded computer and a host computer having different machine characteristics
US7359911B2 (en) 2001-03-23 2008-04-15 S2 Technologies, Inc. System and method for building a database defining a plurality of communication interfaces
US20060282507A1 (en) * 2001-03-23 2006-12-14 Mark Underseth System and method for formatting data for transmission between an embedded computer and a host computer having different machine characteristics
US20060212880A1 (en) * 2001-03-23 2006-09-21 Mark Underseth System and method for providing an interface for scripting programs to communicate with embedded systems
US7530076B2 (en) 2001-03-23 2009-05-05 S2 Technologies, Inc. Dynamic interception of calls by a target device
US20080016498A1 (en) * 2001-03-23 2008-01-17 S2 Technologies, Inc. System and method for generating data sets for testing embedded systems
US20030006919A1 (en) * 2001-07-09 2003-01-09 Roger Collins System and method for compressing data on a bandwidth-limited network
US20100254410A1 (en) * 2001-07-09 2010-10-07 Good Technology, Inc. System and method for compressing data using field-based code word generation
US7064688B2 (en) 2001-07-09 2006-06-20 Good Technology, Inc. System and method for compressing data on a bandwidth-limited network
US20030009595A1 (en) * 2001-07-09 2003-01-09 Roger Collins System and method for compressing data using field-based code word generation
US6986125B2 (en) 2001-08-01 2006-01-10 International Business Machines Corporation Method and apparatus for testing and evaluating a software component using an abstraction matrix
US20030037314A1 (en) * 2001-08-01 2003-02-20 International Business Machines Corporation Method and apparatus for testing and evaluating a software component using an abstraction matrix
US7155483B1 (en) 2001-08-07 2006-12-26 Good Technology, Inc. Apparatus and method for conserving bandwidth by batch processing data transactions
US7596565B2 (en) 2001-08-07 2009-09-29 Good Technology System and method for maintaining wireless file folders at a wireless device
US20070266107A1 (en) * 2001-08-07 2007-11-15 John Friend System and method for full wireless synchronization of a data processing apparatus with a data service
US7962622B2 (en) 2001-08-07 2011-06-14 Motorola Mobility, Inc. System and method for providing provisioning and upgrade services for a wireless device
US7287097B1 (en) 2001-08-07 2007-10-23 Good Technology, Inc. System and method for full wireless synchronization of a data processing apparatus with a messaging system
US20070239898A1 (en) * 2001-08-07 2007-10-11 John Friend System and method for full wireless synchronization of a data processing apparatus with a messaging service
US7743119B2 (en) 2001-08-07 2010-06-22 Motorola, Inc. System and method for mapping identification codes
US20040006630A1 (en) * 2001-08-07 2004-01-08 John Friend System and method for providing provisioning and upgrade services for a wireless device
US7243163B1 (en) 2001-08-07 2007-07-10 Good Technology, Inc. System and method for full wireless synchronization of a data processing apparatus with a messaging system
US8954512B2 (en) 2001-08-07 2015-02-10 Google Technology Holdings LLC System and method for full wireless synchronization of a data processing apparatus with a data service
US20040054739A1 (en) * 2001-08-07 2004-03-18 John Friend System and method for maintaining wireless file folders at a wireless device
US8321511B1 (en) 2001-08-07 2012-11-27 Motorola Mobility Llc System and method for full wireless synchronization of a data processing apparatus with a messaging system
US7136982B2 (en) 2001-11-09 2006-11-14 Danger, Inc. Apparatus and method for allocating memory blocks
US20030115570A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Development environment for building software applications that mimics the target environment
US20090138325A1 (en) * 2002-01-08 2009-05-28 Britt Jr Joe Freeman Apparatus and method for identifying and surveying subscribers
US8135609B2 (en) 2002-01-08 2012-03-13 Microsoft Corporation Identifying and surveying subscribers
US7155725B1 (en) 2002-03-27 2006-12-26 Danger, Inc. Apparatus and method for coordinating multiple e-mail accounts
US7162513B1 (en) 2002-03-27 2007-01-09 Danger, Inc. Apparatus and method for distributing electronic messages to a wireless data processing device using a multi-tiered queuing architecture
US20030204624A1 (en) * 2002-04-24 2003-10-30 Gary Kushner System and method for automatically updating a wireless device
US7447799B2 (en) 2002-04-24 2008-11-04 Good Technology, Inc. System and method for automatically updating a wireless device
US9813514B2 (en) 2002-06-12 2017-11-07 Good Technology Holdings Limited Information repository system including a wireless device and related method
US8516034B1 (en) 2002-07-08 2013-08-20 Good Technology Software, Inc System and method for modifying application behavior based on network bandwidth
US20110191753A1 (en) * 2002-07-10 2011-08-04 National Instruments Corporation Incremental deployment and execution of a program on an embedded device
US20040010734A1 (en) * 2002-07-10 2004-01-15 Marius Ghercioiu Deployment and execution of a program on an embedded device
US8074201B2 (en) * 2002-07-10 2011-12-06 National Instruments Corporation Deployment and execution of a program on an embedded device
US8239848B2 (en) 2002-07-10 2012-08-07 National Instruments Corporation Incremental deployment and execution of a program on an embedded device
US20040010773A1 (en) * 2002-07-10 2004-01-15 Akom Technology Corporation. Method and apparatus for displaying debug codes of a baisc input/output system
US20040078601A1 (en) * 2002-08-02 2004-04-22 Chris Tengwall System and method for operating a wireless device network
US7069326B1 (en) 2002-09-27 2006-06-27 Danger, Inc. System and method for efficiently managing data transports
US7062512B1 (en) 2002-09-27 2006-06-13 Danger, Inc. System and method for processing identification codes
US20060143294A1 (en) * 2002-09-27 2006-06-29 Jeffrey Bush System and method for efficiently managing data transports
US7107349B2 (en) 2002-09-30 2006-09-12 Danger, Inc. System and method for disabling and providing a notification for a data processing device
US7373144B1 (en) 2002-09-30 2008-05-13 Danger, Inc. System and method for automatically providing user status in a messaging service
US7383303B1 (en) 2002-09-30 2008-06-03 Danger, Inc. System and method for integrating personal information management and messaging applications
US20040267944A1 (en) * 2002-09-30 2004-12-30 Britt Joe Freeman System and method for disabling and providing a notification for a data processing device
US20090125591A1 (en) * 2002-09-30 2009-05-14 Ficus Kirkpatrick Instant messaging proxy apparatus and method
US20070283047A1 (en) * 2002-10-01 2007-12-06 Theis Ronald L A System and method for processing alphanumeric characters for display on a data processing device
US7478141B2 (en) * 2003-06-26 2009-01-13 Intel Corporation Accessing firmware of a remote computer system using a remote firmware interface
US20040267926A1 (en) * 2003-06-26 2004-12-30 Rothman Michael A. Accessing firmware of a remote computer system using a remote firmware interface
US20040268265A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. Multi-mode communication apparatus and interface for contacting a user
US7844906B2 (en) 2003-06-30 2010-11-30 Microsoft Corporation Multi-mode communication apparatus and interface for contacting a user
US20040267887A1 (en) * 2003-06-30 2004-12-30 Berger Kelly D. System and method for dynamically managing presence and contact information
US7117445B2 (en) 2003-06-30 2006-10-03 Danger, Inc. Multi-mode communication apparatus and interface for contacting a user
US7343179B1 (en) 2003-08-13 2008-03-11 Danger Research System and method for previewing and purchasing ring tones for a mobile device
US7269768B2 (en) * 2004-03-18 2007-09-11 Intel Corporation Method and system to provide debugging of a computer system from firmware
US20050229160A1 (en) * 2004-03-18 2005-10-13 Rothman Michael A Method and system to provide debugging of a computer system from firmware
US7260759B1 (en) 2004-06-16 2007-08-21 Sun Microsystems, Inc. Method and apparatus for an efficient memory built-in self test architecture for high performance microprocessors
US7178076B1 (en) 2004-06-16 2007-02-13 Sun Microsystems, Inc. Architecture of an efficient at-speed programmable memory built-in self test
US7293199B1 (en) 2004-06-22 2007-11-06 Sun Microsystems, Inc. Method and apparatus for testing memories with different read/write protocols using the same programmable memory bist controller
US7206979B1 (en) 2004-06-28 2007-04-17 Sun Microsystems, Inc. Method and apparatus for at-speed diagnostics of embedded memories
US20060143523A1 (en) * 2004-12-24 2006-06-29 Vimicro Corporation Apparatus and method for debugging embedded software
US20060161582A1 (en) * 2005-01-18 2006-07-20 Microsoft Corporation Application object as primitive of operating system
US20090144167A1 (en) * 2005-02-10 2009-06-04 Pablo Calamera System and method for managing data and voice connectivity for wireless devices
WO2006091408A2 (en) * 2005-02-18 2006-08-31 S2 Technologies, Inc. System and method for testing devices
WO2006091408A3 (en) * 2005-02-18 2007-04-26 S2 Technologies Inc System and method for testing devices
US20060212761A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Data and instruction address compression
US7346476B2 (en) 2005-03-17 2008-03-18 International Business Machines Corporation Event tracing with time stamp compression
US7496902B2 (en) 2005-03-17 2009-02-24 International Business Machines Corporation Data and instruction address compression
US7493224B2 (en) 2005-03-17 2009-02-17 International Business Machines Corporation Event tracing with time stamp compression and history buffer based compression
US7725298B2 (en) 2005-03-17 2010-05-25 International Business Machines Corporation Event tracing with time stamp compression
US7369954B2 (en) 2005-03-17 2008-05-06 International Business Machines Corporation Event tracing with time stamp compression and history buffer based compression
US20080091369A1 (en) * 2005-03-17 2008-04-17 Levine Frank E Event tracing with time stamp compression and history buffer based compression
US20060212243A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing using hash tables with support for dynamic address to name resolution
US20060212244A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing with time stamp compression
US20060212242A1 (en) * 2005-03-17 2006-09-21 Levine Frank E Event tracing with time stamp compression and history buffer based compression
US20080154547A1 (en) * 2005-03-17 2008-06-26 Frank Eliot Levine Event tracing with time stamp compression
US20070011507A1 (en) * 2005-06-03 2007-01-11 Intel Corporation System and method for remote system support
US7710912B1 (en) 2005-07-11 2010-05-04 Microsoft Corporation Managing content synchronization between a data service and a data processing device
US20070061227A1 (en) * 2005-09-13 2007-03-15 International Business Machines Corporation Determining a computer system inventory
US20090103515A1 (en) * 2005-12-15 2009-04-23 Danger, Inc. System and method for preserving socket connections over a wireless network
US7664067B2 (en) 2005-12-15 2010-02-16 Microsoft Corporation Preserving socket connections over a wireless network
US20090138763A1 (en) * 2006-01-06 2009-05-28 Baron Arnold System and method for collecting debug data from a wireless device
US7613955B2 (en) * 2006-01-06 2009-11-03 Microsoft Corporation Collecting debug data from a wireless device
USRE46355E1 (en) 2006-02-27 2017-03-28 Good Technology Holdings Limited Method and system for distributing and updating software in wireless devices
US20090143059A1 (en) * 2006-05-02 2009-06-04 Danger, Inc. System and method remote servicing of a wireless data processing device
US20080154574A1 (en) * 2006-12-21 2008-06-26 Buechler Jodi A Application emulation on a non-production computer system
US20080270840A1 (en) * 2007-04-25 2008-10-30 Samsung Electronics Co., Ltd. Device and method for testing embedded software using emulator
US8156475B2 (en) 2007-04-25 2012-04-10 Samsung Electronics Co., Ltd. Device and method for testing embedded software using emulator
US20100306743A1 (en) * 2009-05-29 2010-12-02 S2 Technologies, Inc System and method for verifying code sequence execution
US9982322B2 (en) 2012-08-30 2018-05-29 Corning Incorporated Solvent-free syntheses of silver products produced thereby
US9670564B2 (en) 2012-08-31 2017-06-06 Corning Incorporated Low-temperature dispersion-based syntheses of silver and silver products produced thereby
US20180267881A1 (en) * 2017-03-17 2018-09-20 Primax Electronics Ltd. Debugging system and method for embedded device
US10437706B2 (en) * 2017-03-17 2019-10-08 Primax Electronics Ltd. Debugging system and method for embedded device

Also Published As

Publication number Publication date
US5600790A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
US5715387A (en) Method and system for loading and confirming correct operation of an application program in a target system
US5339422A (en) System and method for jacketing cross-domain calls in a multi-code execution and debugging system within a multi-architecture environment
US5394544A (en) Software system debugger with distinct interrupt vector maps for debugging and application programs
US5548717A (en) Software debugging system and method especially adapted for code debugging within a multi-architecture environment
EP0532643B1 (en) Method for optimizing software for any one of a plurality of variant architectures
US6112260A (en) Method and apparatus for redirecting input/output device data in a computer system through use of debug registers
US8086833B2 (en) Method and system for linking firmware modules in a pre-memory execution environment
US5790895A (en) Modem sharing
US5678032A (en) Method of optimizing the execution of program instuctions by an emulator using a plurality of execution units
US5630049A (en) Method and apparatus for testing software on a computer network
US6496922B1 (en) Method and apparatus for multiplatform stateless instruction set architecture (ISA) using ISA tags on-the-fly instruction translation
US6785845B2 (en) POS terminal test system and method
US5764947A (en) System and method for automatically interfacing call conventions between two dissimilar program units
WO1996002039A1 (en) Hardware design verification system and method
US5680584A (en) Simulator system for code execution and debugging within a multi-architecture environment
US5673418A (en) Method and apparatus for emulating the operations of an emulated system terminal driver on a host system
US6370589B1 (en) Process for performing at least one test on at least one of the objects of an object-oriented program capable of running in parallel on a computer
Lycklama et al. unix Time‐Sharing System: A Minicomputer Satellite Processor System
US7464044B2 (en) Method and system for using emulation objects for developing point of sale
EP0530351B1 (en) Improved system and method for detecting cross-domain instruction calls and data references especiallly adapted for code interface jacketing in a multi-code execution and debugging system within a multi-architecture environment
EP0598076A1 (en) Interface system for coupling two computer environments
KR20020033224A (en) Method for software pre-test using device emulator
KR920003279B1 (en) Method for loading os & nos in data processing device
KR920001103B1 (en) Test software simulation method for electronic exchanger
EP0842466B1 (en) Method for emulating program instructions

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: BLACKBERRY LIMITED, ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:034045/0741

Effective date: 20130709