US5670405A - Method of making a tooth shaped capacitor using ion implantation - Google Patents

Method of making a tooth shaped capacitor using ion implantation Download PDF

Info

Publication number
US5670405A
US5670405A US08/791,504 US79150497A US5670405A US 5670405 A US5670405 A US 5670405A US 79150497 A US79150497 A US 79150497A US 5670405 A US5670405 A US 5670405A
Authority
US
United States
Prior art keywords
layer
silicon
capacitor
forming
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/791,504
Inventor
Horng-Huei Tseng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanguard International Semiconductor Corp
Original Assignee
Vanguard International Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard International Semiconductor Corp filed Critical Vanguard International Semiconductor Corp
Priority to US08/791,504 priority Critical patent/US5670405A/en
Assigned to VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION reassignment VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSENG, HORNG-HUEI
Application granted granted Critical
Publication of US5670405A publication Critical patent/US5670405A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/92Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by patterning layers, e.g. by etching conductive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/138Roughened surface

Abstract

A method of manufacturing a capacitor for use in semiconductor memories is disclosed herein. The present invention includes forming a silicon oxide layer as an etching mask to etch a polysilicon layer to form a bottom storage node of a capacitor. The silicon oxide layer is formed from the thermal annealing of oxygen doped dot silicon.

Description

FIELD OF THE INVENTION
The present invention relates to semiconductor capacitors, and more specifically, to a method of making a tooth shaped capacitor for a DRAM cell.
BACKGROUND OF THE INVENTION
In recent years there has been a dramatic increase in the packing density of DRAMs. Large DRAM devices are normally silicon based, and each cell typically embodies a single MOS field effect transistor with its source connected to a storage capacitor. This large integration of DRAMs has been accomplished by a reduction in individual cell size. However, the reduction in cell size results in a decrease in storage capacitance leading to reliability drawbacks, such as a lower signal to noise ratio and undesirable signal problems. The desired large scale integration in DRAM devices along with reliable operation can be achieved by using DRAM storage capacitors with a high storage capacitance relative to its cell area.
Efforts to maintain or increase the storage capacitance in memory cells with greater packing densities have included the use of a stacked capacitor design in which the capacitor cell uses the space over the MOSFET device area for the capacitor plates. In a recent prior art DRAM, one of the two electrodes of a storage capacitor is formed to have a three-dimensional structure. This makes the capacitance larger by 30% to 40% than that of a two-dimensional storage capacitor having the same size as the three-dimensional one.
For example, a three-dimensional stacked capacitor is disclosed in U.S. Pat. No. 5,053,351. The storage node plate of this capacitor has an E-shaped cross-section. In another example, a hemispherical-grain (HSG) polysilicon storage node has been proposed (see "A New Cylindrical Capacitor Using Hemispherical-Grain Si for 256 Mb DRAMs", H. Watanabe et al., Microelectronics Research Laboratories, NEC Corporation). This memory cell provides a large storage capacitance by increasing the effective area of a simple storage node. However, the complex capacitor shapes tend to be difficult to fabricate and the standard processes need at least two masks for the complex capacitor shapes, and more particularly, for the toothed-shape capacitor node. Therefore, there is a need for a capacitor node with a high surface area that is simple to manufacture.
SUMMARY OF THE INVENTION
A method for manufacturing a capacitor on a semiconductor substrate is disclosed. The method comprises the steps of: forming a first conductive layer over said substrate; forming a dot silicon layer on said first conductive layer; doping oxygen into said dot silicon layer using an oblique angle to form anti-oxidation regions; thermal annealing said semiconductor substrate in an inert gas ambient to convert said dot silicon layer into silicon oxide; removing a portion of said first conductive layer using said silicon oxide as a mask; patterning and etching said first conductive layer to form a first storage node of said capacitor; forming a dielectric layer on the surface of said first storage node of said capacitor; and forming a second conductive layer over said dielectric layer to act as a second storage node of said capacitor.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a cross section view of a semiconductor wafer illustrating the step of forming a gate structure on a semiconductor substrate;
FIG. 2 is a cross section view of a semiconductor wafer illustrating the step of forming an oxide layer and a first dielectric layer on the semiconductor substrate;
FIG. 3 is a cross section view of a semiconductor wafer illustrating the step of forming a contact hole in the first dielectric layer and the oxide layer, and forming a first conductive layer on the first dielectric layer, in the contact hole, and forming a HSG-Si layer on the first conductive layer;
FIG. 4 is a cross section view of a semiconductor wafer illustrating the step of forming silicon oxide;
FIG. 5 a cross section view of a semiconductor wafer illustrating the step of etching the first conductive layer using the silicon oxide as an etching mask;
FIG. 6 is a cross section view of a semiconductor wafer illustrating the step of forming a bottom storage node of a capacitor;
FIG. 7 is a cross section view of a semiconductor wafer illustrating the step of depositing a second dielectric layer on said bottom storage node; and
FIG. 8 is a cross section view of a semiconductor wafer illustrating the step of forming a second conductive layer on said second dielectric layer.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The formation of the capacitor described herein includes many process steps that are well known in the art. For example, the processes of photolithography masking and etching are well known in the art and are used extensively herein without a related discussion of these well known technologies.
Referring to FIG. 1, a P-type single crystal silicon substrate 2 with a <100> crystallographic orientation is provided. An isolation region 4 is formed using any suitable technique such as thick field oxide (FOX) or trench isolation technology. In the present invention, a thick field oxide (FOX) region 4 is formed to provide isolation between devices on the substrate 2. The FOX region 4 is created in a conventional manner. For example, the FOX region 4 can be formed via photolithography and dry etching steps to etch a silicon nitride-silicon dioxide composition layer. After the photoresist is removed and wet cleaned, thermal oxidation in an oxygen-steam environment is used to grow the FOX region 4 to a thickness of about 3000-8000 angstroms.
Next, a silicon dioxide layer 6 is created on the top surface of the substrate 2 to serve as the gate oxide for subsequently formed Metal Oxide Silicon Field Effect Transistors (MOSFETs). In one embodiment, the silicon dioxide layer 6 is formed by using an oxygen ambient, at a temperature of about 800° to 1100° C. Alternatively, the oxide layer 6 may be formed using any suitable oxide chemical compositions and procedures. In the preferred embodiment, the thickness of the silicon dioxide layer 6 is approximately 30-200 angstroms.
A doped first polysilicon layer 8 is then formed over the FOX region 4 and the silicon dioxide layer 6 using a Low Pressure Chemical Vapor Deposition (LPCVD) process. In this embodiment, the first polysilicon layer 8 has a thickness of about 2000-4000 angstroms. A capped oxide layer 10 is formed on the first polysilicon layer 8. Next, standard photolithography and etching steps are used to form a gate structure 12 and a word line 14. Then a LDD (lightly doped drain) structure 16 is formed by light ion implantation. Sidewall spacers 18 are generated by using well known techniques, and, subsequently, active regions 20 (i.e. the source and the drain) are formed by using well known processes to implant appropriate impurities in those regions.
Turning next to FIG. 2, an undoped oxide layer 22 is deposited using a CVD process on the gate structure 12, the word line 14, and the substrate 2. A first dielectric layer 24 is then formed on the undoped oxide layer 22. The first dielectric layer 24 can be formed by using any suitable material such as borophosphosilicate glass (BPSG) or TEOS-oxide.
As shown in FIG. 3, a contact hole 26 is formed in the first dielectric layer 24 and the oxide layer 22 to the active regions 20 by using conventional patterning and etching. A first conductive layer 28 is then formed over and in the contact hole 26 and on the first dielectric layer 24. The first conductive layer 28 is preferably formed using conventional LPCVD processing. The thickness of the first conductive layer 28, as measured over the first dielectric layer 24, is optimally 2000-6000 angstroms. The first conductive layer 28 is preferably chosen from doped polysilicon or in-situ doped polysilicon.
Subsequently, a dot silicon layer 30 is formed on the first conductive layer 28. Preferably, the dot silicon layer 30 consists of a Hemispherical Grained Silicon (HSG-Si) layer 30 that is formed by the "initial phase" technique. The HSG-Si layer 30 serves as an etching mask for subsequent processes. Other techniques currently available or developed in the future may also be used to form the dot silicon layer 30. The advantage of using dot silicon layer 30 is that the dot silicon layer 30 can be deposited with a resolution that is beyond the limitation of current photolithography techniques. The HSG-Si layer 30 is formed with a thickness about 50-1000 angstroms.
Turning next to FIG. 4, oxygen is implanted at an oblique angle into the dot silicon layer 30. The angle of the implant is from 0 degrees to 45 degrees. The advantage of the oblique implant is that the HSG-Si 30 acts as a mask to prevent the first conductive layer 28 from being bombarded by the implant. Therefore, only the HSG-Si 30 is implanted by oxygen. Next, a thermal anneal process is carried out in inert gas ambient to convert the HSG-Si 30 into dot silicon oxide 30a.
Next, as seen in FIG. 5, the first conductive layer 28 is etched using the silicon oxide 30a as an etching mask. The present invention uses the high etching selectivity between the silicon oxide 30a and the polysilicon 28 to create cavities 32 in the first conductive layer 28. Any suitable etchant can be used for this etching, such as C2 F6, SF6, CF4 +O2, CF4 +Cl2, CF4 +HBr, HBr/Cl2 /O2, Cl2, HBr/O2, BCl3 /Cl2, SiCl4 /Cl2, SF6, SF6 /Br2, CCl4 /Cl2, or CH3 F/Cl2. The etching is preferably reactive ion etching (RIE) or chemical dry etching (CDE). The CDE is an isotropic etching that can provide a rounded bottom surface of the cavities 32.
Referring to FIG. 6, the silicon oxide 30a is removed by wet etching. In preferred embodiment, buffer oxide etching (BOE), vapor HF or diluted HF solution is used as an etchant. Then, a photoresist is patterned on the first conductive layer 28 to define a capacitor bottom storage node. Subsequently, an etching process is performed to etch the first conductive layer 28 using the photoresist as a mask. The photoresist is then removed after the capacitor bottom storage node is formed.
Turning now to FIG. 7, a second dielectric layer 34 is deposited along the surface of the first conductive layer 28. The second dielectric layer 34 is preferably formed of either a double-film of nitride/oxide film, a triple-film of oxide/nitride/oxide, or any other high dielectric film such as tantalum oxide (Ta2 O5), BST.
Finally, as is shown in FIG. 8, a second conductive layer 36 is deposited using a conventional LPCVD process over the second dielectric layer 34. The second conductive layer 36 provides a top storage electrode and is formed of doped polysilicon, in-situ doped polysilicon, aluminum, copper, tungsten or titanium. Thus, a semiconductor capacitor is formed which comprises a second conductive layer 36 as its top storage electrode, a dielectric 34, and a first conductive layer 28 as the bottom storage electrode.
As will be understood by persons skilled in the art, the foregoing preferred embodiment of the present invention is illustrative of the present invention rather than limiting the present invention. For example, the method of the present invention can also be used in a COB (capacitor over bit line) structure. Thus, the invention is not to be limited to this embodiment, but rather the invention is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (13)

I claim:
1. A method for manufacturing a capacitor on a semiconductor substrate, said method comprising the steps of:
forming a first conductive layer over said substrate;
forming a dot silicon layer on said first conductive layer;
doping oxygen into said dot silicon layer using an oblique angle;
thermal annealing said semiconductor substrate in an inert gas ambient to convert said dot silicon layer into silicon oxide;
removing a portion of said first conductive layer using said silicon oxide as a mask;
patterning and etching said first conductive layer to form a first storage node of said capacitor;
forming a dielectric layer on the surface of said first storage node of said capacitor; and
forming a second conductive layer over said dielectric layer to act as a second storage node of said capacitor.
2. The method of claim 1, wherein said first conductive layer is chosen from the group of doped polysilicon or in-situ doped polysilicon.
3. The method of claim 2, wherein said first conductive layer has a thickness in a range of about 2000-6000 angstroms.
4. The method of claim 1, wherein said dot silicon layer is a HSG-Si layer.
5. The method of claim 4, wherein said HSG-Si layer is formed to have a thickness of a range about 50-1000 angstroms.
6. The method of claim 2, wherein said step of removing a portion of said first conductive layer is performed by an etching using an etchant chosen from the group of C2 F6, SF6, CF4 +O2, CF4 +Cl2, CF4 +HBr, HBr/Cl2 /O2, Cl2, HBr/O2, BCl3 /Cl2, SiCl4 /Cl2, SF6, SF6 /Br2, CCl4 /Cl2, or CH3 F/Cl2.
7. The method of claim 1, wherein the angle of said oblique angle implant is from 0 degree to 45 degree.
8. The method of claim 1, wherein said second conductive layer is selected from the group of doped polysilicon, in-situ doped polysilicon.
9. A method of forming a silicon structure, said method comprising the steps of:
forming a silicon layer over a semiconductor substrate;
forming a dot silicon layer on said silicon layer;
doping oxygen into said dot silicon using an oblique implant;
performing a thermal anneal to convert said dot silicon layer into silicon oxide;
etching a portion of said silicon layer using said silicon oxide as an etching mask;
removing said silicon oxide on said silicon layer;
patterning and etching said silicon layer to form said silicon structure.
10. The method of claim 9, wherein the angle of said oblique implant is from 0 degree to 45 degree.
11. A method for manufacturing a capacitor on a semiconductor substrate, said method comprising the steps of:
forming a first polysilicon layer over said substrate;
forming a HSG-Si layer on said first polysilicon layer;
doping oxygen into said HSG-Si layer at an oblique angle;
thermally annealing HSG-Si layer to form silicon oxide;
removing a portion of said first polysilicon layer using said silicon oxide as a mask;
removing said silicon oxide layer;
patterning and etching said first polysilicon layer to form a first electrode of said capacitor;
forming a dielectric layer on the surface of said first electrode of said capacitor; and
forming a second polysilicon layer over said dielectric layer to act as a second electrode of said capacitor.
12. The method of claim 11, wherein said HSG-Si layer is formed to have a thickness of a range about 50-1000 angstroms.
13. The method of claim 11, wherein the angle of said oblique angle implant is from 0 degree to 45 degree.
US08/791,504 1997-01-30 1997-01-30 Method of making a tooth shaped capacitor using ion implantation Expired - Lifetime US5670405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/791,504 US5670405A (en) 1997-01-30 1997-01-30 Method of making a tooth shaped capacitor using ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/791,504 US5670405A (en) 1997-01-30 1997-01-30 Method of making a tooth shaped capacitor using ion implantation

Publications (1)

Publication Number Publication Date
US5670405A true US5670405A (en) 1997-09-23

Family

ID=25153950

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/791,504 Expired - Lifetime US5670405A (en) 1997-01-30 1997-01-30 Method of making a tooth shaped capacitor using ion implantation

Country Status (1)

Country Link
US (1) US5670405A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840606A (en) * 1997-07-28 1998-11-24 United Semiconductor Corp. Method for manufacturing a comb-shaped lower electrode for a DRAM capacitor
US6057205A (en) * 1998-01-28 2000-05-02 Texas Instruments - Acer Incorporated Method to form a ragged poly-Si structure for high density DRAM cells
US6087217A (en) * 1997-11-05 2000-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method for improving capacitance in DRAM capacitors and devices formed
US6150217A (en) * 1999-04-13 2000-11-21 United Microelectronics Corp. Method of fabricating a DRAM capacitor
US6222218B1 (en) * 1998-09-14 2001-04-24 International Business Machines Corporation DRAM trench
US6236080B1 (en) * 1999-07-22 2001-05-22 Worldwide Semiconductor Manufacturing Corp. Method of manufacturing a capacitor for high density DRAMs
US6265263B1 (en) * 1998-02-19 2001-07-24 Texas Instruments - Acer Incorporated Method for forming a DRAM capacitor with porous storage node and rugged sidewalls
US6391708B1 (en) * 1998-07-30 2002-05-21 United Microelectronics Corp. Method of manufacturing DRAM capacitor
US20030205749A1 (en) * 1999-02-26 2003-11-06 Micron Technology, Inc. Localized masking for semiconductor structure development
US6706591B1 (en) 2002-01-22 2004-03-16 Taiwan Semiconductor Manufacturing Company Method of forming a stacked capacitor structure with increased surface area for a DRAM device
US20080268593A1 (en) * 2006-04-12 2008-10-30 Industrial Technology Research Institute Methods for fabricating a capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134086A (en) * 1991-03-20 1992-07-28 Samsung Electronics Co., Ltd. Method for manufacturing capacitor of highly integrated semiconductor memory device
US5427974A (en) * 1994-03-18 1995-06-27 United Microelectronics Corporation Method for forming a capacitor in a DRAM cell using a rough overlayer of tungsten
US5464791A (en) * 1993-08-31 1995-11-07 Nec Corporation Method of fabricating a micro-trench storage capacitor
US5567637A (en) * 1993-07-27 1996-10-22 Nec Corporation Method of fabricating a micro-trench floating gate electrode for flash memory cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134086A (en) * 1991-03-20 1992-07-28 Samsung Electronics Co., Ltd. Method for manufacturing capacitor of highly integrated semiconductor memory device
US5567637A (en) * 1993-07-27 1996-10-22 Nec Corporation Method of fabricating a micro-trench floating gate electrode for flash memory cell
US5464791A (en) * 1993-08-31 1995-11-07 Nec Corporation Method of fabricating a micro-trench storage capacitor
US5427974A (en) * 1994-03-18 1995-06-27 United Microelectronics Corporation Method for forming a capacitor in a DRAM cell using a rough overlayer of tungsten

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840606A (en) * 1997-07-28 1998-11-24 United Semiconductor Corp. Method for manufacturing a comb-shaped lower electrode for a DRAM capacitor
US6087217A (en) * 1997-11-05 2000-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Method for improving capacitance in DRAM capacitors and devices formed
US6057205A (en) * 1998-01-28 2000-05-02 Texas Instruments - Acer Incorporated Method to form a ragged poly-Si structure for high density DRAM cells
US6265263B1 (en) * 1998-02-19 2001-07-24 Texas Instruments - Acer Incorporated Method for forming a DRAM capacitor with porous storage node and rugged sidewalls
US6391708B1 (en) * 1998-07-30 2002-05-21 United Microelectronics Corp. Method of manufacturing DRAM capacitor
US6222218B1 (en) * 1998-09-14 2001-04-24 International Business Machines Corporation DRAM trench
US20030205749A1 (en) * 1999-02-26 2003-11-06 Micron Technology, Inc. Localized masking for semiconductor structure development
US20060006448A1 (en) * 1999-02-26 2006-01-12 Micron Technology, Inc. Localized masking for semiconductor structure development
US7015529B2 (en) 1999-02-26 2006-03-21 Micron Technology, Inc. Localized masking for semiconductor structure development
US7468534B2 (en) 1999-02-26 2008-12-23 Micron Technology, Inc. Localized masking for semiconductor structure development
US20090102018A1 (en) * 1999-02-26 2009-04-23 Micron Technology, Inc. Localized masking for semiconductor structure development
US7868369B2 (en) 1999-02-26 2011-01-11 Micron Technology, Inc. Localized masking for semiconductor structure development
US6150217A (en) * 1999-04-13 2000-11-21 United Microelectronics Corp. Method of fabricating a DRAM capacitor
US6236080B1 (en) * 1999-07-22 2001-05-22 Worldwide Semiconductor Manufacturing Corp. Method of manufacturing a capacitor for high density DRAMs
US6706591B1 (en) 2002-01-22 2004-03-16 Taiwan Semiconductor Manufacturing Company Method of forming a stacked capacitor structure with increased surface area for a DRAM device
US20040142531A1 (en) * 2002-01-22 2004-07-22 Taiwan Semiconductor Manufacturing Company Method of forming a stacked capacitor structure with increased surface area for a DRAM device
US7023042B2 (en) 2002-01-22 2006-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a stacked capacitor structure with increased surface area for a DRAM device
US20080268593A1 (en) * 2006-04-12 2008-10-30 Industrial Technology Research Institute Methods for fabricating a capacitor
US7781298B2 (en) * 2006-04-12 2010-08-24 Industrial Technology Research Institute Methods for fabricating a capacitor

Similar Documents

Publication Publication Date Title
US5907782A (en) Method of forming a multiple fin-pillar capacitor for a high density dram cell
US6114201A (en) Method of manufacturing a multiple fin-shaped capacitor for high density DRAMs
US5604146A (en) Method to fabricate a semiconductor memory device having an E-shaped storage node
US6150209A (en) Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure
US5429980A (en) Method of forming a stacked capacitor using sidewall spacers and local oxidation
US5858838A (en) Method for increasing DRAM capacitance via use of a roughened surface bottom capacitor plate
US5821139A (en) Method for manufacturing a DRAM with increased electrode surface area
US5897352A (en) Method of manufacturing hemispherical grained polysilicon with improved adhesion and reduced capacitance depletion
US5851897A (en) Method of forming a dram cell with a crown-fin-pillar structure capacitor
US6064085A (en) DRAM cell with a multiple fin-shaped structure capacitor
US6137131A (en) Dram cell with a multiple mushroom-shaped capacitor
US5723373A (en) Method of making porous-Si capacitors for high density drams cell
US20030147199A1 (en) Cylinder-type capacitor for a semiconductor device
US5670405A (en) Method of making a tooth shaped capacitor using ion implantation
US6150213A (en) Method of forming a cob dram by using self-aligned node and bit line contact plug
US5670406A (en) Method of making a tooth shaped capacitor
US5933742A (en) Multi-crown capacitor for high density DRAMS
US5851877A (en) Method of forming a crown shape capacitor
US6046084A (en) Isotropic etching of a hemispherical grain silicon layer to improve the quality of an overlying dielectric layer
US6127221A (en) In situ, one step, formation of selective hemispherical grain silicon layer, and a nitride-oxide dielectric capacitor layer, for a DRAM application
US5770510A (en) Method for manufacturing a capacitor using non-conformal dielectric
US5807782A (en) Method of manufacturing a stacked capacitor having a fin-shaped storage electrode on a dynamic random access memory cell
US5681774A (en) Method of fabricating a toothed-shape capacitor node using a thin oxide as a mask
US6548348B1 (en) Method of forming a storage node contact hole in a porous insulator layer
US6011286A (en) Double stair-like capacitor structure for a DRAM cell

Legal Events

Date Code Title Description
AS Assignment

Owner name: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSENG, HORNG-HUEI;REEL/FRAME:008417/0610

Effective date: 19970116

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12