Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS5651869 A
Publication typeGrant
Application numberUS 08/605,391
Publication date29 Jul 1997
Filing date22 Feb 1996
Priority date28 Feb 1995
Fee statusPaid
Also published asCN1098459C, CN1146016A, DE69617771D1, DE69617771T2, EP0730037A2, EP0730037A3, EP0730037B1
Publication number08605391, 605391, US 5651869 A, US 5651869A, US-A-5651869, US5651869 A, US5651869A
InventorsToshihiko Yoshioka, Shin Ikeda, Shiro Nankai
Original AssigneeMatsushita Electric Industrial Co., Ltd.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Biosensor
US 5651869 A
Abstract
The biosensor of this invention includes an electrically insulating substrate; an electrode system formed on the substrate which includes a working electrode and a counter electrode; and a reaction layer formed on the substrate or above the substrate with a space therebetween. The reaction layer includes a pyranose-oxidizing enzyme.
Images(2)
Previous page
Next page
Claims(13)
What is claimed is:
1. A biosensor comprising:
an electrically insulating substrate;
an electrode system formed on the substrate which includes a working electrode and a counter electrode; and
a reaction layer formed on the substrate or above the substrate with a space therebetween,
wherein the reaction layer includes a pyranose-oxidizing enzyme and glucose oxidase (EC1.1.3.4).
2. A biosensor according to claim 1, wherein the pyranose-oxidizing enzyme is pyranose oxidase (EC1.1.3.10).
3. A biosensor according to claim 1, wherein the reaction layer further includes an electron acceptor.
4. A biosensor according to claim 3, wherein the electron acceptor is a ferricyanide ion.
5. A biosensor according to claim 4, wherein contents of the pyranose-oxidizing enzyme, the glucose oxidase, and the ferricyanide ion are about 0.1 to about 200 units, 1 to about 200 units, and about 0.21 mg to about 3.30 mg, respectively per 1 cm2 of the reaction layer.
6. A biosensor according to claim 1, wherein the reaction layer further includes a polysaccharide hydrolase.
7. A biosensor according to claim 6, wherein the polysaccharide hydrolase is one selected from the group consisting of sucrose hydrolase, maltose hydrolase, and lactose hydrolase.
8. A biosensor according to claim 1, wherein a content of the pyranose-oxidizing enzyme is 1 to about 200 units per 1 cm2 of the reaction layer.
9. A biosensor according to claim 1, wherein a content of the pyranose-oxidizing enzyme is about 0.1 to about 200 units per 1 cm2 of the reaction layer.
10. A biosensor according to claim 1, wherein the biosensor is used for measuring a blood glucose level.
11. A biosensor for quantitating a biochemical substrate included in a sample liquid by reducing an electron acceptor with an electron generated through an enzyme reaction of the biochemical substrate and electrochemically measuring an amount of a reduced form of the electron acceptor, comprising:
an electrically insulating substrate;
an electrode system formed on the insulating substrate and including a working electrode and a counter electrode; and
a reaction layer formed on the insulating substrate or above the substrate with a space therebetween,
wherein the reaction layer includes a pyranose-oxidizing enzyme, an electron acceptor, and glucose oxidase (EC1.1.3.4).
12. A biosensor according to claim 11, wherein the biosensor is a glucose sensor.
13. A biosensor according to claim 11, wherein the biosensor is used for measuring a blood glucose level.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a biosensor for quantitating a substrate (specific component) contained in a sample liquid such as whole blood, plasma, serum, urine, fruit juice and the like, with accuracy, speed and ease. More particularly, the invention relates to a glucose sensor for electrochemically measuring a concentration of glucose included in a sample liquid by reacting the glucose with an oxidoreductase which can react with specificity to the glucose.

2. Description of the Related Art

Various methods such as an optical rotation method, a colorimetric method, a reductimetry method and other methods which use different kinds of chromatographies have been developed as methods for the quantitative analysis of a saccharide such as sucrose and glucose. However, none of these methods has sufficiently high accuracy because the specificity thereof against saccharides is not very high. Among these methods, the optical rotation method can be easily conducted but is known to be significantly influenced by the operating temperature.

Recently, various types of biosensors have been developed which can easily quantitate a specific component (substrate) in a sample liquid such as a biological sample and food without diluting and stirring the sample liquid.

For example, Japanese Laid-Open Patent Publication No. 3-202764 discloses a biosensor comprising an electrode system formed on an insulating substrate by screen printing or the like and a reaction layer formed on the electrode system and including a hydrophilic polymer, an oxidoreductase, and an electron acceptor. The concentration of a substrate in a sample liquid is measured by using this biosensor as follows. First, the sample liquid is dropped on the reaction layer of the biosensor, so as to dissolve the reaction layer. This causes an enzyme reaction between the substrate in the sample liquid and the oxidoreductase in the reaction layer, and then, the electron acceptor in the reaction layer is reduced. After the completion of the enzyme reaction, the reduced electron acceptor is electrochemically oxidized, thereby measuring the concentration of the substrate in the sample liquid based on an oxidation current value obtained in this oxidation.

U.S. Pat. No. 5,192,415 discloses a biosensor comprising a hydrogen ion concentration control layer which can optimize the pH of the sample liquid depending upon the type of oxidoreductase contained in a reaction layer without previously adjusting the pH of a sample liquid.

U.S. Pat. No. 5,264,103 discloses a biosensor comprising a main electrode system formed on an electrically insulating substrate and including a working electrode and a counter electrode; a reaction layer including an oxidoreductase; and a sub electrode layer provided with an interval from the main electrode system and including a working electrode and a counter electrode.

These biosensors can be used in a wide range of applications, for example as, a glucose sensor, an alcohol sensor, a cholesterol sensor, or an amino acid sensor by appropriately selecting an oxidoreductase to be contained in the reaction layer.

Among these biosensors, a glucose sensor is generally known to include glucose oxidase as the oxidoreductase. Such a glucose sensor has, however, the following problem. Among isomers of glucose, glucose oxidase reacts to β-glucose alone which exists at a proportion of 63% in the equilibrium state. Therefore, a response current value (i.e., detection sensitivity) obtained by such a glucose sensor is so small that measurement error is large, for example, in quantitating an extremely small amount of glucose.

In addition, when this glucose sensor is used to quantitate polysaccharides, most of the glucose produced by a hydrolase is α-glucose, and hence, an additional procedure is required, before the quantitation, for isomerizing α-glucose produced through the hydrolysis into β-glucose by using a mutarotase.

Japanese Patent Application No. 6-291401 (unpublished) relates to a biosensor including both mutarotase and glucose oxidase. In this biosensor, however, the detection sensitivity cannot be sufficiently improved when the total amount of these enzymes is small, and the production cost is increased when the total amount of the enzymes is large. Furthermore, when the concentration of a substrate in a sample liquid is comparatively high, the biosensor including mutarotase and glucose oxidase has lower detection sensitivity as compared with a biosensor excluding mutarotase.

SUMMARY OF THE INVENTION

The biosensor of the present invention comprises an electrically insulating substrate; an electrode system formed on the substrate which includes a working electrode and a counter electrode; and a reaction layer formed on the substrate or above the substrate with a space therebetween. The reaction layer includes a pyranose-oxidizing enzyme.

In one embodiment, the pyranose-oxidizing enzyme is pyranose oxidase (EC1.1.3.10).

In another embodiment, the reaction layer further includes glucose oxidase (EC1.1.3.4).

In still another embodiment, the reaction layer further includes an electron acceptor.

In still another embodiment, the electron acceptor is a ferricyanide ion.

In still another embodiment, the reaction layer further includes polysaccharide hydrolase.

In still another embodiment, the polysaccharide hydrolase is one selected from the group consisting of sucrose hydrolase, maltose hydrolase, and lactose hydrolase.

In one embodiment, the content of the pyranose-oxidizing enzyme is 1 to about 200 units per 1 cm2 of the reaction layer.

In still another embodiment, the content of the pyranose-oxidizing enzyme is about 0.1 to about 200 units per 1 cm2 of the reaction layer.

In still another embodiment, the contents of the pyranose-oxidizing enzyme and the ferricyanide ion are 1 to about 200 units and about 0.21 mg to about 3.30 mg, respectively per 1 cm2 of the reaction layer.

In still another embodiment, the contents of the pyranose-oxidizing enzyme, the glucose oxidase and the ferricyanide ion are about 0.1 to about 200 units, 1 to about 200 units, and about 0.21 mg to about 3.30 mg, respectively per 1 cm2 of the reaction layer.

In one embodiment, the biosensor is used for measuring a blood glucose level.

Alternatively, the biosensor of the present invention, for quantitating a substrate included in a sample liquid by reducing an electron acceptor with an electron generated through an enzyme reaction of the substrate and electrochemically measuring an amount of a reduced form of the electron acceptor, comprises an electrically insulating substrate; an electrode system formed on the substrate and including a working electrode and a counter electrode; and a reaction layer formed on the substrate or above the substrate with a space therebetween. The reaction layer includes a pyranose-oxidizing enzyme and the electron acceptor.

In one embodiment, the reaction layer further includes glucose oxidase (EC1.1.3.4).

In another embodiment, the biosensor is a glucose sensor.

In still another embodiment, the biosensor is used for measuring a blood glucose level.

Thus, the invention described herein makes possible the advantages of (1) providing a biosensor which can measure the concentration of a substrate in a sample liquid with accuracy and speed by simultaneously detecting α-glucose and β-glucose; (2) providing a biosensor which can easily measure the concentration of a substrate in a sample liquid including polysaccharide; and (3) providing a biosensor which can be manufactured at a low cost.

These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic plane view of a biosensor as an example of the invention in which a reaction layer is omitted;

FIG. 2 is a schematic sectional view of a biosensor as an example of the invention in which a reaction layer is directly disposed on a substrate;

FIG. 3 is a schematic sectional view of a biosensor as another example of the invention in which a reaction layer is disposed above a substrate with a space therebetween;

FIG. 4 is a graph showing the relationship between the concentration of glucose and a response current value obtained by biosensors according to an example and comparative examples of the invention; wherein a curve (a) shows the change of a response current value obtained by using a reaction layer including pyranose oxidase (hereinafter referred to as PyOx) and glucose oxidase (hereinafter referred to as GOD), a curve (b) shows the change of a response current value obtained by using a reaction layer including GOD alone, and a curve (c) shows the change of a response current value obtained by using a reaction layer including PyOx alone; and

FIG. 5 is a graph showing the relationship between the concentration of blood glucose and a response current value obtained by glucose sensors according to an example and comparative examples of the invention; wherein a curve (a) shows the change of a response current value obtained by using a reaction layer including PyOx and GOD, a curve (b) shows the change of a response current value obtained by using a reaction layer including GOD alone as an oxidoreductase, and a curve (c) shows the change of a response current value obtained by using a reaction layer including PyOx alone.

DESCRIPTION OF PREFERRED EMBODIMENTS

A biosensor of this invention comprises an electrically insulating substrate, an electrode system formed on the substrate which includes a working electrode and a counter electrode, and a reaction layer formed either on the substrate or above the substrate with a space therebetween.

The electrically insulating substrate is made from a plate of a synthetic resin such as polyethylene terephthalate, polyethylene, polyester, polypropylene, polystyrene, and polyvinyl chloride.

The electrode system including the working electrode and the counter electrode can be formed on the substrate by a known method. For example, after forming leads on the substrate, the working electrode and the counter electrode are formed so as to be connected to the respective leads and be insulated from each other. The materials for the leads and the electrodes can be any of known conductive materials such as carbon, silver, platinum, gold, and palladium.

The reaction layer used in the present biosensor includes a pyranose-oxidizing enzyme, which can simultaneously oxidize both α-glucose and β-glucose. An example of such a pyranose-oxidizing enzyme includes pyranose oxidase (EC1.1.3.10; PyOx).

The content of PyOx in the reaction layer of the present biosensor is preferably 1 to about 200 units, and more preferably about 2 to about 50 units per 1 cm2 of the reaction layer. The term "unit" herein refers to the amount of an oxidoreductase necessary for oxidizing 1 μmol of glucose or polysaccharide in one minute. When the content of PyOx is smaller than 1 unit per 1 cm2 of the reaction layer, an additional time of several minutes or more is required for the measurement. In addition, due to evaporation of a sample liquid during the additional time, the response current value can be affected. A content of PyOx exceeding about 200 units per 1 cm2 of the reaction layer not only increases the production cost but also causes fluctuation in response current values because the reaction layer can be broken during the formation thereof.

The reaction layer can include glucose oxidase (EC1.1.3.4; GOD), in addition to the pyranose-oxidizing enzyme, in order to further improve the detection sensitivity against glucose in a sample liquid and to enable the glucose sensor to response to a wider range of glucose concentration. The content of GOD is preferably 1 to about 200 units per 1 cm2 of the reaction layer. When GOD is used together with PyOx, the content of PyOx is preferably about 0.1 to about 200 units, and more preferably about 0.2 to about 40 units per 1 cm2 of the reaction layer.

The reaction layer can further include various hydrophilic polymers. Examples of such hydrophilic polymer include carboxy methyl cellulose (hereinafter referred to as CMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, polyamino acids such as polylysine, polystyrenesulfonic acid, gelatin or its derivatives, acrylic acid or its salts, methacrylic acid or its salts, starch or its derivatives, and maleic anhydride or its salt. In particular, CMC is preferred.

When a sample liquid including glucose is supplied to the reaction layer of the present biosensor, α-glucose and β-glucose in the sample liquid are respectively oxidized by the pyranose-oxidizing enzyme. Simultaneously, dissolved oxygen in the sample liquid is reduced into hydrogen peroxide. When a voltage is applied at this point, the hydrogen peroxide is oxidized. A response current generated in this oxidation is in proportion to the concentration of the hydrogen peroxide, i.e., the concentration of the substrate in the sample liquid. Thus, the concentration of the substrate in the sample liquid can be obtained by measuring the response current value.

In the present biosensor, the reaction layer can include an electron acceptor so as to form a reduced form of the electron acceptor simultaneously with the enzyme reaction, in stead of producing hydrogen peroxide simultaneously with the oxidation reaction of the substrate. Examples of the electron acceptor include a ferricyanide ion, p-benzoquinone or its derivatives, phenazine methosulfate, Methylene Blue, and ferrocene or its derivative. One or more of the electron acceptor can be used. In particular, a ferricyanide ion is preferred.

The content of the ferricyanide ion is preferably about 0.21 to about 3.30 mg, and more preferably about 0.30 to about 2.59 mg per 1 cm2 of the reaction layer. When the content of the ferricyanide ion is smaller than about 0.21 mg per 1 cm2 of the reaction layer, the measurable range of the glucose concentration can be extremely small. When the content of the ferricyanide ion exceeds about 3.30 mg per 1 cm2 of the reaction layer, fluctuation of response current values can be caused because the reaction layer can be broken during the formation thereof, and the reliability of the biosensor can be degraded while it is stored.

The reaction layer used in the present biosensor can further include a polysaccharide hydrolase for hydrolyzing a polysaccharide to produce α-glucose. The polysaccharide hydrolase is an enzyme capable of hydrolyzing a polysaccharide such as sucrose and maltose to produce glucose. Examples of such polysaccharide hydrolase include sucrose hydrolase such as invertase (hereinafter referred to as INV), maltose hydrolase such as maltase, and lactose hydrolase such as β-galactosidase. The content of the polysaccharide hydrolase is preferably 1 to about 400 units, and more preferably about 2 to about 200 units per 1 cm2 of the reaction layer.

A production method for the present biosensor will now be described referring to FIGS. 1 and 2.

First, a conductive material such as silver paste is printed on an electrically insulating substrate 1 by screen printing, thereby forming leads 2 and 3. Then, another conductive material including a resin binder is printed on the substrate 1, thereby forming a working electrode 4, so as to be in contact with the lead 2.

Then, insulating paste is printed on the substrate 1, thereby forming an insulating layer 6. The insulating layer 6 covers the peripheral portion of the working electrode 4, so as to expose a fixed area of the working electrode 4. As is shown in FIG. 1, the insulating layer 6 also covers part of the leads 2 and 3. Around the working electrode 4 is formed a ring-shaped counter electrode 5 out of a conductive material including a resin binder. The counter electrode 5 is in contact with the lead 3. In this manner, an electrode system 8 including the working electrode 4 and the counter electrode 5 is formed on the substrate 1.

Alternatively, the present biosensor can comprise a three-electrode system formed on the substrate 1 including a reference electrode (not shown) in addition to the working electrode 4 and the counter electrode 5, for the purpose of further stabilizing the measurement accuracy.

A reaction layer is formed on the substrate 1 as follows:

An aqueous solution of the hydrophilic polymer is dropped and dried on the electrode system 8, thereby forming a hydrophilic polymer layer. Then, an aqueous solution including PyOx, and the electron acceptor and/or the polysaccharide hydrolase, if necessary, is dropped and dried on the hydrophilic polymer layer. For repeated application of the present biosensor, the pyranose-oxidizing enzyme, and the polysaccharide hydrolase, if necessary, can be immobilized on the hydrophilic polymer layer through crosslinking with glutaraldehyde or immobilized on the hydrophilic polymer layer together with a polymeric material such as nitrocellulose, cellulose acetate, and polyacrylonitrile. Furthermore, the electron acceptor can be chemically fixed on the hydrophilic polymer layer by using the polymeric material, if necessary. Thus, a reaction layer 7 covering the entire electrode system 8 as shown in FIG. 2 can be formed.

Alternatively, the reaction layer can be disposed above the substrate 1 with a space therebetween. In this case, as is shown in FIG. 3, the biosensor comprises the substrate 1 and a cover 30 disposed above the substrate 1 with a spacer 20 sandwiched therebetween. The cover 30 includes a hole 31 and a reaction layer 37 formed on one surface thereof. The cover 30 is disposed above the substrate 1 so as to oppose the reaction layer 37 and the electrode system 8 to each other. Such a reaction layer 37 disposed above the substrate 1 with a space therebetween can be formed as described in, for example, Japanese Laid-Open Patent Publication No. 1-114747. In this type of biosensor, when a sample liquid supplied through a sample supply port 38 reaches the space between the reaction layer 37 and the electrode system 8, the amount of hydrogen peroxide or a reduced form of the electron acceptor generated in the reaction layer 37 can be measured with the electrode system 8 as in the biosensor shown in FIG. 2.

The present biosensor can be used for quantitating various kinds of substrates included in a biological sample such as whole blood, plasma, serum, and urine, materials of the food industry and product thereof, for example fruit juice. When used for measuring a blood glucose level of a patient in particular, the present biosensor can serve as a disposable blood glucose sensor which can be easily used.

Examples

Specific examples of the present biosensor will now be described. It is noted that the invention is not limited to these examples. In the drawings mentioned in each example, a common reference numeral is used to refer to a common element, and the description is partly omitted for the sake of simplification.

Example 1

As an example of the present biosensor, a glucose sensor was manufactured as follows:

As is shown in FIG. 1, silver paste was printed by screen printing on an electrically insulating substrate 1 made of polyethylene terephthalate, thereby forming leads 2 and 3. Then, conductive carbon paste including a resin binder was printed on the substrate 1, thereby forming a working electrode 4, so as to be in contact with the lead 2.

Next, insulating paste was printed on the substrate 1, thereby forming an insulating layer 6. The insulating layer 6 covered the peripheral portion of the working electrode 4, so as to expose a fixed area of the working electrode 4.

Then, conductive carbon paste including a resin binder was printed on the substrate 1, thereby forming a ring-shaped counter electrode 5, so as to be in contact with the lead 3.

An aqueous solution of 0.5% by weight CMC was dropped on the electrode system 8, that is, the working electrode 4 and the counter electrode 5, and dried, thereby forming a CMC layer. A mixed aqueous solution including PyOx and potassium ferricyanide was dropped and dried on the CMC layer, thereby forming a reaction layer 7. The contents of PyOx and potassium ferricyanide in the reaction layer 7 were 10 units and 1.3 mg per 1 cm2 of the reaction layer, respectively.

On the reaction layer 7 of the thus manufactured glucose sensor was dropped 90 mg/dl of aqueous glucose solution as a sample liquid. After one minute, a voltage of +0.5 V on the basis of a voltage at the counter electrode 5 was applied to the working electrode 4 and a current value was measured 5 seconds after the voltage application. In this manner, a response current value to the glucose solution was measured twelve times in total by using a fresh glucose sensor in each measurement. Fluctuation in the obtained response current values was small.

Furthermore, response current values were measured with regard to 180 mg/dl and 360 mg/dl of aqueous glucose solutions also twelve times, respectively in the same manner as described above. The thus obtained response values were found to be increased as the glucose concentration was increased, and the increase ratio was large.

As a comparative example, a glucose sensor including glucose oxidase (EC1.1.3.4; GOD) instead of PyOx was manufactured, and a response current value was measured twelve times with regard to the glucose solutions having the above-mentioned concentrations. The obtained response current values were fluctuated in the same glucose concentration. In addition, although the response current values were found to be increased as the glucose concentration was increased, the increase ratio was small.

Example 2

As an example of the present biosensor, a sucrose sensor was manufactured as follows:

In the same manner as in Example 1, leads 2 and 3, an electrode system 8 (i.e., a working electrode 4 and a counter electrode 5), and an insulating layer 6 were formed on an electrically insulating substrate 1 made of polyethylene terephthalate. Then, an aqueous solution of 0.5% by weight CMC was dropped and dried on the electrode system 8, thereby forming a CMC layer.

A mixed aqueous solution including PyOx, INV, and potassium ferricyanide was dropped and dried on the CMC layer, thereby forming a reaction layer 7. The contents of PyOx, INV, and potassium ferricyanide in the reaction layer 7 were 10 units, 40 units and 1.3 mg per 1 cm2 of the reaction layer, respectively.

When 171 mg/dl of aqueous sucrose solution as a sample liquid was dropped on the reaction layer 7 of the thus manufactured sucrose sensor, the reaction layer 7 was dissolved by the sample liquid. After 3 minutes, a voltage of +0.5 V on the basis of a voltage at the counter electrode 5 was applied to the working electrode 4, and a current value was measured 5 seconds after the voltage application.

Furthermore, response current values were measured with regard to 342 mg/dl and 684 mg/dl of aqueous sucrose solutions by using a fresh sucrose sensor in each measurement in the same manner as described above.

The obtained response current values were found to be increased as the sucrose concentration was increased, and the increase ratio was large.

As comparative examples, a maltose sensor and a lactose sensor were manufactured in the same manner except that INV was replaced with maltose hydrolase and lactose hydrolase, respectively. These maltose and lactose sensors exhibited the same effect as described above.

Example 3

As an example of the present biosensor, a glucose sensor was manufactured as follows:

In the same manner as described in Example 1, leads 2 and 3, an electrode system 8 (i.e., a working electrode 4 and a counter electrode 5), and an insulating layer 6 were formed on an electrically insulating substrate 1 made of polyethylene terephthalate. Then, an aqueous solution of 0.5% by weight CMC was dropped and dried on the electrode system 8, thereby forming a CMC layer.

A mixed aqueous solution including PyOx, GOD, and potassium ferricyanide was dropped and dried on the CMC layer, thereby forming a reaction layer 7. The contents of PyOx, GOD, and potassium ferricyanide in the reaction layer 7 were 1 unit, 10 units, and 1.3 mg per 1 cm2 of the reaction layer, respectively.

On the reaction layer 7 of the thus manufactured glucose sensor was dropped 90 mg/dl of aqueous glucose solution as a sample liquid. After 1 minute, a voltage of +0.5 V on the basis of a voltage at the counter electrode 5 was applied to the working electrode 4, and a current value was measured 5 seconds after the voltage application.

Furthermore, response current values were measured with regard to 180 mg/dl and 360 mg/dl of aqueous glucose solutions by using a fresh glucose sensor in each measurement in the same manner as described above. The response characteristic between glucose concentrations and response current values is shown in FIG. 4 as a curve (a).

As comparative examples, a glucose sensor not including PyOx and a glucose sensor not including GOD were respectively manufactured, and the response current values were measured in the same manner as described above. The results are shown in FIG. 4 as curves (b) and (c).

As is shown in FIG. 4, the glucose sensor including GOD alone as the enzyme (corresponding to curve (b) in FIG. 4) exhibited the lowest response current values because the response current values depend upon the concentration of only the β-glucose included in the sample liquid. In contrast, the glucose sensor including PyOx alone as the enzyme (corresponding to curve (c) in FIG. 4) exhibited higher current values than curve (b) especially when the glucose concentration was low because the response current values depend upon the sum of the concentrations of α-glucose and β-glucose included in the sample liquid. However, the glucose sensor including PyOx alone as the enzyme exhibited lower current values than curve (b) when the glucose concentration was high. As a result, the glucose sensor including both PyOx and GOD (corresponding to curve (a) in FIG. 4) constantly exhibited high response current values in the widest concentration range.

Example 4

As an example of the present biosensor, a sucrose sensor was manufactured as follows:

In the same manner as in Example 1, leads 2 and 3, an electrode system 8 (i.e., a working electrode 4 and a counter electrode 5), and an insulating layer 6 were formed on an electrically insulating substrate 1 made of polyethylene terephthalate. Then, an aqueous solution of 0.5% by weight CMC was dropped and dried on the electrode system 8, thereby forming a CMC layer.

A mixed aqueous solution including PyOx, GOD, INV, and potassium ferricyanide was dropped and dried on the CMC layer, thereby forming a reaction layer 7. The contents of PyOx, GOD, INV, and potassium ferricyanide in the reaction layer 7 were 1 unit, 10 units, 40 units, and 1.3 mg per 1 cm2 of the reaction layer 7, respectively.

When 171 mg/dl of aqueous sucrose solution was dropped on the reaction layer 7 of the thus manufactured sucrose sensor, the reaction layer 7 was dissolved by the sample liquid. After 3 minutes, a voltage of +0.5 V on the basis of a voltage at the counter electrode 5 was applied to the working electrode 4, and a current value was measured 5 seconds after the voltage application.

Furthermore, response current values were measured with regard to 342 mg/dl and 684 mg/dl of aqueous sucrose solutions by using a fresh sucrose sensor in each measurement in the same manner as described above.

The obtained response current values were found to be increased as the sucrose concentration was increased, and were constantly high in a wide range of the sucrose concentration.

As a comparative example, a sucrose sensor was manufactured in the same manner as described above except that GOD was excluded from the reaction layer 7, and response current values were similarly measured. The obtained response current values were constantly lower than those obtained by the sucrose sensor including GOD.

A maltose sensor and a lactose sensor manufactured by respectively using maltose hydrolase and lactose hydrolase instead of INV were found to exhibit the same effect as described above.

Example 5

A biosensor was manufactured in the same manner as in Examples 1 to 4 except that potassium ferricyanide was not included in the reaction layer 7. Sample liquid having various substrate concentrations as in Examples 1 to 4 were respectively dropped on the electrode system of these biosensors. After a predetermined time, a voltage of +1.0 V on the basis of a voltage at a counter electrode 5 was applied to a working electrode 4, and a current value was measured 5 seconds after the voltage application.

The obtained response current values were found to be increased as the concentration of the substrate was increased.

Example 6

A glucose sensor was manufactured in the same manner as in Example 3.

Whole blood having a glucose concentration of 95 mg/dl was dropped as a sample liquid on a reaction layer 7 of this glucose sensor. After 1 minute, a voltage of +0.5 V on the basis of a voltage at a counter electrode 5 was applied to a working electrode 4, and a current value was measured 5 seconds after the voltage application.

Furthermore, response current values were measured with regard to whole blood having glucose concentrations of 170 mg/dl and 320 mg/dl by using a fresh glucose sensor in each measurement in the same manner as described above. The response characteristic between glucose concentrations and response current values is shown as a curve (a) in FIG. 5.

As comparative examples, a glucose sensor not including PyOx and a glucose sensor not including GOD were respectively manufactured, and response current values were measured in the same manner. The results are shown as curves (b) and (c) in FIG. 5.

As is shown in FIG. 5, the glucose sensor including GOD alone as the enzyme (corresponding to curve (b) in FIG. 5) exhibited the lowest response current values because the current values depend upon the concentration of only the β-glucose in the whole blood. In contrast, the glucose sensor including PyOx alone as the enzyme (corresponding to curve (c) in FIG. 5) exhibited higher response current values than curve (b) because the current values depend upon the sum of the concentrations of α-glucose and β-glucose in the whole blood. As a result, the glucose sensor including both PyOx and GOD (corresponding to curve (a) in FIG. 5) exhibited constantly high response current values in the widest range of the blood glucose concentration.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US5081037 *9 Mar 198914 Jan 1992Kanzaki Paper Mfg. Co., Ltd.Enzyme electrode for measuring malto-oligosaccharide
US5192416 *9 Apr 19919 Mar 1993New Mexico State University Technology Transfer CorporationMethod and apparatus for batch injection analysis
US5264103 *15 Oct 199223 Nov 1993Matsushita Electric Industrial Co., Ltd.Biosensor and a method for measuring a concentration of a substrate in a sample
JPH0262958A * Title not available
JPH03202764A * Title not available
JPH05196595A * Title not available
JPS6459056A * Title not available
JPS62114747A * Title not available
JPS63294799A * Title not available
Non-Patent Citations
Reference
1 *Abstract of JP 01114747 (Matsushita Electric) Oct. 29, 1987.
2 *Abstract of JP 02062958 (Karigome et al.) Mar. 2, 1990.
3 *Abstract of JP 05196595 (Yoshinobu Tokundo) Aug. 6, 1993.
4 *Abstract of JP 6459056 (Shigeo Kobayashi) Mar. 6, 1989.
5Chemical Abstracts, vol. III, No. 25, Dec. 18, 1989, Columbus, Ohio, USA, S. Tajima et al, "Simultaneous Determination of Glucose and 1,5-any-Droglucitrol" p. 394, No. 228, 556 J; & JPN, Kokai Koha, 1988 No month available.
6 *Chemical Abstracts, vol. III, No. 25, Dec. 18, 1989, Columbus, Ohio, USA, S. Tajima et al, Simultaneous Determination of Glucose and 1,5 any Droglucitrol p. 394, No. 228, 556 J; & JPN, Kokai Koha, 1988 No month available.
7 *JP A 63 294 799 (88 294799).
8JP-A-63-294 799 (88 294799).
9 *Search Report for European Patent Application No. 96102861.0 dated Sep. 5, 1996.
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US5906921 *24 Sep 199825 May 1999Matsushita Electric Industrial Co., Ltd.Biosensor and method for quantitative measurement of a substrate using the same
US5961799 *3 Sep 19975 Oct 1999Nec CorporationCompact apparatus for measuring a liquid component in a liquid sample
US61030334 Mar 199815 Aug 2000Therasense, Inc.Process for producing an electrochemical biosensor
US61206764 Jun 199919 Sep 2000Therasense, Inc.Method of using a small volume in vitro analyte sensor
US61344614 Mar 199817 Oct 2000E. Heller & CompanyElectrochemical analyte
US614316416 Dec 19987 Nov 2000E. Heller & CompanySmall volume in vitro analyte sensor
US61626113 Jan 200019 Dec 2000E. Heller & CompanySubcutaneous glucose electrode
US617575230 Apr 199816 Jan 2001Therasense, Inc.Analyte monitoring device and methods of use
US623212413 Nov 199815 May 2001Verification Technologies, Inc.Automated fingerprint methods and chemistry for product authentication and monitoring
US625126024 Aug 199826 Jun 2001Therasense, Inc.Potentiometric sensors for analytic determination
US6258254 *27 Jul 199810 Jul 2001Matsushita Electric Industrial Co., Ltd.Biosensor
US62844784 Dec 19964 Sep 2001E. Heller & CompanySubcutaneous glucose electrode
US62997576 Oct 19999 Oct 2001Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US632916122 Sep 200011 Dec 2001Therasense, Inc.Subcutaneous glucose electrode
US633879021 Apr 199915 Jan 2002Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US645859524 Jan 20011 Oct 2002Verification Technologies, Inc.Automated fingerprint methods and chemistry for product authentication and monitoring
US646149627 Oct 19998 Oct 2002Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US648404610 Jul 200019 Nov 2002Therasense, Inc.Electrochemical analyte sensor
US649003018 Jan 19993 Dec 2002Verification Technologies, Inc.Portable product authentication device
US651258027 Oct 199928 Jan 2003Verification Technologies, Inc.Method and apparatus for portable product authentication
US651471829 Nov 20014 Feb 2003Therasense, Inc.Subcutaneous glucose electrode
US65514946 Apr 200022 Apr 2003Therasense, Inc.Small volume in vitro analyte sensor
US656550921 Sep 200020 May 2003Therasense, Inc.Analyte monitoring device and methods of use
US65761016 Oct 199910 Jun 2003Therasense, Inc.Small volume in vitro analyte sensor
US658372212 Dec 200024 Jun 2003Kimberly-Clark Worldwide, Inc.Wetness signaling device
US658962629 Mar 20018 Jul 2003Verification Technologies, Inc.Copy-protected optical media and method of manufacture thereof
US659112527 Jun 20008 Jul 2003Therasense, Inc.Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US659274517 May 200015 Jul 2003Therasense, Inc.Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US660340312 Dec 20005 Aug 2003Kimberly-Clark Worldwide, Inc.Remote, wetness signaling system
US661507821 Apr 20002 Sep 2003Cygnus, Inc.Methods and devices for removing interfering species
US66168194 Nov 19999 Sep 2003Therasense, Inc.Small volume in vitro analyte sensor and methods
US661893415 Jun 200016 Sep 2003Therasense, Inc.Method of manufacturing small volume in vitro analyte sensor
US663859312 Jun 200128 Oct 2003Verification Technologies, Inc.Copy-protected optical media and method of manufacture thereof
US665462516 Jun 200025 Nov 2003Therasense, Inc.Mass transport limited in vivo analyte sensor
US670753918 Oct 200216 Mar 2004Verification Technologies, Inc.Portable product authentication device
US674974028 Dec 200115 Jun 2004Therasense, Inc.Small volume in vitro analyte sensor and methods
US678701310 Sep 20017 Sep 2004Eumed Biotechnology Co., Ltd.Biosensor
US689354525 Nov 200217 May 2005Therasense, Inc.Biosensor
US690290514 May 20037 Jun 2005Cygnus, Inc.Glucose measuring assembly with a hydrogel
US702221715 Jul 20024 Apr 2006Lifescan, Inc.Electrochemical method for measuring chemical reaction rates
US705259119 Sep 200230 May 2006Therasense, Inc.Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US715097518 Aug 200319 Dec 2006Animas Technologies, LlcHydrogel composition for measuring glucose flux
US718306817 Feb 200527 Feb 2007Animas Technologies, LlcMethods of manufacturing glucose measuring assemblies with hydrogels
US733529428 Jul 200326 Feb 2008Abbott Diabetes Care, Inc.Integrated lancing and measurement device and analyte measuring methods
US73681901 May 20036 May 2008Abbott Diabetes Care Inc.Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US743181412 May 20047 Oct 2008Lifescan, Inc.Electrochemical cell
US74318201 Oct 20027 Oct 2008Lifescan, Inc.Electrochemical cell
US760472222 Jul 200320 Oct 2009Lifescan, Inc.Electrochemical cell
US760817522 Jul 200327 Oct 2009Lifescan, Inc.Electrochemical cell
US76604159 Feb 2010Selinfreund Richard HMethod and apparatus for controlling access to storage media
US76999646 Apr 200420 Apr 2010Abbott Diabetes Care Inc.Membrane suitable for use in an analyte sensor, analyte sensor, and associated method
US77134066 May 200511 May 2010Abbott Diabetes Care Inc.Biosensor
US772141216 Aug 200525 May 2010Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US77668294 Nov 20053 Aug 2010Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US781123112 Oct 2010Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US781168912 Oct 2010Abbott Diabetes Care Inc.Biological fuel cell and methods
US785083914 Dec 2010Panasonic CorporationBiosensor, measuring instrument for biosensor, and method of quantifying substrate
US78605447 Mar 200728 Dec 2010Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US786139730 Oct 20074 Jan 2011Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US786985311 Jan 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US78792131 Feb 2011Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US788569828 Feb 20068 Feb 2011Abbott Diabetes Care Inc.Method and system for providing continuous calibration of implantable analyte sensors
US78856998 Feb 2011Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US79015548 Mar 2011Abbott Diabetes Care Inc.Biosensor
US790599815 Mar 2011Abbott Diabetes Care Inc.Biosensor
US790600915 Mar 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US790998422 Mar 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US79189885 Apr 2011Abbott Diabetes Care Inc.Biosensor
US79209077 Jun 20075 Apr 2011Abbott Diabetes Care Inc.Analyte monitoring system and method
US792885019 Apr 2011Abbott Diabetes Care Inc.Analyte monitoring system and methods
US797677812 Jul 2011Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US79888452 Aug 2011Abbott Diabetes Care Inc.Integrated lancing and measurement device and analyte measuring methods
US79960549 Aug 2011Abbott Diabetes Care Inc.Electrochemical analyte sensor
US799832525 Mar 200416 Aug 2011Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US799833616 Aug 2011Abbott Diabetes Care Inc.Biosensor
US799833730 Sep 200816 Aug 2011Abbott LaboratoriesBiosensor electrode mediators for regeneration of cofactors
US799862416 Aug 2011Abbott Diabetes Care Inc.Biological fuel cell and methods
US799862511 Nov 201016 Aug 2011Abbott Diabetes Care Inc.Biological fuel cell and methods
US8012321 *27 Feb 20076 Sep 2011Sumitomo Electric Industries, Ltd.Biosensor chip, biosensor system and measuring instrument thereof
US80123414 Sep 20076 Sep 2011Abbott LaboratoriesBiosensor electrode mediators for regeneration of cofactors
US80257805 Feb 200927 Sep 2011Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US80294424 Oct 2011Abbott Diabetes Care Inc.Sensor inserter assembly
US80666394 Jun 200429 Nov 2011Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US806685831 Oct 200729 Nov 2011Abbott Diabetes Care Inc.Analyte sensor with insertion monitor, and methods
US807576016 Sep 200913 Dec 2011Lifescan, Inc.Electrochemical cell
US808392427 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US808392827 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US808392927 Dec 2011Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US80871623 Jan 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US809122010 Jan 2012Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US809714731 Jan 201117 Jan 2012Panasonic CorporationMethod of measuring quantity of substrate
US810105624 Jan 2012Lifescan, Inc.Electrochemical cell
US810106324 Jan 2012Panasonic CorporationMethod of measuring quantity of substrate
US810345624 Jan 2012Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US810547630 Jul 200731 Jan 2012Abbott Diabetes Care Inc.Integrated lancing and measurement device
US811224029 Apr 20057 Feb 2012Abbott Diabetes Care Inc.Method and apparatus for providing leak detection in data monitoring and management systems
US81142707 Feb 200814 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811427129 Sep 200914 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811684030 Oct 200714 Feb 2012Abbott Diabetes Care Inc.Method of calibrating of an analyte-measurement device, and associated methods, devices and systems
US811773430 Oct 200721 Feb 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US811899229 Sep 200921 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US811899329 Sep 200921 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US81236861 Mar 200728 Feb 2012Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US812392929 Sep 200928 Feb 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US813622030 Oct 200720 Mar 2012Abbott Diabetes Care Inc.Method of making an electrochemical sensor
US814262927 Mar 2012Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US814264227 Mar 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US814264327 Mar 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US814911729 Aug 20093 Apr 2012Abbott Diabetes Care Inc.Analyte monitoring system and methods
US815306329 Sep 200910 Apr 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US8160672 *31 Dec 200317 Apr 2012Korea Institute Of Science And TechnologyMethod and system for data communication in human body and sensor therefor
US816282930 Mar 200924 Apr 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US816316424 Apr 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US816565124 Apr 2012Abbott Diabetes Care Inc.Analyte sensor, and associated system and method employing a catalytic agent
US81680511 May 2012Abbott Diabetes Care Inc.Sensor for determination of glucose
US81756739 Nov 20098 May 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US817771621 Dec 200915 May 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US818267022 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US818267122 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US818604413 Apr 200729 May 2012Abbott Diabetes Care Inc.Method of manufacturing small volume in vitro analyte sensors
US818718311 Oct 201029 May 2012Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US818789529 May 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US81926115 Jun 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US820656326 Jun 2012Abbott Diabetes Care Inc.Device for the determination of glycated hemoglobin
US821136329 Sep 20093 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US821917429 Jun 200910 Jul 2012Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US821917529 Jun 200910 Jul 2012Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8221612 *30 Sep 200817 Jul 2012Abbott Diabetes Care Inc.Biosensor electrode mediators for regeneration of cofactors
US822168529 Sep 200917 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US822441310 Oct 200817 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655518 Mar 200924 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655724 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822655827 Sep 201024 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US822681529 Sep 200924 Jul 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US822689124 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US823153230 Apr 200731 Jul 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US823589621 Dec 20097 Aug 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US823624212 Feb 20107 Aug 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US824148530 Sep 200814 Aug 2012Abbott LaboratoriesBiosensor electrode mediators for regeneration of cofactors
US824179714 Aug 2012Abbott Diabetes Care Inc.Biological fuel cell and methods
US825503117 Mar 200928 Aug 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US82603924 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US826299629 Sep 200911 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro sensor and methods of making
US826572611 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US826814429 Sep 200918 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US826816318 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US826824328 Dec 200918 Sep 2012Abbott Diabetes Care Inc.Blood glucose tracking apparatus and methods
US827212529 Sep 200925 Sep 2012Abbott Diabetes Care Inc.Method of manufacturing in vitro analyte sensors
US827302225 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US827322725 Sep 2012Abbott Diabetes Care Inc.Sensor for in vitro determination of glucose
US827324125 Sep 2012Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US82754399 Nov 200925 Sep 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US828745416 Oct 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US829840022 Jun 201030 Oct 2012Panasonic CorporationMethod of measuring quantity of substrate
US83065989 Nov 20096 Nov 2012Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US833371410 Sep 200618 Dec 2012Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US834633618 Mar 20091 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US834633730 Jun 20091 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US83491577 Jun 20128 Jan 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US835382921 Dec 200915 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US835709122 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US836290429 Jan 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US836661430 Mar 20095 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US837200521 Dec 200912 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US837226129 Sep 200912 Feb 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US837737829 Sep 200919 Feb 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US838027319 Feb 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US839194517 Mar 20095 Mar 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US84091317 Mar 20072 Apr 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US8409424 *18 Dec 20092 Apr 2013Apex Biotechnology Corp.Electrochemical test strip, electrochemical test system, and measurement method using the same
US84147499 Apr 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US841475029 Sep 20109 Apr 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US84147616 Sep 20119 Apr 2013Abbott Diabetes Care Inc.Biosensor
US842574312 Mar 201023 Apr 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US842575823 Apr 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US84356827 May 2013Abbott Diabetes Care Inc.Biological fuel cell and methods
US844975828 May 2013Abbott Diabetes Care Inc.Small volume in vitro analyte sensor and methods of making
US84563018 May 20084 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US846052511 Jun 2013Abbott Diabetes Care Inc.Device for the determination of glycated hemoglobin
US84619858 May 200811 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US84633516 Aug 201011 Jun 2013Abbott Diabetes Care Inc.Electrochemical analyte sensor
US846542518 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US846597722 Jul 200818 Jun 2013Roche Diagnostics Operations, Inc.Method and apparatus for lighted test strip
US847016220 Jan 201125 Jun 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US847302131 Jul 200925 Jun 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US847322023 Jan 201225 Jun 2013Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US847564615 Jul 20112 Jul 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US848058019 Apr 20079 Jul 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US848086620 Jan 20119 Jul 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US848086715 Jul 20119 Jul 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US848087811 Jan 20119 Jul 2013Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US848624322 Aug 200816 Jul 2013Lifescan, Inc.Electrochemical cell
US85064827 Feb 201113 Aug 2013Abbott Diabetes Care Inc.Method and system for providing continuous calibration of implantable analyte sensors
US851223920 Apr 200920 Aug 2013Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US851224330 Sep 200520 Aug 2013Abbott Diabetes Care Inc.Integrated introducer and transmitter assembly and methods of use
US85327318 May 200910 Sep 2013Abbott Diabetes Care Inc.Methods of determining analyte concentration
US854540328 Dec 20061 Oct 2013Abbott Diabetes Care Inc.Medical device insertion
US855710312 Jul 201115 Oct 2013Abbott Diabetes Care Inc.Biosensor
US857162429 Dec 200429 Oct 2013Abbott Diabetes Care Inc.Method and apparatus for mounting a data transmission device in a communication system
US858559110 Jul 201019 Nov 2013Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US85888812 Mar 200719 Nov 2013Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US85931093 Nov 200926 Nov 2013Abbott Diabetes Care Inc.Method and system for powering an electronic device
US859328720 Jul 201226 Nov 2013Abbott Diabetes Care Inc.Analyte monitoring system and methods
US85971893 Mar 20093 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US859748024 Jan 20123 Dec 2013Lifescan, Inc.Electrochemical cell
US859757523 Jul 20123 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US86029917 Jun 201010 Dec 2013Abbott Diabetes Care Inc.Analyte sensor introducer and methods of use
US861215916 Feb 200417 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US861370329 May 200824 Dec 2013Abbott Diabetes Care Inc.Insertion devices and methods
US861707121 Jun 200731 Dec 2013Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US862290325 May 20127 Jan 2014Abbott Diabetes Care Inc.Continuous glucose monitoring system and methods of use
US862290621 Dec 20097 Jan 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US864161921 Dec 20094 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US864726920 Apr 200911 Feb 2014Abbott Diabetes Care Inc.Glucose measuring device for use in personal area network
US86498413 Apr 200711 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US865075129 Sep 200918 Feb 2014Abbott Diabetes Care Inc.Methods of making small volume in vitro analyte sensors
US865204320 Jul 201218 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US866062717 Mar 200925 Feb 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US866509130 Jun 20094 Mar 2014Abbott Diabetes Care Inc.Method and device for determining elapsed sensor life
US866646916 Nov 20074 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US86686453 Jan 200311 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US866882010 Jun 201011 Mar 2014Panasonic CorporationMethod of measuring quantity of substrate
US867081530 Apr 200711 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US867284427 Feb 200418 Mar 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US867651321 Jun 201318 Mar 2014Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US867968812 Apr 201325 Mar 2014Abbott Diabetes Care In.Biological fuel cell and methods
US868493029 Jun 20091 Apr 2014Abbott Diabetes Care Inc.Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US868818830 Jun 20091 Apr 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US870128229 Sep 200922 Apr 2014Abbott Diabetes Care Inc.Method for manufacturing a biosensor
US870618010 Jun 201322 Apr 2014Abbott Diabetes Care Inc.Electrochemical analyte sensor
US872829713 Apr 200620 May 2014Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US873218815 Feb 200820 May 2014Abbott Diabetes Care Inc.Method and system for providing contextual based medication dosage determination
US873434630 Apr 200727 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US873434817 Mar 200927 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US87381093 Mar 200927 May 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US874112427 Feb 20133 Jun 2014Panasonic CorporationBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US87415903 Apr 20073 Jun 2014Abbott Diabetes Care Inc.Subcutaneous glucose electrode
US87445453 Mar 20093 Jun 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US875905525 Jan 200824 Jun 2014Abbott Diabetes Care Inc.Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US87618572 Apr 201224 Jun 2014Abbott Diabetes Care Inc.Analyte sensor, and associated system and method employing a catalytic agent
US876465730 Mar 20121 Jul 2014Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US876505927 Oct 20101 Jul 2014Abbott Diabetes Care Inc.Blood glucose tracking apparatus
US876548212 Mar 20131 Jul 2014Roche Diagnostics Operations, Inc.Method and apparatus for lighted test strip
US877118316 Feb 20058 Jul 2014Abbott Diabetes Care Inc.Method and system for providing data communication in continuous glucose monitoring and management system
US877148717 Mar 20068 Jul 2014Panasonic CorporationBiosensor, measuring instrument for biosensor, and method of quantifying substrate
US877488724 Mar 20078 Jul 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US879517630 Jul 20075 Aug 2014Abbott Diabetes Care Inc.Integrated sample acquisition and analyte measurement device
US880190719 Jun 201312 Aug 2014Lifescan, Inc.Electrochemical cell
US880853113 Jan 200519 Aug 2014Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US884055326 Feb 200923 Sep 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US885210130 Sep 20097 Oct 2014Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US886219817 Dec 201214 Oct 2014Abbott Diabetes Care Inc.Method and system for providing an integrated analyte sensor insertion device and data processing unit
US888013718 Apr 20034 Nov 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US888930518 Mar 201418 Nov 2014Abbott Diabetes Care Inc.Biological fuel cell and methods
US891585028 Mar 201423 Dec 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US892031928 Dec 201230 Dec 2014Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US89302033 Feb 20106 Jan 2015Abbott Diabetes Care Inc.Multi-function analyte test device and methods therefor
US893366425 Nov 201313 Jan 2015Abbott Diabetes Care Inc.Method and system for powering an electronic device
US89743861 Nov 200510 Mar 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US89800747 May 201317 Mar 2015Panasonic Healthcare Holdings Co., Ltd.Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
US899333131 Aug 201031 Mar 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods for managing power and noise
US900092922 Nov 20137 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US901133129 Dec 200421 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US901133230 Oct 200721 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90147737 Mar 200721 Apr 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90172595 Aug 201428 Apr 2015Abbott Diabetes Care Inc.Integrated sample acquisition and analyte measurement device
US903576730 May 201319 May 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US90399752 Dec 201326 May 2015Abbott Diabetes Care Inc.Analyte monitoring devices and methods therefor
US90429532 Mar 200726 May 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90666943 Apr 200730 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906669512 Apr 200730 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906669727 Oct 201130 Jun 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US906670917 Mar 201430 Jun 2015Abbott Diabetes Care Inc.Method and device for early signal attenuation detection using blood glucose measurements
US907093417 Nov 201430 Jun 2015Abbott Diabetes Care Inc.Biological fuel cell and methods
US907247721 Jun 20077 Jul 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US90750042 Dec 20137 Jul 2015Lifescan, Inc.Electrochemical cell
US907860717 Jun 201314 Jul 2015Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US909529027 Feb 20124 Aug 2015Abbott Diabetes Care Inc.Method and apparatus for providing rolling data in communication systems
US917745610 Jun 20133 Nov 2015Abbott Diabetes Care Inc.Analyte monitoring system and methods
US918609824 Mar 201117 Nov 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US921599224 Mar 201122 Dec 2015Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US922670128 Apr 20105 Jan 2016Abbott Diabetes Care Inc.Error detection in critical repeating data in a wireless sensor system
US923486319 May 201412 Jan 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US923486419 Aug 201412 Jan 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US925917523 Oct 200616 Feb 2016Abbott Diabetes Care, Inc.Flexible patch for fluid delivery and monitoring body analytes
US926545324 Mar 201123 Feb 2016Abbott Diabetes Care Inc.Medical device inserters and processes of inserting and using medical devices
US927166927 Apr 20151 Mar 2016Abbott Diabetes Care Inc.Method for integrated sample acquisition and analyte measurement device
US929159219 May 201422 Mar 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US931419531 Aug 201019 Apr 2016Abbott Diabetes Care Inc.Analyte signal processing device and methods
US93141983 Apr 201519 Apr 2016Abbott Diabetes Care Inc.Analyte monitoring system and methods
US931660919 May 201419 Apr 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US932046129 Sep 201026 Apr 2016Abbott Diabetes Care Inc.Method and apparatus for providing notification function in analyte monitoring systems
US932389815 Nov 201326 Apr 2016Abbott Diabetes Care Inc.Method and system for providing basal profile modification in analyte monitoring and management systems
US932671429 Jun 20103 May 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US93267165 Dec 20143 May 2016Abbott Diabetes Care Inc.Analyte monitoring device and methods of use
US933293329 Sep 201410 May 2016Abbott Diabetes Care Inc.Method and apparatus for providing analyte sensor insertion
US934159119 May 201417 May 2016Abbott Diabetes Care Inc.Small volume in vitro analyte sensor
US935166930 Sep 201031 May 2016Abbott Diabetes Care Inc.Interconnect for on-body analyte monitoring device
US93809715 Dec 20145 Jul 2016Abbott Diabetes Care Inc.Method and system for powering an electronic device
US20020175087 *15 Jul 200228 Nov 2002Alastair HodgesElectrochemical method for measuring chemical reaction rates
US20030046811 *10 Sep 200113 Mar 2003Eumed Biotechnology Co., Ltd.New spacer forming method used for a biosensor
US20030102213 *25 Nov 20025 Jun 2003Therasense, Inc.Biosensor
US20030168338 *19 Sep 200211 Sep 2003Therasense, Inc.Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US20030199745 *14 May 200323 Oct 2003Cygnus, Inc.Methods and devices for removing interfering species
US20040055898 *28 Jul 200325 Mar 2004Adam HellerIntegrated lancing and measurement device and analyte measuring methods
US20040062759 *17 Sep 20031 Apr 2004Cygnus, Inc.Hydrogel formulations for use in electroosmotic extraction and detection of glucose
US20040065562 *1 Oct 20028 Apr 2004Alastair HodgesElectrochemical cell
US20040087671 *18 Aug 20036 May 2004Tamada Janet A.Compositions and methods for enhancement of transdermal analyte flux
US20040178066 *25 Mar 200416 Sep 2004Shoji MiyazakiBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US20040206636 *12 May 200421 Oct 2004Hodges Alastair McindoeElectrochemical cell
US20050077176 *22 Jul 200314 Apr 2005Lifescan, Inc.Electrochemical cell
US20050170448 *17 Feb 20054 Aug 2005Cygnus, Inc.Methods of manufacturing glucose measuring assemblies with hydrogels
US20050173245 *6 Apr 200411 Aug 2005Benjamin FeldmanMembrane suitable for use in an analyte sensor, analyte sensor, and associated method
US20050215871 *7 Dec 200429 Sep 2005Feldman Benjamin JAnalyte sensor, and associated system and method employing a catalytic agent
US20050258052 *6 May 200524 Nov 2005Therasense, Inc.Biosensor
US20060105420 *11 Jan 200618 May 2006Tamada Janet ACompositions and methods for enhancement of transdermal analyte flux
US20060175207 *16 Mar 200610 Aug 2006Shoji MiyazakiBiosensor, measuring instrument for biosensor, and method of quantifying substrate
US20060205029 *6 Dec 200514 Sep 2006Adam HellerDevice for the determination of glycated hemoglobin
US20060243288 *31 Dec 20032 Nov 2006Tae-Song KimMethod and system for data communication in human body and sensor therefor
US20060254932 *17 Jul 200616 Nov 2006Lifescan, Inc.Electrochemical cell
US20070191701 *11 Apr 200716 Aug 2007Abbott Diabetes Care, Inc.Analyte Sensor, and Associated System and Method Employing a Catalytic Agent
US20070289881 *4 Sep 200720 Dec 2007Abbott LaboratoriesBiosensor electrode mediators for regeneration of cofactors
US20080017522 *30 Jul 200724 Jan 2008Therasense, Inc.Integrated Lancing and Measurement Device
US20080110754 *3 May 200715 May 2008Shoji MiyazakiBiosensor, measuring instrument for biosensor, and method of quantifying substrate
US20080257728 *31 Jan 200823 Oct 2008Therasense, Inc.Biosensor
US20090090624 *30 Sep 20089 Apr 2009Forrow Nigel JBiosensor electrode mediators for regeneration of cofactors
US20090090625 *30 Sep 20089 Apr 2009Forrow Nigel JBiosensor electrode mediators for regeneration of cofactors
US20090152111 *5 Feb 200918 Jun 2009Shoji MiyazakiBiosensor, thin film electrode forming method, quantification apparatus, and quantificaion method
US20090166223 *30 Sep 20082 Jul 2009Forrow Nigel JBiosensor electrode mediators for regeneration of cofactors
US20090255810 *27 Feb 200715 Oct 2009Sumitomo Electric Industries, Ltd.Biosensor chip, biosensor system and measuring instrument thereof
US20100021342 *28 Jan 2010Abner David JosephMethod and apparatus for lighted test strip
US20100078324 *1 Apr 2010Lifescan, Inc.Electrochemical cell
US20100084288 *16 Sep 20098 Apr 2010Lifescan, Inc.Electrochemical Cell
US20100089775 *18 Dec 200915 Apr 2010Apex Biotechnology Corp.Electrochemical test strip, electrochemical test system, and measurement method using the same
US20100192369 *5 Aug 2010Lifescan, Inc.Electrochemical Cell
US20100320097 *22 Jun 201023 Dec 2010Shoji MiyazakiMethod of measuring quantity of substrate
US20110053005 *3 Mar 2011Abbott Diabetes Care Inc.Biological Fuel Cell and Methods
US20110117269 *20 Jan 201119 May 2011Shoji MiyazakiBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US20110117451 *11 Nov 201019 May 2011Abbott Diabetes Care Inc.Biological Fuel Cell and Methods
US20110117452 *19 May 2011Abbott Diabetes Care Inc.Biological Fuel Cell and Methods
US20110132776 *28 Jan 20119 Jun 2011Shoji MiyazakiMethod of measuring quantity of substrate
US20110132777 *9 Jun 2011Shoji MiyazakiMethod of measuring quantity of substrate
US20110147234 *20 Jan 201123 Jun 2011Shoji MiyazakiBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US20110174613 *11 Jan 201121 Jul 2011Shoji MiyazakiBiosensor, thin film electrode forming method, quantification apparatus, and quantification method
US20110286722 *24 Nov 2011Tae-Song KimMethod and system for data communication using a body
USRE4256726 Jul 2011Lifescan, Inc.Electrochemical cell
USRE443304 May 20112 Jul 2013Lifescan Inc.Electrochemical cell
USRE4537012 Mar 201310 Feb 2015Abbott Diabetes Care Inc.Biological fuel cell and methods
Classifications
U.S. Classification204/403.12, 435/817, 435/14, 204/403.14
International ClassificationC12Q1/00
Cooperative ClassificationC12Q1/006, C12Q1/004, Y10S435/817
European ClassificationC12Q1/00B6B, C12Q1/00B4
Legal Events
DateCodeEventDescription
22 Feb 1996ASAssignment
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIOKA, T.;IKEDA, S.;NANKAI, S.;REEL/FRAME:007875/0355
Effective date: 19960213
11 Jan 2001FPAYFee payment
Year of fee payment: 4
4 Jan 2005FPAYFee payment
Year of fee payment: 8
31 Dec 2008FPAYFee payment
Year of fee payment: 12
25 Feb 2014ASAssignment
Owner name: PANASONIC CORPORATION, JAPAN
Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:032332/0082
Effective date: 20081001
27 Feb 2014ASAssignment
Owner name: PANASONIC HEALTHCARE CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032360/0795
Effective date: 20131127
19 Mar 2014ASAssignment
Owner name: PANASONIC CORPORATION, JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC HEALTHCARE CO., LTD.;REEL/FRAME:032480/0433
Effective date: 20140301
29 Apr 2014ASAssignment
Owner name: PANASONIC HEALTHCARE HOLDINGS CO., LTD., JAPAN
Free format text: CHANGE OF NAME;ASSIGNOR:PHC HOLDINGS CO., LTD.;REEL/FRAME:032785/0563
Effective date: 20140331
Owner name: PHC HOLDINGS CO., LTD., JAPAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032785/0498
Effective date: 20140331