US5175668A - Circuit board for a component requiring heat sinkage - Google Patents

Circuit board for a component requiring heat sinkage Download PDF

Info

Publication number
US5175668A
US5175668A US07/621,135 US62113590A US5175668A US 5175668 A US5175668 A US 5175668A US 62113590 A US62113590 A US 62113590A US 5175668 A US5175668 A US 5175668A
Authority
US
United States
Prior art keywords
heat sink
circuit board
component
base portion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/621,135
Inventor
Michael L. Kendel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US07/621,135 priority Critical patent/US5175668A/en
Assigned to MOTOROLA, INC. reassignment MOTOROLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KENDEL, MICHAEL L.
Application granted granted Critical
Publication of US5175668A publication Critical patent/US5175668A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09045Locally raised area or protrusion of insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10204Dummy component, dummy PCB or template, e.g. for monitoring, controlling of processes, comparing, scanning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10439Position of a single component
    • H05K2201/10454Vertically mounted
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/301Assembling printed circuits with electric components, e.g. with resistor by means of a mounting structure

Definitions

  • This invention relates to circuit boards for components requiring heat sinkage.
  • heat sinkage is typically provided in the form of an additional thermally conducting element which is fixed to the component.
  • additional thermally conducting element which is fixed to the component.
  • circuit board for receiving a component requiring heat sinkage, the circuit board comprising:
  • a heat sink form portion extending from the base portion and having a heat sink form
  • the heat sink having at least one aperture therein between a first surface for contacting the component and a second surface remote from the first surface to allow heat to be conducted directly from the first surface to the second surface.
  • FIG. 1 shows a part cross-sectional, side elevational view of a first circuit board and an attached component
  • FIG. 2 shows a part cross-sectional, side elevational view of the circuit board of FIG. 1 from a side remote from the component;
  • FIG. 3 shows a plan view from above of the circuit board of FIGS. 1 and 2;
  • FIG. 4 shows a part cross-sectional, side elevational view of a second circuit board and an attached component from one side
  • FIG. 5 shows a side elevational view of a separate heat sink form portion used in the circuit board of FIG. 4.
  • a printed circuit board 2 has a planar base portion 4 and an upstanding integral heat sink from portion 6.
  • the base portion 4 and the integral heat sink from portion 6 are formed as a single composite component, e.g. molded in one piece from conventional thermally-insulating, thermo-plastic material.
  • the heat sink from portion 6 is shaped to form a heat sink having an upstanding flat wall 8, which extends from the base portion and has front and back surfaces 10 and 12, respectively.
  • the heat sink form portion also has three upstanding fins 14, 16 and 18 which extend in parallel from the back surface 12 of the wall 8 and which define surfaces 20, 22, 24, 26, 28 and 30. Like the wall 8, the fins 14, 16 and 18 extend from the base portion 4.
  • the wall 8 is provided with two "V"-shaped slots 32 and 34 which extend into the wall from the top side of the wall.
  • the slots 32 and 34 also extend between the front and back surfaces 10 and 12 of the wall and provide apertures therebetween.
  • the wall 8 is also provided with, on its front surface 10 at its junction with the base portion 4, a shoulder 36 for seating a power transistor 38 in a conventional TO220 package with a metal backing tab 40.
  • the shoulder 36 has three holes 42 spaced to receive the three leads of a TO220 package.
  • the holes 42 extend through the shoulder 36 to the base portion 4 where they align with holes (not shown) through the base portion for electrically connecting the leads of the power transistor 38, as will be described below.
  • the holes 42 through the shoulder 36 are wider at their tops and taper towards their bottoms in order to facilitate insertion of the leads 44.
  • the wall 8 is also provided on its front surface 10 with two short arms 46 and 48 which extend from the top of the wall in an opposite direction from the fins 14, 16 and 18.
  • the arms 46 and 48 are spaced apart by nominally the width of the TO220-packaged transistor 38 and have at their outer ends mutually facing teeth 50 and 52 having inclined front surfaces 54 and 56, respectively.
  • the heat sink form portion constituted by the wall 8, the fins 14, 16 and 18, the shoulder 36 and the arms 46 and 48 is formed integrally with, and of the same thermo-plastic material as, the base portion 4.
  • the board 2 may typically be fabricated as a one-piece molding. The lower side of the board 2 is then plated, in conventional manner, with a copper foil (not shown) which is then etched in a predetermined pattern (also not shown) to provide a desired interconnection between the transistor 38 and other components (not shown).
  • the heat sink form portion is also plated, in the same way, with copper foil 58.
  • the copper foil plating 58 extends downwards from the top of the heat sink form portion only to the top of the shoulder 36, entirely covering the slots 32 and 34 and the arms 46 and 48, and partly covering the wall 8 and the fins 14, 16 and 18.
  • the shoulder 36 and a region of the wall 8 and of the fins 14, 16 and 18 adjacent the base portion 4 are left uncovered.
  • the ends of the leads 44 of the TO220-packaged power transistor 38 are inserted into the holes in the shoulder 36, and the transistor 38 is then pushed down towards the base portion 4 and back towards the front surface 10 of the wall 8.
  • the transistor As the transistor is pushed down towards the base portion 4, its leads 44 are guided into and through the holes 42 and finally into and through the holes (not shown) in the base portion 4. Finally, the transistor comes to rest with the bottom of its encapsulation seated on the top of the shoulder 36.
  • the transistor As the transistor is pushed back towards the front surface 10 of the wall 8, it pushes against the inclined front surfaces 54 and 56 of the teeth 50 and 52 on the arms 46 and 48. As the transistor 38 pushes against the inclined surfaces of the teeth, the arms are forced apart, against the reaction of their own resilience, until the tips of the teeth are far enough apart for the transistor 38 to move between them. The transistor 38 then moves between the arms 48 and 50 and its metal backing tab 40 moves past the teeth 50 and 52 and contacts the front surface 10 of the wall 8. As soon as the metal backing tab 40 of the transistor 38 has passed the teeth 50 and 52, the resilience of the arms 46 and 48 causes the arms to snap back toward their rest positions, in which the teeth serve to hold the transistor in place with its metal backing tab 40 in contact with the front surface 10 of the wall 8.
  • any remaining components are inserted into the board 2 and the leads of the transistor 38 (and the other components, if any) are soldered to the plated interconnection pattern (not shown) on the underside of the board 2. It will be appreciated that during the soldering or any subsequent processing, the transistor 38 remains firmly held in position.
  • the plated heat sink from portion functions as follows.
  • the power transistor 38 contacts the plated copper foil layer 58 on the front surface 10 of the wall 8, and heat generated by the transistor 38 is conducted through the plated copper foil layer 58 to the fins 14, 16 and 18, where it is transferred to the surrounding air in conventional manner. It will be understood that heat from the copper layer 58 on the front surface 10 of the wall 8 is conducted directly to the back surface 12 of the wall through the slots 32 and 34 and from there is conducted rapidly to the inner surfaces 22, 24, 26 and 28.
  • the slots 32 and 34 act as "feedthrough" apertures, enabling heat to be conducted rapidly from the front surface 10 of the wall 8 to the heat dissipating inner surface 22, 24, 26, and 28 of the fins 14, 16 and 18; this obviates the need for the heat to be conducted to the inner surfaces only after passing across the outer surfaces 20 and 30 of the fins, which would be the case if the slots 32 and 34 were not present.
  • slots 32 and 34 allow each of the heat conduction paths through the copper layer 58 from the front surface 10 of the wall 8 to the dissipative surfaces 20, 22, 24, 26, 28 and 30 to be of approximately the same length, so enabling each of the fins 14, 16 and 18 to be equally and fully effective in dissipating heat from the transistor 38.
  • circuit board 2 also offers the following additional advantages:
  • the copper layer 58 on the heat sink does not extend to the base portion 4, this allows the manufacturer to "mask” the heat sink form portion (in order to prevent the copper from being removed during etching operations) by a simple dipping operation. This feature also allows selective plating of the heat sink from portion, allowing the copper of the heat sink to be thicker than that of the rest of the circuit board and so reducing the thermal resistance of the copper layer 58 on the heat sink.
  • the copper layer 58 of the heat sink does not extend to the base portion 4 also allows it to be electrically isolated from the rest of the circuitry, if desired. Alternatively, it could be connected to a desired part of the rest of the circuitry for electromagnetic interference protection, radio frequency interference protection, static discharge protection, safety or other reasons.
  • the incorporation of the shoulder 36 which acts as a "seating block" for the transistor 38 and whose tapered holes 42 aid in the transistor's insertion, obviates the need for lead "pre-forming” and automatically establishes the transistor's height above the base portion 4 of the board.
  • the arms 46 and 48 and their teeth 50 and 52 serve primarily to lock the transistor 38 in place so as to hold it in contact with the front surface 10 of the wall 8, they also serve to prevent the transistor from moving during subsequent manufacturing operations which may occur before soldering, and also serve to eliminate vibrational mechanical problems which many such devices experience in operation due to their large size.
  • the invention is not limited to the particular circuit board 2 and heat sink form portion 6 described above, for example: the number, shape and/or size of the fins 14, 16 and 18 may be varied if required, or fins may be dispensed with completely; the number, size and/or shape of the slots 32 and 34 may be varied if desired or may be replaced by holes or other apertures; the shape and/or size of the heat sink form portion may be changed to accommodate a component other than a TO220-packaged transistor; the board may be made from a material other than a thermo-plastic material, e.g. a thermo-setting material; or the thermally conducting copper layer 58 may be replaced or augmented by other thermally conducting material(s).
  • a circuit board assembly 62 has a base portion 64 and a heat sink form portion 66 molded of the same thermo-plastic material as the board 2.
  • the base portion 64 and the heat sink form portion 66 are molded as separate components and are fixed together in the following way to form the single, composite board assembly 62.
  • the heat sink form portion 66 is formed with "snap feature" legs 68 extending down from its base, and the base portion 64 is formed with mating holes 70 into which the legs 68 are snapped to locate and to fix the heat sink form portion to the base portion to create a single, composite board assembly 62.
  • the legs 68 are formed with a longitudinal slot 72 to define sub-legs 68a and 68b, each having a foot 74a, 74b at its lower end.
  • the feet 74a and 74b each have an inclined bottom surface 76a, 76b respectively.
  • the heat sink form portion 66 is positioned with the inclined surfaces 76a, 76b of its feet 74a, 74b resting on the edge of the mating holes 70.
  • the heat sink form portion 66 is then pushed down, forcing the feet 74a, 74b of each of its legs resiliently together, and allowing the legs 68 to move down through the holes 70.
  • the feet 74a, 74b reach the bottoms of the holes 70, they resiliently snap outwards and lock the heat sink form portion 66 with the base portion 64 to form the single, composite board assembly 62. If the feet 74a and 74b are copper-plated, they will become joined to the board permanently by the subsequent soldering operation on the board.
  • heat sink form portion 66 and the base portion 62 are identical with the heat sink form portion 4 and the base portion 2 of the circuit board 2, and function in exactly the same manner as described above.

Abstract

A circuit board (2) for receiving a component (38) requiring heat sinkage. The circuit board has a base portion (4) and a heat sink form portion (6) integral with the base portion. The heat sink form portion has a heat sink form and a coating (58) of thermally conductive material thereon to produce a heat sink. The heat sink has an aperture (32, 34) between a front surface (10) for contacting the component and a back surface (12) remote from the component to allow heat to be conducted directly from the front surface to the back surface. An integral resilient clamp (46-52) holds the component in contact with the heat sink. The integral nature of the base portion, the heat sink and the clamp provides a simple one piece board and the aperture enhances the heat sink efficiency by providing a direct heat conduction path to the back surface.

Description

FIELD OF THE INVENTION
This invention relates to circuit boards for components requiring heat sinkage.
BACKGROUND OF THE INVENTION
In circuit boards for components requiring heat sinkage, e.g. power transistors, heat sinkage is typically provided in the form of an additional thermally conducting element which is fixed to the component. However, such a practice increases the complexity and time required for circuit assembly.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved circuit board for a component requiring heat sinkage wherein the above disadvantage may be overcome or at least alleviated.
In accordance with the present invention there is provided a circuit board for receiving a component requiring heat sinkage, the circuit board comprising:
a base portion;
a heat sink form portion extending from the base portion and having a heat sink form; and
a coating of thermally conductive material on the heat sink form portion to produce a heat sink, the heat sink having at least one aperture therein between a first surface for contacting the component and a second surface remote from the first surface to allow heat to be conducted directly from the first surface to the second surface.
BRIEF DESCRIPTION OF THE DRAWINGS
Two circuit boards in accordance with the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
FIG. 1 shows a part cross-sectional, side elevational view of a first circuit board and an attached component;
FIG. 2 shows a part cross-sectional, side elevational view of the circuit board of FIG. 1 from a side remote from the component;
FIG. 3 shows a plan view from above of the circuit board of FIGS. 1 and 2;
FIG. 4 shows a part cross-sectional, side elevational view of a second circuit board and an attached component from one side; and
FIG. 5 shows a side elevational view of a separate heat sink form portion used in the circuit board of FIG. 4.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIGS. 1-3, a printed circuit board 2 has a planar base portion 4 and an upstanding integral heat sink from portion 6. The base portion 4 and the integral heat sink from portion 6 are formed as a single composite component, e.g. molded in one piece from conventional thermally-insulating, thermo-plastic material.
The heat sink from portion 6 is shaped to form a heat sink having an upstanding flat wall 8, which extends from the base portion and has front and back surfaces 10 and 12, respectively. The heat sink form portion also has three upstanding fins 14, 16 and 18 which extend in parallel from the back surface 12 of the wall 8 and which define surfaces 20, 22, 24, 26, 28 and 30. Like the wall 8, the fins 14, 16 and 18 extend from the base portion 4.
The wall 8 is provided with two "V"- shaped slots 32 and 34 which extend into the wall from the top side of the wall. The slots 32 and 34 also extend between the front and back surfaces 10 and 12 of the wall and provide apertures therebetween.
The wall 8 is also provided with, on its front surface 10 at its junction with the base portion 4, a shoulder 36 for seating a power transistor 38 in a conventional TO220 package with a metal backing tab 40. The shoulder 36 has three holes 42 spaced to receive the three leads of a TO220 package. The holes 42 extend through the shoulder 36 to the base portion 4 where they align with holes (not shown) through the base portion for electrically connecting the leads of the power transistor 38, as will be described below. The holes 42 through the shoulder 36 are wider at their tops and taper towards their bottoms in order to facilitate insertion of the leads 44.
The wall 8 is also provided on its front surface 10 with two short arms 46 and 48 which extend from the top of the wall in an opposite direction from the fins 14, 16 and 18. The arms 46 and 48 are spaced apart by nominally the width of the TO220-packaged transistor 38 and have at their outer ends mutually facing teeth 50 and 52 having inclined front surfaces 54 and 56, respectively.
As mentioned above, the heat sink form portion constituted by the wall 8, the fins 14, 16 and 18, the shoulder 36 and the arms 46 and 48 is formed integrally with, and of the same thermo-plastic material as, the base portion 4. As mentioned above, the board 2 may typically be fabricated as a one-piece molding. The lower side of the board 2 is then plated, in conventional manner, with a copper foil (not shown) which is then etched in a predetermined pattern (also not shown) to provide a desired interconnection between the transistor 38 and other components (not shown).
The heat sink form portion is also plated, in the same way, with copper foil 58. The copper foil plating 58 extends downwards from the top of the heat sink form portion only to the top of the shoulder 36, entirely covering the slots 32 and 34 and the arms 46 and 48, and partly covering the wall 8 and the fins 14, 16 and 18. The shoulder 36 and a region of the wall 8 and of the fins 14, 16 and 18 adjacent the base portion 4 are left uncovered.
In use of the circuit board 2, the ends of the leads 44 of the TO220-packaged power transistor 38 are inserted into the holes in the shoulder 36, and the transistor 38 is then pushed down towards the base portion 4 and back towards the front surface 10 of the wall 8.
As the transistor is pushed down towards the base portion 4, its leads 44 are guided into and through the holes 42 and finally into and through the holes (not shown) in the base portion 4. Finally, the transistor comes to rest with the bottom of its encapsulation seated on the top of the shoulder 36.
As the transistor is pushed back towards the front surface 10 of the wall 8, it pushes against the inclined front surfaces 54 and 56 of the teeth 50 and 52 on the arms 46 and 48. As the transistor 38 pushes against the inclined surfaces of the teeth, the arms are forced apart, against the reaction of their own resilience, until the tips of the teeth are far enough apart for the transistor 38 to move between them. The transistor 38 then moves between the arms 48 and 50 and its metal backing tab 40 moves past the teeth 50 and 52 and contacts the front surface 10 of the wall 8. As soon as the metal backing tab 40 of the transistor 38 has passed the teeth 50 and 52, the resilience of the arms 46 and 48 causes the arms to snap back toward their rest positions, in which the teeth serve to hold the transistor in place with its metal backing tab 40 in contact with the front surface 10 of the wall 8.
With the transistor 38 now firmly held in position, any remaining components (not shown) are inserted into the board 2 and the leads of the transistor 38 (and the other components, if any) are soldered to the plated interconnection pattern (not shown) on the underside of the board 2. It will be appreciated that during the soldering or any subsequent processing, the transistor 38 remains firmly held in position.
In use of the circuit board, the plated heat sink from portion functions as follows. The power transistor 38 contacts the plated copper foil layer 58 on the front surface 10 of the wall 8, and heat generated by the transistor 38 is conducted through the plated copper foil layer 58 to the fins 14, 16 and 18, where it is transferred to the surrounding air in conventional manner. It will be understood that heat from the copper layer 58 on the front surface 10 of the wall 8 is conducted directly to the back surface 12 of the wall through the slots 32 and 34 and from there is conducted rapidly to the inner surfaces 22, 24, 26 and 28. In this way it will be appreciated that the slots 32 and 34 act as "feedthrough" apertures, enabling heat to be conducted rapidly from the front surface 10 of the wall 8 to the heat dissipating inner surface 22, 24, 26, and 28 of the fins 14, 16 and 18; this obviates the need for the heat to be conducted to the inner surfaces only after passing across the outer surfaces 20 and 30 of the fins, which would be the case if the slots 32 and 34 were not present. Thus the slots 32 and 34 allow each of the heat conduction paths through the copper layer 58 from the front surface 10 of the wall 8 to the dissipative surfaces 20, 22, 24, 26, 28 and 30 to be of approximately the same length, so enabling each of the fins 14, 16 and 18 to be equally and fully effective in dissipating heat from the transistor 38.
In addition to the advantages described, it will be appreciated that the circuit board 2 also offers the following additional advantages:
Firstly, since the copper layer 58 on the heat sink does not extend to the base portion 4, this allows the manufacturer to "mask" the heat sink form portion (in order to prevent the copper from being removed during etching operations) by a simple dipping operation. This feature also allows selective plating of the heat sink from portion, allowing the copper of the heat sink to be thicker than that of the rest of the circuit board and so reducing the thermal resistance of the copper layer 58 on the heat sink.
The fact that the copper layer 58 of the heat sink does not extend to the base portion 4 also allows it to be electrically isolated from the rest of the circuitry, if desired. Alternatively, it could be connected to a desired part of the rest of the circuitry for electromagnetic interference protection, radio frequency interference protection, static discharge protection, safety or other reasons.
Secondly, the incorporation of the shoulder 36, which acts as a "seating block" for the transistor 38 and whose tapered holes 42 aid in the transistor's insertion, obviates the need for lead "pre-forming" and automatically establishes the transistor's height above the base portion 4 of the board.
Thirdly, although the arms 46 and 48 and their teeth 50 and 52 serve primarily to lock the transistor 38 in place so as to hold it in contact with the front surface 10 of the wall 8, they also serve to prevent the transistor from moving during subsequent manufacturing operations which may occur before soldering, and also serve to eliminate vibrational mechanical problems which many such devices experience in operation due to their large size.
It will, of course, be appreciated that the invention is not limited to the particular circuit board 2 and heat sink form portion 6 described above, for example: the number, shape and/or size of the fins 14, 16 and 18 may be varied if required, or fins may be dispensed with completely; the number, size and/or shape of the slots 32 and 34 may be varied if desired or may be replaced by holes or other apertures; the shape and/or size of the heat sink form portion may be changed to accommodate a component other than a TO220-packaged transistor; the board may be made from a material other than a thermo-plastic material, e.g. a thermo-setting material; or the thermally conducting copper layer 58 may be replaced or augmented by other thermally conducting material(s).
Referring now to FIGS. 4 and 5, in a variation of the circuit board 2 a circuit board assembly 62 has a base portion 64 and a heat sink form portion 66 molded of the same thermo-plastic material as the board 2. However, unlike in the board 2 where the base portion 4 and the heat sink form portion are molded as a single component, the base portion 64 and the heat sink form portion 66 are molded as separate components and are fixed together in the following way to form the single, composite board assembly 62.
The heat sink form portion 66 is formed with "snap feature" legs 68 extending down from its base, and the base portion 64 is formed with mating holes 70 into which the legs 68 are snapped to locate and to fix the heat sink form portion to the base portion to create a single, composite board assembly 62. As can be seen from FIG. 5, the legs 68 are formed with a longitudinal slot 72 to define sub-legs 68a and 68b, each having a foot 74a, 74b at its lower end. The feet 74a and 74b each have an inclined bottom surface 76a, 76b respectively.
To assemble the composite board assembly 62, the heat sink form portion 66 is positioned with the inclined surfaces 76a, 76b of its feet 74a, 74b resting on the edge of the mating holes 70. The heat sink form portion 66 is then pushed down, forcing the feet 74a, 74b of each of its legs resiliently together, and allowing the legs 68 to move down through the holes 70. When the feet 74a, 74b reach the bottoms of the holes 70, they resiliently snap outwards and lock the heat sink form portion 66 with the base portion 64 to form the single, composite board assembly 62. If the feet 74a and 74b are copper-plated, they will become joined to the board permanently by the subsequent soldering operation on the board.
In all other respects the heat sink form portion 66 and the base portion 62 are identical with the heat sink form portion 4 and the base portion 2 of the circuit board 2, and function in exactly the same manner as described above.
It will be appreciated that various other modifications or alternatives to the above described embodiment will be apparent to a person skilled in the art without departing from the inventive concept.

Claims (8)

I claim:
1. A circuit board for receiving a component requiring heat sinkage, the circuit board comprising:
a base portion;
a heat sink form portion extending from the base portion and having a heat sink form; and
a coating of thermally conductive material on the heat sink form portion to produce a heat sink, the heat sink form portion having a shoulder adjacent the base portion for seating the component, and the shoulder having a hole therein through which a lead of the component may pass to the base portion.
2. A circuit board for receiving a component requiring heat sinkage, the circuit board comprising:
a base portion;
a heat sink form portion extending from the base portion and having a heat sink form; and
a coating of thermally conductive material on the heat sink form portion to produce a heat sink, the heat sink having at least one aperture therein between a first surface for contacting the component and a second surface remote from the first surface to allow heat to be conducted directly from the first surface to the second surface, and wherein the heat sink form portion has a shoulder adjacent the base portion for seating the component, and the shoulder has a hole therein through which a lead of the component may pass to the base portion.
3. A circuit board according to claim 1, wherein the hole is tapered to facilitate insertion of the lead.
4. A circuit board according to claim 1 further comprising resilient clamp means for holding the component in contact with the heat sink.
5. A circuit board according to claim 4 wherein the resilient clamp means comprises at least one arm integral with the heat sink form portion and attached at one end thereto, the arm being positioned to receive the component between itself and the heat sink.
6. A circuit board according to claim 5 wherein the arm has a tooth for holding the component.
7. A circuit board according to claim 1 wherein the circuit board and heat sink form portion are molded from thermo-plastic material.
8. A circuit board according to claim 1 wherein the coating is copper.
US07/621,135 1990-12-03 1990-12-03 Circuit board for a component requiring heat sinkage Expired - Fee Related US5175668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/621,135 US5175668A (en) 1990-12-03 1990-12-03 Circuit board for a component requiring heat sinkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/621,135 US5175668A (en) 1990-12-03 1990-12-03 Circuit board for a component requiring heat sinkage

Publications (1)

Publication Number Publication Date
US5175668A true US5175668A (en) 1992-12-29

Family

ID=24488878

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/621,135 Expired - Fee Related US5175668A (en) 1990-12-03 1990-12-03 Circuit board for a component requiring heat sinkage

Country Status (1)

Country Link
US (1) US5175668A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661639A (en) * 1994-10-25 1997-08-26 Rohm Co., Ltd. Structure for attaching a heat sink to a semiconductor device
US6097598A (en) * 1997-02-24 2000-08-01 Matsushita Electric Industrial Co., Ltd. Thermal conductive member and electronic device using same
US6262893B1 (en) * 1999-11-24 2001-07-17 Kechuan Liu Heat sink with integral component clip
US6377219B2 (en) 2000-01-11 2002-04-23 Cool Options, Inc. Composite molded antenna assembly
US6535383B2 (en) * 2001-07-09 2003-03-18 Intel Corporation Clamshell heatsink
US20030056938A1 (en) * 2000-02-01 2003-03-27 Mccullough Kevin A. Heat sink assembly with overmolded carbon matrix
US6560112B1 (en) * 2002-01-17 2003-05-06 Hon Hai Precision Ind. Co., Ltd. Fixing apparatus for heat sink
US20040177947A1 (en) * 2002-03-29 2004-09-16 Krassowski Daniel W. Optimized heat sink using high thermal conducting base and low thermal conducting fins

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305167A1 (en) * 1983-02-15 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart Electrical circuit arrangement having a printed-circuit board
US4729061A (en) * 1985-04-29 1988-03-01 Advanced Micro Devices, Inc. Chip on board package for integrated circuit devices using printed circuit boards and means for conveying the heat to the opposite side of the package from the chip mounting side to permit the heat to dissipate therefrom
US4803590A (en) * 1985-07-30 1989-02-07 Robert Bosch Gmbh Electric switching device
US4922378A (en) * 1986-08-01 1990-05-01 Texas Instruments Incorporated Baseboard for orthogonal chip mount
US4972294A (en) * 1989-04-03 1990-11-20 Motorola, Inc. Heat sink clip assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305167A1 (en) * 1983-02-15 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart Electrical circuit arrangement having a printed-circuit board
US4729061A (en) * 1985-04-29 1988-03-01 Advanced Micro Devices, Inc. Chip on board package for integrated circuit devices using printed circuit boards and means for conveying the heat to the opposite side of the package from the chip mounting side to permit the heat to dissipate therefrom
US4803590A (en) * 1985-07-30 1989-02-07 Robert Bosch Gmbh Electric switching device
US4922378A (en) * 1986-08-01 1990-05-01 Texas Instruments Incorporated Baseboard for orthogonal chip mount
US4972294A (en) * 1989-04-03 1990-11-20 Motorola, Inc. Heat sink clip assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661639A (en) * 1994-10-25 1997-08-26 Rohm Co., Ltd. Structure for attaching a heat sink to a semiconductor device
US6097598A (en) * 1997-02-24 2000-08-01 Matsushita Electric Industrial Co., Ltd. Thermal conductive member and electronic device using same
US6262893B1 (en) * 1999-11-24 2001-07-17 Kechuan Liu Heat sink with integral component clip
US6377219B2 (en) 2000-01-11 2002-04-23 Cool Options, Inc. Composite molded antenna assembly
US20030056938A1 (en) * 2000-02-01 2003-03-27 Mccullough Kevin A. Heat sink assembly with overmolded carbon matrix
US6680015B2 (en) 2000-02-01 2004-01-20 Cool Options, Inc. Method of manufacturing a heat sink assembly with overmolded carbon matrix
US7311140B2 (en) 2000-02-01 2007-12-25 Cool Options, Inc. Heat sink assembly with overmolded carbon matrix
US6535383B2 (en) * 2001-07-09 2003-03-18 Intel Corporation Clamshell heatsink
US6560112B1 (en) * 2002-01-17 2003-05-06 Hon Hai Precision Ind. Co., Ltd. Fixing apparatus for heat sink
US20040177947A1 (en) * 2002-03-29 2004-09-16 Krassowski Daniel W. Optimized heat sink using high thermal conducting base and low thermal conducting fins
US7108055B2 (en) * 2002-03-29 2006-09-19 Advanced Energy Technology Inc. Optimized heat sink using high thermal conducting base and low thermal conducting fins

Similar Documents

Publication Publication Date Title
US5311395A (en) Surface mount heat sink
US4652973A (en) Chip carrier mounting apparatus
EP0001892B1 (en) Lead frame and package for establishing electrical connections to electronic components
US4209798A (en) Module for integrated circuits
US4441140A (en) Printed circuit board holder
JPH0354435B2 (en)
JPH08321367A (en) Low atittude socket type integrated circuit packaging system
US4080026A (en) Multi-level socket for an integrated circuit
US5175668A (en) Circuit board for a component requiring heat sinkage
US4192565A (en) Multi-level socket for an integrated circuit
US4709302A (en) Alignment apparatus for electronic device package
JP2550437B2 (en) Chip carrier socket
US5469329A (en) Printed circuit board with bi-metallic heat spreader
US6163461A (en) Terminal mounting structure for a printed circuit board
US20050194600A1 (en) Light-emitting diode
JP6565569B2 (en) Circuit board and power supply
US5395256A (en) Contact element for SMD printed circuit boards and mounting method
US5291372A (en) Integral heat sink-terminal member structure of hybrid integrated circuit assembly and method of fabricating hybrid integrated circuit assembly using such structure
US5049089A (en) Low cost arch connector
US20040251527A1 (en) Intermediate support for electronic components and method for solder contacting such an intermediate support
US4340164A (en) Mask for an attachable, circuit-terminating, circuit board edge member
JPH11307900A (en) Structure for supporting 3-terminal transistor on printed wiring board
JPH0212890A (en) Switch circuit connecting structure
US20230326901A1 (en) Clip design and method of controlling clip position
JPS62266858A (en) Semiconductor mounting substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOTOROLA, INC., SCHAUMBURG, IL, A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KENDEL, MICHAEL L.;REEL/FRAME:005586/0420

Effective date: 19910115

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19970101

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362