US5061620A - Human hematopoietic stem cell - Google Patents

Human hematopoietic stem cell Download PDF

Info

Publication number
US5061620A
US5061620A US07/502,616 US50261690A US5061620A US 5061620 A US5061620 A US 5061620A US 50261690 A US50261690 A US 50261690A US 5061620 A US5061620 A US 5061620A
Authority
US
United States
Prior art keywords
cells
cell
human
hematopoietic
thy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/502,616
Inventor
Ann Tsukamoto
Charles M. Baum
Yukoh Aihara
Irving Weissman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Systemix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23998619&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5061620(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US07/502,616 priority Critical patent/US5061620A/en
Application filed by Systemix Inc filed Critical Systemix Inc
Assigned to SYSTEMIX, INC. reassignment SYSTEMIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AIHARA, YUKOH
Assigned to SYSTEMIX, INC. reassignment SYSTEMIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BAUM, CHARLES M., TSUKAMOTO, ANN, WEISSMAN, IRVING
Assigned to SYSTEMIX, INC. reassignment SYSTEMIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AIHARA, YUKOH
Priority to DK91104813T priority patent/DK0451611T3/en
Priority to ES91104813T priority patent/ES2210226T3/en
Priority to EP03015239A priority patent/EP1344819A3/en
Priority to AT91104813T priority patent/ATE253112T1/en
Priority to DE69133332T priority patent/DE69133332T2/en
Priority to EP91104813A priority patent/EP0451611B1/en
Priority to CA002039315A priority patent/CA2039315C/en
Priority to AU73986/91A priority patent/AU641488B2/en
Priority to JP3133731A priority patent/JP3017320B2/en
Priority to US07/720,883 priority patent/US5763197A/en
Publication of US5061620A publication Critical patent/US5061620A/en
Application granted granted Critical
Priority to US08/469,452 priority patent/US5716827A/en
Priority to US08/466,062 priority patent/US5914108A/en
Priority to US08/466,659 priority patent/US5643741A/en
Priority to US08/469,453 priority patent/US5750397A/en
Priority to JP27952799A priority patent/JP3160600B2/en
Assigned to NOVARTIS AG reassignment NOVARTIS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYSTEMIX, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1394Bone marrow stromal cells; whole marrow

Definitions

  • the field of this invention is the isolation, regeneration and use of hematopoietic stem cells.
  • Mammalian blood cells provide for an extraordinarily diverse range of activities.
  • the blood cells are divided into several lineages, including lymphoid, myeloid and erythroid.
  • the lymphoid lineage comprising B cells and T cells, provides for the production of antibodies, regulation of the cellular immune system, detection of foreign agents in the blood, detection of cells foreign to the host, and the like.
  • the myeloid lineage which includes monocytes, granulocytes, megakaryocytes as well as other cells, monitors for the presence of foreign bodies in the blood stream, provides protection against neoplastic cells, scavenges foreign materials in the blood stream, produces platelets, and the like.
  • the erythroid lineage provides the red blood cells, which act as oxygen carriers.
  • the stem cell population constitutes only a small percentage of the total number of leukocytes in bone marrow.
  • B cells CD19+
  • myeloid cells CD33+
  • CD34+ myeloid cells
  • markers associated with differentiated cells are also present on the stem cell.
  • One marker which has been indicated as present on stem cells, CD34 is also found on a significant number of lineage committed progenitors.
  • Another marker which provides for some enrichment of progenitor activity is Class II HLA (particularly a conserved DR epitope recognized by a monoclonal antibody designated J1-43).
  • these markers are found on numerous lineage committed hematopoietic cells.
  • B cells CD19+
  • myeloid cells CD33+
  • a combination of CD3, .8, 10, 15, 19, 20, and 33 will mark >90% of all CD34+ cells. Therefore, in view of the small proportion of the total number of cells in the bone marrow which are stem cells, the uncertainty of the markers associated with the stem cell as distinct from more differentiated cells, and the general inability to biologically assay for human stem cells, the identification and purification of stem cells has been elusive.
  • the mouse stem cell has been obtained in at least highly concentrated, if not a purified form, where fewer than about 30 cells obtained from bone marrow were able to reconstitute all of the lineages of the hematopoietic system of a lethally irradiated mouse. Indeed, one injected cell should be able to reconstitute all of the hematopoietic lineages.
  • the Thy-1 molecule is a highly conserved protein present in the brain and hematopoietic system of rat, mouse and man. These species differentially express this antigen and the true function of this molecule is unknown. However, the Thy-1 molecule has been identified on rat and mouse hematopoietic stem cells. This protein is also present on human bone marrow cells and is useful for the selection of hematopoietic stem cells.
  • stem cell There is a strong interest in identifying the human hematopoietic stem cell. Having possession of the stem cell will allow for identification of growth factors associated with its self regeneration. In addition, there may be as yet undiscovered growth factors associated (1) with the early steps of dedication of the stem cell to a particular lineage; (2) the prevention of such dedication; and (3) the negative control of stem cell proliferation.
  • growth factors associated (1) with the early steps of dedication of the stem cell to a particular lineage; (2) the prevention of such dedication; and (3) the negative control of stem cell proliferation.
  • the availability of stem cells would be extremely useful in bone marrow transplantation, as well as transplantation of other organs in association with the transplantation of bone marrow. Stem cells are important targets for gene therapy, where the inserted genes promote the health of the individual into whom the stem cells are transplanted.
  • the ability to isolate the stem cell may serve in the treatment of lymphomas and leukemias, as well as other neoplastic conditions, e.g., breast cancer.
  • lymphomas and leukemias as well as other neoplastic conditions, e.g., breast cancer.
  • breast cancer e.g., breast cancer
  • U.S. Pat. No. 4,714,680 describes a composition comprising human stem cells.
  • EPA 89.304651.6 describes the isolation of mouse stem cells. See also the references cited therein.
  • Analysis for hematopoietic progenitors have been reported by Whitlock and Witte, PNAS USA (1982) 79:3608; and Whitlock et al., Cell (1987) 48:1009.
  • Thy-1 is a surface marker of reconstituting rodent bone marrow stem cells (Berman and Bashe Exp. Hematol. (1985) 13:1952 and Goldschneider et al., J. Exp. Med. (1978) 148:1351).
  • Muller-Sieburg et al., Cell (1986) 44:653 describe Thy- lo Lin- mouse hematopoietic stem cells and the use of limit dilution.
  • Methods resulting in the isolation of substantially homogenous compositions of human hematopoietic stem cells employ a predetermined separation regimen and bioassays for establishing the generation of each of the hematopoietic lineages from the isolated cells.
  • the human stem cells find use: (1) in regenerating the hematopoietic system of a host deficient in stem cells, (2) in a host that is diseased and can be treated by removal of bone marrow, isolation of stem cells and treatment of individuals with drugs or irradiation prior to re-engraftment of stem cells, (3) producing various hematopoietic cells, (4) detecting and evaluating growth factors relevant to stem cell self-regeneration; and, (5) the development of hematopoietic cell lineages and assaying for factors associated with hematopoietic development.
  • substantially homogeneous human stem cell compositions which may serve as the progenitors for all human hematopoietic cell lineages.
  • the stem cells are identified by specific markers which are identified with monoclonal antibodies.
  • the substantially homogenous composition may be obtained by selective isolation of cells free of markers associated with differentiated cells, while displaying epitopic characteristics associated with the stem cells, and by regeneration of the isolated stem cells in defined culture systems leading to different hematopoietic cell lineages.
  • the stem cells are characterized by both the presence of markers associated with specific epitopic sites identified by antibodies and the absence of certain markers as identified by the lack of binding of certain antibodies It is not necessary that selection is achieved with a marker specific for stem cells.
  • a substantially homogeneous stem cell composition can be achieved.
  • a large proportion of differentiated cells may be removed by initially using a "relatively crude” separation.
  • the source of the cells may be the bone marrow, fetal, neonate or adult or other hematopoietic cell source, e.g., fetal liver.
  • magnetic bead separations may be used initially to remove large numbers of lineage committed cells, namely major cell populations of the hematopoietic systems, including such lineages as T cells, B cells, (both pre-B and B cells), myelomonocytic cells, or minor cell populations, such as megakaryocytes, mast cells, eosinophils and basophils.
  • At least about 70%, usually at least 80% of the total hematopoietic cells will be removed. It is not essential to remove every dedicated cell class, particularly the minor population members at the initial stage. Usually, the platelets and erythrocytes will be removed prior to sorting. Since there will be positive selection in the protocol, the dedicated cells lacking the positively selected marker will be left behind. However, it is preferable that there be negative selection for all of the dedicated cell lineages, so that in the final positive selection, the number of dedicated cells present is minimized.
  • the stem cells are characterized by being for the most part CD34 + , CD3 - , CD7 - , CD8 - , CD10 - , CD14 - , CD15 - , CD19 - , CD20 - , CD33 - , Class II HLA + and Thy-1 + .
  • a highly stem cell concentrated cell composition is CD34 + , CD10 - , CD19 - and CD33 - , more particularly in addition CD3 - and CD8 - , preferably in addition Class II HLA + and Thy-1 + .
  • the CD3 - , -8 - , 10 - , 19 - , 20 - and 33 - will be referred to as Lin - .
  • the CD10/19 markers are associated with B cells, while the CD33 cell marker is associated with myeloid cells.
  • the Thy-1 marker is absent on human T cells.
  • rhodamine 123 can divide the cells into high and low subsets. See Spangrude, (1989) Immunology Today 344-350 for a description of the use of rhodamine 123 with mouse stem cells. Preferably the cells are rhodamine low.
  • bone marrow cells may be obtained from a source of bone marrow, e.g., tibiae, femora, spine, or other bone cavities.
  • Other sources of human hematopoietic stem cells include embryonic yolk sac, fetal liver, fetal and adult spleen, and blood.
  • an appropriate solution may be used to flush the bone, which solution will be a balanced salt solution, conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, generally from about 5-25 mM.
  • Convenient buffers include Hepes, phosphate buffers, lactate buffers, etc. Otherwise bone marrow may be aspirated from the bone in accordance with conventional ways.
  • Monoclonal antibodies are particularly useful for identifying markers (surface membrane proteins) associated with particular cell lineages and/or stages of differentiation.
  • the antibodies may be attached to a solid support to allow for crude separation.
  • the separation techniques employed should maximize the retention of viability of the fraction to be collected.
  • “relatively crude” separations that is, separations where up to 10%, usually not more than about 5%, preferably not more than about 1%, of the total cells present having the marker, may remain with the cell population to be retained, various techniques of different efficacy may be employed. The particular technique employed will depend upon efficiency of separation, cytotoxicity of the methodology, ease and speed of performance, and necessity for sophisticated equipment and/or technical skill.
  • Procedures for separation may include magnetic separation, using antibody-coated magnetic beads, affinity chromatography, cytotoxic agents joined to a monoclonal antibody or used in conjunction with a monoclonal antibody, e.g., complement and cytotoxins, and "panning" with antibody attached to a solid matrix, e.g., plate, or other convenient technique.
  • Techniques providing accurate separation include fluorescence activated cell sorters, which can have varying degrees of sophistication, e.g., a plurality of color channels, low angle and obtuse light scattering detecting channels, impedance channels, etc.
  • One procedure which may be used is in a first stage after incubating the cells from the bone marrow for a short period of time at reduced temperatures, generally about 4° C., with saturating levels of antibodies specific for a particular cell type, e.g., CD3 and 8 for T cell determinants, the cells may then be washed with a fetal calf serum (FCS) cushion. The cells may then be suspended in a buffer medium as described above and separated by means of the antibodies for the particular determinants, using various proteins specific for the antibodies or antibody-antigen complex.
  • FCS fetal calf serum
  • the antibodies may be conjugated with markers, such as magnetic beads, which allow for direct separation, biotin, which can be removed with avidin or streptavidin bound to a support, fluorochromes, which can be used with a fluorescence activated cell sorter, or the like, to allow for ease of separation of the particular cell type. Any technique may be employed which is not unduly detrimental to the viability of the remaining cells.
  • the cells may now be separated by a fluorescence activated cell sorter (FACS) or other methodology having high specificity.
  • FACS fluorescence activated cell sorter
  • Multi-color analyses may be employed, with the FACS which is particularly convenient.
  • the cells may be separated on the basis of the level of staining for the particular antigens.
  • the antibody for CD34 may be labeled with one fluorochrome, while the antibodies for the various dedicated lineages may be conjugated to a different fluorochrome.
  • Fluorochromes which may find use in a multi-color analysis include phycobiliproteins, e.g., phycoerythrin and allophycocyanins, fluorescein, Texas red. While each of the lineages may be separated in a separate step, desirably the lineages are separated at the same time as one is positively selecting for CD34 and/or Class II HLA. Generally, the number of cells obtained will be fewer than about 1% of the original cells, generally fewer than about 0.5% and may be as low as 0.2% or less.
  • the cells may then be further separated by positively selecting for Thy + , where the cells will generally be fewer than 0.5% of the original cells, generally in the range of 0.01-0.5%.
  • the cells may be selected against dead cells, by employing dyes associated with dead cells (propidium iodide, LDS). Desirably, the cells are collected in a medium comprising 2% fetal calf serum. Other techniques for positive selection may be employed, which permit accurate separation, such as affinity columns, and the like.
  • the method should permit the removal to a residual amount of less than about 20%, preferably less than about 5%, of the non-stem cell populations.
  • the CD34 + Lin- and the CD34 + Lin - Thy-1 + have low side scatter and low forward scatter profiles by FACS analysis. Cytospin preparations show the stem cell to have a size between mature lymphoid cells and mature granulocytes. Cells may be selected based on light-scatter properties as well as their expression of various cell surface antigens.
  • cells are initially separated by a coarse separation, followed by a fine separation, with positive selection of a marker associated with stem cells and negative selection for markers associated with lineage committed cells. This separation is followed by selection for a cellular composition having multi-lineage potential and enhanced self-regeneration capability.
  • compositions having greater than 90%, usually greater than about 95% of human stem cells may be achieved in this manner, where the desired stem cells are identified by being Class II HLA and/or CD34 + , Lin- and Thy-1 + and being able to provide for cell regeneration and development of members of all of the various hematopoietic lineages.
  • the desired stem cells are identified by being Class II HLA and/or CD34 + , Lin- and Thy-1 + and being able to provide for cell regeneration and development of members of all of the various hematopoietic lineages.
  • a single cell could be obtained from a stem cell composition and be used for long term reconstitution of an immunodeficient human.
  • the subject compositions are found to provide for production of myeloid cells and lymphoid cells in appropriate cultures, cultures providing hydrocortisone for production of myeloid cells (associated with Dexter-type cultures) and B lymphocytes in cultures lacking hydrocortisone, (associated with Whitlock-Witte type cultures).
  • mouse or human stromal cells are provided, which may come from various strains, AC3 or AC6, stromal cells derived from mouse or human fetal bone marrow by selection for the ability to maintain human stem cells, and the like.
  • the medium employed for the culturing of the cells is conveniently a defined enriched medium, such as IMDM (Iscove's Modified Dulbecco's Medium), a 50:50 mixture of IMDM and RPMI, and will generally be composed of salts, amino acids, vitamins, 5 ⁇ 10 -5 M 2-ME, streptomycin/penicillin and 10% fetal calf serum, and may be changed from time to time, generally at least about once to twice per week.
  • IMDM Iscove's Modified Dulbecco's Medium
  • the cells to be tested are then microinjected into the thymus tissue, where the HLA of the population which is injected is mismatched with the HLA of the thymus cells.
  • the thymus tissue may then be transplanted into a scid/scid mouse as described in EPA 0 322 240, particularly transplanting in the kidney capsule.
  • BFU-E units For red blood cells, one may use conventional techniques to identify BFU-E units, for example methylcellulose culture (Metcalf (1977) In: Recent Results in Cancer Research 61. Springer-Verlag, Berlin, pp 1-227) demonstrating that the cells are capable of developing the erythroid lineage.
  • the population to be tested is introduced first into a hydrocortisone containing culture and allowed to grow for six weeks in such culture.
  • the medium employed will comprise a 50:50 mixture of RPMI 1640 and IMDM containing 10% FCS, 10% horse serum, streptomycin/penicillin, glutamine and 5 ⁇ 10 -7 M hydrocortisone.
  • FCS 10% FCS
  • streptomycin/penicillin 10% horse serum
  • glutamine 10% horse serum
  • glutamine 5 ⁇ 10 -7 M hydrocortisone
  • CD34 + Lin- or Class II HLA + Lin- which should provide a composition substantially concentrated in the progenitor hematopoietic stem cell.
  • the CD34 + Lin- or Class II HLA + Lin- cells obtained from these cultures can give rise to B cells, T cells and myelomonocytic cells in the assays described above.
  • a pluripotent human stem cell may be defined as follows: (1) gives rise to progeny in all defined hematolymphoid lineages; and (2) limiting numbers of cells are capable of fully reconstituting a seriously immunocompromised human host in all blood cell types and their progenitors, including the pluripotent hematopoietic stem cell by cell renewal.
  • fewer than a total of 10 6 cells usually fewer than 10 5 cells, will be used to reconstitute an immunocompromised human host. The number of cells is required to insure that appropriate seeding at an appropriate site occurs, where the stem cell may self-renew.
  • the number of cells required which become seeded at a proper site for self-renewal will usually be fewer than 50 cells, and as few as about a total of 20 cells or fewer, are able to fulfill the conditions indicated above.
  • the subject compositions are capable of fulfilling these requirements.
  • the subject cells based on analysis of bone marrow cells appear to be in a range of from about 0.01-0.1% of bone marrow cells.
  • stem cells may be propagated by growing in conditioned medium from stromal cells, such as stromal cells that can be obtained from bone marrow, fetal thymus or fetal liver, and are shown to provide for the secretion of growth factors associated with stem cell maintenance, coculturing with such stromal cells, or in medium comprising maintenance factors supporting the proliferation of stem cells, where the stromal cells may be allogeneic or xenogeneic.
  • the mixed stromal cell preparations may be freed of hematopoietic cells employing appropriate monoclonal antibodies for removal of the undesired cells, e.g, with antibody-toxin conjugates, antibody and complement, etc.
  • cloned stromal cell lines may be used where the stomal lines may be allogeneic or xenogeneic.
  • the subject cell compositions may find use in a variety of ways. Since the cells are naive, they can be used to fully reconstitute an irradiated host and/or a host subject to chemotherapy; or as a source of cells for specific lineages, by providing for their maturation, proliferation and differentiation into one or more selected lineages by employing a variety of factors, such as erythropoietin, colony stimulating factors, e.g., GM-CSF, G-CSF, or M-CSF, interleukins, e.g., IL-1, -2, -3, -4, -5, -6, -7, -8, etc., or the like, or stromal cells associated with the stem cells becoming committed to a particular lineage, or with their proliferation, maturation and differentiation.
  • factors such as erythropoietin, colony stimulating factors, e.g., GM-CSF, G-CSF, or M-CSF, interleukins, e.g.
  • the stem cells may also be used in the isolation and evaluation of factors associated with the differentiation and maturation of hematopoietic cells.
  • the stem cells may be used in assays to determine the activity of media, such as conditioned media, evaluate fluids for cell growth activity, involvement with dedication of particular lineages, or the like.
  • the stem cells may be used for the treatment of genetic diseases.
  • Genetic diseases associated with hematopoietic cells may be treated by genetic modification of autologous or allogeneic stem cells to correct the genetic defect.
  • diseases such as B-thalassemia, sickle cell anemia, adenosine deaminase deficiency, recombinase deficiency, recombinase regulatory gene deficiency, etc. may be corrected by introduction of a wild-type gene into the stem cells, either by homologous or random recombination.
  • Other indications of gene therapy are introduction of drug resistance genes to enable normal stem cells to have an advantage and be subject to selective pressure, e.g. the multiple drug resistance gene (MDR).
  • MDR multiple drug resistance gene
  • Diseases other than those associated with hematopoietic cells may also be treated, where the disease is related to the lack of a particular secreted product such as a hormone, enzyme, interferon, factor, or the like.
  • a particular secreted product such as a hormone, enzyme, interferon, factor, or the like.
  • inducible production of the deficient protein may be achieved, so that production of the protein will parallel natural production, even though production will be in a different cell type from the cell type that normally produces such protein.
  • T-cell receptor Alternatively, one may wish to remove a particular variable region of a T-cell receptor from the T-cell repertoire.
  • homologous recombination, or antisense or ribozyme sequence which prevents expression the expression of the particular T-cell receptor may be inhibited.
  • the stem cells could be genetically modified to introduce an antisense sequence or ribozyme which would prevent the proliferation of the pathogen in the stem cell or cells differentiated from the stem cells.
  • the cells may be frozen at liquid nitrogen temperatures and stored for long periods of time, being thawed and capable of being reused.
  • the cells will usually be stored in 10% DMSO, 50% FCS, 40% RPMI 1640 medium. Once thawed, the cells may be expanded by use of growth factors or stromal cells associated with stem cell proliferation and differentiation.
  • CD33 IgG
  • CD34 IgM
  • the antibodies from Bernstein were detected using the appropriate anti-Ig conjugated to fluorescein or phycoerythrin or Texas red (Caltag).
  • the Thy-1 antibody was a fluorescein, phycoerythrin or biotin conjugate, where the biotin conjugate was detected with Texas Red-avidin (Caltag).
  • FACS Fluorescence Activated Cell Sorter
  • a Becton-Dickinson FACS modified as described (Parks and Herzenberg, Meth. Enzymol. (1984) 108:197) was employed.
  • the dual laser instrument allows four fluorescent parameters and two light scatter parameters to be recorded for each analyzed cell. Residual erythrocytes and dead cells and debris were excluded from analysis by light scattering gating and PI (propidium iodide) staining or by scattering alone in 4color analyses. Compensation for spatial overlaps of fluorescein and phycoerythrin, and fluorescein and propidium iodide was adjusted electronically as described (Parks and Herzenberg, (1984) supra).
  • the stained samples were maintained at 4° C. throughout the sorting procedure. Sorted drops were collected in RPMI 1640 containing 10% fetal calf serum (Hazelton Biologics Inc., Lenexa, KS). Two color sorts employed phycoerythrin to label CD34 and fluorescein to label LIN cells, with propidium iodide (PI) to label dead cells, with both signals being detected and excluded in a single FACS channel. Three color sorts employed Texas red to label CD34, phycoerythrin to label Lin cells and fluorescein to label Thy-1 cells. Following isolation of a cell population by FACS, the sample was diluted 1:1 in HBSS, centrifuged for 10 minutes at a RCF of 200 and resuspended in 50 or 100 ⁇ 1 of HBSS for hemocytometer counting.
  • PI propidium iodide
  • the culture assays were performed as follows:
  • stromal cell lines were employed, three of which are described in Whitlock et al., Cell (1987) 48:1009-1021. Confluent stromal cell layers were maintained for up to 3-4 weeks without passage by changing of the tissue culture medium every 5-7 days. To passage, the stromal cell layers were washed 3 times with serum-free medium, then overlayed with 2.5 ml (T-25 flask) of 0.5 mg/ml collagenase-dispase (Boehringer-Mannheim, Indianapolis, IN) in serum-free medium. The cultures were allowed to incubate 15-30 minutes at 37° C.; then the cells in the enzyme-containing medium were collected and RPMI-1640 medium with serum added.
  • stromal cells were suspended by pipetting with a Pasteur pipet, then cultured directly at 1-5th to 1-50th the original cell concentration. In general, confluent stromal layers subcultured at 1:10 reached confluency again after 5-7 days. Subclones were obtained by limiting dilution culture from 30 to 0.3 cells per well. Human stromal cell lines were treated similarly.
  • Cell suspensions of human fetal bone marrow were prepared from long bones of fetuses from 16-20 week gestation.
  • the bones are split lengthwise and the medullary cavity is scraped with a scalpel blade.
  • the bones are then placed in a 1 mg/ml solution of collagenase/dispase in RPMI-1640.
  • the bones are incubated for 30 minutes at 37° C., after which time the medullary cavity is flushed with media (RPMI-1640 with Pen/Strep 2-ME and 5% FCS) to remove hematopoietic cells.
  • media RPMI-1640 with Pen/Strep 2-ME and 5% FCS
  • bone marrow may be flushed from the marrow cavity without collagenase/dispase treatment.
  • Cell suspensions are prepared from livers of 16-20 week gestation fetuses. The liver is minced and then pipetted to release cells. The cell suspension is then placed on a Ficoll gradient to remove hepatocytes, red blood cells and debris. The hematopoietic cells are then harvested.
  • Bulk cultures are obtained by placing the human cells on the previously established confluent layer of mouse or human stromal cell lines. From 3 ⁇ 10 4 to 2 ⁇ 10 5 cells per ml are placed on the stromal cells in either T-25 flasks or 6 well plates, by addition of 3 ml to each well of a 6 well plate or 5 ml to T-25 flask.
  • a 50:50 mixture of RPMI-1640 and IMDM containing 50 ⁇ /ml penicillin/50 ⁇ g/ml streptomycin, 1 mM sodium pyruvate, 2 mM glutamine, 5 ⁇ 10 -5 2-mercaptoethanol and 10% fetal calf serum is employed.
  • IMDM containing 50 ⁇ /ml penicillin/50 ⁇ g/ml streptomycin, 1 mM sodium pyruvate, 2 mM glutamine, 10% fetal calf serum, 20% horse serum and 10 -6 M hydrocortisone sodium succinate is employed.
  • Bone marrow cells grown in the Dexter-type medium give rise only to myeloid differentiation. Cultures were established with whole cell populations or cells fractionated by their expression of cell surface antigens (CD34, HLA-DR, Thy-1).
  • Limiting dilution cultures were prepared using 96 well plates containing the mouse stromal cells as confluent layers. The human cells were titered into the plates at progressively lower concentrations with at least 24 wells plated at each cell concentration. The plates were then examined to determine the percentage of positive wells at each cell number. The data is then plotted graphically.
  • FACS separation of Fetal Bone Marrow was performed dividing fractions into CD34 + , 10 + , 19 + and CD34 + 10 - , 19 - .
  • the fractions are then grown continuously in the absence of hydrocortisone for eight weeks and screened for the presence of myeloid cells and B cells.
  • fetal WBM is separated by FACS into CD34 + , 33 - , 10 - , 19 - and the cells are grown in the absence of hydrocortisone.
  • limit dilution about 10-100 cells are found to be able to be maintained in the coculture for greater than six weeks and be differentiated into mature myeloid and B cells.
  • the results of the CD34, 33, 10 separation are shown in Table 4.
  • day 21 about 50% of the CD34 + CD10 - CD33 - cells were B cells.
  • the B cells express sIg with a 1.5/1 ratio of kappa and lambda light chains.
  • the results indicate that the B cells are polyclonal and do not represent an Epstein-Barr viral transformation.
  • the CD34 + CD10 + CD33 + cells show a dramatic decrease in B cells and total cell numbers over the 21 day period. The results show that the CD34 + cells which express CCD10 and/or CD19 are not long lived progenitors.
  • Myeloid cell differentiation was analyzed by FACS and methylcellulose assay.
  • FACS analysis shows a 10 fold increase in mature myeloid cells in the CD34 + CD10 - CD33 - cell subset.
  • Analysis of the methylcellulose data showed that 90-95% of the CFU-GM and BRU-e activity is contained in the CD34 + CD10 + CD33 + cell subset at time zero.
  • the CD34 + CD10 + CD33 + and the CD34 + CD10 - CD33 - cell populations have nearly equivalent CFU-GM AND BFU-E cell levels.
  • CD34 + CD10 - CD33 - cells have the capacity to give rise to B cells (CD19 + , cytoplasmic ⁇ + , sIg + ), myeloid cells (CD15 + , - 33 + , CFU-GM)and erythroid cells (BFU-e) over 21 days in culture. Similar results are obtained when cells are separated on the basis of CD34,CD10,CD19,CD33 or CD34,CD3,CD7,CD8,CD10,CD14,CD15,CD19,CD20,CD33.
  • CD34 + cells are divided into Thy-1 + and Thy-1 - fractions and assayed in the methylcellulose assay, these two fractions give similar readouts as seen in Table 5.
  • the CD34 + , Thy-1 + fraction is enriched for progenitor activity as evidenced by 1) the percentage of B cells generated in the coculture and 2) the frequency of responding cells in the limit dilution assay. (Tables 5 and 6)
  • the Thy-1 + fraction required approximately 1/30-1/50 cells whereas the Thy-1 - fraction requires 1/170-1/500 cells.
  • Thy-1 + fraction is further concentrated for the progenitor cell. Moreover, when assayed in the in vivo T cell assay, the Thy-1 + fraction gives rise to donor derived T cells, whereas the Thy-1 - fraction does not.
  • the thymus assay for T cell generation was performed as follows. Fetal thymus fragments are obtained of about 1 mm 3 in size. The fragments are cultured in a thymus organ culture system at 25 degrees C. for 3-7 days to stimulate the in vitro receptivity of the thymus for precursor cells.
  • the cell composition comprising about 10 2 -10 4 cells in a FCS containing balanced salt solution is injected at a volume of 1 ⁇ l using a glass micropipet linked to an oil-filled micrometric screw-operated syringe. Twenty-four hours after injection, the in vitro colonized thymus fragments are implanted under the kidney capsule of SCID mice. See EPA 0 322 240.
  • the injected cells are HLA mismatched with the thymus.
  • recipient animals are sacrificed and the grafts harvested.
  • Cell suspensions are analyzed in a tow-color immuno-fluorescence assay for the presence of donor derived T lymphocytes (CD3, 8 + ).
  • the subject invention provides for cells which are substantially homogenous in human hematopoietic stem cells.
  • a substantially homogenous viable human hematopoietic stem cell composition may be produced for a variety of purposes.
  • the stem cells may be used in bone marrow transplants, where the cells may be freed of neoplastic cells. Further, the use of pure stem cells will prevent graft-versus-host disease.
  • the cells may be modified by appropriate recombination, either homologous or non-homologous, to correct genetic defects or provide genetic capabilities naturally lacking in the stem cells, either as to the individual or as to stem cells generally.
  • the stem cell composition may be used to isolate and define factors associated with regeneration and differentiation.

Abstract

Human hematopoietic stem cells are provided by separation of the stem cells from dedicated cells. The stem cells may than be maintained by regeneration in an appropriate growth medium. Means are provided for assaying for the stem cells as to their capability for producing members of each of the hematopoietic lineages.

Description

INTRODUCTION
1. Technical Field
The field of this invention is the isolation, regeneration and use of hematopoietic stem cells.
2. Background
Mammalian blood cells provide for an extraordinarily diverse range of activities. The blood cells are divided into several lineages, including lymphoid, myeloid and erythroid. The lymphoid lineage, comprising B cells and T cells, provides for the production of antibodies, regulation of the cellular immune system, detection of foreign agents in the blood, detection of cells foreign to the host, and the like. The myeloid lineage, which includes monocytes, granulocytes, megakaryocytes as well as other cells, monitors for the presence of foreign bodies in the blood stream, provides protection against neoplastic cells, scavenges foreign materials in the blood stream, produces platelets, and the like. The erythroid lineage provides the red blood cells, which act as oxygen carriers.
Despite the diversity of the nature, morphology, characteristics and function of the blood cells, it is presently believed that there is a single progenitor, which is capable of self regeneration and by exposure to growth factors becomes dedicated to a specific lineage.
The stem cell population constitutes only a small percentage of the total number of leukocytes in bone marrow. In particular, B cells (CD19+) and myeloid cells (CD33+) make up 80-90 % of the CD34+ population. In addition, at the present time it is not known how many of the markers associated with differentiated cells are also present on the stem cell. One marker which has been indicated as present on stem cells, CD34, is also found on a significant number of lineage committed progenitors. Another marker which provides for some enrichment of progenitor activity is Class II HLA (particularly a conserved DR epitope recognized by a monoclonal antibody designated J1-43). However, these markers are found on numerous lineage committed hematopoietic cells. In particular, B cells (CD19+) and myeloid cells (CD33+) make up 80-90% of the CD34+ population. Moreover, a combination of CD3, .8, 10, 15, 19, 20, and 33 will mark >90% of all CD34+ cells. Therefore, in view of the small proportion of the total number of cells in the bone marrow which are stem cells, the uncertainty of the markers associated with the stem cell as distinct from more differentiated cells, and the general inability to biologically assay for human stem cells, the identification and purification of stem cells has been elusive. Recently, the mouse stem cell has been obtained in at least highly concentrated, if not a purified form, where fewer than about 30 cells obtained from bone marrow were able to reconstitute all of the lineages of the hematopoietic system of a lethally irradiated mouse. Indeed, one injected cell should be able to reconstitute all of the hematopoietic lineages.
The Thy-1 molecule is a highly conserved protein present in the brain and hematopoietic system of rat, mouse and man. These species differentially express this antigen and the true function of this molecule is unknown. However, the Thy-1 molecule has been identified on rat and mouse hematopoietic stem cells. This protein is also present on human bone marrow cells and is useful for the selection of hematopoietic stem cells.
There is a strong interest in identifying the human hematopoietic stem cell. Having possession of the stem cell will allow for identification of growth factors associated with its self regeneration. In addition, there may be as yet undiscovered growth factors associated (1) with the early steps of dedication of the stem cell to a particular lineage; (2) the prevention of such dedication; and (3) the negative control of stem cell proliferation. The availability of stem cells would be extremely useful in bone marrow transplantation, as well as transplantation of other organs in association with the transplantation of bone marrow. Stem cells are important targets for gene therapy, where the inserted genes promote the health of the individual into whom the stem cells are transplanted. In addition, the ability to isolate the stem cell may serve in the treatment of lymphomas and leukemias, as well as other neoplastic conditions, e.g., breast cancer. Thus, there have been world-wide efforts toward isolating the human hematopoietic stem cell in substantially pure or pure form.
RELEVANT LITERATURE
U.S. Pat. No. 4,714,680 describes a composition comprising human stem cells. EPA 89.304651.6 describes the isolation of mouse stem cells. See also the references cited therein. Analysis for hematopoietic progenitors have been reported by Whitlock and Witte, PNAS USA (1982) 79:3608; and Whitlock et al., Cell (1987) 48:1009. Thy-1 is a surface marker of reconstituting rodent bone marrow stem cells (Berman and Bashe Exp. Hematol. (1985) 13:1952 and Goldschneider et al., J. Exp. Med. (1978) 148:1351). Muller-Sieburg et al., Cell (1986) 44:653 describe Thy-lo Lin- mouse hematopoietic stem cells and the use of limit dilution.
SUMMARY OF THE INVENTION
Methods resulting in the isolation of substantially homogenous compositions of human hematopoietic stem cells are provided. The methods employ a predetermined separation regimen and bioassays for establishing the generation of each of the hematopoietic lineages from the isolated cells. The human stem cells find use: (1) in regenerating the hematopoietic system of a host deficient in stem cells, (2) in a host that is diseased and can be treated by removal of bone marrow, isolation of stem cells and treatment of individuals with drugs or irradiation prior to re-engraftment of stem cells, (3) producing various hematopoietic cells, (4) detecting and evaluating growth factors relevant to stem cell self-regeneration; and, (5) the development of hematopoietic cell lineages and assaying for factors associated with hematopoietic development.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
At least, substantially homogeneous human stem cell compositions are provided which may serve as the progenitors for all human hematopoietic cell lineages. The stem cells are identified by specific markers which are identified with monoclonal antibodies. The substantially homogenous composition may be obtained by selective isolation of cells free of markers associated with differentiated cells, while displaying epitopic characteristics associated with the stem cells, and by regeneration of the isolated stem cells in defined culture systems leading to different hematopoietic cell lineages.
The stem cells are characterized by both the presence of markers associated with specific epitopic sites identified by antibodies and the absence of certain markers as identified by the lack of binding of certain antibodies It is not necessary that selection is achieved with a marker specific for stem cells. By using a combination of negative selection (removal of cells) and positive selection (isolation of cells), a substantially homogeneous stem cell composition can be achieved.
If desired, a large proportion of differentiated cells may be removed by initially using a "relatively crude" separation. The source of the cells may be the bone marrow, fetal, neonate or adult or other hematopoietic cell source, e.g., fetal liver. For example, magnetic bead separations may be used initially to remove large numbers of lineage committed cells, namely major cell populations of the hematopoietic systems, including such lineages as T cells, B cells, (both pre-B and B cells), myelomonocytic cells, or minor cell populations, such as megakaryocytes, mast cells, eosinophils and basophils. Desirably, at least about 70%, usually at least 80% of the total hematopoietic cells will be removed. It is not essential to remove every dedicated cell class, particularly the minor population members at the initial stage. Usually, the platelets and erythrocytes will be removed prior to sorting. Since there will be positive selection in the protocol, the dedicated cells lacking the positively selected marker will be left behind. However, it is preferable that there be negative selection for all of the dedicated cell lineages, so that in the final positive selection, the number of dedicated cells present is minimized.
The stem cells are characterized by being for the most part CD34+, CD3-, CD7-, CD8-, CD10-, CD14-, CD15-, CD19-, CD20-, CD33-, Class II HLA+ and Thy-1+. A highly stem cell concentrated cell composition is CD34+, CD10-, CD19- and CD33-, more particularly in addition CD3- and CD8-, preferably in addition Class II HLA+ and Thy-1+. The CD3-, -8-, 10-, 19-, 20- and 33- will be referred to as Lin-. The CD10/19 markers are associated with B cells, while the CD33 cell marker is associated with myeloid cells. The Thy-1 marker is absent on human T cells. Also, for human CD34+ or Class II HLA+, rhodamine 123 can divide the cells into high and low subsets. See Spangrude, (1989) Immunology Today 344-350 for a description of the use of rhodamine 123 with mouse stem cells. Preferably the cells are rhodamine low.
In order to obtain the subject stem cells, it is necessary to isolate the rare pluripotent human stem cell from the other cells in bone marrow or other hematopoietic source. Initially, bone marrow cells may be obtained from a source of bone marrow, e.g., tibiae, femora, spine, or other bone cavities. Other sources of human hematopoietic stem cells include embryonic yolk sac, fetal liver, fetal and adult spleen, and blood.
For isolation of bone marrow from fetal bone or other bone source, an appropriate solution may be used to flush the bone, which solution will be a balanced salt solution, conveniently supplemented with fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, generally from about 5-25 mM. Convenient buffers include Hepes, phosphate buffers, lactate buffers, etc. Otherwise bone marrow may be aspirated from the bone in accordance with conventional ways.
Various techniques may be employed to separate the cells by initially removing cells of dedicated lineage. Monoclonal antibodies are particularly useful for identifying markers (surface membrane proteins) associated with particular cell lineages and/or stages of differentiation. The antibodies may be attached to a solid support to allow for crude separation. The separation techniques employed should maximize the retention of viability of the fraction to be collected. For "relatively crude" separations, that is, separations where up to 10%, usually not more than about 5%, preferably not more than about 1%, of the total cells present having the marker, may remain with the cell population to be retained, various techniques of different efficacy may be employed. The particular technique employed will depend upon efficiency of separation, cytotoxicity of the methodology, ease and speed of performance, and necessity for sophisticated equipment and/or technical skill.
Procedures for separation may include magnetic separation, using antibody-coated magnetic beads, affinity chromatography, cytotoxic agents joined to a monoclonal antibody or used in conjunction with a monoclonal antibody, e.g., complement and cytotoxins, and "panning" with antibody attached to a solid matrix, e.g., plate, or other convenient technique. Techniques providing accurate separation include fluorescence activated cell sorters, which can have varying degrees of sophistication, e.g., a plurality of color channels, low angle and obtuse light scattering detecting channels, impedance channels, etc.
One procedure which may be used is in a first stage after incubating the cells from the bone marrow for a short period of time at reduced temperatures, generally about 4° C., with saturating levels of antibodies specific for a particular cell type, e.g., CD3 and 8 for T cell determinants, the cells may then be washed with a fetal calf serum (FCS) cushion. The cells may then be suspended in a buffer medium as described above and separated by means of the antibodies for the particular determinants, using various proteins specific for the antibodies or antibody-antigen complex.
Conveniently, the antibodies may be conjugated with markers, such as magnetic beads, which allow for direct separation, biotin, which can be removed with avidin or streptavidin bound to a support, fluorochromes, which can be used with a fluorescence activated cell sorter, or the like, to allow for ease of separation of the particular cell type. Any technique may be employed which is not unduly detrimental to the viability of the remaining cells.
Conveniently, after substantial enrichment of the cells lacking the mature cell markers, generally by at least about 50%, preferably at least about 70%, the cells may now be separated by a fluorescence activated cell sorter (FACS) or other methodology having high specificity. Multi-color analyses may be employed, with the FACS which is particularly convenient. The cells may be separated on the basis of the level of staining for the particular antigens. In a first separation, starting with at least about 1×1010, preferably at least about 5×1010 cells, the antibody for CD34 may be labeled with one fluorochrome, while the antibodies for the various dedicated lineages may be conjugated to a different fluorochrome. Fluorochromes which may find use in a multi-color analysis include phycobiliproteins, e.g., phycoerythrin and allophycocyanins, fluorescein, Texas red. While each of the lineages may be separated in a separate step, desirably the lineages are separated at the same time as one is positively selecting for CD34 and/or Class II HLA. Generally, the number of cells obtained will be fewer than about 1% of the original cells, generally fewer than about 0.5% and may be as low as 0.2% or less.
The cells may then be further separated by positively selecting for Thy+, where the cells will generally be fewer than 0.5% of the original cells, generally in the range of 0.01-0.5%. The cells may be selected against dead cells, by employing dyes associated with dead cells (propidium iodide, LDS). Desirably, the cells are collected in a medium comprising 2% fetal calf serum. Other techniques for positive selection may be employed, which permit accurate separation, such as affinity columns, and the like. The method should permit the removal to a residual amount of less than about 20%, preferably less than about 5%, of the non-stem cell populations.
The CD34+ Lin- and the CD34+ Lin- Thy-1+ have low side scatter and low forward scatter profiles by FACS analysis. Cytospin preparations show the stem cell to have a size between mature lymphoid cells and mature granulocytes. Cells may be selected based on light-scatter properties as well as their expression of various cell surface antigens.
While it is believed that the particular order of separation is not critical to this invention, the order indicated is preferred. Preferably, cells are initially separated by a coarse separation, followed by a fine separation, with positive selection of a marker associated with stem cells and negative selection for markers associated with lineage committed cells. This separation is followed by selection for a cellular composition having multi-lineage potential and enhanced self-regeneration capability.
Compositions having greater than 90%, usually greater than about 95% of human stem cells may be achieved in this manner, where the desired stem cells are identified by being Class II HLA and/or CD34+, Lin- and Thy-1+ and being able to provide for cell regeneration and development of members of all of the various hematopoietic lineages. Ultimately, a single cell could be obtained from a stem cell composition and be used for long term reconstitution of an immunodeficient human.
The subject compositions are found to provide for production of myeloid cells and lymphoid cells in appropriate cultures, cultures providing hydrocortisone for production of myeloid cells (associated with Dexter-type cultures) and B lymphocytes in cultures lacking hydrocortisone, (associated with Whitlock-Witte type cultures). In each of the cultures, mouse or human stromal cells are provided, which may come from various strains, AC3 or AC6, stromal cells derived from mouse or human fetal bone marrow by selection for the ability to maintain human stem cells, and the like. The medium employed for the culturing of the cells is conveniently a defined enriched medium, such as IMDM (Iscove's Modified Dulbecco's Medium), a 50:50 mixture of IMDM and RPMI, and will generally be composed of salts, amino acids, vitamins, 5×10-5 M 2-ME, streptomycin/penicillin and 10% fetal calf serum, and may be changed from time to time, generally at least about once to twice per week. Particularly, by transferring cells from one culture with hydrocortisone, to the other culture without hydrocortisone, and demonstrating the production of members of the different lineages in the different cultures, the presence of the stem cell and its maintenance is supported. In this manner, one may identify the production of both myeloid cells and B cells.
To demonstrate differentiation to T cells, one may isolate fetal thymus and culture the thymus for from 4-7 days at about 25° C., so as to substantially deplete the lymphoid population of the fetal thymus. The cells to be tested are then microinjected into the thymus tissue, where the HLA of the population which is injected is mismatched with the HLA of the thymus cells. The thymus tissue may then be transplanted into a scid/scid mouse as described in EPA 0 322 240, particularly transplanting in the kidney capsule.
For red blood cells, one may use conventional techniques to identify BFU-E units, for example methylcellulose culture (Metcalf (1977) In: Recent Results in Cancer Research 61. Springer-Verlag, Berlin, pp 1-227) demonstrating that the cells are capable of developing the erythroid lineage.
In identifying myeloid and B cell capability, conveniently, the population to be tested is introduced first into a hydrocortisone containing culture and allowed to grow for six weeks in such culture. The medium employed will comprise a 50:50 mixture of RPMI 1640 and IMDM containing 10% FCS, 10% horse serum, streptomycin/penicillin, glutamine and 5×10-7 M hydrocortisone. During the six week period, it would be anticipated that in the absence of progenitor cells, all of the mature cells would die. If at the end of six weeks, myeloid cells are still observed, one may conclude that there is a progenitor cell which is providing for the continuous differentiation to myeloid cells. At this time, one may then change the medium, so that the medium now lacks hydrocortisone, to encourage the growth of B cells. By waiting 3-4 weeks and demonstrating the presence of B cells by FACS analysis, one may conclude that the progenitor cells which previously were capable of producing myeloid cells are also capable of producing B cells. Human hematopoietic cells grown in the presence of hydrocortisone can be maintained for at least four months. Similarly, human hematopoietic cells grown in the absence of hydrocortisone contain B lymphocytes (CD19+), as well as myelomonocytic cells for at least four months. From these cultures, one may sort for CD34+ Lin- or Class II HLA+ Lin-, which should provide a composition substantially concentrated in the progenitor hematopoietic stem cell. The CD34+ Lin- or Class II HLA+ Lin- cells obtained from these cultures can give rise to B cells, T cells and myelomonocytic cells in the assays described above.
A pluripotent human stem cell may be defined as follows: (1) gives rise to progeny in all defined hematolymphoid lineages; and (2) limiting numbers of cells are capable of fully reconstituting a seriously immunocompromised human host in all blood cell types and their progenitors, including the pluripotent hematopoietic stem cell by cell renewal. In the subject compositions, fewer than a total of 106 cells, usually fewer than 105 cells, will be used to reconstitute an immunocompromised human host. The number of cells is required to insure that appropriate seeding at an appropriate site occurs, where the stem cell may self-renew. The number of cells required which become seeded at a proper site for self-renewal will usually be fewer than 50 cells, and as few as about a total of 20 cells or fewer, are able to fulfill the conditions indicated above. Thus, based on the standards set for the earliest progenitor pluripotent stem cell, the subject compositions are capable of fulfilling these requirements. Furthermore, the subject cells based on analysis of bone marrow cells appear to be in a range of from about 0.01-0.1% of bone marrow cells.
Once stem cells have been isolated, they may be propagated by growing in conditioned medium from stromal cells, such as stromal cells that can be obtained from bone marrow, fetal thymus or fetal liver, and are shown to provide for the secretion of growth factors associated with stem cell maintenance, coculturing with such stromal cells, or in medium comprising maintenance factors supporting the proliferation of stem cells, where the stromal cells may be allogeneic or xenogeneic. Before using in the coculture, the mixed stromal cell preparations may be freed of hematopoietic cells employing appropriate monoclonal antibodies for removal of the undesired cells, e.g, with antibody-toxin conjugates, antibody and complement, etc. Alternatively, cloned stromal cell lines may be used where the stomal lines may be allogeneic or xenogeneic.
The subject cell compositions may find use in a variety of ways. Since the cells are naive, they can be used to fully reconstitute an irradiated host and/or a host subject to chemotherapy; or as a source of cells for specific lineages, by providing for their maturation, proliferation and differentiation into one or more selected lineages by employing a variety of factors, such as erythropoietin, colony stimulating factors, e.g., GM-CSF, G-CSF, or M-CSF, interleukins, e.g., IL-1, -2, -3, -4, -5, -6, -7, -8, etc., or the like, or stromal cells associated with the stem cells becoming committed to a particular lineage, or with their proliferation, maturation and differentiation.
The stem cells may also be used in the isolation and evaluation of factors associated with the differentiation and maturation of hematopoietic cells. Thus, the stem cells may be used in assays to determine the activity of media, such as conditioned media, evaluate fluids for cell growth activity, involvement with dedication of particular lineages, or the like.
The stem cells may be used for the treatment of genetic diseases. Genetic diseases associated with hematopoietic cells may be treated by genetic modification of autologous or allogeneic stem cells to correct the genetic defect. For example, diseases such as B-thalassemia, sickle cell anemia, adenosine deaminase deficiency, recombinase deficiency, recombinase regulatory gene deficiency, etc. may be corrected by introduction of a wild-type gene into the stem cells, either by homologous or random recombination. Other indications of gene therapy are introduction of drug resistance genes to enable normal stem cells to have an advantage and be subject to selective pressure, e.g. the multiple drug resistance gene (MDR). Diseases other than those associated with hematopoietic cells may also be treated, where the disease is related to the lack of a particular secreted product such as a hormone, enzyme, interferon, factor, or the like. By employing an appropriate regulatory initiation region, inducible production of the deficient protein may be achieved, so that production of the protein will parallel natural production, even though production will be in a different cell type from the cell type that normally produces such protein. It is also possible to insert a ribozyme, antisense or other message to inhibit particular gene products or susceptibility to diseases, particularly hematolymphotropic diseases.
Alternatively, one may wish to remove a particular variable region of a T-cell receptor from the T-cell repertoire. By employing homologous recombination, or antisense or ribozyme sequence which prevents expression, the expression of the particular T-cell receptor may be inhibited. For hematotropic pathogens, such as HIV, HTLV-I and II, etc. the stem cells could be genetically modified to introduce an antisense sequence or ribozyme which would prevent the proliferation of the pathogen in the stem cell or cells differentiated from the stem cells.
Methods for recombination in mammalian cells may be found in Molecular Cloning, A Laboratory Manual (1989) Sambrook, Fritsch and Maniatis, Cold Spring Harbor, NY.
The cells may be frozen at liquid nitrogen temperatures and stored for long periods of time, being thawed and capable of being reused. The cells will usually be stored in 10% DMSO, 50% FCS, 40% RPMI 1640 medium. Once thawed, the cells may be expanded by use of growth factors or stromal cells associated with stem cell proliferation and differentiation.
The following examples are offered by way of illustration and not by way of 1imitation.
EXPERIMENTAL
Materials and Methods
Antibodies. The antibodies to the various markers were obtained as follows: CD3, 8, 10, 14, 15, 19, 20, 34 (Becton-Dickinson) CD33 (Coulter Immunology), Thy-1 (Dalchau and Fabre, J. Exp. Med. (1979) 149:576). CD33 (IgG) and CD34 (IgM) were also obtained from I. D. Bernstein (Andrews et al., Blood (1986) 68, 1030). The CD3, -8, -10, -14, -15, -19, -20, -33 were purchased as FITC conjugates. The antibodies from Bernstein were detected using the appropriate anti-Ig conjugated to fluorescein or phycoerythrin or Texas red (Caltag). The Thy-1 antibody was a fluorescein, phycoerythrin or biotin conjugate, where the biotin conjugate was detected with Texas Red-avidin (Caltag).
Fluorescence Activated Cell Sorter (FACS) Analysis and Sorting.
A Becton-Dickinson FACS modified as described (Parks and Herzenberg, Meth. Enzymol. (1984) 108:197) was employed. The dual laser instrument allows four fluorescent parameters and two light scatter parameters to be recorded for each analyzed cell. Residual erythrocytes and dead cells and debris were excluded from analysis by light scattering gating and PI (propidium iodide) staining or by scattering alone in 4color analyses. Compensation for spatial overlaps of fluorescein and phycoerythrin, and fluorescein and propidium iodide was adjusted electronically as described (Parks and Herzenberg, (1984) supra). Four color stains were performed using several combinations of the same reagents conjugated to different fluorochromes to assure that the results were consistent regardless of the various spatial overlaps of the fluorochromes. In addition, the results of 4-color analyses were calibrated by comparison with data from 2- and 3- color analyses.
For cell sorting, the stained samples were maintained at 4° C. throughout the sorting procedure. Sorted drops were collected in RPMI 1640 containing 10% fetal calf serum (Hazelton Biologics Inc., Lenexa, KS). Two color sorts employed phycoerythrin to label CD34 and fluorescein to label LIN cells, with propidium iodide (PI) to label dead cells, with both signals being detected and excluded in a single FACS channel. Three color sorts employed Texas red to label CD34, phycoerythrin to label Lin cells and fluorescein to label Thy-1 cells. Following isolation of a cell population by FACS, the sample was diluted 1:1 in HBSS, centrifuged for 10 minutes at a RCF of 200 and resuspended in 50 or 100 μ1 of HBSS for hemocytometer counting.
The culture assays were performed as follows:
Various murine stromal cell lines were employed, three of which are described in Whitlock et al., Cell (1987) 48:1009-1021. Confluent stromal cell layers were maintained for up to 3-4 weeks without passage by changing of the tissue culture medium every 5-7 days. To passage, the stromal cell layers were washed 3 times with serum-free medium, then overlayed with 2.5 ml (T-25 flask) of 0.5 mg/ml collagenase-dispase (Boehringer-Mannheim, Indianapolis, IN) in serum-free medium. The cultures were allowed to incubate 15-30 minutes at 37° C.; then the cells in the enzyme-containing medium were collected and RPMI-1640 medium with serum added. The stromal cells were suspended by pipetting with a Pasteur pipet, then cultured directly at 1-5th to 1-50th the original cell concentration. In general, confluent stromal layers subcultured at 1:10 reached confluency again after 5-7 days. Subclones were obtained by limiting dilution culture from 30 to 0.3 cells per well. Human stromal cell lines were treated similarly.
Cell suspensions of human fetal bone marrow were prepared from long bones of fetuses from 16-20 week gestation. The bones are split lengthwise and the medullary cavity is scraped with a scalpel blade. The bones are then placed in a 1 mg/ml solution of collagenase/dispase in RPMI-1640. The bones are incubated for 30 minutes at 37° C., after which time the medullary cavity is flushed with media (RPMI-1640 with Pen/Strep 2-ME and 5% FCS) to remove hematopoietic cells. Alternatively, bone marrow may be flushed from the marrow cavity without collagenase/dispase treatment.
Cell suspensions are prepared from livers of 16-20 week gestation fetuses. The liver is minced and then pipetted to release cells. The cell suspension is then placed on a Ficoll gradient to remove hepatocytes, red blood cells and debris. The hematopoietic cells are then harvested.
Adult bone marrow is obtained from marrow aspirates, which are treated to remove red blood cells before use.
Bulk cultures are obtained by placing the human cells on the previously established confluent layer of mouse or human stromal cell lines. From 3×104 to 2×105 cells per ml are placed on the stromal cells in either T-25 flasks or 6 well plates, by addition of 3 ml to each well of a 6 well plate or 5 ml to T-25 flask. A 50:50 mixture of RPMI-1640 and IMDM containing 50 μ/ml penicillin/50 μg/ml streptomycin, 1 mM sodium pyruvate, 2 mM glutamine, 5×10-5 2-mercaptoethanol and 10% fetal calf serum is employed. For Dexter-type conditions, IMDM containing 50 μ/ml penicillin/50 μg/ml streptomycin, 1 mM sodium pyruvate, 2 mM glutamine, 10% fetal calf serum, 20% horse serum and 10-6 M hydrocortisone sodium succinate is employed. Bone marrow cells grown in the Dexter-type medium give rise only to myeloid differentiation. Cultures were established with whole cell populations or cells fractionated by their expression of cell surface antigens (CD34, HLA-DR, Thy-1).
Limiting dilution cultures were prepared using 96 well plates containing the mouse stromal cells as confluent layers. The human cells were titered into the plates at progressively lower concentrations with at least 24 wells plated at each cell concentration. The plates were then examined to determine the percentage of positive wells at each cell number. The data is then plotted graphically.
One can determine the frequency of cells in the starting population which grow under the above defined conditions. The frequency is determined by the cell number at which 37% of the wells show no growth. In one study, 1/1500 of the unsorted cells respond while 1/40 of the CD34+ fraction and 1/4000 of the CD34- fraction respond.
AC3 and AC6 Cocultures
Cocultures established with the mouse bone marrow stromal cell lines, AC3 or AC6, have served successfully as feeder layers for human cultures and have inhibited fibroblast overgrowth at low cell densities.
(1) Cell suspensions from more than one hundred human fetal bone marrow, fetal liver, or adult bone marrow samples have been cocultured for up to 20 weeks with continuous production of hematopoietic cells during this time indicating that early human progenitors or stem cells have been established in these cultures.
(2) Cultures show small to medium sized human bone marrow cells attached to the mouse stromal cells and proliferation occurs over the first one to three weeks of culture; thereafter they remain fairly stable.
(3) Cells form loose aggregates consisting of non-adherent and adherent cells overlying stromal cells which in turn overlie small to intermediate sized cells (pseudo-emperiopoiesis). Overall, the appearance of the cultures is similar to mouse long-term cultures.
(4) Cytospin and Fluorescence Activated Cell Sorter (FACS) analyses show maintenance of human hematolymphoid cells. In the absence of hydrocortisone (Whitlock-Witte like conditions), cultures are a mixture of myeloid, monocytoid, and lymphoid lineages by morphology. The majority of cells are myeloid and vary from myeloblasts to mature polymorphonuclear cells. From 15-40% of the cells are mononuclear and many of these cells have a lymphoid morphology.
(5) Approximately 20-40% of the cells stain with the CD15 antibody and 10-50% of the cells stain with the B lineage markers, CD10, CD19, or CD20, indicating a significant number of B cells. Cells selected from fetal bone marrow for CD19 expression survive for less than three weeks in culture. The presence of CD10+ and CD19+ cells after >4 weeks in culture indicates that early B cells are arising from committed progenitors. In addition, from 1 to 10% of the cells stain for cytoplasmic μ heavy chain which confirms the presence of Pre-B cells. Significant numbers of cells express CD20 although less than 1% express sIg, indicating that few of the early B cells mature under the indicated culture conditions. Furthermore, cultures initiated after depletion of B cells (CD10, CD19) by cell sorting show B cell development within one week of culture initiation.
(6) Cultures initiated in the presence of hydrocortisone (Dexter-like conditions) have no detectable T or B cells and have a large percentage of granulocytes and myeloid cells as evidenced by FACS analysis and cytospins. The presence of mitotic figures and the long term maintenance of these cultures indicates the presence of some active progenitor cell. When these hydrocortisone containing cultures are switched to media without hydrocortisone, 2 to 6% CD19 cells can be found within two weeks. This data would further substantiate the presence of an active progenitor cell in this coculture system.
The following tables indicate the results for the in vitro culture assays.
                                  TABLE 1                                 
__________________________________________________________________________
ANTIGEN STAINING PROFILE OF NON-ADHERENT HUMAN                            
CELLS GROWN IN THE CO-CULTURE SYSTEM WITHOUT HYDROCORTISONE               
      Time in             CD34                                            
      Culture                                                             
           CD10 CD19 CD20 (progenitor                                     
                                CD16 Methylcellulose                      
Sample #                                                                  
      (Weeks)                                                             
           (B cell)                                                       
                (B cell)                                                  
                     (B cell)                                             
                          cell) (myeloid)                                 
                                     (col/10.sup.5)                       
__________________________________________________________________________
S133  0                              200                                  
      7    24   14   ND   38    ND                                        
      9    ND   7    12   31    ND    92                                  
      12   45   29   33   46    45   115                                  
      14   21   8    13   18    22   120                                  
S143  0                              156                                  
      3    31   18   15   36    40    84                                  
      5    39   21   34   65    42    96                                  
      8    19   15   45   51    ND    44                                  
      10   24   26   19   41    31   140                                  
__________________________________________________________________________
                                  TABLE 2                                 
__________________________________________________________________________
BONE MARROW UNDER DEXTER CONDITIONS                                       
Sample #                                                                  
      Time in culture (weeks)                                             
                  Condition                                               
                         CD15 (mono/gran)                                 
                                   CD19 (B Cell)                          
                                           CD33 myeloid                   
                                                   CD34 (progenitor       
__________________________________________________________________________
                                                   cell)                  
K146  5           +HC    93.5      0.23    40.9    20.6                   
K146  9           +HC    91.5      ND      90.5    68.3                   
K146  7/2*        +HC/-HC                                                 
                         84.6      6.0     ND      58.4                   
K146  10          +HC    95.0      0.3     26.0    23.0                   
__________________________________________________________________________
 *Switch cultures -- initiated in hydrocortisone, switched to media withou
 hydrocortisone.                                                          
FACS separation of Fetal Bone Marrow (FBM) was performed dividing fractions into CD34+, 10+, 19+ and CD34+ 10-, 19-. The fractions are then grown continuously in the absence of hydrocortisone for eight weeks and screened for the presence of myeloid cells and B cells.
                                  TABLE 3                                 
__________________________________________________________________________
KINETICS OF B CELL GENERATION IN VITRO AFTER FACS DEPLETION               
OF B CELLS (CD10+, CD19+) FROM FETAL BONE MARROW                          
Days in vitro                                                             
       Cell subset (K336)                                                 
                 CD10                                                     
                     CD15                                                 
                         CD19                                             
                             k/1  CD33                                    
                                      CD34                                
__________________________________________________________________________
 d8    WBM        72%                                                     
                      43%                                                 
                          65%                                             
                             5%/4%                                        
                                   25%                                    
                                       4%                                 
       34+10+19+ 95  14  95  4/1   5  4                                   
       34+10-19- 40  61  32  0.1/0.1                                      
                                  65  6                                   
d15    WBM       31  34  42  6/8  37  3                                   
       34+10+19+ 90   6  88  11/20                                        
                                  12  1                                   
       34+10-19- 16  38  18  1/2  38  2                                   
d22    WBM       28  37  21  1/3  70  2                                   
       34+10+19+ 20  ND* 20   4/12                                        
                                  ND* ND*                                 
       34+10-19- 31  43  23  1/2  73  4                                   
d29    WBM       49  39  32  1/2  54  21                                  
       34+10+19+  ND*                                                     
                      ND*                                                 
                         15  3/9  77  ND*                                 
       34+10-19- 73  21  66  1/2  31  13                                  
d56    WBM       ND  19   7  0/0  81  3                                   
       34+10+ 19+                                                         
                 ND   2   0  0/0  50  4                                   
       34+10-19- ND  15  23  1/1  69  2                                   
__________________________________________________________________________
 Numbers indicate the percentage of cells stained by the indicated MAb as 
 determined by FACS.                                                      
 *Indicates insufficient cells for analysis                               
Alternatively, fetal WBM is separated by FACS into CD34+, 33-, 10-, 19- and the cells are grown in the absence of hydrocortisone. By employing limit dilution about 10-100 cells are found to be able to be maintained in the coculture for greater than six weeks and be differentiated into mature myeloid and B cells.
                                  TABLE 4                                 
__________________________________________________________________________
ANALYSIS OF B-LYMPHOID AND MYELOID CELLS                                  
IN VITRO CULTURES                                                         
Cells         % CD10  % CD19 % k/l % CD15                                 
                                         % CD34                           
(K283) Time (days)                                                        
              (Early B Cell)                                              
                      (Pan-B Cell)                                        
                             (Mature B)                                   
                                   (Myeloid)                              
                                         (Progenitor)                     
                                                GM Colonies               
                                                         BFU-e/10.sup.5   
__________________________________________________________________________
WBM    0      35      33     7/3   45    8       59       89              
34+10+33+                                                                 
       0      70      60     10/4  35    98     1199      755             
34+10-33-                                                                 
       0       1      3        1/0.5                                      
                                    1    95      72       102             
WBM    21     25      14     2.2/1.9                                      
                                   20    0.13    39       39              
34+10+33+                                                                 
       21     12      1.7    0.2/0.2                                      
                                   39    1.9    1976     1576             
34+10-33-                                                                 
       21     52      49     8.2/4.9                                      
                                   31    0.4    1841     1685             
__________________________________________________________________________
The results of the CD34, 33, 10 separation are shown in Table 4. The sorted cell populations as well as the unsorted cells were analyzed at the time of separation (t=0) as well as twenty-one days (t=21) later. Analysis of the FACS staining profile at t=0 shows that myeloid and B cells were effectively removed from the CD34+ CD10- CD33- cells with less than 5% contaminating B and myeloid cells. In contrast, by day 21 about 50% of the CD34+ CD10- CD33- cells were B cells. In addition, there was a ten-fold increase in cell numbers between t=0 and t=21. Therefore, there was an overall 100-fold increase in B cells over the 21 day period. Further, about one-third of the B cells express sIg with a 1.5/1 ratio of kappa and lambda light chains. The results indicate that the B cells are polyclonal and do not represent an Epstein-Barr viral transformation. In comparison, the CD34+ CD10+ CD33+ cells show a dramatic decrease in B cells and total cell numbers over the 21 day period. The results show that the CD34+ cells which express CCD10 and/or CD19 are not long lived progenitors.
Myeloid cell differentiation was analyzed by FACS and methylcellulose assay. FACS analysis shows a 10 fold increase in mature myeloid cells in the CD34+ CD10- CD33- cell subset. Analysis of the methylcellulose data showed that 90-95% of the CFU-GM and BRU-e activity is contained in the CD34+ CD10+ CD33+ cell subset at time zero. However, at day 21, the CD34+ CD10+ CD33+ and the CD34+ CD10- CD33- cell populations have nearly equivalent CFU-GM AND BFU-E cell levels. Therefore, the CD34+ CD10- CD33- cells have the capacity to give rise to B cells (CD19+, cytoplasmic μ+, sIg+), myeloid cells (CD15+, - 33+, CFU-GM)and erythroid cells (BFU-e) over 21 days in culture. Similar results are obtained when cells are separated on the basis of CD34,CD10,CD19,CD33 or CD34,CD3,CD7,CD8,CD10,CD14,CD15,CD19,CD20,CD33.
When CD34+ cells are divided into Thy-1+ and Thy-1- fractions and assayed in the methylcellulose assay, these two fractions give similar readouts as seen in Table 5. When assayed by limiting dilution and in the cocultures, the CD34+, Thy-1+ fraction is enriched for progenitor activity as evidenced by 1) the percentage of B cells generated in the coculture and 2) the frequency of responding cells in the limit dilution assay. (Tables 5 and 6) In order to obtain 75% positive wells in the limit dilution assay, the Thy-1+ fraction required approximately 1/30-1/50 cells whereas the Thy-1- fraction requires 1/170-1/500 cells. This indicates that the Thy-1+ fraction is further concentrated for the progenitor cell. Moreover, when assayed in the in vivo T cell assay, the Thy-1+ fraction gives rise to donor derived T cells, whereas the Thy-1- fraction does not.
              TABLE 5                                                     
______________________________________                                    
FREQUENCY AALYSIS OF CD34+ THY1 POPULATIONS                               
IN METHYCELLULOSE AND LIMIT DILUTION ASSAYS                               
          Methycellulose                                                  
          Freq. of    Limit Dilution Frequency                            
Sample    GM col      21 days  28 days                                    
                                      35 days                             
______________________________________                                    
K275 WBM    1/10,000  NA        1/3000                                    
                                      NA                                  
CD34+Thy+ 1/284       "        1/35   "                                   
CD34+Thy- 1/312       "        1/170  "                                   
K306 WBM   1/1430     NA       NA     NA                                  
CD34+Thy+ 1/100        1/120   1/50   NA                                  
CD34+Thy- 1/340       <1/1000  1/500  <1/800                              
______________________________________                                    
                                  TABLE 6                                 
__________________________________________________________________________
ANALYSIS OF CD34/THY-1 SUBPOPULATIONS IN LONG TERM CULTURES               
        Time in                                       CD34                
Cell Pop.                                                                 
        culture                                                           
             % CD10 (early B cell)                                        
                         % CD19 (B cell)                                  
                                  % CD15 (myeloid)                        
                                            % CD33 (myeloid)              
                                                      (progenitor         
__________________________________________________________________________
                                                      cell)               
K299 WBM                                                                  
        8    0.1         0.1      5.4       60.8      1.0                 
CD34+Thy1+                                                                
        8    31.0        37.0     42.7      20.2      0.3                 
CD34+Thy1-                                                                
        8    0.5         0.4      9.0       28.1      0.4                 
K332 WBM                                                                  
        7    0.3         0.4      1.9       80.4      13.0                
CD34+Thy1+                                                                
        7    49.0        43.4     20.0      57.7      3.5                 
CD34+Thy1-                                                                
        7    7.4         8.2      3.1       76.4      2.6                 
__________________________________________________________________________
The thymus assay for T cell generation was performed as follows. Fetal thymus fragments are obtained of about 1 mm3 in size. The fragments are cultured in a thymus organ culture system at 25 degrees C. for 3-7 days to stimulate the in vitro receptivity of the thymus for precursor cells. The cell composition comprising about 102 -104 cells in a FCS containing balanced salt solution is injected at a volume of 1 μl using a glass micropipet linked to an oil-filled micrometric screw-operated syringe. Twenty-four hours after injection, the in vitro colonized thymus fragments are implanted under the kidney capsule of SCID mice. See EPA 0 322 240. The injected cells are HLA mismatched with the thymus. At intervals, recipient animals are sacrificed and the grafts harvested. Cell suspensions are analyzed in a tow-color immuno-fluorescence assay for the presence of donor derived T lymphocytes (CD3, 8+).
              TABLE 7                                                     
______________________________________                                    
T cell repopulation of the human thymus                                   
followinq in vitro colonization by microinjection                         
of leukocyte/precursor cells and regrafting into                          
SCID mice                                                                 
Presursor Cell                                                            
              Microinjected                                               
Phenotype     Cell Number                                                 
                         Repopulation (.sup.+ /Total)                     
______________________________________                                    
(FBM) CD34.sup.+                                                          
              10.sup.4    9/11                                            
(FBM) CD34.sup.+                                                          
              10.sup.2   2/4                                              
(FBM) CD34.sup.+, 7.sup.-                                                 
              10.sup.4    6 weeks: 3/5                                    
                         11 weeks: 2/3                                    
(FBM) CD34.sup.+, 7.sup.+                                                 
              10.sup.4    6 weeks: 3/4                                    
                         11 weeks: 0/3                                    
(FBM) CD34.sup.+, Thy                                                     
              10.sup.4   2/3                                              
(FBM) CD34.sup.+, Thy.sup.-                                               
              10.sup.4   0/2                                              
(HDC) CD34.sup.+                                                          
              2 × 10.sup.3                                          
                         2/5                                              
(FL) HLA-DR.sup.+, Lin*.sup.-                                             
              10.sup.4   11/14                                            
______________________________________                                    
 FBM: Fetal Bone Marrow                                                   
 HDC: Human Dexter Culture                                                
 FL: Fetal Liver                                                          
 Lin* CD3, -8, -10, -15, -19, -20                                         
The above results that a small population of selected cells give rise to T cells, resulting in terminally differentiated CD4+ and CD830 T-cells. The Thy-1- population does not appear to provide a detectable level of differentiated T-cells.
It is evident from the above results, that the subject invention provides for cells which are substantially homogenous in human hematopoietic stem cells. Thus, by appropriate selection with particular factors and the development of bioassays which allow for self regeneration of stem cells and screening of the stem cells as to their surface markers, a substantially homogenous viable human hematopoietic stem cell composition may be produced for a variety of purposes. The stem cells may be used in bone marrow transplants, where the cells may be freed of neoplastic cells. Further, the use of pure stem cells will prevent graft-versus-host disease. In addition, the cells may be modified by appropriate recombination, either homologous or non-homologous, to correct genetic defects or provide genetic capabilities naturally lacking in the stem cells, either as to the individual or as to stem cells generally. In addition, because the composition is substantially free of other cells, the stem cell composition may be used to isolate and define factors associated with regeneration and differentiation.
All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

Claims (7)

What is claimed is:
1. A cellular composition comprising human hematopoietic stem cells with fewer than 5% of lineage committed cells, wherein said hematopoietic stem cells are characterized as Thy-1+, capable of self-regeneration in a coculture medium and differentiation to members of the lymphoid and myelomonocytic hematopoietic lineages.
2. A cellular composition having at least 80% of the cells characterized by being human, hematopoietic and being CD34+ 10- 19- 33-.
3. A cellular composition according to claim 2, wherein said cells are further characterized by being Thy-1+.
4. A method for obtaining a cellular composition comprising human hematopoietic stem cells, wherein fewer than about 100 cells is capable of self regeneration in a coculture medium and differentiation to members of the lymphoid and myelomonocytic hematopoietic lineages, said method comprising:
separating a mixture of human hematopoietic stem and differentiated cells into a substantially homogeneous fraction comprising cells characterized by being human, hematopoietic and being CD34+ 10- 19- 33-.
5. A method according to claim 4, wherein said cells are further characterized by being Thy-1+.
6. A method according to claim 4, wherein said separation comprises:
combining said mixture with monoclonal antibodies conjugated to fluorescent labels to CD34, 10, 19 and 33, wherein said antibodies to 34 have a different fluorescent label from the other antibodies; and
separating a cell fraction characterized by being CD34+ 10- 19- 33- by means of said fluorescent labels.
7. A method according to claim 6, comprising the additional step of combining said CD34+ 10- 19- 33- cell fraction with a fluorescent labeled monoclonal antibody to Thy-1; and
isolating a Thy-1+ fraction.
US07/502,616 1990-03-30 1990-03-30 Human hematopoietic stem cell Expired - Lifetime US5061620A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US07/502,616 US5061620A (en) 1990-03-30 1990-03-30 Human hematopoietic stem cell
EP91104813A EP0451611B1 (en) 1990-03-30 1991-03-26 Human hematopoietic stem cell
DE69133332T DE69133332T2 (en) 1990-03-30 1991-03-26 Human hematopoietic stem cells
AT91104813T ATE253112T1 (en) 1990-03-30 1991-03-26 HUMAN HEMATOPOIETIC STEM CELLS
DK91104813T DK0451611T3 (en) 1990-03-30 1991-03-26 Human hematopoietic stem cell
ES91104813T ES2210226T3 (en) 1990-03-30 1991-03-26 HUMAN HEMATOPOYETIC MOTHER CELLS.
EP03015239A EP1344819A3 (en) 1990-03-30 1991-03-26 Human hematopoietic stem cell
CA002039315A CA2039315C (en) 1990-03-30 1991-03-28 Human hematopoietic stem cell
AU73986/91A AU641488B2 (en) 1990-03-30 1991-03-28 Human hematopoietic stem cell
JP3133731A JP3017320B2 (en) 1990-03-30 1991-03-29 Human hematopoietic stem cells
US07/720,883 US5763197A (en) 1990-03-30 1991-06-25 Human hematopoietic stem cell
US08/469,453 US5750397A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/466,659 US5643741A (en) 1990-03-30 1995-06-06 Identification and isolation of human hematopoietic stem cells
US08/466,062 US5914108A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/469,452 US5716827A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
JP27952799A JP3160600B2 (en) 1990-03-30 1999-09-30 Human hematopoietic stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/502,616 US5061620A (en) 1990-03-30 1990-03-30 Human hematopoietic stem cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/720,883 Continuation-In-Part US5763197A (en) 1990-03-30 1991-06-25 Human hematopoietic stem cell

Publications (1)

Publication Number Publication Date
US5061620A true US5061620A (en) 1991-10-29

Family

ID=23998619

Family Applications (6)

Application Number Title Priority Date Filing Date
US07/502,616 Expired - Lifetime US5061620A (en) 1990-03-30 1990-03-30 Human hematopoietic stem cell
US07/720,883 Expired - Lifetime US5763197A (en) 1990-03-30 1991-06-25 Human hematopoietic stem cell
US08/466,062 Expired - Lifetime US5914108A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/466,659 Expired - Lifetime US5643741A (en) 1990-03-30 1995-06-06 Identification and isolation of human hematopoietic stem cells
US08/469,452 Expired - Lifetime US5716827A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/469,453 Expired - Lifetime US5750397A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell

Family Applications After (5)

Application Number Title Priority Date Filing Date
US07/720,883 Expired - Lifetime US5763197A (en) 1990-03-30 1991-06-25 Human hematopoietic stem cell
US08/466,062 Expired - Lifetime US5914108A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/466,659 Expired - Lifetime US5643741A (en) 1990-03-30 1995-06-06 Identification and isolation of human hematopoietic stem cells
US08/469,452 Expired - Lifetime US5716827A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell
US08/469,453 Expired - Lifetime US5750397A (en) 1990-03-30 1995-06-06 Human hematopoietic stem cell

Country Status (9)

Country Link
US (6) US5061620A (en)
EP (2) EP0451611B1 (en)
JP (2) JP3017320B2 (en)
AT (1) ATE253112T1 (en)
AU (1) AU641488B2 (en)
CA (1) CA2039315C (en)
DE (1) DE69133332T2 (en)
DK (1) DK0451611T3 (en)
ES (1) ES2210226T3 (en)

Cited By (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185438A (en) * 1991-04-02 1993-02-09 The Trustees Of Princeton University Nucleic acids encoding hencatoporetic stem cell receptor flk-2
WO1993018136A1 (en) * 1992-03-05 1993-09-16 Cytomed, Inc. Process for supporting hematopoietic progenitor cells
WO1993018648A1 (en) * 1992-03-23 1993-09-30 Baxter International Inc. In vitro-derived human neutrophil precursor cells
WO1994002016A1 (en) * 1992-07-28 1994-02-03 Steven Kessler Methods for positive immunoselection of stem cells
WO1994005775A1 (en) * 1992-09-03 1994-03-17 Systemix, Inc. High speed flow cytometric separation of viable mammalian cells
WO1994008039A1 (en) * 1992-10-02 1994-04-14 Systemix, Inc. Method of enrichment for human hematopoietic stem cells using c-kit
US5340719A (en) * 1990-11-23 1994-08-23 Corporation Coulter Method and apparatus for optically screening microscopic cells
US5342776A (en) * 1992-09-04 1994-08-30 Bolnet Marie C N Avian hemopoietic progenitor cells
US5348859A (en) * 1990-11-23 1994-09-20 Coulter Corporation Method and apparatus for obtaining an absolute white blood cell subset count and white blood cell multipart differential
US5367057A (en) * 1991-04-02 1994-11-22 The Trustees Of Princeton University Tyrosine kinase receptor flk-2 and fragments thereof
WO1995002038A1 (en) * 1993-07-09 1995-01-19 Ohio University Edison Animal Biotechnology Institute Yolk sac stem cells and their uses
WO1995003693A1 (en) * 1993-07-29 1995-02-09 Systemix, Inc. Novel stem cell marker
WO1995007348A1 (en) * 1993-09-08 1995-03-16 Imclone Systems Incorporated Monoclonal antibodies that recognize flk-2 receptors and the isolation of primitive hematopoietic stem cell populations
WO1995008105A1 (en) * 1993-09-17 1995-03-23 Systemix, Inc. Method for obtaining a cell population enriched in stem cells and compositions derived therefrom
WO1995009230A1 (en) * 1993-09-30 1995-04-06 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
US5409825A (en) * 1991-04-09 1995-04-25 Indiana University Foundation Expansion of human hematopoietic progenitor cells in a liquid medium
US5409710A (en) * 1993-04-20 1995-04-25 Endocon, Inc. Foam cell drug delivery
WO1995011692A1 (en) * 1993-10-28 1995-05-04 The United States Of America As Represented By The In vitro amplification of stem cells
US5436151A (en) * 1992-04-03 1995-07-25 Regents Of The University Of Minnesota Method for culturing human hematopoietic stem cells in vitro
US5460964A (en) * 1992-04-03 1995-10-24 Regents Of The University Of Minnesota Method for culturing hematopoietic cells
US5464753A (en) * 1991-03-08 1995-11-07 Univ Illinois Purification and manipulation of bone marrow and blood cells on the basis of P-glycoprotein expression
US5466572A (en) * 1992-09-03 1995-11-14 Systemix, Inc. High speed flow cytometric separation of viable cells
US5474687A (en) * 1994-08-31 1995-12-12 Activated Cell Therapy, Inc. Methods for enriching CD34+ human hematopoietic progenitor cells
WO1995034676A1 (en) * 1994-06-15 1995-12-21 Systemix, Inc. Population of cells enriched for myeloid and/or lymphoid progenitors and methods of making and using
WO1996015813A1 (en) * 1994-11-23 1996-05-30 University Of Massachusetts Medical Center Cell compositions for use in transplantation and ex vivo gene therapy
US5541072A (en) * 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
WO1996036344A1 (en) * 1995-05-15 1996-11-21 The Johns Hopkins University School Of Medicine Intracellular marker for purification of stem cells
WO1996036696A1 (en) * 1995-05-19 1996-11-21 T. Breeders Continuous selective clonogenic expansion of relatively undifferentiated cells
US5589376A (en) * 1992-07-27 1996-12-31 California Institute Of Technology Mammalian neural crest stem cells
US5605822A (en) * 1989-06-15 1997-02-25 The Regents Of The University Of Michigan Methods, compositions and devices for growing human hematopoietic cells
US5610056A (en) * 1994-11-16 1997-03-11 Amgen Inc. Use of stem cell factor interleukin-6 and soluble interleukin-6 receptor to induce the development of hematopoietic stem cells
US5631219A (en) * 1994-03-08 1997-05-20 Somatogen, Inc. Method of stimulating hematopoiesis with hemoglobin
US5635386A (en) * 1989-06-15 1997-06-03 The Regents Of The University Of Michigan Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture
WO1997021825A1 (en) 1995-12-15 1997-06-19 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
WO1997022708A1 (en) * 1995-12-19 1997-06-26 Systemix, Inc. Primate cluster-forming embryonic hematopoietic stem cells
US5643741A (en) * 1990-03-30 1997-07-01 Systemix, Inc. Identification and isolation of human hematopoietic stem cells
US5650317A (en) * 1994-09-16 1997-07-22 Michigan State University Human breast epithelial cell type with stem cell and luminal epithelial cell characteristics
US5654183A (en) * 1992-07-27 1997-08-05 California Institute Of Technology Genetically engineered mammalian neural crest stem cells
US5665557A (en) * 1994-11-14 1997-09-09 Systemix, Inc. Method of purifying a population of cells enriched for hematopoietic stem cells populations of cells obtained thereby and methods of use thereof
WO1997033978A1 (en) * 1996-03-12 1997-09-18 Life Technologies, Inc. Hematopoietic cell culture nutrient supplement
US5670351A (en) * 1989-06-15 1997-09-23 The Regents Of The University Of Michigan Methods and compositions for the ex vivo replication of human hematopoietic stem cells
US5672499A (en) * 1992-07-27 1997-09-30 California Institute Of Technology Immoralized neural crest stem cells and methods of making
US5677136A (en) * 1994-11-14 1997-10-14 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, compositions derived therefrom and methods of use thereof
US5681559A (en) * 1993-08-25 1997-10-28 Systemix, Inc. Method for producing a highly enriched population of hematopoietic stem cells
US5686577A (en) * 1994-10-17 1997-11-11 Cornell Research Foundation, Inc. T cell factors influencing B cell development
US5695755A (en) * 1992-11-13 1997-12-09 Papayannopoulou; Thalia Peripheralization of hematopoietic stem cells
US5728581A (en) * 1995-06-07 1998-03-17 Systemix, Inc. Method of expanding hematopoietic stem cells, reagents and bioreactors for use therein
US5744361A (en) * 1991-04-09 1998-04-28 Indiana University Expansion of human hematopoietic progenitor cells in a liquid medium
US5763266A (en) * 1989-06-15 1998-06-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells
US5766951A (en) * 1992-11-12 1998-06-16 Quality Biological, Inc. Serum-free medium supporting growth and proliferation of normal bone marrow cells
US5772994A (en) * 1993-05-28 1998-06-30 The University Of Pittsburgh Hematopoietic facilitatory cells and their uses
US5795470A (en) * 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
WO1998037240A1 (en) * 1997-02-24 1998-08-27 Tm Technologies, Inc. Anti-sense oligonucleotide pharmacological agents
US5807686A (en) * 1992-11-16 1998-09-15 Regents Of University Of Minnesota Pluripotential quiescent stem cell population
US5814440A (en) * 1995-06-07 1998-09-29 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, antibodies for use therein, compositions derived therefrom and methods of use thereof
US5824489A (en) * 1992-07-27 1998-10-20 California Institute Of Technology In vitro method for obtaining an isolated population of mammalian neural crest stem cells
US5827742A (en) * 1994-09-01 1998-10-27 Beth Israel Deaconess Medical Center, Inc. Method of selecting pluripotent hematopioetic progenitor cells
US5830755A (en) * 1995-03-27 1998-11-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services T-cell receptors and their use in therapeutic and diagnostic methods
US5840580A (en) * 1990-05-01 1998-11-24 Becton Dickinson And Company Phenotypic characterization of the hematopoietic stem cell
US5843633A (en) * 1996-04-26 1998-12-01 Amcell Corporation Characterization of a human hematopoietic progenitor cell antigen
US5843423A (en) * 1993-05-24 1998-12-01 Immunex Corporation Methods of stimulating hematopoietic cells with flt3-ligand
US5849686A (en) * 1991-03-11 1998-12-15 Creative Biomolecules, Inc. Morphogen-induced liver regeneration
US5849553A (en) * 1992-07-27 1998-12-15 California Institute Of Technology Mammalian multipotent neural stem cells
US5861313A (en) * 1995-06-07 1999-01-19 Ontogeny, Inc. Method of isolating bile duct progenitor cells
US5888499A (en) * 1992-03-23 1999-03-30 Nexell Therapeutics Inc. Method for increasing neutrophil populations using in vitro-derived human neutrophil precursor cells
US5906938A (en) * 1991-04-05 1999-05-25 Board Of Regents Of The University Of Washington Method of reconstituting hematopoietic cells using monoclonal antibodies to the stem cell factor receptor
WO1999028486A1 (en) * 1997-12-04 1999-06-10 Duke University Methods of isolating and using cd7+cd34-lin-hematopoietic cells
US5925567A (en) * 1995-05-19 1999-07-20 T. Breeders, Inc. Selective expansion of target cell populations
US5928638A (en) * 1996-06-17 1999-07-27 Systemix, Inc. Methods for gene transfer
US5945337A (en) * 1996-10-18 1999-08-31 Quality Biological, Inc. Method for culturing CD34+ cells in a serum-free medium
US5955257A (en) * 1997-10-21 1999-09-21 Regents Of The University Of Minnesota Infusible grade short-term cell storage medium for mononuclear cells
US5972627A (en) * 1994-06-15 1999-10-26 Systemix, Inc. Method of purifying a population of cells enriched for dendritic and/or lymphoid progenitors and populations of cells obtained thereby
US5972703A (en) * 1994-08-12 1999-10-26 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US5985660A (en) * 1994-06-15 1999-11-16 Systemix, Inc. Method of identifying biological response modifiers involved in dendritic and/or lymphoid progenitor cell proliferation and/or differentiation
US5994088A (en) * 1991-03-08 1999-11-30 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6001654A (en) * 1994-01-28 1999-12-14 California Institute Of Technology Methods for differentiating neural stem cells to neurons or smooth muscle cells using TGT-β super family growth factors
US6004812A (en) * 1994-12-01 1999-12-21 Beth Israel Medical Center, Inc. In-vitro T-lymphopoiesis system
US6010696A (en) * 1990-11-16 2000-01-04 Osiris Therapeutics, Inc. Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells
US6015554A (en) * 1995-06-07 2000-01-18 Systemix, Inc. Method of reconstituting human lymphoid and dendritic cells
US6033906A (en) * 1993-07-26 2000-03-07 California Institute Of Technology Methods for differentiating neural stem cells to glial cells using neuregulins
US6043348A (en) * 1996-11-13 2000-03-28 Lawman; Michael J. P. Antibody recognizing a small subset of human hematopoietic cells
US6059968A (en) * 1998-01-20 2000-05-09 Baxter International Inc. Systems for processing and storing placenta/umbilical cord blood
US6060049A (en) * 1993-05-24 2000-05-09 Ximerex, Inc. Surrogate tolerogenesis for the development of tolerance to xenografts
US6090622A (en) * 1997-03-31 2000-07-18 The Johns Hopkins School Of Medicine Human embryonic pluripotent germ cells
US6093531A (en) * 1997-09-29 2000-07-25 Neurospheres Holdings Ltd. Generation of hematopoietic cells from multipotent neural stem cells
US6140119A (en) * 1994-09-16 2000-10-31 Michigan State University Expression of estrogen receptors in type I and type II human breast epithelial cells
US6146889A (en) * 1991-08-07 2000-11-14 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Proliferation of hepatocyte precursors
US6190655B1 (en) 1993-12-03 2001-02-20 Immunex Corporation Methods of using Flt-3 ligand for exogenous gene transfer
US6200806B1 (en) 1995-01-20 2001-03-13 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6238922B1 (en) * 1999-02-26 2001-05-29 Stemcells, Inc. Use of collagenase in the preparation of neural stem cell cultures
US6242417B1 (en) 1994-03-08 2001-06-05 Somatogen, Inc. Stabilized compositions containing hemoglobin
US6242252B1 (en) 1991-08-07 2001-06-05 Albert Einstein College Of Medicine Of Yeshiva University Hepatic progenitors and method of isolating same
US6245566B1 (en) 1997-03-31 2001-06-12 The Johns Hopkins University School Of Medicine Human embryonic germ cell line and methods of use
US6326205B1 (en) * 1995-10-30 2001-12-04 Systemix, Inc. Methods for use of Mpl ligands with primitive human stem cells
US20020031498A1 (en) * 1998-02-23 2002-03-14 Aastrom Biosciences, Inc. Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
US20020034517A1 (en) * 1995-10-04 2002-03-21 Kenneth Brasel Dendritic cell stimulatory factor
US6361642B1 (en) 1997-12-02 2002-03-26 Baxter International Inc. Heat and pressure-formed flexible containers
US6383480B1 (en) * 1996-07-10 2002-05-07 Meiji Milk Products, Co., Ltd. Composition comprising midkine or pleiotrophin protein and method of increasing hematopoietic cells
US20020054916A1 (en) * 1996-12-10 2002-05-09 Tony Peled Serum-derived factor inducing cell differentiation and medical uses thereof
WO2002057428A1 (en) * 2000-10-30 2002-07-25 University Of Massachusetts Isolation of spore-like cells from tissues exposed to extreme conditions
US6455678B1 (en) 1996-04-26 2002-09-24 Amcell Corporation Human hematopoietic stem and progenitor cell antigen
US20020182728A1 (en) * 2001-03-29 2002-12-05 Vijayakumar Ramiya Method for transdifferentiation of non pancreatic stem cells to the pancreatic differentiation pathway
US20020191021A1 (en) * 2001-03-12 2002-12-19 Lilian Labelle Method and device for validating parameters defining an image
US20020197655A1 (en) * 2001-06-19 2002-12-26 Kaneka Corporation Antigen and monoclonal antibody which recognizes the antigen
US20030003575A1 (en) * 1999-04-30 2003-01-02 Vacanti Joseph P. Fabrication of vascularized tissue using microfabricated two-dimensional molds
US20030026790A1 (en) * 2001-03-09 2003-02-06 Patrick Hwu Activated dual specificity lymphocytes and their methods of use
US20030039650A1 (en) * 1995-07-26 2003-02-27 Gruenberg Micheal L. Autologous immune cell therapy: cell compositions, methods and applications to treatment of human disease
US20030049836A1 (en) * 2001-08-15 2003-03-13 Phi-Wilson Janette T. Cell separation system
US20030049689A1 (en) * 2000-12-14 2003-03-13 Cynthia Edwards Multifunctional polypeptides
US20030059414A1 (en) * 2001-09-21 2003-03-27 Ho Tony W. Cell populations which co-express CD49c and CD90
US20030079536A1 (en) * 2001-09-10 2003-05-01 Frank Fischer Method and system for monitoring a tire air pressure
US20030113341A1 (en) * 1995-10-04 2003-06-19 Immunex Corporation Methods of using FLT3-ligand in the treatment of cancer
US20030128832A1 (en) * 2002-01-04 2003-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Message transfer part point code mapping method and node
US20030134338A1 (en) * 2000-06-22 2003-07-17 Andrew N. Makarovskiy Compositions for identification and isolation of stem cells
US20030134415A1 (en) * 2001-09-19 2003-07-17 Gruenberg Micheal L. Th1 cell adoptive immunotherapy
US20030134341A1 (en) * 2001-09-19 2003-07-17 Medcell Biologics, Llc. Th1 cell adoptive immunotherapy
US20030147874A1 (en) * 2000-12-14 2003-08-07 Volker Schellenberger Targeted enzyme prodrug therapy
US20030152976A1 (en) * 2000-04-14 2003-08-14 Janssen Giselle G. Methods for selective targeting
US20030157069A1 (en) * 1994-03-07 2003-08-21 Lyman Stewart D. Methods of using flt3-ligand in hematopoietic cell transplantation
US20030175272A1 (en) * 2002-03-07 2003-09-18 Medcell Biologics, Inc. Re-activated T-cells for adoptive immunotherapy
US6627191B1 (en) * 1999-01-25 2003-09-30 Seattle Biomedical Research Institute Anti-transforming growth factor Beta (TGF-β) treated stem cell composition and method
US6632424B1 (en) 1993-05-24 2003-10-14 Immunex Corporation Human FLTS3 ligand
US20030199464A1 (en) * 2002-04-23 2003-10-23 Silviu Itescu Regeneration of endogenous myocardial tissue by induction of neovascularization
US20030209602A1 (en) * 1999-06-07 2003-11-13 Tsikos Constantine J. Planar laser illumination and imaging (PLIIM) system employing laser-diode based planar laser illumination arrays and a linear electronic image detection array employing image formation optics that optically compensates for decreases in the power-density of the planar laser illumination beam with increases in object distance during illumination and imaging operations
US20040028661A1 (en) * 2002-08-07 2004-02-12 Bartelmez Stephen H. Expansion of cells using thrombopoietin and anti-transforming growth factor-beta
US20040037815A1 (en) * 2000-08-03 2004-02-26 Clarke Michael F. Isolation and use of solid tumor stem cells
US20040106195A1 (en) * 1994-11-21 2004-06-03 Jewish Medical And Research Center Method for identification of cell growth or differentiation factors
US20040107453A1 (en) * 2001-02-14 2004-06-03 Furcht Leo T Multipotent adult stem cells, sources thereof, methods of obtaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
US6759244B2 (en) 2001-11-08 2004-07-06 Art Institute Of New York And New Jersey, Inc. Composite blastocysts (CBs) from aggregates of dissociated cells of non-viable pre-embryos
US20040131585A1 (en) * 2000-06-05 2004-07-08 Silviu Itescu Identification and use og human bone marrow-derived endothelial progenitor cells to improve myocardial function after ischemic injury
US20040132179A1 (en) * 2000-10-13 2004-07-08 Richard Boyd Treatment of t cell disorders
US6790614B1 (en) 1999-11-19 2004-09-14 Novartis Ag Selectable cell surface marker genes
US20040241842A1 (en) * 1999-04-15 2004-12-02 Monash University Stimulation of thymus for vaccination development
US20040247597A1 (en) * 2001-06-20 2004-12-09 Peter Carmeliet Method of treating atherosclerosis and other inflammatory diseases
US20040258672A1 (en) * 1999-04-15 2004-12-23 Monash University Graft acceptance through manipulation of thymic regeneration
US20040259803A1 (en) * 1999-04-15 2004-12-23 Monash University Disease prevention by reactivation of the thymus
US20040265285A1 (en) * 1999-04-15 2004-12-30 Monash University Normalization of defective T cell responsiveness through manipulation of thymic regeneration
US20050004066A1 (en) * 1994-02-10 2005-01-06 Patricia Rockwell Monoclonal antibodies specific to VEGF receptors and uses thereof
WO2005005610A2 (en) 2003-06-30 2005-01-20 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
US20050026220A1 (en) * 2001-08-10 2005-02-03 Shahin Rafii Isolation and mobilization of stem cells expressing vegfr-1
US6852533B1 (en) 1998-01-23 2005-02-08 Cornell Research Foundation, Inc. Purified populations of stem cells
WO2005014791A2 (en) 2003-08-08 2005-02-17 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US20050054093A1 (en) * 2003-08-14 2005-03-10 Martin Haas Multipotent amniotic fetal stem cells
US20050058628A1 (en) * 2003-06-11 2005-03-17 Jan Remmereit Nuclear reprogramming of cells for therapeutic use
US20050079609A1 (en) * 1997-09-25 2005-04-14 Cytomatrix, Llc Methods and devices for the long-term culture of hematopoietic progenitor cells
US20050089518A1 (en) * 2001-12-07 2005-04-28 Clarke Michael F. Prospective identification and characterization of breast cancer stem cells
US20050112692A1 (en) * 2000-04-14 2005-05-26 Murray Christopher J. Methods for selective targeting
US20050181502A1 (en) * 1999-08-05 2005-08-18 Athersys, Inc. Multipotent adult stem cells and methods for isolation
US20050202557A1 (en) * 2000-04-28 2005-09-15 Jeffrey Borenstein Micromachined bilayer unit of engineered tissues
US20050234225A1 (en) * 2002-03-04 2005-10-20 Zhenping Zhu Human antibodies specific to kdr and uses thereof
US20050232927A1 (en) * 2004-02-03 2005-10-20 The Regents Of The University Of Michigan Compositions and methods for characterizing, regulating, diagnosing, and treating cancer
WO2005116192A2 (en) 2004-05-19 2005-12-08 The Cleveland Clinic Foundation Genetically engineered cells for therapeutic applications
US20050276793A1 (en) * 2002-11-15 2005-12-15 The Board Of Trustees Of The University Of Illinois Methods for in vitro expansion of hematopoietic stem cells
US20050287547A1 (en) * 2002-07-23 2005-12-29 Judith Seligman Embryonic stem cell markers and uses thereof
US20060019256A1 (en) * 2003-06-09 2006-01-26 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20060088512A1 (en) * 2001-10-15 2006-04-27 Monash University Treatment of T cell disorders
US20060134086A1 (en) * 2000-12-14 2006-06-22 Yiyou Chen Targeted enzymes
US20060188473A1 (en) * 2003-09-16 2006-08-24 Vilen Barbara J Compositions and methods for repressing B cell autoantibody secretion and for treating autoimmune disorders
US7112576B1 (en) 1999-12-10 2006-09-26 Regents Of The University Of Minnesota Compositions and methods for cryopreservation of peripheral blood lymphocytes
US20060228733A1 (en) * 2005-03-08 2006-10-12 Pierce Niles A Hybridization chain reaction amplification for in situ imaging
US20060252073A1 (en) * 2005-04-18 2006-11-09 Regents Of The University Of Michigan Compositions and methods for the treatment of cancer
US20060257376A1 (en) * 2002-07-25 2006-11-16 The General Hospital Corporation Parathyroid hormone receptor activation and hematopoietic progenitor cell expansion
US7150992B1 (en) 1995-10-04 2006-12-19 Innunex Corporation Methods of preparing dendritic cells with flt3-ligand and antigen
US20070020242A1 (en) * 2003-03-27 2007-01-25 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20070082392A1 (en) * 2005-10-07 2007-04-12 Glaser Lawrence F Modified erythrocytes and uses thereof
US20070087334A1 (en) * 2005-10-07 2007-04-19 Robert Dirks PKR activation via hybridization chain reaction
US20070099209A1 (en) * 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20070105133A1 (en) * 2005-06-13 2007-05-10 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20070196911A1 (en) * 2004-07-12 2007-08-23 Giovanni Mambrini Devices and methods for growing human cells
US20070224177A1 (en) * 2002-09-20 2007-09-27 Ho Tony W Cell populations which co-express CD49c and CD90
US20070253910A1 (en) * 2006-04-14 2007-11-01 Carnegie Mellon University Cellular labeling and quantification for nuclear magnetic resonance techniques
US20070258886A1 (en) * 2006-04-14 2007-11-08 Celsense Inc. Methods for assessing cell labeling
US20070274946A1 (en) * 1999-04-15 2007-11-29 Norwood Immunoloty, Ltd. Tolerance to Graft Prior to Thymic Reactivation
US20070281889A1 (en) * 2002-07-25 2007-12-06 Scadden David T Parathyroid hormone receptor activation and stem and progenitor cell expansion
US20080044400A1 (en) * 2004-12-09 2008-02-21 Volker Schellenberger Targeted enzyme prodrug therapy
US20080057579A1 (en) * 2000-12-01 2008-03-06 The General Hospital Corporation Methods and products for manipulating hematopoietic stem cells
US7371400B2 (en) 2001-01-02 2008-05-13 The General Hospital Corporation Multilayer device for tissue engineering
WO2008087258A1 (en) 2007-01-18 2008-07-24 Suomen Punainen Risti, Veripalvelu Novel carbohydrate from human cells and methods for analysis and modification thereof
WO2008087257A1 (en) 2007-01-18 2008-07-24 Suomen Punainen Risti, Veripalvelu Novel methods and reagents directed to production of cells
US20080178305A1 (en) * 2000-08-03 2008-07-24 The Regents Of The University Of Michigan Isolation And Use Of Solid Tumor Stem Cells
US20080214488A1 (en) * 2007-03-01 2008-09-04 California Institute Of Technology TRIGGERED RNAi
US20080233100A1 (en) * 2004-06-30 2008-09-25 Yiyou Chen Targeted enzymes
US20080248544A1 (en) * 2000-12-14 2008-10-09 Murray Christopher J Methods And Compositions For Grafting Functional Loops Into A Protein
US20080261244A1 (en) * 2007-01-24 2008-10-23 The Regents Of The University Of Michigan Compositions And Methods For Treating And Diagnosing Pancreatic Cancer
US20080268420A1 (en) * 2004-10-22 2008-10-30 Yiyou Chen Isolating Human Antibodies
US20080274090A1 (en) * 1999-09-27 2008-11-06 University Of Florida Research Foundation, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US20080279812A1 (en) * 2003-12-05 2008-11-13 Norwood Immunology, Ltd. Disease Prevention and Vaccination Prior to Thymic Reactivation
US20090022714A1 (en) * 2001-03-02 2009-01-22 Imclone Systems, Inc. Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist
EP2019145A1 (en) 1998-05-29 2009-01-28 Case Western Reserve University Hematopoietic progenitor cell gene transduction
US20090048324A1 (en) * 2003-07-07 2009-02-19 Fox Chase Cancer Center Alternate morpheein forms of allosteric proteins as a target for the development of bioactive molecules
US20090053183A1 (en) * 2007-06-15 2009-02-26 Neuronyx Inc. Treatment of Diseases and Disorders Using Self-Renewing Colony Forming Cells Cultured and Expanded In Vitro
US20090074673A1 (en) * 2007-07-10 2009-03-19 Carnegie Mellon University Compositions and methods for producing cellular labels for nuclear magnetic resonance techniques
US7510877B2 (en) 2003-09-26 2009-03-31 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US20090130124A1 (en) * 2003-09-29 2009-05-21 Varner Judith A Method for altering hematopoietic progenitor cell adhesion, differentiation, and migration
US20090175927A1 (en) * 2006-05-11 2009-07-09 Regenics A/S Administration of cells and cellular extracts for rejuvenation
US20090247615A1 (en) * 2008-02-27 2009-10-01 California Institute Of Technology TRIGGERED RNAi
EP2107116A2 (en) 2002-06-12 2009-10-07 Genencor International, Inc. Methods for improving a binding characteristic of a molecule
US20090258363A1 (en) * 2005-07-26 2009-10-15 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
US20090274770A1 (en) * 2006-05-11 2009-11-05 Regenics As Cellular extracts
US20090305307A1 (en) * 2004-09-10 2009-12-10 Danisco Us Inc. Methods for detecting targets
US7632641B2 (en) 2004-03-25 2009-12-15 California Institute Of Technology Hybridization chain reaction
US20100021904A1 (en) * 2008-05-21 2010-01-28 Pierce Niles A Shielded cross-linking probes
US20100021901A1 (en) * 2008-05-22 2010-01-28 Peng Yin Compositions and methods for detecting analytes
US20100028347A1 (en) * 2004-11-18 2010-02-04 Yan Wu Antibodies against vascular endothelial growth factor receptor-1
US20100098742A1 (en) * 1999-04-30 2010-04-22 Vacanti Joseph P Fabrication of tissue lamina using microfabricated two-dimensional molds
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
US7723112B2 (en) 2005-10-31 2010-05-25 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20100150876A1 (en) * 2006-11-24 2010-06-17 Regents Of The Univeristy Of Minnesota Endodermal progenitor cells
WO2010075026A2 (en) 2008-12-16 2010-07-01 Onconova Therapeutics Inc Methods for determining efficacy of a therapeutic regimen against deleterious effects of cytotoxic agents in human
US20100172882A1 (en) * 2007-01-11 2010-07-08 Glazer Peter M Compositions and methods for targeted inactivation of hiv cell surface receptors
WO2010099472A2 (en) 2009-02-27 2010-09-02 The U.S.A. Of America, As Represented By The Secretary, Department Of Health And Human Services Spanx-b polypeptides and their use
US7790458B2 (en) 2004-05-14 2010-09-07 Becton, Dickinson And Company Material and methods for the growth of hematopoietic stem cells
US20100239539A1 (en) * 2009-03-23 2010-09-23 Sing George L Methods for promoting differentiation and differentiation efficiency
US20100285584A1 (en) * 2006-11-03 2010-11-11 Ron Weiss Engineered cellular pathways for programmed autoregulation of differentiation
US20100291042A1 (en) * 2007-05-03 2010-11-18 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US20100297087A1 (en) * 2006-04-11 2010-11-25 Nanodiagnostics Israel., Ltd Pluripotent stem cells characterized by expression of germline specific genes
EP2267030A1 (en) 2005-08-25 2010-12-29 Repair Technologies, Inc. Devices, compositions and methods for the protection and repair of cells and tissues
US7863029B2 (en) 2004-06-04 2011-01-04 Fox Chase Cancer Center Alternate morpheeins of allosteric proteins as a target for the development of bioactive molecules
US7863043B2 (en) 2004-02-11 2011-01-04 Aldagen, Inc. Stem cell populations and methods of use
WO2011017315A2 (en) 2009-08-03 2011-02-10 Recombinetics, Inc. Methods and compositions for targeted gene modification
US20110070205A1 (en) * 2007-05-03 2011-03-24 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US20110098184A1 (en) * 2004-10-15 2011-04-28 Day Anthony G Competitve differntial screeing
WO2011053989A2 (en) 2009-11-02 2011-05-05 Yale University Polymeric materials loaded with mutagenic and recombinagenic nucleic acids
EP2319544A1 (en) 2004-01-16 2011-05-11 Carnegie Mellon University Cellular labeling for nuclear magnetic resonance techniques
US20110110909A1 (en) * 2008-05-30 2011-05-12 Ildstad Suzanne T Human facilitating cells
US20110110863A1 (en) * 2008-05-02 2011-05-12 Celsense, Inc. Compositions and methods for producing emulsions for nuclear magnetic resonance techniques and other applications
US20110117061A1 (en) * 2007-05-04 2011-05-19 Chengcheng Zhang Ex Vivo Expansion of Human Hematopoietic Stem Cells
WO2011063283A2 (en) 2009-11-20 2011-05-26 Oregon Health & Science University Methods for detecting a mycobacterium tuberculosis infection
US20110143431A1 (en) * 1995-02-02 2011-06-16 Ilham Saleh Abuljadayel Method Of Preparing An Undifferentiated Cell
US20110158966A1 (en) * 2002-07-23 2011-06-30 Judith Seligman Stem cells characterized by expression of germline specific genes
US7994278B1 (en) 1999-08-06 2011-08-09 Nobel Biosciences Llc Biologically active polypeptides derived from a novel early stage pregnancy factor designated maternin (MA)
WO2011127360A1 (en) 2010-04-08 2011-10-13 University Of Pittsburgh-Of The Commonwealth System Of Higher Education B-cell antigen presenting cell assay
WO2011133803A1 (en) 2010-04-21 2011-10-27 Helix Therapeutics, Inc. Compositions and methods for targeted inactivation of hiv cell surface receptors
WO2011133802A1 (en) 2010-04-21 2011-10-27 Helix Therapeutics, Inc. Compositions and methods for treatment of lysosomal storage disorders
WO2011133284A1 (en) 2010-04-22 2011-10-27 Oregon Health & Science University Fumarylacetoacetate hydrolase (fah)-deficient pigs and uses thereof
EP2385371A2 (en) 2008-09-22 2011-11-09 Oregon Health and Science University Methods for detecting a mycobacterium tuberculosis infection
WO2011138687A2 (en) 2010-05-06 2011-11-10 Regenics As Use of cellular extracts for skin rejuvenation
US8173361B2 (en) 2003-01-16 2012-05-08 The General Hospital Corporation Method of determining metabolism of a test agent
WO2012092323A1 (en) 2010-12-28 2012-07-05 Xoma Technology Ltd. Cell surface display using pdz domains
US8241854B2 (en) 2008-05-22 2012-08-14 California Institute Of Technology Triggered RNAi
US8252280B1 (en) 1999-08-05 2012-08-28 Regents Of The University Of Minnesota MAPC generation of muscle
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
WO2012145469A1 (en) 2011-04-19 2012-10-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies specific for glypican-3 and use thereof
US8324361B2 (en) 2005-10-31 2012-12-04 Oncomed Pharmaceuticals, Inc. Nucleic acid molecules encoding soluble frizzled (FZD) receptors
US8357528B2 (en) 2003-05-21 2013-01-22 The General Hospital Corporation Microfabricated compositions and processes for engineering tissues containing multiple cell types
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
EP2594584A1 (en) 2008-01-31 2013-05-22 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Engineered constant domain molecule of an antibody
US8507442B2 (en) 2008-09-26 2013-08-13 Oncomed Pharmaceuticals, Inc. Methods of use for an antibody against human frizzled receptors 1, 2. 5, 7 or 8
WO2013138643A1 (en) 2012-03-16 2013-09-19 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Soluble engineered monomeric fc
US8551789B2 (en) 2010-04-01 2013-10-08 OncoMed Pharmaceuticals Frizzled-binding agents and their use in screening for WNT inhibitors
US8592208B2 (en) 2006-03-07 2013-11-26 Geeta Shroff Methods of expanding human embryonic stem cells
WO2013181543A1 (en) 2012-06-01 2013-12-05 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services High-affinity monoclonal antibodies to glypican-3 and use thereof
US8658780B2 (en) 2010-05-18 2014-02-25 California Institute Of Technology Triggered covalent probes for imaging and silencing genetic expression
WO2014052064A1 (en) 2012-09-27 2014-04-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mesothelin antibodies and methods for eliciting potent antitumor activity
WO2014091312A2 (en) 2012-12-10 2014-06-19 Regenics As Use of cellular extracts for skin rejuvenation
US8877438B2 (en) 2010-07-20 2014-11-04 California Institute Of Technology Self-assembled polynucleotide structure
US8927696B2 (en) 2011-12-29 2015-01-06 Industrial Technology Research Institute Humanized anti-human CD34 monoclonal antibody and uses thereof
US8962241B2 (en) 2010-07-20 2015-02-24 California Institute Of Technology Triggered molecular geometry based bioimaging probes
US9068164B1 (en) * 1995-02-02 2015-06-30 Tristem Trading (Cyprus) Limited Method of preparing an undifferentiated cell
WO2015109180A2 (en) 2014-01-16 2015-07-23 Academia Sinica Compositions and methods for treatment and detection of cancers
EP2918598A1 (en) 2007-02-28 2015-09-16 The Govt. Of U.S.A. As Represented By The Secretary Of The Department Of Health And Human Services Brachyury polypeptides and methods for use
US9157904B2 (en) 2010-01-12 2015-10-13 Oncomed Pharmaceuticals, Inc. Wnt antagonists and methods of treatment and screening
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
EP2947146A1 (en) 2004-02-05 2015-11-25 Sangamo BioSciences, Inc. Methods and compositions for targeted cleavage and recombination
EP2949208A1 (en) 2009-07-15 2015-12-02 Calimmune Inc. Dual vector for inhibition of human immunodeficiency virus
US9217151B2 (en) 2007-05-16 2015-12-22 California Institute Of Technology Versatile nucleic acid hairpin motif for programming biomolecular self-assembly pathways
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
US9266959B2 (en) 2012-10-23 2016-02-23 Oncomed Pharmaceuticals, Inc. Methods of treating neuroendocrine tumors using frizzled-binding agents
WO2016040895A1 (en) 2014-09-12 2016-03-17 xxTHE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY Wnt signaling agonist molecules
US9359444B2 (en) 2013-02-04 2016-06-07 Oncomed Pharmaceuticals Inc. Methods and monitoring of treatment with a Wnt pathway inhibitor
WO2016114819A1 (en) 2015-01-16 2016-07-21 Academia Sinica Compositions and methods for treatment and detection of cancers
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
WO2017143042A2 (en) 2016-02-16 2017-08-24 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143061A1 (en) 2016-02-16 2017-08-24 Yale University Compositions and methods for treatment of cystic fibrosis
US9746459B2 (en) 2010-04-08 2017-08-29 University of Pittsburgh—of the Commonwealth System of Higher Education Antigen presenting cell assay
US9758763B2 (en) 2013-05-29 2017-09-12 The Regents Of The University Of California Methods and compositions for somatic cell proliferation and viability
WO2017196847A1 (en) 2016-05-10 2017-11-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Variable new antigen receptor (vnar) antibodies and antibody conjugates targeting tumor and viral antigens
US9834439B2 (en) 2010-07-20 2017-12-05 California Institute Of Technology Biomolecular self-assembly
WO2017214182A1 (en) 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
US9850311B2 (en) 2005-10-31 2017-12-26 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
US9856472B2 (en) 2013-07-01 2018-01-02 California Institute Of Technology Small conditional RNAs
US9879042B2 (en) 2014-09-08 2018-01-30 Academia Sinica Human iNKT cell activation using glycolipids
WO2018026533A1 (en) 2016-08-02 2018-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies targeting glypican-2 (gpc2) and use thereof
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
EP3327037A1 (en) 2012-08-21 2018-05-30 The U.S.A. as represented by the Secretary, Department of Health and Human Services Mesothelin domain-specific monoclonal antibodies and use thereof
US10005847B2 (en) 2014-05-27 2018-06-26 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
WO2018119279A1 (en) 2016-12-21 2018-06-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies specific for flt3 and uses thereof
US10023892B2 (en) 2014-05-27 2018-07-17 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
WO2018187493A1 (en) 2017-04-04 2018-10-11 Yale University Compositions and methods for in utero delivery
US10111951B2 (en) 2013-09-06 2018-10-30 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US10119972B2 (en) 2014-03-27 2018-11-06 Academia Sinica Reactive labelling compounds and uses thereof
WO2018209304A1 (en) 2017-05-12 2018-11-15 Harpoon Therapeutics, Inc. Msln targeting trispecific proteins and methods of use
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
WO2018213064A1 (en) 2017-05-19 2018-11-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibody targeting tnfer2 for cancer immunotherapy
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2018226336A1 (en) 2017-06-09 2018-12-13 Providence Health & Services - Oregon Utilization of cd39 and cd103 for identification of human tumor reactive cells for treatment of cancer
WO2019006280A1 (en) 2017-06-30 2019-01-03 Lentigen Technology, Inc. Human monoclonal antibodies specific for cd33 and methods of their use
WO2019005208A1 (en) 2017-06-30 2019-01-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human mesothelin antibodies and uses in cancer therapy
US10214765B2 (en) 2012-08-18 2019-02-26 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
WO2019075359A1 (en) 2017-10-13 2019-04-18 Harpoon Therapeutics, Inc. Trispecific proteins and methods of use
US10274488B2 (en) 2008-07-15 2019-04-30 Academia Sinica Glycan arrays on PTFE-like aluminum coated glass slides and related methods
US10317393B2 (en) 2007-03-23 2019-06-11 Academia Sinica Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
US10338069B2 (en) 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
US10342858B2 (en) 2015-01-24 2019-07-09 Academia Sinica Glycan conjugates and methods of use thereof
US10450599B2 (en) 2016-07-05 2019-10-22 California Institute Of Technology Fractional initiator hybridization chain reaction
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
EP3578042A1 (en) 2011-08-26 2019-12-11 Yecuris Corporation Fumarylacetoacetate hydrolase (fah)-deficient and immunodeficient rats and uses thereof
WO2020014482A1 (en) 2018-07-12 2020-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Affinity matured cd22-specific monoclonal antibody and uses thereof
US10538592B2 (en) 2016-08-22 2020-01-21 Cho Pharma, Inc. Antibodies, binding fragments, and methods of use
US10543271B2 (en) 2017-05-12 2020-01-28 Harpoon Therapeutics, Inc. Mesothelin binding proteins
US10544221B2 (en) 2016-05-20 2020-01-28 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2020033430A1 (en) 2018-08-08 2020-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity monoclonal antibodies targeting glypican-2 and uses thereof
WO2020047344A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing donor oligonucleotide-based gene editing
WO2020047353A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing triplex and nuclease-based gene editing
WO2020072618A1 (en) 2018-10-02 2020-04-09 Immunome, Inc. Antibodies targeting epn1
WO2020082076A1 (en) 2018-10-19 2020-04-23 Board Of Regents, The University Of Texas System Engineered long interspersed element (line) transposons and methods of use thereof
US10638734B2 (en) 2004-01-05 2020-05-05 Abt Holding Company Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
WO2020112195A1 (en) 2018-11-30 2020-06-04 Yale University Compositions, technologies and methods of using plerixafor to enhance gene editing
WO2020113025A1 (en) 2018-11-28 2020-06-04 Milica Radisic Methods for tissue generation
WO2020146182A1 (en) 2019-01-08 2020-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cross-species single domain antibodies targeting mesothelin for treating solid tumors
WO2020154150A1 (en) 2019-01-22 2020-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity monoclonal antibodies targeting glypican-1 and methods of use
US10815519B2 (en) 2016-08-30 2020-10-27 California Institute Of Technology Immunohistochemistry via hybridization chain reaction
US10815311B2 (en) 2018-09-25 2020-10-27 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
US10821155B2 (en) 2018-06-27 2020-11-03 Juvena Therapeutics, Inc. Heparin-associated polypeptides and uses thereof
WO2020232303A1 (en) 2019-05-14 2020-11-19 Harpoon Therapeutics, Inc. EpCAM BINDING PROTEINS AND METHODS OF USE
US10844134B2 (en) 2016-11-23 2020-11-24 Harpoon Therapeutics, Inc. PSMA targeting trispecific proteins and methods of use
US10849973B2 (en) 2016-11-23 2020-12-01 Harpoon Therapeutics, Inc. Prostate specific membrane antigen binding protein
WO2020257779A1 (en) 2019-06-21 2020-12-24 Yale University Hydroxymethyl-modified gamma-pna compositions and methods of use thereof
WO2020257776A1 (en) 2019-06-21 2020-12-24 Yale University Peptide nucleic acid compositions with modified hoogsteen binding segments and methods of use thereof
WO2021022161A1 (en) 2019-07-31 2021-02-04 Yale University Compositions and methods for treating sickle cell disease
US10927180B2 (en) 2017-10-13 2021-02-23 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
US10935544B2 (en) 2015-09-04 2021-03-02 Obi Pharma, Inc. Glycan arrays and method of use
WO2021042060A1 (en) 2019-08-30 2021-03-04 Yale University Compositions and methods for delivery of nucleic acids to cells
US10954311B2 (en) 2015-05-21 2021-03-23 Harpoon Therapeutics, Inc. Trispecific binding proteins and methods of use
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
WO2021081052A1 (en) 2019-10-22 2021-04-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity nanobodies targeting b7h3 (cd276) for treating multiple solid tumors
US11000601B2 (en) 2016-11-21 2021-05-11 Obi Pharma, Inc. Conjugated biological molecules, pharmaceutical compositions and methods
US11041017B2 (en) 2016-03-29 2021-06-22 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US11180563B2 (en) 2020-02-21 2021-11-23 Harpoon Therapeutics, Inc. FLT3 binding proteins and methods of use
US11203645B2 (en) 2018-06-27 2021-12-21 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
WO2022047424A1 (en) 2020-08-31 2022-03-03 Yale University Compositions and methods for delivery of nucleic acids to cells
US11291686B2 (en) 2008-05-30 2022-04-05 University Of Louisville Research Foundation, Inc. Human facilitating cells
US11318170B2 (en) 2008-03-28 2022-05-03 Stemcyte, Inc. Treatment of brain damage using umbilical cord blood cells
WO2022093745A1 (en) 2020-10-26 2022-05-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting sars coronavirus spike protein and uses thereof
US11332523B2 (en) 2014-05-28 2022-05-17 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11406721B2 (en) 2016-02-22 2022-08-09 The Regents Of The University Of California Compositions and methods for imaging cell populations
US11453716B2 (en) 2016-05-20 2022-09-27 Harpoon Therapeutics, Inc. Single domain serum albumin binding protein
WO2022232612A1 (en) 2021-04-29 2022-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lassa virus-specific nanobodies and methods of their use
WO2022261017A1 (en) 2021-06-09 2022-12-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cross species single domain antibodies targeting pd-l1 for treating solid tumors
WO2022261115A1 (en) 2021-06-07 2022-12-15 Yale University Peptide nucleic acids for spatiotemporal control of crispr-cas binding
WO2022261018A1 (en) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use
US11535668B2 (en) 2017-02-28 2022-12-27 Harpoon Therapeutics, Inc. Inducible monovalent antigen binding protein
US11583577B2 (en) 2016-04-22 2023-02-21 Obi Pharma, Inc. Cancer immunotherapy by immune activation or immune modulation via Globo series antigens
WO2023044272A1 (en) 2021-09-17 2023-03-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic humanized llama nanobody library and use thereof to identify sars-cov-2 neutralizing antibodies
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2023076881A1 (en) 2021-10-26 2023-05-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting the s2 subunit of sars-cov-2 spike protein
US11643456B2 (en) 2016-07-29 2023-05-09 Obi Pharma, Inc. Human antibodies, pharmaceutical compositions and methods
US11642400B2 (en) 2016-07-27 2023-05-09 Obi Pharma, Inc. Immunogenic/therapeutic glycan compositions and uses thereof
US11873485B2 (en) 2021-01-26 2024-01-16 California Institute Of Technology Allosteric conditional guide RNAs for cell-selective regulation of CRISPR/Cas
WO2024020597A1 (en) 2022-07-22 2024-01-25 The Johns Hopkins University Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing
US11884739B2 (en) 2014-05-27 2024-01-30 Academia Sinica Anti-CD20 glycoantibodies and uses thereof
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
WO2024050399A1 (en) 2022-09-01 2024-03-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting hpv e6/e7 oncogenic peptide/mhc complexes

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635387A (en) * 1990-04-23 1997-06-03 Cellpro, Inc. Methods and device for culturing human hematopoietic cells and their precursors
US5622853A (en) * 1990-05-01 1997-04-22 Becton Dickinson And Company T lymphocyte precursor
NL9101680A (en) * 1991-10-04 1993-05-03 Tno METHOD FOR GENETICALLY MODIFYING PRIMATE BONE MARROW CELLS AND USE CELLS PRODUCING RECOMBINANT RETROVIRAL VECTORS.
WO1993007745A1 (en) * 1991-10-23 1993-04-29 Cellpro, Incorporated Method for freezing engrafting cells
DK0614485T3 (en) * 1991-10-23 2002-10-28 Nexell Therapeutics Inc Method for selectively propagating CD34 positive cells
US6353150B1 (en) * 1991-11-22 2002-03-05 Hsc Research And Development Limited Partnership Chimeric mammals with human hematopoietic cells
PT652943E (en) * 1992-07-10 2008-10-09 Univ Pittsburgh Hematopoietic facilitatory cells and their uses
IL106295A (en) * 1992-07-10 2001-03-19 Univ Pittsburgh Hematopoietic facilitaroy cells
CA2080255A1 (en) * 1992-07-31 1994-02-01 Connie J. Eaves Primitive hematopoietic stem cell preparations
EP0697880B1 (en) * 1993-05-03 2001-08-22 Genentech, Inc. Inhibition of leukocyte adhesion
DE69533504D1 (en) * 1994-01-05 2004-10-21 Univ Pittsburgh Pittsburgh MONOCLONAL ANTIBODIES AGAINST ANTIGENS EXPRESSED BY HEMATOPOIETIC HELPER CELLS
AU4254396A (en) * 1994-11-14 1996-06-06 Novartis Ag Methods of inducing cell death of primitive hematopoietic cells and compositions for induction thereof
EP0877795A4 (en) * 1996-01-16 2003-03-05 Depuy Orthopaedics Inc Isolation of precursor cells from hematopoietic and non-hematopoietic tissues and their use
EP0934403A4 (en) * 1996-08-19 2001-03-14 Univ Massachusetts Embryonic or stem-like cell lines produced by cross species nuclear transplantation
US7696404B2 (en) * 1996-08-19 2010-04-13 Advanced Cell Technology, Inc. Embryonic or stem-like cell lines produced by cross species nuclear transplantation and methods for enhancing embryonic development by genetic alteration of donor cells or by tissue culture conditions
US5948426A (en) * 1997-05-03 1999-09-07 Jefferies; Steven R. Method and article to induce hematopoietic expansion
US6043066A (en) * 1997-09-04 2000-03-28 Mangano; Joseph A. Cell separation using electric fields
ATE426036T1 (en) * 1997-11-14 2009-04-15 Cedars Sinai Medical Center TRANSFECTION AND TRANSFER OF NON-HUMAN MALE GERM CELLS TO GENERATE TRANSGENIC NON-HUMAN MAMMALS
US7294755B1 (en) 1997-11-14 2007-11-13 Cedars-Sinai Medical Center Genetic modification of male germ cells for generation of transgenic species and genetic therapies
US6734338B1 (en) 1997-11-14 2004-05-11 Cedars-Sinai Medical Center Transfection, storage and transfer of male germ cells for generation of transgenic species and genetic therapies
US6451558B1 (en) * 1998-08-03 2002-09-17 Novartis Ag Genes in the control of hematopoiesis
JP2002523039A (en) * 1998-08-24 2002-07-30 ティー.ブリーダーズ,インコーポレイテッド Cell population containing non-fetal hemangioblasts and method for producing the same
WO2000014203A1 (en) * 1998-09-02 2000-03-16 Chugai Seiyaku Kabushiki Kaisha Method for preparing cell fraction containing hematopoietic stem cells
US8297377B2 (en) * 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
ES2343222T3 (en) * 1998-12-07 2010-07-26 Duke University BODIPY AMINO ACETALDEHYDE DIETE ACETAL.
EP1150694B1 (en) * 1999-02-03 2004-12-08 I.D.M. Immuno-Designed Molecules Cell composition containing macrophages, presenting anti-infectious and hematopoietic properties, and a process for preparing the same
US6153113A (en) 1999-02-22 2000-11-28 Cobe Laboratories, Inc. Method for using ligands in particle separation
US6821513B1 (en) 1999-06-23 2004-11-23 Oregon Health & Science University Method for enhancing hematopoiesis
JP2003530899A (en) * 1999-06-23 2003-10-21 オレゴン ヘルス アンド サイエンス ユニバーシティー How to enhance hematopoiesis
IL147990A0 (en) 1999-08-05 2002-09-12 Mcl Llc Multipotent adult stem cells and methods for isolation
US6749850B1 (en) 1999-08-18 2004-06-15 The General Hospital Corporation Methods, compositions and kits for promoting recovery from damage to the central nervous system
JP2003530826A (en) * 1999-11-17 2003-10-21 ユニバーシティー オブ ロチェスター Human ex vivo immune system
WO2001046401A1 (en) * 1999-12-20 2001-06-28 University Of Massachusetts, A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Embryonic or stem-like cells produced by cross species nuclear transplantation
JP4800544B2 (en) * 2000-03-15 2011-10-26 チルドレンズ メディカル センター コーポレーション Systemic gene delivery vehicle for tumor therapy
AR028040A1 (en) * 2000-05-03 2003-04-23 Oncolytics Biotech Inc REMOVAL OF NEOPLASTIC CELL VIRUSES FROM MIXED CELL COMPOSITIONS
US8491884B2 (en) 2000-05-03 2013-07-23 Oncolytics Biotech Inc. Virus clearance of neoplastic cells from mixed cellular compositions
AR028039A1 (en) 2000-05-03 2003-04-23 Oncolytics Biotech Inc REMOVAL OF REOVIRUS FROM NEOPLASTIC CELLS INTERMEDIATE BY RAS FROM MIXED CELL COMPOSITIONS
US6828145B2 (en) 2000-05-10 2004-12-07 Cedars-Sinai Medical Center Method for the isolation of stem cells by immuno-labeling with HLA/MHC gene product marker
FR2810045B1 (en) * 2000-06-07 2004-09-03 Assist Publ Hopitaux De Paris METHOD FOR OBTAINING CELLULAR CELLULAR POPULATIONS OF MUSCLE ORIGIN AND USES THEREOF
EP1978090A1 (en) 2000-08-09 2008-10-08 ES Cell International Pte Ltd. Pancreatic progenitor cells
IL155728A0 (en) * 2000-11-22 2003-11-23 Geron Corp Tolerizing allografts of pluripotent stem cells
US6921665B2 (en) * 2000-11-27 2005-07-26 Roslin Institute (Edinburgh) Selective antibody targeting of undifferentiated stem cells
US6576464B2 (en) * 2000-11-27 2003-06-10 Geron Corporation Methods for providing differentiated stem cells
AU2002220209B2 (en) 2000-12-06 2006-05-25 Robert J. Hariri Method of collecting placental stem cells
US20080152629A1 (en) * 2000-12-06 2008-06-26 James Edinger Placental stem cell populations
US20030032179A1 (en) 2000-12-06 2003-02-13 Hariri Robert J. Post-partum mammalian placenta, its use and placental stem cells therefrom
US7311905B2 (en) * 2002-02-13 2007-12-25 Anthrogenesis Corporation Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
US20040033218A1 (en) * 2000-12-19 2004-02-19 Oron Yacoby-Zeevi Use of ecm degrading enzymes for the improvement of cell transplantation
US20030095952A1 (en) * 2001-06-13 2003-05-22 Krause Diane S. Multi-organ engraftment with a single bone marrow-derived stem cell
EP2266396A3 (en) 2001-09-24 2011-06-15 Sangamo BioSciences, Inc. Modulation of stem cells using zinc finger proteins
US20030119080A1 (en) * 2001-10-15 2003-06-26 Mangano Joseph A. Strategies for the identification and isolation of cancer stem cells and non-cancerous stem cells
US7129034B2 (en) * 2001-10-25 2006-10-31 Cedars-Sinai Medical Center Differentiation of whole bone marrow
US7799324B2 (en) * 2001-12-07 2010-09-21 Geron Corporation Using undifferentiated embryonic stem cells to control the immune system
KR101457742B1 (en) 2001-12-07 2014-11-03 아스테리아스 바이오세라퓨틱스, 인크. Hematopoietic cells from human embryonic stem cells
US20040224403A1 (en) * 2001-12-07 2004-11-11 Robarts Research Institute Reconstituting hematopoietic cell function using human embryonic stem cells
US20030215935A1 (en) * 2002-05-14 2003-11-20 Coon David James Apparatus and method for isolating living cells from an encapsulated organ tissue sample
AU2003241107B2 (en) * 2002-05-16 2009-09-03 Absorber Ab Method of isolating an endothelial cell and method of donor specific crossmatching
US6943021B2 (en) * 2002-06-07 2005-09-13 Mattek Corporation Three dimensional vaginal tissue model containing immune cells
AU2003249749A1 (en) * 2002-08-09 2004-02-25 Dr. H. Zech Gmbh Method for producing cell lines and organs by means of differentiable cells
US20040044300A1 (en) * 2002-09-03 2004-03-04 Donnie Rudd Method of replenishing cells damaged by treatment for cancer
US20040077985A1 (en) * 2002-09-03 2004-04-22 Donnie Rudd Method of replenishing cells damaged by treatment for cancer
JP4939055B2 (en) 2002-11-13 2012-05-23 トマス ジェファソン ユニバーシティ Compositions and methods for diagnosis and treatment of cancer
KR101042448B1 (en) * 2002-11-26 2011-06-16 안트로제네시스 코포레이션 Cytotherapeutics, cytotherapeutic units and methods for treatments using them
US20040110286A1 (en) * 2002-12-06 2004-06-10 The John P. Robarts Research Institute Method for making hematopoietic cells
NZ566132A (en) * 2003-02-13 2009-09-25 Anthrogenesis Corp Use of umbilical cord blood to treat inflammation, ParkinsonÆs disease or diabetes
GB0321337D0 (en) * 2003-09-11 2003-10-15 Massone Mobile Advertising Sys Method and system for distributing advertisements
WO2005049812A1 (en) * 2003-11-19 2005-06-02 Australian Stem Cell Centre Limited Methods for producing blood products from pluripotent cells in cell culture
WO2005055929A2 (en) * 2003-12-02 2005-06-23 Celgene Corporation Methods and compositions for the treatment and management of hemoglobinopathy and anemia
AU2005219660B2 (en) * 2004-03-09 2009-07-16 Absorber Ab Endothelial progenitor cells and methods of use thereof
US7622108B2 (en) * 2004-04-23 2009-11-24 Bioe, Inc. Multi-lineage progenitor cells
CA2563518C (en) * 2004-04-23 2014-09-02 Bioe, Inc. Multi-lineage progenitor cells
EP1812555B1 (en) 2004-10-25 2015-04-22 Cellerant Therapeutics, Inc. Methods of expanding myeloid cell populations and uses thereof
WO2006052991A2 (en) 2004-11-11 2006-05-18 The General Hosptial Corporation Parathyroid hormone receptor activation and stem and progenitor cell expansion
GB0503918D0 (en) * 2005-02-25 2005-04-06 Erasmus University Cell
US20060269527A1 (en) * 2005-05-26 2006-11-30 Australian Stem Cell Centre Limited Isolation of cells from bone
MX2008001709A (en) * 2005-08-01 2008-11-26 Nupotential Inc Production of reprogrammed cells with restored potential.
WO2008020815A1 (en) 2006-08-15 2008-02-21 Agency For Science, Technology And Research Mesenchymal stem cell conditioned medium
EP1937280B1 (en) 2005-09-12 2014-08-27 The Ohio State University Research Foundation Compositions for the therapy of bcl2-associated cancers
ES2452595T3 (en) 2005-10-13 2014-04-02 Anthrogenesis Corporation Immunomodulation using placental stem cells
ES2485387T3 (en) * 2005-11-07 2014-08-13 Amorcyte, Inc. Compositions and methods of repair of vascular lesions
US20110076255A1 (en) 2005-11-07 2011-03-31 Pecora Andrew L Compositions and methods for treating progressive myocardial injury due to a vascular insufficiency
US8637005B2 (en) 2005-11-07 2014-01-28 Amorcyte, Inc. Compositions and methods of vascular injury repair
US9155762B2 (en) * 2005-12-08 2015-10-13 University Of Louisville Research Foundation, Inc. Uses and isolation of stem cells from bone marrow
PL2535403T3 (en) 2005-12-08 2019-10-31 Univ Louisville Res Found Inc Very small embryonic-like (VSEL) stem cells and methods of isolating and using the same
KR20210122908A (en) 2005-12-29 2021-10-12 안트로제네시스 코포레이션 Placental stem cell populations
AU2006332679A1 (en) 2005-12-29 2007-07-12 Anthrogenesis Corporation Co-culture of placental stem cells and stem cells from a second source
EP1984491B1 (en) * 2006-02-14 2016-12-07 Cellerant Therapeutics, Inc. Compositions for enhancing engraftment of hematopoietic stem cells
WO2007121443A2 (en) * 2006-04-17 2007-10-25 Bioe, Inc. Differentiation of multi-lineage progenitor cells to respiratory epithelial cells
WO2007146105A2 (en) * 2006-06-05 2007-12-21 Cryo-Cell International, Inc. Procurement, isolation and cryopreservation of fetal placental cells
US20080050814A1 (en) * 2006-06-05 2008-02-28 Cryo-Cell International, Inc. Procurement, isolation and cryopreservation of fetal placental cells
US8785193B2 (en) 2006-09-14 2014-07-22 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Dissection tool and methods of use
WO2008036374A2 (en) * 2006-09-21 2008-03-27 Medistem Laboratories, Inc. Allogeneic stem cell transplants in non-conditioned recipients
CA2700573C (en) 2006-09-26 2016-11-22 Cedars-Sinai Medical Center Cancer stem cell antigen vaccines and methods
CA2668330C (en) 2006-11-03 2016-02-02 Aastrom Biosciences, Inc. Mixed cell populations for tissue repair and separation technique for cell processing
WO2008070861A2 (en) * 2006-12-07 2008-06-12 Cellerant Therapeutics Inc. Methods and compositions for treating systemic lupus erythematosus
EP2129775A1 (en) * 2007-02-12 2009-12-09 Anthrogenesis Corporation Hepatocytes and chondrocytes from adherent placental stem cells; and cd34+, cd45- placental stem cell-enriched cell populations
DK2120977T3 (en) 2007-02-12 2013-08-12 Anthrogenesis Corp Treatment of inflammatory diseases using placental stem cells
US20100172830A1 (en) * 2007-03-29 2010-07-08 Cellx Inc. Extraembryonic Tissue cells and method of use thereof
TWM322542U (en) * 2007-05-23 2007-11-21 Universal Scient Ind Co Ltd Testing machine
CN101835479A (en) * 2007-07-25 2010-09-15 佰欧益有限公司 Differentiation of multi-lineage progenitor cells to chondrocytes
US9200253B1 (en) 2007-08-06 2015-12-01 Anthrogenesis Corporation Method of producing erythrocytes
KR101644659B1 (en) * 2007-09-26 2016-08-01 안트로제네시스 코포레이션 Angiogenic cells from human placental perfusate
KR20210022148A (en) 2007-09-28 2021-03-02 안트로제네시스 코포레이션 Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells
WO2009058983A2 (en) * 2007-10-30 2009-05-07 University Of Louisville Research Foundation, Inc. Subpopulations of bone marrow-derived adherent stem cells and methods of use therefor
CN101978046A (en) * 2007-10-30 2011-02-16 路易斯维尔大学研究基金会有限公司 Uses and isolation of very small embryonic-like (vsel) stem cells
KR20160040739A (en) * 2007-11-07 2016-04-14 안트로제네시스 코포레이션 Use of umbilical cord blood in the treatment of premature birth complications
WO2009116951A2 (en) 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
EP2294187A2 (en) * 2008-05-21 2011-03-16 BioE LLC Differentiation of multi-lineage progenitor cells to pancreatic cells
KR101903049B1 (en) 2008-08-20 2018-11-07 안트로제네시스 코포레이션 Treatment of stroke using isolated placental cells
KR20110050521A (en) 2008-08-20 2011-05-13 안트로제네시스 코포레이션 Improved cell composition and methods of making the same
KR20110050688A (en) 2008-08-22 2011-05-16 안트로제네시스 코포레이션 Methods and compositions for treatment of bone defects with placental cell populations
AU2009316541B2 (en) 2008-11-19 2015-08-06 Celularity Inc. Amnion derived adherent cells
ES2731340T3 (en) * 2008-11-21 2019-11-15 Celularity Inc Treatment of diseases, disorders or lung conditions using placental cells
CN102245189B (en) * 2008-12-03 2015-06-17 阿莫塞特公司 Infarct area perfusion-improving compositions and methods of vascular injury repair
CA2767014C (en) * 2009-07-02 2022-01-25 Anthrogenesis Corporation Method of producing erythrocytes without feeder cells
AU2010276201B2 (en) 2009-07-21 2013-10-17 Abt Holding Company Use of stem cells to reduce leukocyte extravasation
CA2780549C (en) 2009-11-12 2017-01-03 Vbi Technologies, L.L.C. Subpopulations of spore-like cells and uses thereof
EP3284818B1 (en) 2010-01-26 2022-03-09 Celularity Inc. Treatment of bone-related cancers using placental stem cells
SG10201501402UA (en) 2010-02-25 2015-04-29 Abt Holding Co Modulation of macrophage activation
KR20230054905A (en) 2010-04-07 2023-04-25 셀룰래리티 인코포레이티드 Angiogenesis using placental stem cells
WO2011127113A1 (en) 2010-04-08 2011-10-13 Anthrogenesis Corporation Treatment of sarcoidosis using placental stem cells
PT2561078T (en) 2010-04-23 2018-12-03 Cold Spring Harbor Laboratory Novel structurally designed shrnas
WO2011159797A2 (en) 2010-06-15 2011-12-22 Cellular Dynamics International, Inc. A compendium of ready-built stem cell models for interrogation of biological response
CA2804595C (en) 2010-07-07 2018-11-13 Cellular Dynamics International, Inc. Endothelial cell production by programming
ES2666746T3 (en) 2010-07-13 2018-05-07 Anthrogenesis Corporation Methods to generate natural cytolytic lymphocytes
JP6047489B2 (en) 2010-08-12 2016-12-21 フェイト セラピューティクス,インコーポレイテッド Improved hematopoietic stem and progenitor cell therapy
US9725689B2 (en) 2010-10-08 2017-08-08 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US8574899B2 (en) 2010-12-22 2013-11-05 Vladimir B Serikov Methods for augmentation collection of placental hematopoietic stem cells and uses thereof
US8969315B2 (en) 2010-12-31 2015-03-03 Anthrogenesis Corporation Enhancement of placental stem cell potency using modulatory RNA molecules
US9574179B2 (en) 2011-02-08 2017-02-21 Cellular Dynamics International, Inc. Hematopoietic precursor cell production by programming
PL2714059T3 (en) 2011-06-01 2019-04-30 Celularity Inc Treatment of pain using placental stem cells
PL2718416T3 (en) 2011-06-06 2020-05-18 ReGenesys BVBA Expansion of stem cells in hollow fiber bioreactors
US8858928B2 (en) 2011-06-10 2014-10-14 Bluebird Bio, Inc. Gene therapy vectors for adrenoleukodystrophy and adrenomyeloneuropathy
WO2013055476A1 (en) 2011-09-09 2013-04-18 Anthrogenesis Corporation Treatment of amyotrophic lateral sclerosis using placental stem cells
KR101931403B1 (en) 2011-09-23 2018-12-21 블루버드 바이오, 인코포레이티드. Improved gene therapy methods
DK3269802T3 (en) 2011-09-30 2020-02-03 Bluebird Bio Inc RELATIONSHIPS FOR IMPROVED VIRUS TRANSDUCTION
WO2013082241A2 (en) 2011-12-02 2013-06-06 Fate Therapeutics, Inc. Improved methods of treating ischemia
CN104066837B (en) 2011-12-02 2020-12-08 菲特治疗公司 Enhanced stem cell compositions
EP2879682B1 (en) 2012-08-01 2018-03-21 United Therapeutics Corporation Treatment of pulmonary arterial hypertension with mesenchymal stem cells
JP6746313B2 (en) 2012-08-01 2020-08-26 ユナイテッド セラピューティクス コーポレイション Treatment of pulmonary arterial hypertension with prostacyclin-treated endothelial progenitor cells
US9822355B2 (en) 2012-11-27 2017-11-21 Children's Medical Center Corporation Targeting BCL11A distal regulatory elements for fetal hemoglobin reinduction
JP6431850B2 (en) 2013-01-09 2018-11-28 ユナイテッド セラピューティクス コーポレイション Treatment of vascular injury with prostacyclin and mesenchymal stem cells
WO2014120714A1 (en) 2013-01-30 2014-08-07 Cornell University Compositions and methods for the expansion of stem cells
US9763983B2 (en) 2013-02-05 2017-09-19 Anthrogenesis Corporation Natural killer cells from placenta
US20140242595A1 (en) 2013-02-22 2014-08-28 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
WO2014150602A1 (en) 2013-03-15 2014-09-25 Fate Therapeutics, Inc. Cell potency assay for therapeutic potential
US9943545B2 (en) 2013-03-15 2018-04-17 Fate Therapeutics, Inc. Stem cell culture media and methods of enhancing cell survival
JP6602288B2 (en) 2013-04-03 2019-11-06 フジフィルム セルラー ダイナミクス,インコーポレイテッド Methods and compositions for culturing endoderm progenitor cells in suspension
ES2827250T3 (en) 2013-04-12 2021-05-20 Houston Methodist Hospital Improvement of organs for transplantation
DK2992088T3 (en) 2013-04-30 2019-11-11 Univ Leuven Kath CELL THERAPY FOR MYELODYSPLASTIC SYNDROMES
CA2927730A1 (en) 2013-10-15 2015-05-07 Case Western Reserve University Compositions and methods of modulating short-chain dehydrogenase activity
WO2015073913A1 (en) 2013-11-16 2015-05-21 Terumo Bct, Inc. Expanding cells in a bioreactor
WO2015148704A1 (en) 2014-03-25 2015-10-01 Terumo Bct, Inc. Passive replacement of media
US20170107486A1 (en) 2014-04-21 2017-04-20 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
CA2946309C (en) 2014-04-25 2021-11-09 Michael MILSOM Synthetic bcl11a micrornas for treating hemoglobinopathies
US11278572B2 (en) 2014-07-18 2022-03-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Reducing CXCR4 expression and/or function to enhance engraftment of hematopoietic stem cells
CN106715676A (en) 2014-09-26 2017-05-24 泰尔茂比司特公司 Scheduled feed
JP2018504122A (en) 2015-01-26 2018-02-15 フェイト セラピューティクス,インコーポレイテッド Cells with increased immunomodulatory properties and methods for their use and production
EP3294873B1 (en) 2015-05-08 2020-08-19 The Children's Medical Center Corporation Targeting bcl11a enhancer functional regions for fetal hemoglobin reinduction
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
KR20180048617A (en) 2015-07-20 2018-05-10 앤지오크린 바이오사이언스 인코포레이티드 Methods and compositions for stem cell transplantation
JP2018520688A (en) 2015-07-21 2018-08-02 ザ チルドレンズ メディカル センター コーポレーション PD-L1 expressing hematopoietic stem cells and use thereof
US11312940B2 (en) 2015-08-31 2022-04-26 University Of Louisville Research Foundation, Inc. Progenitor cells and methods for preparing and using the same
US11207393B2 (en) 2015-10-16 2021-12-28 President And Fellows Of Harvard College Regulatory T cell PD-1 modulation for regulating T cell effector immune responses
KR20180110112A (en) 2016-02-12 2018-10-08 블루버드 바이오, 인코포레이티드. VCN enhancer composition and method of use thereof
EP3413896B1 (en) 2016-02-12 2021-03-17 Bluebird Bio, Inc. Vcn enhancer compositions and methods of using the same
US11072777B2 (en) 2016-03-04 2021-07-27 University Of Louisville Research Foundation, Inc. Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (VSELs)
US20210309965A1 (en) 2016-03-21 2021-10-07 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
JP7002530B2 (en) 2016-03-29 2022-02-04 エスエムエスバイオテック インコーポレイテッド Compositions and Methods Using Small Motility Stem Cells
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
ES2927406T3 (en) 2016-10-24 2022-11-04 United Therapeutics Corp Potentiation of the immunomodulatory properties of MSCs by treprostinil
EP3548035A4 (en) 2016-11-30 2020-07-22 Case Western Reserve University Combinations of 15-pgdh inhibitors with corcosteroids and/or tnf inhibitors and uses thereof
EP3576737A4 (en) 2017-02-06 2021-04-21 Case Western Reserve University Compositions and methods of modulating short-chain dehydrogenase activity
CA3053499A1 (en) 2017-02-15 2018-08-23 Bluebird Bio, Inc. Donor repair templates multiplex genome editing
US11261441B2 (en) 2017-03-29 2022-03-01 Bluebird Bio, Inc. Vectors and compositions for treating hemoglobinopathies
US11702634B2 (en) 2017-03-31 2023-07-18 Terumo Bct, Inc. Expanding cells in a bioreactor
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
CA3062450A1 (en) 2017-05-03 2018-11-08 Biomarin Pharmaceutical Inc. Improved lentiviruses for transduction of hematopoietic stem cells
WO2018218135A1 (en) 2017-05-25 2018-11-29 The Children's Medical Center Corporation Bcl11a guide delivery
WO2019060708A1 (en) 2017-09-22 2019-03-28 The Children's Medical Center Corporation Treatment of type 1 diabetes and autoimmune diseases or disorders
JOP20210115A1 (en) 2018-11-21 2023-01-30 Univ Texas Compositions and methods of modulating short-chain dehydrogenase activity
US20210008161A1 (en) 2019-06-17 2021-01-14 Crispr Therapeutics Ag Methods and compositions for improved homology directed repair
EP4153299A1 (en) 2020-05-20 2023-03-29 Rodeo Therapeutics Corporation Compositions and methods of modulating short-chain dehydrogenase activity
EP4263829A1 (en) 2020-12-17 2023-10-25 Vertex Pharmaceuticals Incorporated Compositions and methods for editing beta-globin for treatment of hemaglobinopathies
EP4319800A1 (en) 2021-04-07 2024-02-14 Dana-Farber Cancer Institute, Inc. Compositions and methods for the treatment of cancer
WO2023086969A2 (en) 2021-11-12 2023-05-19 Ichor Medical Systems Inc. Treatment methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714680A (en) * 1984-02-06 1987-12-22 The Johns Hopkins University Human stem cells

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396601A (en) * 1980-03-26 1983-08-02 The Regents Of The University Of Calif. Gene transfer in intact mammals
US4608339A (en) * 1983-10-25 1986-08-26 Yoakum George H Protoplast fusion method for high-frequency DNA transfection in human cells
US5013824A (en) * 1985-11-19 1991-05-07 Schering Corporation Human interleukin-4 peptides and conjugates thereof
US4963489A (en) * 1987-04-14 1990-10-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5032508A (en) * 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US5004681B1 (en) * 1987-11-12 2000-04-11 Biocyte Corp Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
US5032507A (en) * 1987-11-13 1991-07-16 The Salk Institute For Biological Studies Potentiation of erythropoiesis
US5030203A (en) * 1987-11-16 1991-07-09 Baxter International Inc. Ampule for controlled administration of beneficial agent
DE3853201T2 (en) * 1987-12-23 1995-09-14 Univ Leland Stanford Junior Chimeric immunocompromising mammals and their use.
US5087570A (en) * 1988-05-10 1992-02-11 Weissman Irving L Homogeneous mammalian hematopoietic stem cell composition
US5061620A (en) * 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714680A (en) * 1984-02-06 1987-12-22 The Johns Hopkins University Human stem cells
US4714680B1 (en) * 1984-02-06 1995-06-27 Univ Johns Hopkins Human stem cells

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Folks et al. (1988), Science: vol. 242: 919 922. *
Folks et al. (1988), Science: vol. 242: 919-922.
Gishen et al. (1987), J. of Immunology 138: 2433 2438. *
Gishen et al. (1987), J. of Immunology 138: 2433-2438.
Kurtzberg et al. (1989), PNAS: vol. 86: 7575 7579. *
Kurtzberg et al. (1989), PNAS: vol. 86: 7575-7579.
Lewinsohn et al., Blood: vol. 75: 589 595 (1990). *
Lewinsohn et al., Blood: vol. 75: 589-595 (1990).
Lu et al. (1987), Journal of Immunology: vol. 139: 1823 1829. *
Lu et al. (1987), Journal of Immunology: vol. 139: 1823-1829.
M ller Sieberg et al. (1988), J. Exp. Med., vol. 167: 1825 1840. *
Muller-Sieberg et al. (1988), J. Exp. Med., vol. 167: 1825-1840.

Cited By (655)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744347A (en) * 1987-01-16 1998-04-28 Ohio University Edison Biotechnology Institute Yolk sac stem cells and their uses
US5763266A (en) * 1989-06-15 1998-06-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells
US6667034B2 (en) 1989-06-15 2003-12-23 The Regents Of The University Of Michigan Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture, methods for assaying the effect of substances on lineage-specific cell production, and cell compositions produced by these cultures
US20040063201A1 (en) * 1989-06-15 2004-04-01 The Regents Of The University Of Michigan Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture, methods for assaying the effect of substances of lineage-specific cell production, and cell compositions produced by these cultures
US5670351A (en) * 1989-06-15 1997-09-23 The Regents Of The University Of Michigan Methods and compositions for the ex vivo replication of human hematopoietic stem cells
US5605822A (en) * 1989-06-15 1997-02-25 The Regents Of The University Of Michigan Methods, compositions and devices for growing human hematopoietic cells
US5635386A (en) * 1989-06-15 1997-06-03 The Regents Of The University Of Michigan Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture
US5888807A (en) * 1989-06-15 1999-03-30 The Regents Of The University Of Michigan Devices for maintaining and growing human stem and/or hematopoietics cells
US5914108A (en) * 1990-03-30 1999-06-22 Systemix, Inc. Human hematopoietic stem cell
US5716827A (en) * 1990-03-30 1998-02-10 Systemix, Inc. Human hematopoietic stem cell
US5643741A (en) * 1990-03-30 1997-07-01 Systemix, Inc. Identification and isolation of human hematopoietic stem cells
US5840580A (en) * 1990-05-01 1998-11-24 Becton Dickinson And Company Phenotypic characterization of the hematopoietic stem cell
US6010696A (en) * 1990-11-16 2000-01-04 Osiris Therapeutics, Inc. Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells
US5340719A (en) * 1990-11-23 1994-08-23 Corporation Coulter Method and apparatus for optically screening microscopic cells
US5348859A (en) * 1990-11-23 1994-09-20 Coulter Corporation Method and apparatus for obtaining an absolute white blood cell subset count and white blood cell multipart differential
US5891654A (en) * 1991-03-08 1999-04-06 Board Of Trustees Of The University Of Illinois Purification and manipulation of bone marrow and blood cells on the basis of P-glycoprotein expression
US5994088A (en) * 1991-03-08 1999-11-30 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US5464753A (en) * 1991-03-08 1995-11-07 Univ Illinois Purification and manipulation of bone marrow and blood cells on the basis of P-glycoprotein expression
US5849686A (en) * 1991-03-11 1998-12-15 Creative Biomolecules, Inc. Morphogen-induced liver regeneration
US5795470A (en) * 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
US6677434B2 (en) 1991-04-02 2004-01-13 The Trustees Of Princeton University Soluble human flk-2 protein
US20050003365A1 (en) * 1991-04-02 2005-01-06 Lemischka Ihor R. Populations of cells that express FLK-1 receptors
US6960446B2 (en) 1991-04-02 2005-11-01 The Trustees Of Princeton University Method for isolating cells expressing flk-2
US5185438A (en) * 1991-04-02 1993-02-09 The Trustees Of Princeton University Nucleic acids encoding hencatoporetic stem cell receptor flk-2
US20050176102A1 (en) * 1991-04-02 2005-08-11 Lemischka Ihor R. Totipotent hematopoietic stem cell receptors and their ligands
US5367057A (en) * 1991-04-02 1994-11-22 The Trustees Of Princeton University Tyrosine kinase receptor flk-2 and fragments thereof
US7465464B2 (en) * 1991-04-02 2008-12-16 Trustees Of Princeton University Populations of cells that express flk-2 receptors
US5548065A (en) * 1991-04-02 1996-08-20 The Trustees Of Princeton University Tyrosine kinase receptor human flk-2-specific antibodies
US5912133A (en) * 1991-04-02 1999-06-15 The Trustees Of Princeton University Method for isolating stem cells expressing flk-1 receptors
US7445798B2 (en) 1991-04-02 2008-11-04 Trustees Of Princeton University Populations of cells that express FLK-1 receptors
US5906938A (en) * 1991-04-05 1999-05-25 Board Of Regents Of The University Of Washington Method of reconstituting hematopoietic cells using monoclonal antibodies to the stem cell factor receptor
US20020018775A1 (en) * 1991-04-05 2002-02-14 Virginia C Broudy Monoclonal antibodies to stem cell factor receptors
US5409825A (en) * 1991-04-09 1995-04-25 Indiana University Foundation Expansion of human hematopoietic progenitor cells in a liquid medium
US5744361A (en) * 1991-04-09 1998-04-28 Indiana University Expansion of human hematopoietic progenitor cells in a liquid medium
US6241984B1 (en) 1991-04-09 2001-06-05 The Indiana University Foundation Human hematopoietic progenitor cell preparations and their expansion in a liquid medium
US7109028B2 (en) 1991-08-07 2006-09-19 Albert Einstein College Of Medicine Of Yeshiva University Methods of isolating hepatic progenitors
US20040037814A1 (en) * 1991-08-07 2004-02-26 Reid Lola M. Proliferation of hepatocyte precursors
US20070134789A1 (en) * 1991-08-07 2007-06-14 Albert Einstein College Of Medicine Of Yeshiva University Proliferation of hepatocyte precursors
US6242252B1 (en) 1991-08-07 2001-06-05 Albert Einstein College Of Medicine Of Yeshiva University Hepatic progenitors and method of isolating same
US7759118B2 (en) 1991-08-07 2010-07-20 Albert Einstein College Of Medicine Of Yeshiva University Proliferation of hepatocyte precursors
US6146889A (en) * 1991-08-07 2000-11-14 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Proliferation of hepatocyte precursors
WO1993018136A1 (en) * 1992-03-05 1993-09-16 Cytomed, Inc. Process for supporting hematopoietic progenitor cells
US6146623A (en) * 1992-03-23 2000-11-14 Nexell Therapeutics Inc. In vitro-derived genetically altered human neutrophil precursor cells and methods for administering the same
US5700691A (en) * 1992-03-23 1997-12-23 Baxter Healthcare Inc. Method for the preparation of in vitro-derived human neutrophil precursor cells
US5955357A (en) * 1992-03-23 1999-09-21 Nexell Therapeutics Inc. In-vitro-derived human neutrophil precursor cells
WO1993018648A1 (en) * 1992-03-23 1993-09-30 Baxter International Inc. In vitro-derived human neutrophil precursor cells
US5888499A (en) * 1992-03-23 1999-03-30 Nexell Therapeutics Inc. Method for increasing neutrophil populations using in vitro-derived human neutrophil precursor cells
US5460964A (en) * 1992-04-03 1995-10-24 Regents Of The University Of Minnesota Method for culturing hematopoietic cells
US5436151A (en) * 1992-04-03 1995-07-25 Regents Of The University Of Minnesota Method for culturing human hematopoietic stem cells in vitro
US5672499A (en) * 1992-07-27 1997-09-30 California Institute Of Technology Immoralized neural crest stem cells and methods of making
US5693482A (en) * 1992-07-27 1997-12-02 California Institute Of Technology Neural chest stem cell assay
US5589376A (en) * 1992-07-27 1996-12-31 California Institute Of Technology Mammalian neural crest stem cells
US5928947A (en) * 1992-07-27 1999-07-27 California Institute Of Technology Mammalian multipotent neural stem cells
US5824489A (en) * 1992-07-27 1998-10-20 California Institute Of Technology In vitro method for obtaining an isolated population of mammalian neural crest stem cells
US5849553A (en) * 1992-07-27 1998-12-15 California Institute Of Technology Mammalian multipotent neural stem cells
US5654183A (en) * 1992-07-27 1997-08-05 California Institute Of Technology Genetically engineered mammalian neural crest stem cells
WO1994002016A1 (en) * 1992-07-28 1994-02-03 Steven Kessler Methods for positive immunoselection of stem cells
WO1994005775A1 (en) * 1992-09-03 1994-03-17 Systemix, Inc. High speed flow cytometric separation of viable mammalian cells
US5466572A (en) * 1992-09-03 1995-11-14 Systemix, Inc. High speed flow cytometric separation of viable cells
US5342776A (en) * 1992-09-04 1994-08-30 Bolnet Marie C N Avian hemopoietic progenitor cells
WO1994008039A1 (en) * 1992-10-02 1994-04-14 Systemix, Inc. Method of enrichment for human hematopoietic stem cells using c-kit
US5766951A (en) * 1992-11-12 1998-06-16 Quality Biological, Inc. Serum-free medium supporting growth and proliferation of normal bone marrow cells
US5824304A (en) * 1992-11-13 1998-10-20 Papayannopoulou; Thalia Peripheralization of hematopoietic stem cells
USRE40811E1 (en) 1992-11-13 2009-06-30 Board Of Regents Of The University Of Washington Peripheralization of hematopoietic stem cells
US5695755A (en) * 1992-11-13 1997-12-09 Papayannopoulou; Thalia Peripheralization of hematopoietic stem cells
US5843438A (en) * 1992-11-13 1998-12-01 Board Of Regents University Of Washington Peripheralization of hematopoietic stem cells
US5807686A (en) * 1992-11-16 1998-09-15 Regents Of University Of Minnesota Pluripotential quiescent stem cell population
US5409710A (en) * 1993-04-20 1995-04-25 Endocon, Inc. Foam cell drug delivery
US5843423A (en) * 1993-05-24 1998-12-01 Immunex Corporation Methods of stimulating hematopoietic cells with flt3-ligand
US6060049A (en) * 1993-05-24 2000-05-09 Ximerex, Inc. Surrogate tolerogenesis for the development of tolerance to xenografts
US7041282B2 (en) 1993-05-24 2006-05-09 Immunex Corporation Ligands for flt3 receptors
US6919206B2 (en) * 1993-05-24 2005-07-19 Immunex Corporation Medium containing flt3 ligand for culturing hematophoietic cells
US6632424B1 (en) 1993-05-24 2003-10-14 Immunex Corporation Human FLTS3 ligand
US5772994A (en) * 1993-05-28 1998-06-30 The University Of Pittsburgh Hematopoietic facilitatory cells and their uses
WO1995002038A1 (en) * 1993-07-09 1995-01-19 Ohio University Edison Animal Biotechnology Institute Yolk sac stem cells and their uses
US6033906A (en) * 1993-07-26 2000-03-07 California Institute Of Technology Methods for differentiating neural stem cells to glial cells using neuregulins
WO1995003693A1 (en) * 1993-07-29 1995-02-09 Systemix, Inc. Novel stem cell marker
US5681559A (en) * 1993-08-25 1997-10-28 Systemix, Inc. Method for producing a highly enriched population of hematopoietic stem cells
WO1995007348A1 (en) * 1993-09-08 1995-03-16 Imclone Systems Incorporated Monoclonal antibodies that recognize flk-2 receptors and the isolation of primitive hematopoietic stem cell populations
WO1995008105A1 (en) * 1993-09-17 1995-03-23 Systemix, Inc. Method for obtaining a cell population enriched in stem cells and compositions derived therefrom
US5409813A (en) * 1993-09-30 1995-04-25 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
WO1995009230A1 (en) * 1993-09-30 1995-04-06 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
US5759793A (en) * 1993-09-30 1998-06-02 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
US5599703A (en) * 1993-10-28 1997-02-04 The United States Of America As Represented By The Secretary Of The Navy In vitro amplification/expansion of CD34+ stem and progenitor cells
WO1995011692A1 (en) * 1993-10-28 1995-05-04 The United States Of America As Represented By The In vitro amplification of stem cells
US6190655B1 (en) 1993-12-03 2001-02-20 Immunex Corporation Methods of using Flt-3 ligand for exogenous gene transfer
US6001654A (en) * 1994-01-28 1999-12-14 California Institute Of Technology Methods for differentiating neural stem cells to neurons or smooth muscle cells using TGT-β super family growth factors
US20050004066A1 (en) * 1994-02-10 2005-01-06 Patricia Rockwell Monoclonal antibodies specific to VEGF receptors and uses thereof
US20030157069A1 (en) * 1994-03-07 2003-08-21 Lyman Stewart D. Methods of using flt3-ligand in hematopoietic cell transplantation
US7294331B2 (en) 1994-03-07 2007-11-13 Immunex Corporation Methods of using flt3-ligand in hematopoietic cell transplantation
US20070207164A1 (en) * 1994-03-07 2007-09-06 Immunex Corporation Methods of using flt3-ligand in the treatment of cancer
US5631219A (en) * 1994-03-08 1997-05-20 Somatogen, Inc. Method of stimulating hematopoiesis with hemoglobin
US6242417B1 (en) 1994-03-08 2001-06-05 Somatogen, Inc. Stabilized compositions containing hemoglobin
US5541072A (en) * 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5972627A (en) * 1994-06-15 1999-10-26 Systemix, Inc. Method of purifying a population of cells enriched for dendritic and/or lymphoid progenitors and populations of cells obtained thereby
US5985660A (en) * 1994-06-15 1999-11-16 Systemix, Inc. Method of identifying biological response modifiers involved in dendritic and/or lymphoid progenitor cell proliferation and/or differentiation
WO1995034676A1 (en) * 1994-06-15 1995-12-21 Systemix, Inc. Population of cells enriched for myeloid and/or lymphoid progenitors and methods of making and using
US6740493B1 (en) 1994-08-12 2004-05-25 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US5972703A (en) * 1994-08-12 1999-10-26 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US7498170B2 (en) 1994-08-12 2009-03-03 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US20040214241A1 (en) * 1994-08-12 2004-10-28 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US5474687A (en) * 1994-08-31 1995-12-12 Activated Cell Therapy, Inc. Methods for enriching CD34+ human hematopoietic progenitor cells
US5827742A (en) * 1994-09-01 1998-10-27 Beth Israel Deaconess Medical Center, Inc. Method of selecting pluripotent hematopioetic progenitor cells
US5965437A (en) * 1994-09-01 1999-10-12 Beth Israel Deaconess Medical Center, Inc. Method of screening a compound for hematopoietic activity
US5650317A (en) * 1994-09-16 1997-07-22 Michigan State University Human breast epithelial cell type with stem cell and luminal epithelial cell characteristics
US5814511A (en) * 1994-09-16 1998-09-29 Michigan State University Human breast epithelial cell type with stem cell and luminal epithelial cell characteristics
US6140119A (en) * 1994-09-16 2000-10-31 Michigan State University Expression of estrogen receptors in type I and type II human breast epithelial cells
US5686577A (en) * 1994-10-17 1997-11-11 Cornell Research Foundation, Inc. T cell factors influencing B cell development
US5677136A (en) * 1994-11-14 1997-10-14 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, compositions derived therefrom and methods of use thereof
US5665557A (en) * 1994-11-14 1997-09-09 Systemix, Inc. Method of purifying a population of cells enriched for hematopoietic stem cells populations of cells obtained thereby and methods of use thereof
US5786323A (en) * 1994-11-16 1998-07-28 Amgen Inc. Use of stem cell factor and soluble interleukin-6 receptor to induce the development of hematopoietic stem cells
US5610056A (en) * 1994-11-16 1997-03-11 Amgen Inc. Use of stem cell factor interleukin-6 and soluble interleukin-6 receptor to induce the development of hematopoietic stem cells
US20040106195A1 (en) * 1994-11-21 2004-06-03 Jewish Medical And Research Center Method for identification of cell growth or differentiation factors
US8143059B2 (en) * 1994-11-21 2012-03-27 National Jewish Health Method for identification of cell growth or differentiation factors
US6068836A (en) * 1994-11-23 2000-05-30 University Of Massachusetts Cell compositions for use in transplantation
US5665350A (en) * 1994-11-23 1997-09-09 University Of Massachusetts Medical Center Cell cycle dependent transplantation and ex vivo gene therapy
WO1996015813A1 (en) * 1994-11-23 1996-05-30 University Of Massachusetts Medical Center Cell compositions for use in transplantation and ex vivo gene therapy
US6004812A (en) * 1994-12-01 1999-12-21 Beth Israel Medical Center, Inc. In-vitro T-lymphopoiesis system
US6200806B1 (en) 1995-01-20 2001-03-13 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US7582479B2 (en) 1995-01-20 2009-09-01 Wisconsin Alumni Research Foundation Primate embryonic stem cell line
US8273569B2 (en) 1995-01-20 2012-09-25 Wisconsin Alumni Research Foundation Preparation of human embryonic stem cells
US20050158854A1 (en) * 1995-01-20 2005-07-21 Thomson James A. Primate embryonic stem cells
US20110143431A1 (en) * 1995-02-02 2011-06-16 Ilham Saleh Abuljadayel Method Of Preparing An Undifferentiated Cell
US9068164B1 (en) * 1995-02-02 2015-06-30 Tristem Trading (Cyprus) Limited Method of preparing an undifferentiated cell
US5830755A (en) * 1995-03-27 1998-11-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services T-cell receptors and their use in therapeutic and diagnostic methods
WO1996036344A1 (en) * 1995-05-15 1996-11-21 The Johns Hopkins University School Of Medicine Intracellular marker for purification of stem cells
US5876956A (en) * 1995-05-15 1999-03-02 Johns Hopkins University School Of Medicine Methods for identification or purification of cells containing an enzymatic intracellular marker
WO1996036696A1 (en) * 1995-05-19 1996-11-21 T. Breeders Continuous selective clonogenic expansion of relatively undifferentiated cells
US6338942B2 (en) * 1995-05-19 2002-01-15 T. Breeders, Inc. Selective expansion of target cell populations
US5925567A (en) * 1995-05-19 1999-07-20 T. Breeders, Inc. Selective expansion of target cell populations
US20020022216A1 (en) * 1995-05-19 2002-02-21 T. Breeders, Inc. Selective expansion of target cell populations
US5674750A (en) * 1995-05-19 1997-10-07 T. Breeders Continuous selective clonogenic expansion of relatively undifferentiated cells
US6015554A (en) * 1995-06-07 2000-01-18 Systemix, Inc. Method of reconstituting human lymphoid and dendritic cells
US5728581A (en) * 1995-06-07 1998-03-17 Systemix, Inc. Method of expanding hematopoietic stem cells, reagents and bioreactors for use therein
US5861313A (en) * 1995-06-07 1999-01-19 Ontogeny, Inc. Method of isolating bile duct progenitor cells
US5814440A (en) * 1995-06-07 1998-09-29 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, antibodies for use therein, compositions derived therefrom and methods of use thereof
US6127135A (en) * 1995-06-07 2000-10-03 Hill; Beth Louise Methods of obtaining compositions enriched for hematopoietic stem cells, antibodies for use therein, compositions derived therefrom and methods of use thereof
US20050208653A1 (en) * 1995-06-07 2005-09-22 Es Cell International Pte Ltd. Method of isolating bile duct progenitor cells
US20030039650A1 (en) * 1995-07-26 2003-02-27 Gruenberg Micheal L. Autologous immune cell therapy: cell compositions, methods and applications to treatment of human disease
US20040037845A1 (en) * 1995-10-04 2004-02-26 Kenneth Brasel Use of flt3-ligand in the treatment of infection
US7361330B2 (en) 1995-10-04 2008-04-22 Immunex Corporation Methods of using flt3-ligand in the treatment of fibrosarcoma
US7150992B1 (en) 1995-10-04 2006-12-19 Innunex Corporation Methods of preparing dendritic cells with flt3-ligand and antigen
US20030165531A1 (en) * 1995-10-04 2003-09-04 Immunex Corporation Flt3-ligand as a vaccine adjuvant
US20020034517A1 (en) * 1995-10-04 2002-03-21 Kenneth Brasel Dendritic cell stimulatory factor
US20060292166A1 (en) * 1995-10-04 2006-12-28 Immunex Corporation Vaccine composition comprising Flt3-ligand
US20090075886A1 (en) * 1995-10-04 2009-03-19 Immunex Corporation Dendritic cell stimulatory factor
US20030113341A1 (en) * 1995-10-04 2003-06-19 Immunex Corporation Methods of using FLT3-ligand in the treatment of cancer
US6916470B2 (en) 1995-10-30 2005-07-12 Novartis Ag Methods for use of mpl ligands with primitive human stem cells
US6326205B1 (en) * 1995-10-30 2001-12-04 Systemix, Inc. Methods for use of Mpl ligands with primitive human stem cells
US20030082805A1 (en) * 1995-10-30 2003-05-01 Murray Lesley J. Methods for use of mpl ligands with primitive human stem cells
US7416887B2 (en) 1995-10-30 2008-08-26 Novartis Ag Methods for use of MPL ligands with primitive human stem cells
US20060024275A1 (en) * 1995-10-30 2006-02-02 Novartis Ag Methods for use of MPL ligands with primitive human stem cells
US5910434A (en) * 1995-12-15 1999-06-08 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
WO1997021825A1 (en) 1995-12-15 1997-06-19 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
US6017761A (en) * 1995-12-15 2000-01-25 Systemix, Inc. Method for obtaining retroviral packaging cell lines producing high transducing efficiency retroviral supernatant
WO1997022708A1 (en) * 1995-12-19 1997-06-26 Systemix, Inc. Primate cluster-forming embryonic hematopoietic stem cells
US6733746B2 (en) 1996-03-12 2004-05-11 Invitrogen Corporation Hematopoietic cell culture nutrient supplement
US20040072349A1 (en) * 1996-03-12 2004-04-15 Invitrogen Corporation Hematopoietic cell culture nutrient supplement
WO1997033978A1 (en) * 1996-03-12 1997-09-18 Life Technologies, Inc. Hematopoietic cell culture nutrient supplement
US20100297090A1 (en) * 1996-03-12 2010-11-25 Life Technologies Corporation Hematopoietic cell culture nutrient supplement
US8084033B2 (en) 1996-04-26 2011-12-27 Amcell Corporation Composition comprising a cell expressing an AC133 cell surface antigen and an antibody or antigen-binding fragment
US20090093052A1 (en) * 1996-04-26 2009-04-09 Yin Amy H Human Hematopoietic Stem And Progenitor Antigen And Methods For Its Use
US5843633A (en) * 1996-04-26 1998-12-01 Amcell Corporation Characterization of a human hematopoietic progenitor cell antigen
US6455678B1 (en) 1996-04-26 2002-09-24 Amcell Corporation Human hematopoietic stem and progenitor cell antigen
US5928638A (en) * 1996-06-17 1999-07-27 Systemix, Inc. Methods for gene transfer
US6939669B2 (en) * 1996-07-10 2005-09-06 Meiji Dairies Corporation Expansion of hematopoietic cells using midkine or pleiotrophin
US6383480B1 (en) * 1996-07-10 2002-05-07 Meiji Milk Products, Co., Ltd. Composition comprising midkine or pleiotrophin protein and method of increasing hematopoietic cells
US6372210B2 (en) 1996-10-18 2002-04-16 Quality Biological, Inc. Method for repopulating human bone marrow comprising culturing CD34+ cells in a serum free medium
US5945337A (en) * 1996-10-18 1999-08-31 Quality Biological, Inc. Method for culturing CD34+ cells in a serum-free medium
US6224860B1 (en) 1996-10-18 2001-05-01 Quality Biological, Inc. Method for repopulating human bone marrow comprising culturing CD34+ cells in a serum free medium
US6043348A (en) * 1996-11-13 2000-03-28 Lawman; Michael J. P. Antibody recognizing a small subset of human hematopoietic cells
US7709000B2 (en) 1996-11-13 2010-05-04 Morphogenesis, Inc. Antibody recognizing a small subset of human hematopoietic cells
US6242579B1 (en) 1996-11-13 2001-06-05 Michael J. P. Lawman Antigen found on a small subset of human hematopoietic cells which binds to monoclonal antibody MG1
US20080152647A1 (en) * 1996-11-13 2008-06-26 Lawman Michael J P Novel antibody recognizing a small subset of human hematopoietic cells
US7247718B2 (en) 1996-11-13 2007-07-24 Morphogenesis, Inc. Antibody recognizing a small subset of human hematopoietic cells
US6838282B2 (en) 1996-11-13 2005-01-04 Morphogenesis, Inc. Antibody recognizing a small subset of human hematopoietic cells
US20050180980A1 (en) * 1996-11-13 2005-08-18 Lawman Michael J.P. Novel antibody recognizing a small subset of human hematopoietic cells
US6482598B2 (en) 1996-11-13 2002-11-19 Morphogenesis, Inc. Antibody recognizing a small subset of human hematopoietic cells
US20060211051A1 (en) * 1996-11-15 2006-09-21 Eugene Mechetner Methods and reagents for preparing and using immunological agents specific for p-glycoprotein
US7144704B2 (en) 1996-11-15 2006-12-05 Oncotech, Inc. Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6630327B1 (en) 1996-11-15 2003-10-07 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6365357B1 (en) 1996-11-15 2002-04-02 Onotech, Inc. Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6783775B2 (en) 1996-12-10 2004-08-31 Hadasit Medical Research Services And Development Ltd. Serum-derived factor inducing cell differentiation and medical uses thereof
US20020054916A1 (en) * 1996-12-10 2002-05-09 Tony Peled Serum-derived factor inducing cell differentiation and medical uses thereof
WO1998037240A1 (en) * 1997-02-24 1998-08-27 Tm Technologies, Inc. Anti-sense oligonucleotide pharmacological agents
US6245566B1 (en) 1997-03-31 2001-06-12 The Johns Hopkins University School Of Medicine Human embryonic germ cell line and methods of use
US20030148514A1 (en) * 1997-03-31 2003-08-07 The Johns Hopkins University School Of Medicine Human embryonic germ cell line and methods of use
US6562619B1 (en) 1997-03-31 2003-05-13 The Johns Hopkins University School Of Medicine Differentiation of human embryonic germ cells
US6331406B1 (en) 1997-03-31 2001-12-18 The John Hopkins University School Of Medicine Human enbryonic germ cell and methods of use
US6090622A (en) * 1997-03-31 2000-07-18 The Johns Hopkins School Of Medicine Human embryonic pluripotent germ cells
US7067316B2 (en) 1997-09-25 2006-06-27 Cytomatrix, Llc Methods and devices for the long-term culture of hematopoietic progenitor cells
US20050079609A1 (en) * 1997-09-25 2005-04-14 Cytomatrix, Llc Methods and devices for the long-term culture of hematopoietic progenitor cells
US6093531A (en) * 1997-09-29 2000-07-25 Neurospheres Holdings Ltd. Generation of hematopoietic cells from multipotent neural stem cells
US6897060B1 (en) 1997-09-29 2005-05-24 Neurospheres Holdings, Ltd. Composition comprising multipotent neural stem cells for generation of hematopoietic cells
US20030148515A1 (en) * 1997-09-29 2003-08-07 Neurosoheres Holdings Ltd. Generation of hematopoietic cells from multipotent neutral stem cells
US7204979B2 (en) 1997-09-29 2007-04-17 Neurospheres Holdings Ltd. Generation of hematopoietic cells from multipotent neural stem cells
US6277557B1 (en) 1997-10-21 2001-08-21 Regents Of The University Of Minnesota Infusible grade short-term cell storage medium
US5955257A (en) * 1997-10-21 1999-09-21 Regents Of The University Of Minnesota Infusible grade short-term cell storage medium for mononuclear cells
US6361642B1 (en) 1997-12-02 2002-03-26 Baxter International Inc. Heat and pressure-formed flexible containers
AU753975B2 (en) * 1997-12-04 2002-10-31 Duke University Methods of isolating and using CD7+CD34-Lin-hematopoietic cells
US6537807B1 (en) 1997-12-04 2003-03-25 Duke University Hematopoietic stem cells
WO1999028486A1 (en) * 1997-12-04 1999-06-10 Duke University Methods of isolating and using cd7+cd34-lin-hematopoietic cells
US6059968A (en) * 1998-01-20 2000-05-09 Baxter International Inc. Systems for processing and storing placenta/umbilical cord blood
US20050142659A1 (en) * 1998-01-23 2005-06-30 Shahin Rafii Purified populations of stem cells
US6852533B1 (en) 1998-01-23 2005-02-08 Cornell Research Foundation, Inc. Purified populations of stem cells
US20040062755A1 (en) * 1998-02-23 2004-04-01 Aastrom Biosciences, Inc. Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
US20020031498A1 (en) * 1998-02-23 2002-03-14 Aastrom Biosciences, Inc. Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
US20060093581A1 (en) * 1998-02-23 2006-05-04 Aastrom Biosciences, Inc. Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both: methods for obtaining same; and their uses
US20040185557A1 (en) * 1998-02-23 2004-09-23 Aastrom Biosciences, Inc. Human linkeage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
US6835566B2 (en) 1998-02-23 2004-12-28 Aastrom Biosciences, Inc. Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
EP2019145A1 (en) 1998-05-29 2009-01-28 Case Western Reserve University Hematopoietic progenitor cell gene transduction
US6627191B1 (en) * 1999-01-25 2003-09-30 Seattle Biomedical Research Institute Anti-transforming growth factor Beta (TGF-β) treated stem cell composition and method
US20040219135A1 (en) * 1999-01-25 2004-11-04 Bartelmez Stephen H Anti-transforming growth factor beta (TGF-beta) treated stem cell composition and method
US7049141B1 (en) 1999-02-26 2006-05-23 Stemcells California, Inc. Use of collagenase in the preparation of neural stem cell cultures
US6238922B1 (en) * 1999-02-26 2001-05-29 Stemcells, Inc. Use of collagenase in the preparation of neural stem cell cultures
US20040258672A1 (en) * 1999-04-15 2004-12-23 Monash University Graft acceptance through manipulation of thymic regeneration
US20040259803A1 (en) * 1999-04-15 2004-12-23 Monash University Disease prevention by reactivation of the thymus
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
US20040241842A1 (en) * 1999-04-15 2004-12-02 Monash University Stimulation of thymus for vaccination development
US20040265285A1 (en) * 1999-04-15 2004-12-30 Monash University Normalization of defective T cell responsiveness through manipulation of thymic regeneration
US20070274946A1 (en) * 1999-04-15 2007-11-29 Norwood Immunoloty, Ltd. Tolerance to Graft Prior to Thymic Reactivation
US20100098742A1 (en) * 1999-04-30 2010-04-22 Vacanti Joseph P Fabrication of tissue lamina using microfabricated two-dimensional molds
US20030003575A1 (en) * 1999-04-30 2003-01-02 Vacanti Joseph P. Fabrication of vascularized tissue using microfabricated two-dimensional molds
US20100267136A1 (en) * 1999-04-30 2010-10-21 The General Hospital Corporation Fabrication of vascularized tissue using microfabricated two-dimensional molds
US8642336B2 (en) 1999-04-30 2014-02-04 The General Hospital Corporation Fabrication of vascularized tissue using microfabricated two-dimensional molds
US20030209602A1 (en) * 1999-06-07 2003-11-13 Tsikos Constantine J. Planar laser illumination and imaging (PLIIM) system employing laser-diode based planar laser illumination arrays and a linear electronic image detection array employing image formation optics that optically compensates for decreases in the power-density of the planar laser illumination beam with increases in object distance during illumination and imaging operations
US7015037B1 (en) 1999-08-05 2006-03-21 Regents Of The University Of Minnesota Multiponent adult stem cells and methods for isolation
US10226485B2 (en) 1999-08-05 2019-03-12 Abt Holding Company Multipotent adult stem cells and methods for isolation
US8252280B1 (en) 1999-08-05 2012-08-28 Regents Of The University Of Minnesota MAPC generation of muscle
US7659118B2 (en) 1999-08-05 2010-02-09 Abt Holding Company Multipotent adult stem cells
US20050181502A1 (en) * 1999-08-05 2005-08-18 Athersys, Inc. Multipotent adult stem cells and methods for isolation
US9175077B2 (en) 1999-08-06 2015-11-03 Nobel Biosciences Llc Nucleic acids encoding biologically active polypeptides derived from a novel early stage pregnancy factor designated maternin (MA)
US7994278B1 (en) 1999-08-06 2011-08-09 Nobel Biosciences Llc Biologically active polypeptides derived from a novel early stage pregnancy factor designated maternin (MA)
US20080274090A1 (en) * 1999-09-27 2008-11-06 University Of Florida Research Foundation, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US6790614B1 (en) 1999-11-19 2004-09-14 Novartis Ag Selectable cell surface marker genes
US7112576B1 (en) 1999-12-10 2006-09-26 Regents Of The University Of Minnesota Compositions and methods for cryopreservation of peripheral blood lymphocytes
US7129326B2 (en) 2000-04-14 2006-10-31 Genencor International, Inc. Methods for selective targeting
US20030152976A1 (en) * 2000-04-14 2003-08-14 Janssen Giselle G. Methods for selective targeting
US8318640B2 (en) 2000-04-14 2012-11-27 Danisco Us Inc. Methods for selective targeting
US20090093393A1 (en) * 2000-04-14 2009-04-09 Murray Christopher J Methods For Selective Targeting
US20070059755A1 (en) * 2000-04-14 2007-03-15 Janssen Giselle G Methods for selective targeting
US20050112692A1 (en) * 2000-04-14 2005-05-26 Murray Christopher J. Methods for selective targeting
US7776021B2 (en) 2000-04-28 2010-08-17 The Charles Stark Draper Laboratory Micromachined bilayer unit for filtration of small molecules
US20050202557A1 (en) * 2000-04-28 2005-09-15 Jeffrey Borenstein Micromachined bilayer unit of engineered tissues
US8153113B2 (en) 2000-06-05 2012-04-10 The Trustees Of Columbia University In The City Of New York Method of increasing trafficking of endothelial progenitor cells to ischemia-damaged tissue
US7662392B2 (en) 2000-06-05 2010-02-16 The Trustees Of Columbia University In The City Of New York Use of SDF-1 or G-CSF to improve myocardial function after ischemic injury
US20090142296A1 (en) * 2000-06-05 2009-06-04 The Trustees Of Columbia University In The City Of New York Method of increasing trafficking of endothelial progenitor cells to ischemia-damaged tissue
US20080057069A1 (en) * 2000-06-05 2008-03-06 The Trustees Of Columbia University In The City Of New York Method of increasing trafficking of endothelial progenitor cells to ischemia-damaged tissue
US20060111290A1 (en) * 2000-06-05 2006-05-25 The Trustees Of Columbia University In The City Of New York Use of SDF-1 or G-CSF to improve myocardial function after ischemic injury
US20040131585A1 (en) * 2000-06-05 2004-07-08 Silviu Itescu Identification and use og human bone marrow-derived endothelial progenitor cells to improve myocardial function after ischemic injury
US9387234B2 (en) 2000-06-05 2016-07-12 The Trustees Of Columbia University In The City Of New York Use of SDF-1 to improve ischemic myocardial function
US8486416B2 (en) 2000-06-05 2013-07-16 The Trustees Of Columbia University In The City Of New York Use of SDF-1 to improve ischemic myocardial function
US6632620B1 (en) 2000-06-22 2003-10-14 Andrew N. Makarovskiy Compositions for identification and isolation of stem cells
US20030134338A1 (en) * 2000-06-22 2003-07-17 Andrew N. Makarovskiy Compositions for identification and isolation of stem cells
US7223549B2 (en) 2000-06-22 2007-05-29 Andrew N. Marakovskiy Compositions for identification and isolation of stem cells
US20040037815A1 (en) * 2000-08-03 2004-02-26 Clarke Michael F. Isolation and use of solid tumor stem cells
US7713710B2 (en) 2000-08-03 2010-05-11 The Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US20110033481A1 (en) * 2000-08-03 2011-02-10 Clarke Michael F Prospective identification and characterization of breast cancer stem cells
US8420885B2 (en) 2000-08-03 2013-04-16 The Regents Of The University Of Michigan Determining the capability of a test compound to affect solid tumor stem cells
US20060073125A1 (en) * 2000-08-03 2006-04-06 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US10227567B2 (en) 2000-08-03 2019-03-12 The Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
EP2359863A2 (en) 2000-08-03 2011-08-24 The Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US8044259B2 (en) 2000-08-03 2011-10-25 The Regents Of The University Of Michigan Determining the capability of a test compound to affect solid tumor stem cells
US7754206B2 (en) 2000-08-03 2010-07-13 The Regents Of The University Of Michigan Method for treating cancer using a Notch4 ligand antagonist
US6984522B2 (en) 2000-08-03 2006-01-10 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US9492538B2 (en) 2000-08-03 2016-11-15 The Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US7115360B2 (en) 2000-08-03 2006-10-03 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US20070259969A1 (en) * 2000-08-03 2007-11-08 The Regents Of The University Of Michigan Isolation And Use Of Solid Tumor Stem Cells
US20080178305A1 (en) * 2000-08-03 2008-07-24 The Regents Of The University Of Michigan Isolation And Use Of Solid Tumor Stem Cells
US9089556B2 (en) 2000-08-03 2015-07-28 The Regents Of The University Of Michigan Method for treating cancer using an antibody that inhibits notch4 signaling
US20070231325A1 (en) * 2000-08-03 2007-10-04 The Regents Of The University Of Michigan Prospective identification and characterization of breast cancer stem cells
US20070212737A1 (en) * 2000-08-03 2007-09-13 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
US20060229251A1 (en) * 2000-10-13 2006-10-12 Monash University Treatment of T cell disorders
US20040132179A1 (en) * 2000-10-13 2004-07-08 Richard Boyd Treatment of t cell disorders
US7060492B2 (en) 2000-10-30 2006-06-13 Vbi Technologies, L.L.C. Isolation of spore-like cells from tissues exposed to extreme conditions
WO2002057428A1 (en) * 2000-10-30 2002-07-25 University Of Massachusetts Isolation of spore-like cells from tissues exposed to extreme conditions
US20020151050A1 (en) * 2000-10-30 2002-10-17 Vacanti Charles A. Isolation of spore-like cells from tissues exposed to extreme conditions
US20040175823A1 (en) * 2000-10-30 2004-09-09 Vacanti Charles A. Isolation of spore-like cells from tissues exposed to extreme conditions
US20080057579A1 (en) * 2000-12-01 2008-03-06 The General Hospital Corporation Methods and products for manipulating hematopoietic stem cells
US20060134086A1 (en) * 2000-12-14 2006-06-22 Yiyou Chen Targeted enzymes
US20030049689A1 (en) * 2000-12-14 2003-03-13 Cynthia Edwards Multifunctional polypeptides
US20080248544A1 (en) * 2000-12-14 2008-10-09 Murray Christopher J Methods And Compositions For Grafting Functional Loops Into A Protein
US20030147874A1 (en) * 2000-12-14 2003-08-07 Volker Schellenberger Targeted enzyme prodrug therapy
US7371400B2 (en) 2001-01-02 2008-05-13 The General Hospital Corporation Multilayer device for tissue engineering
US20040107453A1 (en) * 2001-02-14 2004-06-03 Furcht Leo T Multipotent adult stem cells, sources thereof, methods of obtaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
US7838289B2 (en) 2001-02-14 2010-11-23 Abt Holding Company Assay utilizing multipotent adult stem cells
US20090022714A1 (en) * 2001-03-02 2009-01-22 Imclone Systems, Inc. Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist
US20090022716A1 (en) * 2001-03-02 2009-01-22 Imclone Systems Inc. Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist
US20100158881A1 (en) * 2001-03-09 2010-06-24 The U.S.A. as represented by the Secretary, Dept. of Health and Human Services Activated dual specificity lymphocytes and their methods of use
US20030026790A1 (en) * 2001-03-09 2003-02-06 Patrick Hwu Activated dual specificity lymphocytes and their methods of use
US7723111B2 (en) 2001-03-09 2010-05-25 The United States Of America As Represented By The Department Of Health And Human Services Activated dual specificity lymphocytes and their methods of use
US20020191021A1 (en) * 2001-03-12 2002-12-19 Lilian Labelle Method and device for validating parameters defining an image
US7202080B2 (en) 2001-03-29 2007-04-10 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic differentiation pathway
US20020182728A1 (en) * 2001-03-29 2002-12-05 Vijayakumar Ramiya Method for transdifferentiation of non pancreatic stem cells to the pancreatic differentiation pathway
US7067314B2 (en) 2001-06-19 2006-06-27 Kaneka Corporation Monoclonal antibody, its immunoreactive fragment and hybridoma
US20020197655A1 (en) * 2001-06-19 2002-12-26 Kaneka Corporation Antigen and monoclonal antibody which recognizes the antigen
US20040247597A1 (en) * 2001-06-20 2004-12-09 Peter Carmeliet Method of treating atherosclerosis and other inflammatory diseases
US20050026220A1 (en) * 2001-08-10 2005-02-03 Shahin Rafii Isolation and mobilization of stem cells expressing vegfr-1
US20030049836A1 (en) * 2001-08-15 2003-03-13 Phi-Wilson Janette T. Cell separation system
US20030079536A1 (en) * 2001-09-10 2003-05-01 Frank Fischer Method and system for monitoring a tire air pressure
US20030134415A1 (en) * 2001-09-19 2003-07-17 Gruenberg Micheal L. Th1 cell adoptive immunotherapy
US20030134341A1 (en) * 2001-09-19 2003-07-17 Medcell Biologics, Llc. Th1 cell adoptive immunotherapy
US8486696B2 (en) 2001-09-21 2013-07-16 Garnet Biotherapeutics, Inc. Cell populations which co-express CD49c and CD90
US20050233452A1 (en) * 2001-09-21 2005-10-20 Neuronyx, Inc. Cell populations which co-express CD49c and CD90
US20030059414A1 (en) * 2001-09-21 2003-03-27 Ho Tony W. Cell populations which co-express CD49c and CD90
US10351826B2 (en) 2001-09-21 2019-07-16 Garnet Biotherapeutics, Inc. Cell populations which co-express CD49c and CD90
US9969980B2 (en) 2001-09-21 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20070264232A1 (en) * 2001-09-21 2007-11-15 Neuronyx, Inc. Cell populations which co-express CD49c and CD90
US20070231309A1 (en) * 2001-09-21 2007-10-04 Neuronyx, Inc. Cell populations which co-express CD49c and CD90
US20060088512A1 (en) * 2001-10-15 2006-04-27 Monash University Treatment of T cell disorders
US6759244B2 (en) 2001-11-08 2004-07-06 Art Institute Of New York And New Jersey, Inc. Composite blastocysts (CBs) from aggregates of dissociated cells of non-viable pre-embryos
US20050089518A1 (en) * 2001-12-07 2005-04-28 Clarke Michael F. Prospective identification and characterization of breast cancer stem cells
US20030128832A1 (en) * 2002-01-04 2003-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Message transfer part point code mapping method and node
US7498414B2 (en) 2002-03-04 2009-03-03 Imclone Systems Incorporated Human antibodies specific to KDR and uses thereof
US20050234225A1 (en) * 2002-03-04 2005-10-20 Zhenping Zhu Human antibodies specific to kdr and uses thereof
US20030175272A1 (en) * 2002-03-07 2003-09-18 Medcell Biologics, Inc. Re-activated T-cells for adoptive immunotherapy
US8491561B2 (en) 2002-03-25 2013-07-23 The Charles Stark Draper Laboratory Micromachined bilayer unit of engineered tissues
US7887796B2 (en) 2002-04-23 2011-02-15 The Trustees Of Columbia University In The City Of New York Method of inhibiting collagen formation by VDUP1 inhibition
US20070172467A1 (en) * 2002-04-23 2007-07-26 The Trustees Of Columbia University In The City Of New York Regeneration of endogenous myocardial tissue by induction of neovascularization
US20050233992A1 (en) * 2002-04-23 2005-10-20 Silviu Itescu Regeneration of endogeneous myocardial tissue by induction of neovascularization
US20030199464A1 (en) * 2002-04-23 2003-10-23 Silviu Itescu Regeneration of endogenous myocardial tissue by induction of neovascularization
US8242091B2 (en) 2002-04-23 2012-08-14 The Trustees Of Columbia University In The City Of New York Treatment of tumor with dnazyme directed to peroxiredoxin
US8663652B2 (en) 2002-04-23 2014-03-04 The Trustees Of Columbia University In The City Of New York Regeneration of endogenous myocardial tissue
EP2107116A2 (en) 2002-06-12 2009-10-07 Genencor International, Inc. Methods for improving a binding characteristic of a molecule
US20110158966A1 (en) * 2002-07-23 2011-06-30 Judith Seligman Stem cells characterized by expression of germline specific genes
US20050287547A1 (en) * 2002-07-23 2005-12-29 Judith Seligman Embryonic stem cell markers and uses thereof
US7943136B2 (en) 2002-07-25 2011-05-17 The General Hospital Corporation Parathyroid hormone receptor activation and stem and progenitor cell expansion
US20060257376A1 (en) * 2002-07-25 2006-11-16 The General Hospital Corporation Parathyroid hormone receptor activation and hematopoietic progenitor cell expansion
US8309095B2 (en) 2002-07-25 2012-11-13 The General Hospital Corporation Parathyroid hormone receptor activation and stem and progenitor cell expansion
US20070281889A1 (en) * 2002-07-25 2007-12-06 Scadden David T Parathyroid hormone receptor activation and stem and progenitor cell expansion
US20100113360A1 (en) * 2002-07-25 2010-05-06 The General Hospital Corporation Parathyroid hormone receptor activation and stem and progenitor cell expansion
US20090092625A1 (en) * 2002-07-25 2009-04-09 The General Hospital Corporation Parathyroid hormone receptor activation and hematopoietic progenitor cell expansion
US7429383B2 (en) 2002-07-25 2008-09-30 The General Hospital Corporation Parathyroid hormone receptor activation and hematopoietic progenitor cell expansion
US7635477B2 (en) 2002-07-25 2009-12-22 The General Hospital Corporation Parathyroid hormone receptor activation and stem and progenitor cell expansion
US7776334B2 (en) 2002-07-25 2010-08-17 The General Hospital Corporation Parathyroid hormone receptor activation and hematopoietic progenitor cell expansion
US20040028661A1 (en) * 2002-08-07 2004-02-12 Bartelmez Stephen H. Expansion of cells using thrombopoietin and anti-transforming growth factor-beta
US20070224177A1 (en) * 2002-09-20 2007-09-27 Ho Tony W Cell populations which co-express CD49c and CD90
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20050276793A1 (en) * 2002-11-15 2005-12-15 The Board Of Trustees Of The University Of Illinois Methods for in vitro expansion of hematopoietic stem cells
US7927785B2 (en) 2002-11-15 2011-04-19 The Board Of Trustees Of The University Of Illinois Methods for in vitro expansion of hematopoietic stem cells
US8173361B2 (en) 2003-01-16 2012-05-08 The General Hospital Corporation Method of determining metabolism of a test agent
US20070020242A1 (en) * 2003-03-27 2007-01-25 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US8357528B2 (en) 2003-05-21 2013-01-22 The General Hospital Corporation Microfabricated compositions and processes for engineering tissues containing multiple cell types
US20060019256A1 (en) * 2003-06-09 2006-01-26 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20080292546A1 (en) * 2003-06-09 2008-11-27 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20050058628A1 (en) * 2003-06-11 2005-03-17 Jan Remmereit Nuclear reprogramming of cells for therapeutic use
WO2005005610A2 (en) 2003-06-30 2005-01-20 The Regents Of The University Of California Mutant adeno-associated virus virions and methods of use thereof
US20090048324A1 (en) * 2003-07-07 2009-02-19 Fox Chase Cancer Center Alternate morpheein forms of allosteric proteins as a target for the development of bioactive molecules
US8153410B2 (en) 2003-07-07 2012-04-10 Fox Chase Cancer Center Alternate morpheein forms of allosteric proteins as a target for the development of bioactive molecules
US20110207816A1 (en) * 2003-07-07 2011-08-25 Fox Chase Cancer Center Alternate morpheeins of allosteric proteins as a target for the development of bioactive molecules
EP3222715A1 (en) 2003-08-08 2017-09-27 Sangamo BioSciences, Inc. Methods and compositions for targeted cleavage and recombination
US9260726B2 (en) 2003-08-08 2016-02-16 Sangamo Biosciences, Inc. Targeted integration and expression on exogenous nucleic acid sequences
WO2005014791A2 (en) 2003-08-08 2005-02-17 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
EP2927318A1 (en) 2003-08-08 2015-10-07 Sangamo BioSciences, Inc. Methods and compositions for targeted cleavage and recombination
US20050054093A1 (en) * 2003-08-14 2005-03-10 Martin Haas Multipotent amniotic fetal stem cells
US7569385B2 (en) 2003-08-14 2009-08-04 The Regents Of The University Of California Multipotent amniotic fetal stem cells
US8795653B2 (en) 2003-09-16 2014-08-05 The University Of North Carolina At Chapel Hill Methods for repressing B cell autoantibody secretion and for treating autoimmune disorders by administration of hematopoietic stem cells and macrophage-colony stimulating factor
US20060188473A1 (en) * 2003-09-16 2006-08-24 Vilen Barbara J Compositions and methods for repressing B cell autoantibody secretion and for treating autoimmune disorders
US20090227019A1 (en) * 2003-09-26 2009-09-10 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US20110143430A1 (en) * 2003-09-26 2011-06-16 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US7510877B2 (en) 2003-09-26 2009-03-31 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US7919316B2 (en) 2003-09-26 2011-04-05 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US8383404B2 (en) 2003-09-26 2013-02-26 The Regents Of The University Of Michigan Hematopoietic stem cell identification and isolation
US9403908B2 (en) 2003-09-29 2016-08-02 The Regents Of The University Of California Method for altering hematopoietic progenitor cell adhesion, differentiation, and migration
US20090130124A1 (en) * 2003-09-29 2009-05-21 Varner Judith A Method for altering hematopoietic progenitor cell adhesion, differentiation, and migration
US20080279812A1 (en) * 2003-12-05 2008-11-13 Norwood Immunology, Ltd. Disease Prevention and Vaccination Prior to Thymic Reactivation
US10638734B2 (en) 2004-01-05 2020-05-05 Abt Holding Company Multipotent adult stem cells, sources thereof, methods of obtaining and maintaining same, methods of differentiation thereof, methods of use thereof and cells derived thereof
US8147806B2 (en) 2004-01-16 2012-04-03 Carnegie Mellon University Cellular labeling for nuclear magnetic resonance techniques
US8449866B2 (en) 2004-01-16 2013-05-28 Carnegie Mellon University Cellular labeling for nuclear magnetic resonance techniques
EP2319544A1 (en) 2004-01-16 2011-05-11 Carnegie Mellon University Cellular labeling for nuclear magnetic resonance techniques
US20050232927A1 (en) * 2004-02-03 2005-10-20 The Regents Of The University Of Michigan Compositions and methods for characterizing, regulating, diagnosing, and treating cancer
US20080260734A1 (en) * 2004-02-03 2008-10-23 The Regents Of The University Of Michigan Compositions and methods for characterizing, regulating, diagnosing, and treating cancer
EP2947146A1 (en) 2004-02-05 2015-11-25 Sangamo BioSciences, Inc. Methods and compositions for targeted cleavage and recombination
US20110189211A1 (en) * 2004-02-11 2011-08-04 Aldagen, Inc. Stem cell populations and methods of use
US7863043B2 (en) 2004-02-11 2011-01-04 Aldagen, Inc. Stem cell populations and methods of use
US8986744B2 (en) 2004-02-11 2015-03-24 Aldagen, Inc. Stem cell populations and methods of use
US8105778B2 (en) 2004-03-25 2012-01-31 California Institute Of Technology Hybridization chain reaction
US20100047926A1 (en) * 2004-03-25 2010-02-25 California Institute Of Technology Hybridization chain reaction
US7632641B2 (en) 2004-03-25 2009-12-15 California Institute Of Technology Hybridization chain reaction
US7790458B2 (en) 2004-05-14 2010-09-07 Becton, Dickinson And Company Material and methods for the growth of hematopoietic stem cells
WO2005116192A2 (en) 2004-05-19 2005-12-08 The Cleveland Clinic Foundation Genetically engineered cells for therapeutic applications
US7863029B2 (en) 2004-06-04 2011-01-04 Fox Chase Cancer Center Alternate morpheeins of allosteric proteins as a target for the development of bioactive molecules
US20080233100A1 (en) * 2004-06-30 2008-09-25 Yiyou Chen Targeted enzymes
US20070196911A1 (en) * 2004-07-12 2007-08-23 Giovanni Mambrini Devices and methods for growing human cells
US20090305307A1 (en) * 2004-09-10 2009-12-10 Danisco Us Inc. Methods for detecting targets
US8906637B2 (en) 2004-09-10 2014-12-09 Danisco Us Inc. Methods for detecting targets
US20110098184A1 (en) * 2004-10-15 2011-04-28 Day Anthony G Competitve differntial screeing
US7968308B2 (en) 2004-10-22 2011-06-28 Danisco Us Inc. Isolating human antibodies
US20080268420A1 (en) * 2004-10-22 2008-10-30 Yiyou Chen Isolating Human Antibodies
US8143025B2 (en) 2004-11-18 2012-03-27 Imclone Llc Antibodies against vascular endothelial growth factor receptor-1
US7972596B2 (en) 2004-11-18 2011-07-05 Imclone Llc Antibodies against vascular endothelial growth factor receptor-1
US20100028347A1 (en) * 2004-11-18 2010-02-04 Yan Wu Antibodies against vascular endothelial growth factor receptor-1
US20080044400A1 (en) * 2004-12-09 2008-02-21 Volker Schellenberger Targeted enzyme prodrug therapy
US20110104676A1 (en) * 2005-03-08 2011-05-05 California Institute Of Technology Hybridization chain reaction amplification for in situ imaging
US7727721B2 (en) 2005-03-08 2010-06-01 California Institute Of Technology Hybridization chain reaction amplification for in situ imaging
US8507204B2 (en) 2005-03-08 2013-08-13 California Institute Of Technology Hybridization chain reaction amplification for in situ imaging
US8124751B2 (en) 2005-03-08 2012-02-28 California Institute Of Technology Hybridization chain reaction amplification for in situ imaging
US20060228733A1 (en) * 2005-03-08 2006-10-12 Pierce Niles A Hybridization chain reaction amplification for in situ imaging
US20060252073A1 (en) * 2005-04-18 2006-11-09 Regents Of The University Of Michigan Compositions and methods for the treatment of cancer
US20070099209A1 (en) * 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20070105133A1 (en) * 2005-06-13 2007-05-10 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US20090258363A1 (en) * 2005-07-26 2009-10-15 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
US8313925B2 (en) 2005-07-26 2012-11-20 Sangamo Biosciences, Inc. Zinc finger proteins and method for inactivating a dhfr gene in a chinese hamster ovary cell
EP2267030A1 (en) 2005-08-25 2010-12-29 Repair Technologies, Inc. Devices, compositions and methods for the protection and repair of cells and tissues
US20070082392A1 (en) * 2005-10-07 2007-04-12 Glaser Lawrence F Modified erythrocytes and uses thereof
US7960357B2 (en) 2005-10-07 2011-06-14 California Institute Of Technology PKR activation via hybridization chain reaction
US20070087334A1 (en) * 2005-10-07 2007-04-19 Robert Dirks PKR activation via hybridization chain reaction
US7462485B2 (en) 2005-10-07 2008-12-09 Glaser Lawrence F Modified erythrocytes and uses thereof
US8962582B2 (en) 2005-10-07 2015-02-24 California Institute Of Technology PKR activation via hybridization chain reaction
US20100169990A1 (en) * 2005-10-31 2010-07-01 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US9732139B2 (en) 2005-10-31 2017-08-15 Oncomed Pharmaceuticals, Inc. Methods of treating cancer by administering a soluble receptor comprising a human Fc domain and the Fri domain from human frizzled receptor
US9228013B2 (en) 2005-10-31 2016-01-05 OncoMed Pharmaceuticals Methods of using the FRI domain of human frizzled receptor for inhibiting Wnt signaling in a tumor or tumor cell
US7723112B2 (en) 2005-10-31 2010-05-25 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
US8324361B2 (en) 2005-10-31 2012-12-04 Oncomed Pharmaceuticals, Inc. Nucleic acid molecules encoding soluble frizzled (FZD) receptors
US8765913B2 (en) 2005-10-31 2014-07-01 Oncomed Pharmaceuticals, Inc. Human frizzled (FZD) receptor polypeptides and methods of use thereof for treating cancer and inhibiting growth of tumor cells
US9850311B2 (en) 2005-10-31 2017-12-26 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
US9482660B2 (en) 2006-03-07 2016-11-01 Geeta Shroff Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
US8592208B2 (en) 2006-03-07 2013-11-26 Geeta Shroff Methods of expanding human embryonic stem cells
US8900861B2 (en) 2006-03-07 2014-12-02 Geeta Shroff Method for storing a preparation of human embryonic stem cells
US9804151B2 (en) 2006-03-07 2017-10-31 Geeta Shroff Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
US9488643B2 (en) 2006-03-07 2016-11-08 Geeta Shroff Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
US9134299B2 (en) 2006-03-07 2015-09-15 Geeta Shroff Method of isolating human embryonic stem cells in minimal essential medium
US9383349B2 (en) 2006-03-07 2016-07-05 Geeta Shroff Method of partially differentiating hES cells
US10545135B2 (en) 2006-03-07 2020-01-28 Geeta Shroff Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
US20100297087A1 (en) * 2006-04-11 2010-11-25 Nanodiagnostics Israel., Ltd Pluripotent stem cells characterized by expression of germline specific genes
US8263043B2 (en) 2006-04-14 2012-09-11 Carnegie Mellon University Cellular labeling and quantification for nuclear magnetic resonance techniques
US20070258886A1 (en) * 2006-04-14 2007-11-08 Celsense Inc. Methods for assessing cell labeling
US20070253910A1 (en) * 2006-04-14 2007-11-01 Carnegie Mellon University Cellular labeling and quantification for nuclear magnetic resonance techniques
US8460713B2 (en) 2006-05-11 2013-06-11 Regenics As Administration of cells and cellular extracts for rejuvenation
US11033587B2 (en) 2006-05-11 2021-06-15 Regenics As Administration of cells and cellular extracts for rejuvenation
US9999639B2 (en) 2006-05-11 2018-06-19 Regenics As Cellular extracts
US10478461B2 (en) 2006-05-11 2019-11-19 Regenics As Cellular extracts
US8877253B2 (en) 2006-05-11 2014-11-04 Regenics As Cellular extracts
US8920848B2 (en) 2006-05-11 2014-12-30 Regenics As Use of cellular extracts for skin rejuvenation
US9066883B2 (en) 2006-05-11 2015-06-30 Regenics As Administration of cells and cellular extracts for rejuvenation
US10092504B2 (en) 2006-05-11 2018-10-09 Regenics As Use of cellular extracts for skin rejuvenation
US20090274770A1 (en) * 2006-05-11 2009-11-05 Regenics As Cellular extracts
US20090175927A1 (en) * 2006-05-11 2009-07-09 Regenics A/S Administration of cells and cellular extracts for rejuvenation
US9486401B2 (en) 2006-05-11 2016-11-08 Regenics As Use of cellular extracts for skin rejuvenation
US8075920B2 (en) 2006-05-11 2011-12-13 Regenics A/S Administration of cells and cellular extracts for rejuvenation
EP2656832A2 (en) 2006-05-11 2013-10-30 Regenics AS Administration of cells and cellular extracts for rejuvenation
US9314488B2 (en) 2006-05-11 2016-04-19 Regenics As Cellular extracts
US8557295B2 (en) 2006-05-11 2013-10-15 Regenics As Use of cellular extracts for skin rejuvenation
US20100285584A1 (en) * 2006-11-03 2010-11-11 Ron Weiss Engineered cellular pathways for programmed autoregulation of differentiation
US9458471B2 (en) 2006-11-03 2016-10-04 The Trustees Of Princeton University Engineered cellular pathways for programmed autoregulation of differentiation
US8685720B2 (en) 2006-11-03 2014-04-01 The Trustees Of Princeton University Engineered cellular pathways for programmed autoregulation of differentiation
US9005964B2 (en) 2006-11-24 2015-04-14 Regents Of The University Of Minnesota Endodermal progenitor cells
US20100150876A1 (en) * 2006-11-24 2010-06-17 Regents Of The Univeristy Of Minnesota Endodermal progenitor cells
US20100172882A1 (en) * 2007-01-11 2010-07-08 Glazer Peter M Compositions and methods for targeted inactivation of hiv cell surface receptors
WO2008087257A1 (en) 2007-01-18 2008-07-24 Suomen Punainen Risti, Veripalvelu Novel methods and reagents directed to production of cells
WO2008087258A1 (en) 2007-01-18 2008-07-24 Suomen Punainen Risti, Veripalvelu Novel carbohydrate from human cells and methods for analysis and modification thereof
US8501472B2 (en) 2007-01-24 2013-08-06 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing pancreatic cancer
US8148147B2 (en) 2007-01-24 2012-04-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing pancreatic cancer
US20080261244A1 (en) * 2007-01-24 2008-10-23 The Regents Of The University Of Michigan Compositions And Methods For Treating And Diagnosing Pancreatic Cancer
EP2918598A1 (en) 2007-02-28 2015-09-16 The Govt. Of U.S.A. As Represented By The Secretary Of The Department Of Health And Human Services Brachyury polypeptides and methods for use
US20080214488A1 (en) * 2007-03-01 2008-09-04 California Institute Of Technology TRIGGERED RNAi
US8318921B2 (en) 2007-03-01 2012-11-27 California Institute Of Technology Triggered RNAi
US10317393B2 (en) 2007-03-23 2019-06-11 Academia Sinica Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
US10568911B2 (en) 2007-05-03 2020-02-25 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
EP2607477A1 (en) 2007-05-03 2013-06-26 The Brigham and Women's Hospital, Inc. Multipotent stem cells and uses thereof
US20100291042A1 (en) * 2007-05-03 2010-11-18 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US20110070205A1 (en) * 2007-05-03 2011-03-24 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US8574567B2 (en) 2007-05-03 2013-11-05 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US9127252B2 (en) 2007-05-03 2015-09-08 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US8609411B2 (en) 2007-05-04 2013-12-17 Whitehead Institute For Biomedical Research Ex vivo expansion of human hematopoietic stem cells
US20110117061A1 (en) * 2007-05-04 2011-05-19 Chengcheng Zhang Ex Vivo Expansion of Human Hematopoietic Stem Cells
US9217151B2 (en) 2007-05-16 2015-12-22 California Institute Of Technology Versatile nucleic acid hairpin motif for programming biomolecular self-assembly pathways
US20090053183A1 (en) * 2007-06-15 2009-02-26 Neuronyx Inc. Treatment of Diseases and Disorders Using Self-Renewing Colony Forming Cells Cultured and Expanded In Vitro
US8354370B2 (en) 2007-06-15 2013-01-15 Garnet Biotherapeutics, Inc. Administering a biological composition or compositions isolated from self-renewing colony forming somatic cell growth medium to treat diseases and disorders
US20090074673A1 (en) * 2007-07-10 2009-03-19 Carnegie Mellon University Compositions and methods for producing cellular labels for nuclear magnetic resonance techniques
US8227610B2 (en) 2007-07-10 2012-07-24 Carnegie Mellon University Compositions and methods for producing cellular labels for nuclear magnetic resonance techniques
EP2594584A1 (en) 2008-01-31 2013-05-22 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Engineered constant domain molecule of an antibody
US20090247615A1 (en) * 2008-02-27 2009-10-01 California Institute Of Technology TRIGGERED RNAi
US8497364B2 (en) 2008-02-27 2013-07-30 California Institute Of Technology Triggered RNAi
US11318170B2 (en) 2008-03-28 2022-05-03 Stemcyte, Inc. Treatment of brain damage using umbilical cord blood cells
US20110110863A1 (en) * 2008-05-02 2011-05-12 Celsense, Inc. Compositions and methods for producing emulsions for nuclear magnetic resonance techniques and other applications
US20100021904A1 (en) * 2008-05-21 2010-01-28 Pierce Niles A Shielded cross-linking probes
US20100021901A1 (en) * 2008-05-22 2010-01-28 Peng Yin Compositions and methods for detecting analytes
US8241854B2 (en) 2008-05-22 2012-08-14 California Institute Of Technology Triggered RNAi
US8632768B2 (en) 2008-05-30 2014-01-21 University Of Louisville Research Foundation, Inc. Human facilitating cells
US9452184B2 (en) 2008-05-30 2016-09-27 University Of Louisville Research Foundation, Inc. Human facilitating cells
US11291686B2 (en) 2008-05-30 2022-04-05 University Of Louisville Research Foundation, Inc. Human facilitating cells
US20110110909A1 (en) * 2008-05-30 2011-05-12 Ildstad Suzanne T Human facilitating cells
US10274488B2 (en) 2008-07-15 2019-04-30 Academia Sinica Glycan arrays on PTFE-like aluminum coated glass slides and related methods
EP2385371A2 (en) 2008-09-22 2011-11-09 Oregon Health and Science University Methods for detecting a mycobacterium tuberculosis infection
US8507442B2 (en) 2008-09-26 2013-08-13 Oncomed Pharmaceuticals, Inc. Methods of use for an antibody against human frizzled receptors 1, 2. 5, 7 or 8
US8975044B2 (en) 2008-09-26 2015-03-10 Oncomed Pharmaceuticals, Inc. Polynucleotides encoding for frizzled-binding agents and uses thereof
US9273139B2 (en) 2008-09-26 2016-03-01 Oncomed Pharmaceuticals, Inc. Monoclonal antibodies against frizzled
US9573998B2 (en) 2008-09-26 2017-02-21 Oncomed Pharmaceuticals, Inc. Antibodies against human FZD5 and FZD8
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
WO2010075026A2 (en) 2008-12-16 2010-07-01 Onconova Therapeutics Inc Methods for determining efficacy of a therapeutic regimen against deleterious effects of cytotoxic agents in human
WO2010099472A2 (en) 2009-02-27 2010-09-02 The U.S.A. Of America, As Represented By The Secretary, Department Of Health And Human Services Spanx-b polypeptides and their use
US20100239539A1 (en) * 2009-03-23 2010-09-23 Sing George L Methods for promoting differentiation and differentiation efficiency
EP2949208A1 (en) 2009-07-15 2015-12-02 Calimmune Inc. Dual vector for inhibition of human immunodeficiency virus
US20110059160A1 (en) * 2009-08-03 2011-03-10 Essner Jeffrey J Methods and compositions for targeted gene modification
US9074224B2 (en) 2009-08-03 2015-07-07 Recombinetics, Inc. Methods and compositions for targeted gene modification
WO2011017315A2 (en) 2009-08-03 2011-02-10 Recombinetics, Inc. Methods and compositions for targeted gene modification
WO2011053989A2 (en) 2009-11-02 2011-05-05 Yale University Polymeric materials loaded with mutagenic and recombinagenic nucleic acids
EP3360566A1 (en) 2009-11-20 2018-08-15 Oregon Health&Science University Methods for detecting a mycobacterium tuberculosis infection
WO2011063283A2 (en) 2009-11-20 2011-05-26 Oregon Health & Science University Methods for detecting a mycobacterium tuberculosis infection
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11267870B2 (en) 2009-12-02 2022-03-08 Academia Sinica Methods for modifying human antibodies by glycan engineering
US11377485B2 (en) 2009-12-02 2022-07-05 Academia Sinica Methods for modifying human antibodies by glycan engineering
US9157904B2 (en) 2010-01-12 2015-10-13 Oncomed Pharmaceuticals, Inc. Wnt antagonists and methods of treatment and screening
US9579361B2 (en) 2010-01-12 2017-02-28 Oncomed Pharmaceuticals, Inc. Wnt antagonist and methods of treatment and screening
US8551789B2 (en) 2010-04-01 2013-10-08 OncoMed Pharmaceuticals Frizzled-binding agents and their use in screening for WNT inhibitors
US9499630B2 (en) 2010-04-01 2016-11-22 Oncomed Pharmaceuticals, Inc. Frizzled-binding agents and uses thereof
WO2011127360A1 (en) 2010-04-08 2011-10-13 University Of Pittsburgh-Of The Commonwealth System Of Higher Education B-cell antigen presenting cell assay
US9322827B2 (en) 2010-04-08 2016-04-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education B-cell antigen presenting cell assay
US9759723B2 (en) 2010-04-08 2017-09-12 University of Pittsburgh—of the Commonwealth System of Higher Education B-cell antigen presenting cell assay
EP3730943A1 (en) 2010-04-08 2020-10-28 University of Pittsburgh - Of the Commonwealth System of Higher Education B-cell antigen presenting cell assay
US10222374B2 (en) 2010-04-08 2019-03-05 Univeersity of Pittsburgh—Of the Commonwealth System of Higher Education B-cell antigen presenting cell assay
US10114011B2 (en) 2010-04-08 2018-10-30 University of Pittsburgh—of the Commonwealth System of Higher Education Antigen presenting cell assay
EP3242135A1 (en) 2010-04-08 2017-11-08 University of Pittsburgh - Of the Commonwealth System of Higher Education B-cell antigen presenting cell assay
US10928384B2 (en) 2010-04-08 2021-02-23 University of Pittsburgh—of the Commonwealth System of Higher Education Antigen presenting cell assay
US9746459B2 (en) 2010-04-08 2017-08-29 University of Pittsburgh—of the Commonwealth System of Higher Education Antigen presenting cell assay
US10338069B2 (en) 2010-04-12 2019-07-02 Academia Sinica Glycan arrays for high throughput screening of viruses
WO2011133803A1 (en) 2010-04-21 2011-10-27 Helix Therapeutics, Inc. Compositions and methods for targeted inactivation of hiv cell surface receptors
WO2011133802A1 (en) 2010-04-21 2011-10-27 Helix Therapeutics, Inc. Compositions and methods for treatment of lysosomal storage disorders
WO2011133284A1 (en) 2010-04-22 2011-10-27 Oregon Health & Science University Fumarylacetoacetate hydrolase (fah)-deficient pigs and uses thereof
WO2011138687A2 (en) 2010-05-06 2011-11-10 Regenics As Use of cellular extracts for skin rejuvenation
US8658780B2 (en) 2010-05-18 2014-02-25 California Institute Of Technology Triggered covalent probes for imaging and silencing genetic expression
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
US8962241B2 (en) 2010-07-20 2015-02-24 California Institute Of Technology Triggered molecular geometry based bioimaging probes
US9834439B2 (en) 2010-07-20 2017-12-05 California Institute Of Technology Biomolecular self-assembly
US8877438B2 (en) 2010-07-20 2014-11-04 California Institute Of Technology Self-assembled polynucleotide structure
EP3037522A1 (en) 2010-08-17 2016-06-29 University of Louisville Research Foundation, Inc. Human facilitating cells and uses thereof
WO2012092323A1 (en) 2010-12-28 2012-07-05 Xoma Technology Ltd. Cell surface display using pdz domains
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
EP2998320A1 (en) 2011-04-19 2016-03-23 The United States of America, as represented by the Secretary, Department of Health and Human Services Human monoclonal antibodies specific for glypican-3 and use thereof
EP3070104A1 (en) 2011-04-19 2016-09-21 The United States of America, as represented by The Secretary, Department of Health and Human Services Human monoclonal antibodies specific for glypican-3 and use thereof
WO2012145469A1 (en) 2011-04-19 2012-10-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies specific for glypican-3 and use thereof
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
EP3461896A2 (en) 2011-07-15 2019-04-03 The General Hospital Corporation Methods of transcription activator like effector assembly
EP3578042A1 (en) 2011-08-26 2019-12-11 Yecuris Corporation Fumarylacetoacetate hydrolase (fah)-deficient and immunodeficient rats and uses thereof
US8927696B2 (en) 2011-12-29 2015-01-06 Industrial Technology Research Institute Humanized anti-human CD34 monoclonal antibody and uses thereof
WO2013138643A1 (en) 2012-03-16 2013-09-19 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Soluble engineered monomeric fc
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
WO2013181543A1 (en) 2012-06-01 2013-12-05 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services High-affinity monoclonal antibodies to glypican-3 and use thereof
US10214765B2 (en) 2012-08-18 2019-02-26 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
EP3327037A1 (en) 2012-08-21 2018-05-30 The U.S.A. as represented by the Secretary, Department of Health and Human Services Mesothelin domain-specific monoclonal antibodies and use thereof
WO2014052064A1 (en) 2012-09-27 2014-04-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mesothelin antibodies and methods for eliciting potent antitumor activity
US9266959B2 (en) 2012-10-23 2016-02-23 Oncomed Pharmaceuticals, Inc. Methods of treating neuroendocrine tumors using frizzled-binding agents
EP3459522A1 (en) 2012-12-10 2019-03-27 Regenics AS Use of egg cellular extracts for wound treatment
US11007385B2 (en) 2012-12-10 2021-05-18 Regenics As Use of cellular extracts for skin rejuvenation
WO2014091312A2 (en) 2012-12-10 2014-06-19 Regenics As Use of cellular extracts for skin rejuvenation
US9987357B2 (en) 2013-02-04 2018-06-05 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a WNT pathway inhibitor
US9359444B2 (en) 2013-02-04 2016-06-07 Oncomed Pharmaceuticals Inc. Methods and monitoring of treatment with a Wnt pathway inhibitor
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
US9758763B2 (en) 2013-05-29 2017-09-12 The Regents Of The University Of California Methods and compositions for somatic cell proliferation and viability
US10214725B2 (en) 2013-05-29 2019-02-26 The Regents Of The University Of California Methods and compositions for somatic cell proliferation and viability
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
US9856472B2 (en) 2013-07-01 2018-01-02 California Institute Of Technology Small conditional RNAs
US10111951B2 (en) 2013-09-06 2018-10-30 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US10918714B2 (en) 2013-09-06 2021-02-16 Academia Sinica Human iNKT cell activation using glycolipids with altered glycosyl groups
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US9982041B2 (en) 2014-01-16 2018-05-29 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2015109180A2 (en) 2014-01-16 2015-07-23 Academia Sinica Compositions and methods for treatment and detection of cancers
US10119972B2 (en) 2014-03-27 2018-11-06 Academia Sinica Reactive labelling compounds and uses thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US10005847B2 (en) 2014-05-27 2018-06-26 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
US10618973B2 (en) 2014-05-27 2020-04-14 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US11319567B2 (en) 2014-05-27 2022-05-03 Academia Sinica Fucosidase from bacteroides and methods using the same
US11884739B2 (en) 2014-05-27 2024-01-30 Academia Sinica Anti-CD20 glycoantibodies and uses thereof
US10023892B2 (en) 2014-05-27 2018-07-17 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
US11332523B2 (en) 2014-05-28 2022-05-17 Academia Sinica Anti-TNF-alpha glycoantibodies and uses thereof
US10934360B2 (en) 2014-07-31 2021-03-02 The Hong Kong University Of Science And Technology Human monoclonal antibodies against EPHA4 and their use
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
EP3473271A1 (en) 2014-07-31 2019-04-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Human monoclonal antibodies against epha4 and their use
US10533034B2 (en) 2014-09-08 2020-01-14 Academia Sinica Human iNKT cell activation using glycolipids
US9879042B2 (en) 2014-09-08 2018-01-30 Academia Sinica Human iNKT cell activation using glycolipids
EP4219564A1 (en) 2014-09-12 2023-08-02 The Board of Trustees of the Leland Stanford Junior University Wnt signaling agonist molecules
WO2016040895A1 (en) 2014-09-12 2016-03-17 xxTHE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY Wnt signaling agonist molecules
US10495645B2 (en) 2015-01-16 2019-12-03 Academia Sinica Cancer markers and methods of use thereof
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
WO2016114819A1 (en) 2015-01-16 2016-07-21 Academia Sinica Compositions and methods for treatment and detection of cancers
US10342858B2 (en) 2015-01-24 2019-07-09 Academia Sinica Glycan conjugates and methods of use thereof
US10954311B2 (en) 2015-05-21 2021-03-23 Harpoon Therapeutics, Inc. Trispecific binding proteins and methods of use
US10935544B2 (en) 2015-09-04 2021-03-02 Obi Pharma, Inc. Glycan arrays and method of use
US11136597B2 (en) 2016-02-16 2021-10-05 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143042A2 (en) 2016-02-16 2017-08-24 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143061A1 (en) 2016-02-16 2017-08-24 Yale University Compositions and methods for treatment of cystic fibrosis
US11406721B2 (en) 2016-02-22 2022-08-09 The Regents Of The University Of California Compositions and methods for imaging cell populations
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
US11833223B2 (en) 2016-03-29 2023-12-05 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US11041017B2 (en) 2016-03-29 2021-06-22 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
US11583577B2 (en) 2016-04-22 2023-02-21 Obi Pharma, Inc. Cancer immunotherapy by immune activation or immune modulation via Globo series antigens
WO2017196847A1 (en) 2016-05-10 2017-11-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Variable new antigen receptor (vnar) antibodies and antibody conjugates targeting tumor and viral antigens
US11453716B2 (en) 2016-05-20 2022-09-27 Harpoon Therapeutics, Inc. Single domain serum albumin binding protein
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
US10544221B2 (en) 2016-05-20 2020-01-28 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2017214182A1 (en) 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
US11214825B2 (en) 2016-07-05 2022-01-04 California Institute Of Technology Fractional initiator hybridization chain reaction
US10450599B2 (en) 2016-07-05 2019-10-22 California Institute Of Technology Fractional initiator hybridization chain reaction
US11642400B2 (en) 2016-07-27 2023-05-09 Obi Pharma, Inc. Immunogenic/therapeutic glycan compositions and uses thereof
US11643456B2 (en) 2016-07-29 2023-05-09 Obi Pharma, Inc. Human antibodies, pharmaceutical compositions and methods
WO2018026533A1 (en) 2016-08-02 2018-02-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies targeting glypican-2 (gpc2) and use thereof
US10538592B2 (en) 2016-08-22 2020-01-21 Cho Pharma, Inc. Antibodies, binding fragments, and methods of use
US10815519B2 (en) 2016-08-30 2020-10-27 California Institute Of Technology Immunohistochemistry via hybridization chain reaction
US11000601B2 (en) 2016-11-21 2021-05-11 Obi Pharma, Inc. Conjugated biological molecules, pharmaceutical compositions and methods
US10849973B2 (en) 2016-11-23 2020-12-01 Harpoon Therapeutics, Inc. Prostate specific membrane antigen binding protein
US10844134B2 (en) 2016-11-23 2020-11-24 Harpoon Therapeutics, Inc. PSMA targeting trispecific proteins and methods of use
WO2018119279A1 (en) 2016-12-21 2018-06-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies specific for flt3 and uses thereof
EP4219556A2 (en) 2016-12-21 2023-08-02 The United States of America as represented by The Secretary Department of Health and Human Services Human monoclonal antibodies specific for flt3 and uses thereof
US11535668B2 (en) 2017-02-28 2022-12-27 Harpoon Therapeutics, Inc. Inducible monovalent antigen binding protein
WO2018187493A1 (en) 2017-04-04 2018-10-11 Yale University Compositions and methods for in utero delivery
US10543271B2 (en) 2017-05-12 2020-01-28 Harpoon Therapeutics, Inc. Mesothelin binding proteins
US10730954B2 (en) 2017-05-12 2020-08-04 Harpoon Therapeutics, Inc. MSLN targeting trispecific proteins and methods of use
WO2018209304A1 (en) 2017-05-12 2018-11-15 Harpoon Therapeutics, Inc. Msln targeting trispecific proteins and methods of use
US11607453B2 (en) 2017-05-12 2023-03-21 Harpoon Therapeutics, Inc. Mesothelin binding proteins
WO2018213064A1 (en) 2017-05-19 2018-11-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibody targeting tnfer2 for cancer immunotherapy
WO2018226336A1 (en) 2017-06-09 2018-12-13 Providence Health & Services - Oregon Utilization of cd39 and cd103 for identification of human tumor reactive cells for treatment of cancer
WO2019005208A1 (en) 2017-06-30 2019-01-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human mesothelin antibodies and uses in cancer therapy
WO2019006280A1 (en) 2017-06-30 2019-01-03 Lentigen Technology, Inc. Human monoclonal antibodies specific for cd33 and methods of their use
US10927180B2 (en) 2017-10-13 2021-02-23 Harpoon Therapeutics, Inc. B cell maturation antigen binding proteins
WO2019075359A1 (en) 2017-10-13 2019-04-18 Harpoon Therapeutics, Inc. Trispecific proteins and methods of use
US11136403B2 (en) 2017-10-13 2021-10-05 Harpoon Therapeutics, Inc. Trispecific proteins and methods of use
US11203645B2 (en) 2018-06-27 2021-12-21 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
US10821155B2 (en) 2018-06-27 2020-11-03 Juvena Therapeutics, Inc. Heparin-associated polypeptides and uses thereof
WO2020014482A1 (en) 2018-07-12 2020-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Affinity matured cd22-specific monoclonal antibody and uses thereof
WO2020033430A1 (en) 2018-08-08 2020-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity monoclonal antibodies targeting glypican-2 and uses thereof
WO2020047344A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing donor oligonucleotide-based gene editing
WO2020047353A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing triplex and nuclease-based gene editing
US11807692B2 (en) 2018-09-25 2023-11-07 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
US10815311B2 (en) 2018-09-25 2020-10-27 Harpoon Therapeutics, Inc. DLL3 binding proteins and methods of use
WO2020072618A1 (en) 2018-10-02 2020-04-09 Immunome, Inc. Antibodies targeting epn1
WO2020082076A1 (en) 2018-10-19 2020-04-23 Board Of Regents, The University Of Texas System Engineered long interspersed element (line) transposons and methods of use thereof
WO2020113025A1 (en) 2018-11-28 2020-06-04 Milica Radisic Methods for tissue generation
WO2020112195A1 (en) 2018-11-30 2020-06-04 Yale University Compositions, technologies and methods of using plerixafor to enhance gene editing
WO2020146182A1 (en) 2019-01-08 2020-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cross-species single domain antibodies targeting mesothelin for treating solid tumors
WO2020154150A1 (en) 2019-01-22 2020-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity monoclonal antibodies targeting glypican-1 and methods of use
WO2020232303A1 (en) 2019-05-14 2020-11-19 Harpoon Therapeutics, Inc. EpCAM BINDING PROTEINS AND METHODS OF USE
WO2020257776A1 (en) 2019-06-21 2020-12-24 Yale University Peptide nucleic acid compositions with modified hoogsteen binding segments and methods of use thereof
WO2020257779A1 (en) 2019-06-21 2020-12-24 Yale University Hydroxymethyl-modified gamma-pna compositions and methods of use thereof
WO2021022161A1 (en) 2019-07-31 2021-02-04 Yale University Compositions and methods for treating sickle cell disease
WO2021042060A1 (en) 2019-08-30 2021-03-04 Yale University Compositions and methods for delivery of nucleic acids to cells
US11872286B2 (en) 2019-08-30 2024-01-16 Yale University Compositions and methods for delivery of nucleic acids to cells
US11850284B2 (en) 2019-08-30 2023-12-26 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2021081052A1 (en) 2019-10-22 2021-04-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity nanobodies targeting b7h3 (cd276) for treating multiple solid tumors
US11180563B2 (en) 2020-02-21 2021-11-23 Harpoon Therapeutics, Inc. FLT3 binding proteins and methods of use
WO2022047424A1 (en) 2020-08-31 2022-03-03 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2022093745A1 (en) 2020-10-26 2022-05-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting sars coronavirus spike protein and uses thereof
US11873485B2 (en) 2021-01-26 2024-01-16 California Institute Of Technology Allosteric conditional guide RNAs for cell-selective regulation of CRISPR/Cas
WO2022232612A1 (en) 2021-04-29 2022-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lassa virus-specific nanobodies and methods of their use
WO2022261115A1 (en) 2021-06-07 2022-12-15 Yale University Peptide nucleic acids for spatiotemporal control of crispr-cas binding
WO2022261018A1 (en) 2021-06-07 2022-12-15 Providence Health & Services - Oregon Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use
WO2022261017A1 (en) 2021-06-09 2022-12-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cross species single domain antibodies targeting pd-l1 for treating solid tumors
WO2023044272A1 (en) 2021-09-17 2023-03-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic humanized llama nanobody library and use thereof to identify sars-cov-2 neutralizing antibodies
WO2023076881A1 (en) 2021-10-26 2023-05-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting the s2 subunit of sars-cov-2 spike protein
WO2024020597A1 (en) 2022-07-22 2024-01-25 The Johns Hopkins University Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing
WO2024050399A1 (en) 2022-09-01 2024-03-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies targeting hpv e6/e7 oncogenic peptide/mhc complexes

Also Published As

Publication number Publication date
DE69133332D1 (en) 2003-12-04
US5716827A (en) 1998-02-10
ATE253112T1 (en) 2003-11-15
JP3017320B2 (en) 2000-03-06
CA2039315C (en) 2006-08-01
EP0451611A3 (en) 1992-01-22
DE69133332T2 (en) 2004-07-29
US5763197A (en) 1998-06-09
JP2000078968A (en) 2000-03-21
AU7398691A (en) 1991-10-03
US5914108A (en) 1999-06-22
JP3160600B2 (en) 2001-04-25
DK0451611T3 (en) 2004-02-23
AU641488B2 (en) 1993-09-23
CA2039315A1 (en) 1991-10-01
EP1344819A2 (en) 2003-09-17
JPH07313150A (en) 1995-12-05
EP0451611B1 (en) 2003-10-29
US5750397A (en) 1998-05-12
EP0451611A2 (en) 1991-10-16
US5643741A (en) 1997-07-01
ES2210226T3 (en) 2004-07-01
EP1344819A3 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US5061620A (en) Human hematopoietic stem cell
US5665557A (en) Method of purifying a population of cells enriched for hematopoietic stem cells populations of cells obtained thereby and methods of use thereof
US5681559A (en) Method for producing a highly enriched population of hematopoietic stem cells
JP3779323B2 (en) Method for obtaining a composition enriched in hematopoietic stem cells, composition derived therefrom and method of use
US5814440A (en) Methods of obtaining compositions enriched for hematopoietic stem cells, antibodies for use therein, compositions derived therefrom and methods of use thereof
Harada et al. A Wilms tumor cell line, HFWT, can greatly stimulate proliferation of CD56+ human natural killer cells and their novel precursors in blood mononuclear cells
AU4402193A (en) Human primitive stem cells
CA2168348A1 (en) Novel stem cell marker
Verstegen et al. Multilineage outgrowth of both malignant and normal hemopoietic progenitor cells from individual chronic myeloid leukemia patients in immunodeficient mice
AU8014694A (en) Methods for analysis of human stem cells
WO1994008039A1 (en) Method of enrichment for human hematopoietic stem cells using c-kit
WO1996040874A1 (en) Methods for obtaining compositions enriched for hematopoietic stem cells and antibodies for use therein
Williams Part III-Biology of Stem Cells and Disorders of Hematopoiesis

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYSTEMIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AIHARA, YUKOH;REEL/FRAME:005385/0243

Effective date: 19900630

AS Assignment

Owner name: SYSTEMIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AIHARA, YUKOH;REEL/FRAME:005454/0223

Effective date: 19900603

Owner name: SYSTEMIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TSUKAMOTO, ANN;BAUM, CHARLES M.;WEISSMAN, IRVING;REEL/FRAME:005454/0227;SIGNING DATES FROM 19900530 TO 19900615

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NOVARTIS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYSTEMIX, INC.;REEL/FRAME:013380/0571

Effective date: 20030124

FPAY Fee payment

Year of fee payment: 12

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY