US5006170A - Hot melt ink compositions - Google Patents

Hot melt ink compositions Download PDF

Info

Publication number
US5006170A
US5006170A US07/369,797 US36979789A US5006170A US 5006170 A US5006170 A US 5006170A US 36979789 A US36979789 A US 36979789A US 5006170 A US5006170 A US 5006170A
Authority
US
United States
Prior art keywords
hot melt
ink composition
group
composition according
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/369,797
Inventor
William M. Schwarz
Robert H. Marchessault
Lupu Alexandru
Bernard Henrissat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HENRISSAT, BERNARD
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCHWARZ, WILLIAM M.
Priority to US07/369,797 priority Critical patent/US5006170A/en
Application filed by Xerox Corp filed Critical Xerox Corp
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MARCHESSAULT, ROBERT H.
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALEXANDRU, LUPU
Priority to JP2157424A priority patent/JP2554389B2/en
Priority to EP90306635A priority patent/EP0404493B1/en
Priority to DE69011593T priority patent/DE69011593T2/en
Priority to US07/641,844 priority patent/US5122187A/en
Publication of US5006170A publication Critical patent/US5006170A/en
Application granted granted Critical
Assigned to BANK ONE, NA, AS ADMINISTRATIVE AGENT reassignment BANK ONE, NA, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: XEROX CORPORATION
Anticipated expiration legal-status Critical
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/34Hot-melt inks

Definitions

  • the present invention is directed to hot melt ink compositions. More specifically, the present invention is directed to ink compositions that are solid at room temperature and that are suitable for ink jet printing processes, particularly thermal ink jet printing processes.
  • Ink jet printing systems generally are of two types: continuous stream and drop-on-demand.
  • continuous stream ink jet systems ink is emitted in a continuous stream under pressure through at least one orifice or nozzle. The stream is perturbed, causing it to break up into droplets at a fixed distance from the orifice. At the break-up point, the droplets are charged in accordance with digital data signals and passed through an electrostatic field which adjusts the trajectory of each droplet in order to direct it to a gutter for recirculation or a specific location on a recording medium.
  • drop-on-demand systems a droplet is expelled from an orifice directly to a position on a recording medium in accordance with digital data signals. A droplet is not formed or expelled unless it is to be placed on the recording medium.
  • drop-on-demand systems require no ink recovery, charging, or deflection, they are much simpler than the continuous stream type.
  • One type of drop-on-demand system has as its major components an ink filled channel or passageway having a nozzle on one end and a piezoelectric transducer near the other end to produce pressure pulses.
  • the relatively large size of the transducer prevents close spacing of the nozzles, and physical limitations of the transducer result in low ink drop velocity. Low drop velocity seriously diminishes tolerances for drop velocity variation and directionality, thus impacting the system's ability to produce high quality copies.
  • Drop-on-demand systems which use piezoelectric devices to expel the droplets also suffer the disadvantage of a slow printing speed.
  • the second type of drop-on-demand system is known as thermal ink jet, or bubble jet, and produces high velocity droplets and allows very close spacing of nozzles.
  • the major components of this type of drop-on-demand system are an ink-filled channel having a nozzle on one end and a heat generating resistor near the nozzle.
  • Printing signals representing digital information originate an electric current pulse in a resistive layer within each ink passageway near the orifice or nozzle causing the ink in the immediate vicinity to evaporate almost instantaneously and create a bubble.
  • the ink at the orifice is forced out as a propelled droplet as the bubble expands.
  • the drop-on-demand ink jet printers provide simpler, lower cost devices than their continuous stream counterparts, and yet have substantially the same high speed printing capability.
  • the operating sequence of the bubble jet system begins with a current pulse through the resistive layer in the ink filled channel, the resistive layer being in close proximity to the orifice or nozzle for that channel. Heat is transferred from the resistor to the ink. The ink becomes superheated far above its normal boiling point, and for water based ink, finally reaches the critical temperature for bubble formation or nucleation of around 280° C. Once nucleated, the bubble or water vapor thermally isolates the ink from the heater and no further heat can be applied to the ink. This bubble expands until all the heat stored in the ink in excess of the normal boiling point diffuses away or is used to convert liquid to vapor, which removes heat due to heat of vaporization.
  • the expansion of the bubble forces a droplet of ink out of the nozzle, and once the excess heat is removed, the bubble collapses on the resistor. At this point, the resistor is no longer being heated because the current pulse has passed and, concurrently with the bubble collapse, the droplet is propelled at a high rate of speed in a direction towards a recording medium.
  • the resistive layer encounters a severe cavitational force by the collapse of the bubble, which tends to erode it.
  • the ink channel refills by capillary action. This entire bubble formation and collapse sequence occurs in about 10 microseconds.
  • the channel can be refired after 100 to 500 microseconds minimum dwell time to enable the channel to be refilled and to enable the dynamic refilling factors to become somewhat dampened.
  • Thermal ink jet processes are well known and are described, for example, in U.S. Pat. Nos. 4,601,777; 4,251,824; 4,410,899; 4,412,224; and 4,532,530, the disclosures of each of which are totally incorporated herein by reference.
  • Ink jet printing processes may also employ inks that are solid at room temperature and liquid at elevated temperatures.
  • U.S. Pat. No. 4,490,731 discloses an apparatus for dispensing solid ink for printing on a substrate such as paper.
  • the ink dye vehicle is chosen to have a melting point above room temperature, so that the ink which is melted in the apparatus will not be subject to evaporation or spillage during periods of nonprinting.
  • the vehicle is also chosen to have a low critical temperature to permit the use of the solid ink in a thermal ink jet printer.
  • the solid ink is melted by the heater in the printing apparatus and utilized as a liquid in a manner similar to that of conventional thermal ink jet printing.
  • the molten ink solidifies rapidly, enabling the dye to remain on the surface instead of being carried into the paper by capillary action, thereby enabling higher print density than is generally obtained with liquid inks.
  • Advantages of a hot melt ink in ink jet printing are elimination of potential spillage of the ink during handling, a wide range of print density and quality, minimal paper cockle or distortion, and enablement of indefinite periods of nonprinting without the danger of nozzle clogging, even without capping the nozzles.
  • U.S. Pat. No. 4,751,5208 discloses a hot melt ink jet system which includes a temperature-controlled platen provided with a heater and a thermoelectric cooler electrically connected to a heat pump and a temperature control unit for controlling the operation of the heater and the heat pump to maintain the platen temperature at a desired level.
  • the apparatus also includes a second thermoelectric cooler to solidify hot melt ink in a selected zone more rapidly to avoid offset by a pinch roll coming in contact with the surface of the substrate to which hot melt ink has been applied.
  • An airtight enclosure surrounding the platen is connected to a vacuum pump and has slits adjacent to the platen to hold the substrate in thermal contact with the platen.
  • U.S. Pat. No. 4,791,439 discloses an apparatus for use with hot melt inks having an integrally connected ink jet head and reservoir system, the reservoir system including a highly efficient heat conducting plate inserted within an essentially non-heat conducting reservoir housing.
  • the reservoir system has a sloping flow path between an inlet position and a sump from which ink is drawn to the head, and includes a plurality of vanes situated upon the plate for rapid heat transfer.
  • Some of the hot melt inks of the present invention contain liquid crystalline materials.
  • Inks containing crystalline or liquid crystalline materials are known.
  • U.S. Pat. No. 3,776,742 discloses an electrically conductive aqueous base ink for use in printing on a cellulose containing base member by formation of discrete droplets.
  • the ink comprises a water soluble dye, a water soluble inorganic conductive material in an amount of 1 to 20 percent, a water soluble polyol in an amount of from 5 to 50 percent, an organic crystallizable material in an amount of from 5 to 20 percent, which organic material acts temporarily as a plasticizer for cellulose, and water.
  • Typical crystallizable materials include sugars such as glucose, sucrose, fructose, and the like, including glucono D-lactone.
  • U.S. Pat. No. 4,617,371 discloses polymeric liquid crystals which retain their mesomorphic structure and properties associated therewith at temperatures below their glass transition temperature.
  • the polymers contain mesogen and spacer units in alternating sequence in the main chain and may carry aliphatic substituents.
  • the spacer moieties may be compounds having a flexible hydrocarbon chain with terminal functional groups at both ends of the chain that react, under appropriate reaction conditions, to form linkages with the mesogenic monomers.
  • the present invention is directed to hot melt ink compositions suitable for ink jet printing, particularly thermal ink jet printing.
  • a need exists for hot melt inks with excellent waterfastness and lightfastness.
  • hot melt inks with rapid drying times are also a need exists.
  • Another object of the present invention is to provide hot melt inks with rapid drying times.
  • Yet another object of the present invention is to provide hot melt inks containing liquid crystalline materials with sharp melting points and low viscosities at temperatures of from about 60° to about 150° C.
  • Still another object of the present invention is to provide hot melt inks containing liquid crystalline materials that exhibit high shear-thinning behavior.
  • a hot melt ink composition comprising a binder, a propellant, and a colorant.
  • the binder is optional, since the other ink components can also function as a binder.
  • the binder is present in an effective amount, generally from 0 to about 85 percent by weight and preferably from about 50 to about 70 percent by weight.
  • the propellant is present in an effective amount, generally from about 10 to about 90 percent by weight and preferably from about 30 to about 50 percent by weight.
  • the colorant is present in an effective amount, generally from about 0.5 to about 10 percent by weight of the binder/propellant mixture and preferably from about 3 to about 5 percent by weight of the binder/propellant mixture.
  • the hot melt ink composition may comprise a biocide in an effective amount, generally from about 0.1 to about 1.0 percent by weight, although a biocide is not as necessary an ingredient for hot melt inks as it is for liquid inks.
  • Suitable biocides include sorbic acid, 1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, commercially available as Dowicil 200 (Dow Chemical Company, Midland, Mich.), vinylenebis thiocyanate, commercially available as Cytox 3711 (American Cyanamid Company, Wayne, N.J.), disodium ethylenebis-dithiocarbamate, commercially available as Dithone D14 (Rohm & Haas Company, Philadelphia, Pa.), bis (trichloromethyl) sulfone, commercially available as Biocide N-1386 (Stauffer Chemical Company, Westport, Conn.), zinc pyridinethione, commercially available as zinc omadine (Olin Corporation
  • plasticizers such as pentaerythritol tetrabenzoate, commercially available as Benzoflex S552 (Velsicol Chemical Corporation, Chicago, Ill.), trimethyl citrate, commercially available as Citroflex 1 (Monflex Chemical Company, Greensboro, N.C.), N,N-dimethyl oleamide, commercially available as Halcomid M-18-OL (C. P. Hall Company, Chicago, Ill.), and the like, may be added to the binder, and may constitute from about 1 to 100 percent of the binder component of the ink.
  • Plasticizers can either function as the binder or can act as an agent to provide compatibility between the ink propellant, which generally is polar, and the ink binder, which generally is non-polar.
  • Suitable colorants present in an effective amount generally of from about 0.5 to about 10 percent by weight, include pigments and dyes, with solvent dyes being preferred. Any dye or pigment may be chosen, provided that it is capable of being dispersed or dissolved in the binder and is compatible with the other ink components.
  • Suitable pigments include Violet Toner VT-8015 (Paul Uhlich), Normandy Magenta RD-2400 (Paul Uhlich), Paligen Violet 5100 (BASF), Paliogen Violet 5890 (BASF), Permanent Violet VT2645 (Paul Uhlich), Heliogen Green L8730 (BASF), Argyle Green XP-111-S (Paul Uhlich), Brilliant Green Toner GR 0991 (Paul Uhlich), Lithol Scarlet D3700 (BASF), Tolidine Red (Aldrich), Scarlet for Thermoplast NSD PS PA (Ugine Kuhlmann of Canada), E. D.
  • Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), Heliogen Blue L6900, L7020 (BASF), Heliogen Blue K6902, K6910 (BASF), Heliogen Blue D6840, D7080 (BASF), Sudan Blue OS (BASF), Neopen Blue FF4012 (BASF), PV Fast Blue B2G01 (American Hoechst), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (red orange) (Matheson, Coleman, Bell), Sudan II (orange) (Matheson, Coleman, Bell), Sudan IV (orange) (Matheson
  • Suitable dyes for the inks of the present invention include Pontamine; Food Black 2; Carodirect Turquoise FBL Supra Conc. (Direct Blue 199), available from Carolina Color and Chemical; Special Fast Turquoise 8GL Liquid (Direct Blue 86), available from Mobay Chemical; Intrabond Liquid Turquoise GLL (Direct Blue 86), available from Crompton and Knowles; Cibracron Brilliant Red 38-A (Reactive Red 4), available from Aldrich Chemical; Drimarene Brilliant Red X-2B (Reactive Red 56), available from Pylam, Inc.; Levafix Brilliant Red E-4B, available from Mobay Chemical; Levafix Brilliant Red E-6BA, available from Mobay Chemical; Procion Red H8B (Reactive Red 31), available from ICI America; Pylam Certified D&C Red #28 (Acid Red 92), available from Pylam; Direct Brill Pink B Ground Crude, available from Crompton & Knowles; Cartasol Yellow GTF Presscake, available from Sandoz, Inc.; Tar
  • Suitable spirit solvent dyes include Neozapon Red 492 (BASF), Orasol Red G (Ciba-Geigy), Direct Brilliant Pink B (Crompton-Knolls), Aizen Spilon Red C-BH (Hodagaya Chemical Company), Kayanol Red 3BL (Nippon Kayaku Company), Levanol Brilliant Red 3BW (Mobay Chemical Company), Levaderm Lemon Yellow (Mobay Chemical Company), Spirit Fast Yellow 3G, Aizen Spilon Yellow C-GNH (Hodagaya Chemical Company), Sirius Supra Yellow GD 167, Cartasol Brilliant Yellow 4GF (Sandoz), Pergasol Yellow CGP (Ciba-Geigy), Orasol Black RL (Ciba-Geigy), Orasol Black RLP (Ciba-Geigy), Savinyl Black RLS (Sandoz), Dermacarbon 2GT (Sandoz), Pyrazol Black BG (ICI), Morfast Black Conc
  • Typical binders for the hot melt inks of the present invention generally have melting points of from about 60° to about 150° C., and preferably from about 80° to about 120° C., as determined by observation and measurement on a microscope hot stage, wherein the binder material is heated on a glass slide and observed by microscope. Higher melting points are acceptable, although printhead life may be reduced at these temperatures.
  • the surface tension of the binder at the operating temperature of the ink should be from about 20 to about 65 dynes per centimeter, and preferably from about 40 to about 65 dynes per centimeter to enhance refill rates, paper wetting, and color mixing. Operating temperatures of the inks of the present invention are generally from about 60° to about 150° C.
  • the operating temperature is selected to obtain low ink viscosity while avoiding extensive fuming or smoking.
  • the viscosity of the binder at the operating temperature of the ink is generally from about 1 to about 10 centipoise, and preferably from about 1 to about 5 centipoise to enhance refilling of the jets, jettability, and substrate penetration.
  • the binder should also be thermally stable in its molten state so that it does not undergo decomposition to yield gaseous products or to form heater deposites. Additionally, the binder should enable printed images with sufficient flexibility to prevent cracking or creasing.
  • Suitable binders for the hot melt inks of the present invention present in an effective amount, generally from 0 to about 85 percent by weight of the ink and preferably from about 30 to about 70 percent by weight of the ink, include rosin esters; polyamides; dimer acid amides; fatty acid amides, including Aramid C, available from Azko Chemie, Chicago, Ill.; epoxy resins, such as Epotuf 37001, available from Riechold Chemical Company; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides, including Ketjenflex MH and Ketjenflex MS80, available from Azko Chemie, Chicago, Ill.; benzoate esters, such as Benzoflex S552, available from Velsicol Chemical Company, Chicago, I
  • binders are long chain alcohols, such as linear primary alcohols with from about 16 to about 70 carbon atoms.
  • these alcohols include Unilin 425, a linear primary alcohol with about 26 carbon atoms, available from Petrolite Corporation, Tulsa, Okla., Unilin 700, a linear primary alcohol with about 50 carbon atoms and a molecular weight of about 700, and Unilin 550, a linear primary alcohol with about 39 carbon atoms and a molecular weight of about 550.
  • binders include mixtures of linear primary alcohols with linear long chain amides or fatty acid amides, such as those with from about 6 to about 24 carbon atoms, including Paricin 9 (propylene glycol monohydroxystearate), Paricin 13 (glycerol monohydroxystearate), Paricin 15 (ethylene glycol monohydroxystearate), Paricin 220 (N(2-hydroxyethyl)-12-hydroxystearamide), Paricin 285 (N,N'-ethylene-bis-12-hydroxystearamide), Flexricin 185 (N,N'-ethylene-bis-ricinoleamide), and the like, all available from CasChem Company, Bayonne, N.J., in an amount of from about 20 to about 70 percent by weight of the binder; Kemamide B (benhenamide/arachidamide), Kemamide W40 (N,N'-ethylenebisstearamide), Kemamide P181 (oleyl palmitamide), Kemamide S (stearamide), Kemamide U (oleamide
  • linear long chain sulfones with from about 4 to about 16 carbon atoms, such as n-propyl sulfone, n-pentyl sulfone, n-hexyl sulfone, n-heptyl sulfone, n-octyl sulfone, n-nonyl sulfone, n-decyl sulfone, n-undecyl sulfone, n-dodecyl sulfone, n-tridecyl sulfone, n-tetradecyl sulfone, n-pentadecyl sulfone, n-hexadecyl sulfone, and the like, are preferred binder materials, with n-decyl sulfone being particularly preferred.
  • the binders may comprise one or more of the aforementioned suitable materials.
  • Hot melt inks with liquid crystalline binders according to the present invention exhibit sharp melting points, which enables rapid melting of the ink and rapid solidifying of the ink on the printing substrate, thereby enabling rapid printing speeds.
  • hot melt inks with liquid crystalline binders according to the present invention exhibit high shear thinning behavior, which means that under shear or stress, the melt viscosity is lowered.
  • liquid crystalline materials for the inks of the present invention include alkyl thio- ⁇ -D-glucosides, of the general formula: ##STR1## wherein n is a number between about 7 and about 100, preferably from about 7 to about 30. Materials of this type can be prepared by the methods described by K. Hamacher, Carbohydrate Research, vol. 128, pages 291 to 295 (1984), and by D. Horton, Methods in Carbohydrate Chemistry, vol. 2, pages 368 to 373 and 433 to 437 (1963), the disclosure of which is totally incorporated herein by reference, by the following reactions. ##STR2##
  • the synthesis entails activation of the anomeric carbon of D-glucose by a peracetylation step with acetic anhydride in the presence of pyridine, followed by a hydrogen bromide treatment in the presence of acetic acid.
  • the resulting acetobromoglucose is then reacted with a n-alkyl thiolate having at least 7 carbon atoms.
  • the acetyl groups on the glucose ring are removed by a sodium methoxide solution in methanol to yield a n-alkyl thio- ⁇ -D-glucoside having liquid crystalline properties.
  • D-glucose is treated with 50 milliliters of acetic anhydride in the presence of 60 milliliters of pyridine, followed by hydrogen bromide treatment in the presence of acetic acid, and the resulting acetobromoglucose is then reacted with an equimolar amount of a n-alkyl thiolate, followed by treatment with a sodium methoxide solution in methanol.
  • Acetobromoglucose is treated with thiourea in acetone, and the resulting (2-tetra-O-acetyl- ⁇ -D-glucosyl)-2-thiopseudourea hydrobromide is then converted to tetra-O-acetyl-1-thio- ⁇ -D-glucose in the presence of potassium carbonate. Alkylation of this glucose derivative with an alkyl halide and subsequent de-O-acetylation with sodium methoxide in methanol yield alkyl-1-thio- ⁇ -D-glucoside.
  • 200 grams of acetobromoglucose is treated with 40 grams of thiourea in 200 milliliters of acetone, followed by treatment of the resulting (2-tetra-O-acetyl- ⁇ -D-glucosyl)-2-thiopseudourea hydrobromide with 70 grams of potassium carbonate to form tetra-O-acetyl-1-thio- ⁇ -D-glucose, and subsequent alkylation with 75 milliliters of an alkyl halide and treatment with sodium methoxide in methanol.
  • n-alkyl- ⁇ -D-glycosides of the general formula: ##STR4## wherein n is a number between about 7 and about 100, preferably from about 7 to about 30.
  • Alkylation of the glucose derivative of the formula ##STR5## with methyl iodide results in methyl tetra-O-acetyl-1-thio- ⁇ -D-glucoside, which may be used as an intermediate for obtaining a series of n-alkyl-O-glycosides by the procedure set forth by H. Lonn, Carbohydrate Research, vol.
  • n-alkyl-O-glycosides exhibit thermotropic properties if the n-alkyl chain has at least 7 carbon atoms.
  • the process entails reaction of methyl tetra-O-acetyl-1-thio- ⁇ -D-glucoside with a n-alcohol in the presence of methyl trifluoromethanesulfonate, and subsequent de-O-acetylation yields n-alkyl- ⁇ -D-glucosides.
  • n-Alkyl- ⁇ -D-glucosides may also be prepared by a Koenigs-Knorr reaction or by variations thereof, as follows: ##STR7##
  • a n-alcohol is reacted with a glycosyl bromide such as acetobromoglucose in the presence of silver oxide, as taught by E. A. Tally, Methods in Carbohydrate Chemistry, vol. 2, pages 337 to 340 (1963), the disclosure of which is totally incorporated herein by reference, or in the presence of mercury (II) cyanide, as taught by K. Takeo, K. Okushio, K. Fukuyama, and T. Kuge, Carbohydrate Research, vol. 121, page 163 (1983), the disclosure of which is totally incorporated herein by reference, and the resulting derivative is then de-O-acetylated to the n-alkyl- ⁇ -D-glucoside.
  • a glycosyl bromide such as acetobromoglucose
  • reaction sequences may also be applied to other reducing carbohydrates or carbohydrate oligomers, such as galactose, xylose, mannose, arabinose, fructose, cellobiose, maltose, lactose, and the like.
  • n-Alkyl 1-O-glycosides or 1-S-glycosides incorporating modifications on the sugar component are also expected to be liquid crystalline.
  • the term "n-alkyl” refers to an n-alkyl chain with from about 7 to about 100, and preferably from about 7 to about 30, carbon atoms. Examples of such modifications include deoxygenation, esterification, alkylation of one or several hydroxyl groups, oxydation of one or several hydroxyl groups to ketones, aldehyde, or acid functions, and the like.
  • Glycolipids with a n-alkyl chain linked to a carbohydrate or carbohydrate derivative molecule by linkages other than of the 1-O- and 1-S-glycosidic type are also liquid crystalline.
  • non-reducing carbohydrate derivatives such as glycosides, alditols, aldonic acids and their lactones, inositols, and non-reducing carbohydrate oligomers such as saccharose and trehalose can be employed as starting carbohydrates or carbohydrate derivatives.
  • Suitable liquid crystalline binders include 1-O-alkyl derivatives of anhydroalditols, which can be prepared as reported in P. Koll and M.
  • liquid crystalline binders includes liquid crystalline n-alkylamide derivatives of aldonic acids which can be prepared as described in B, Pfannemuller and W. Welte, Chemistry and Physics of Lipids, vol. 37, pages 227 to 240 (1985), the disclosure of which is totally incorporated herein by reference, as shown below. ##STR9##
  • liquid crystalline binders include 1-N-alkyl derivatives of sugar alditols which can be obtained by processes such as reductive amination of carbonyl containing carbohydrates and carbohydrate oligomers such as glucose, galacctose, mannose, xylose, arabinose, fructose, cellobiose, maltose, and lactose with n-alkylamines in the presence of sodium cyanoborohydride under the reaction conditions described in M. Yalpani and L. Hall, Macromolecules, vol. 17, pages 272 to 281 (1984), the disclosure of which is totally incorporated herein by reference, as shown below. ##
  • n-heptyl- ⁇ -D-glucopyranoside n-octyl- ⁇ -D-glucopyranoside, n-nonyl- ⁇ -D-glucopyranoside, n-decyl- ⁇ -D-glucopyranoside, n-dodecyl- ⁇ -D-glucopyranoside, n-octyl- ⁇ -D-glucopyranoside, n-dodecyl- ⁇ -D-maltoside, and the like, available from Sigma, St. Louis, Mo.
  • liquid crystalline binders include n-dodecyl-1-thio- ⁇ -D-glucopyranoside, n-dodecyl-1-thio- ⁇ -D-galactopyranoside, and n-dodecyl-1-thio- ⁇ -D-xylopyranoside, which exhibit excellent shear-thinning behavior in the liquid crystalline state, as determined by dynamic sinusoidal oscillation cone and plate rheometry on a Rheometrics RMS7200 mechanical spectrometer.
  • Suitable propellants for the hot melt inks of the present invention present in an effective amount generally of from about 10 to about 90 percent by weight and preferably from about 20 to about 50 percent by weight, generally have melting points of from about 50° to about 150° C., and preferably from about 80° to about 120° C. Although greater melting points are acceptable, they are generally not preferred because they may reduce printhead lifetime.
  • the propellants generally have a boiling point of from about 180° to about 250° C., preferably from about 200° to about 230° C. Preferably, the melting point and the boiling point of the propellant are separated by at least 100° C.
  • the surface tension of the propellant in its liquid state at the operating temperature of the ink generally should be from about 20 to about 65 dynes per centimeter, and preferably from about 40 to about 65 dynes per centimeter to enhance refill rates, paper wetting, and color mixing.
  • the propellants should have a viscosity at the operating temperature of the ink of from about 1 to about 10 centipoise, and preferably from about 1 to about 5 centipoise to enhance refill, jettability, and substrate penetration.
  • the critical pressure of the propellant should be from about 40 to about 218 atmospheres, and preferably from about 60 to about 218 atmospheres to enhance drop velocity.
  • the propellant should also be thermally stable in its molten state so that it does not undergo decomposition to yield gaseous products or to form heater deposits.
  • Suitable propellants for the hot melt inks of the present invention include water; hydrazine; alcohols, such as ethanol, propanol, butanol, 2,5-dimethyl-2,5-hexanediol, 3-hydroxy benzyl alcohol, and the like; cyclic amines and ureas, including 1,3-dimethyl urea, such as imidazole, substituted imidazoles, including 2-imidazolidone, 2-ethyl imidazole, 1,2,4-triazole, and the like, pyrazole and substituted pyrazoles, including 3,5-dimethyl pyrazole and the like; pyrazine; carboxylic acids; sulfonic acids; aldehydes and ketones; hydrocarbons, such as biphenyl, hexane, benzene; esters; phenols, including phenol, dichlorophenol, other halogen substituted phenols, and cresols; amides, such as pro
  • Preferred propellants include water, imidazole, imidazoles substituted with hydrocarbon, keto, or hydroxyl substituents, pyrazine, pyrazole, and pyrazoles substituted with hydrocarbon, keto, or hydroxyl substituents. These compounds are five-membered heterocyclic rings, preferably with a molecular weight of about 60. Also preferred are sulfones, such as dimethyl sulfone, diethyl sulfone, diphenyl sulfone, and the like. In addition, methyl sulfamide, succinimide, and propionamide are preferred propellants.
  • Hot melt ink compositions of the present invention are generally prepared by combining all of the ingredients, heating the mixture to its melting point, which generally is from about 80° to about 120° C., and stirring the mixture for from about 5 seconds to about 10 minutes to obtain a homogeneous, uniform melt.
  • the molten mixture may be subjected to grinding in an attritor or ball mill apparatus to effect dispersion of the pigment in the binder.
  • Printed images may be generated with the inks of the present invention by incorporating the inks into a thermal ink jet printer and causing droplets of the molten ink to be ejected in imagewise pattern onto a substrate such as paper or transparency material.
  • Suitable printers for employing the inks of the present invention include commercially available ink jet printers, such as the ThinkJet®, PainJet®, and DeskJet® printers available from Hewlett-Packard Company.
  • Coventional thermal ink jet printers may be modified to make them suitable for use with hot melt inks by including a means for heating the ink reservoir to the melting point of the ink.
  • the inks of the present invention are also suitable for use in piezoelectric drop-on-demand ink jet printing systems and in continuous stream ink jet printing systems that have been modified to be suitable for use with hot melt inks.
  • a black hot melt ink composition was prepared by mixing 14 parts by weight of pentaerythritol benzoate, commercially available as Benzoflex S552 from Velsicol Corporation, Chicago, Ill., 84 parts by weight of methyl sulfone, and 2 parts by weight of Orasol Black RLP dye. The mixture was heated to 130° C., stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink comprising about 14 percent by weight pentaerythritol benzoate, 84 percent by weight methyl sulfone, and 2 percent by weight of the dye.
  • a sample of the black hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state.
  • the ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease resistance as determined by creasing the paper and smear resistance as determined by hand rubbing, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a transparent hot melt ink composition was prepared by mixing 50 parts by weight of phenyl sulfone and 50 parts by weight of methyl sulfone. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 50 percent by weight phenyl sulfone and about 50 percent by weight methyl sulfone.
  • a sample of the transparent hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state.
  • the ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a magenta hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketjenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 64 parts by weight of methyl sulfone, and 1 part by weight of Neozapon Red 492 (BASF) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform magenta solid hot melt ink.
  • a formaldehyde-toluene-sulfonamide condensation polymer commercially available as Ketjenflex MS80 from Akzochemie, Netherlands
  • an epoxy resin commercially available as Epotuf 37001 from Reichold Chemical Company
  • a sample of the magenta hot melt ink was hand coated onto Xerox® 4024 paper and onto transparency material while it was in its molten state.
  • the ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a yellow hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketjenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 61 parts by weight of methyl sulfone, and 4 parts by weight of Orasol Yellow 4GN (Ciba-Geigy) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform yellow solid hot melt ink.
  • a formaldehyde-toluene-sulfonamide condensation polymer commercially available as Ketjenflex MS80 from Akzochemie, Netherlands
  • an epoxy resin commercially available as Epotuf 37001 from Reichold Chemical Company
  • a sample of the yellow hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state.
  • the ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a cyan hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketijenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 64 parts by weight of methyl sulfone, and 1 part by weight of Neozapon Blue 807 (BASF) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform cyan solid hot melt ink
  • a sample of the cyan hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state.
  • the ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a black hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially avaliable as Ketjenflex MH from Akzochemie, Netherlands, 80 parts by weight of methyl sulfone, and 1.5 parts by weight of Orasol Black RLP (Ciba-Geigy) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink.
  • a formaldehyde-toluene-sulfonamide condensation polymer commercially avaliable as Ketjenflex MH from Akzochemie, Netherlands
  • 80 parts by weight of methyl sulfone and 1.5 parts by weight of Orasol Black RLP (Ciba-Geigy) dye.
  • Orasol Black RLP Ciba-Geigy
  • a sample of the black hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state.
  • the ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a transparent hot melt ink composition was prepared by mixing 60 parts by weight of decyl sulfone and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 60 percent by weight of decyl sulfone and 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 30 parts by weight of decyl sulfone, 30 parts by weight of amyl sulfone, and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 30 percent by weight of decyl sulfone, 30 percent by weight of amyl sulfone, and 40 percent by weight of imidazole.
  • This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the ink generated bubbles over the entire printhead at 535 milliamps at 138° C. with a drop frequency of from 600 to 2,000 Hz.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material.
  • Example VII A comparison of this ink with the ink of Example VII indicated that the ink of Example VII, which contained a greater amount of decyl sulfone than the present ink, was more waxy and less crystalline in nature than the present ink.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 20 parts by weight of Paracin 285 (N,N'ethylene-bis-12-hydroxystearamide, CasChem Chemical Corporation), 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 20 percent by weight of N,N'ethylene-bis-12-hydroxystearamide, about 40 percent by weight of the linear primary alcohol, and about 40 percent by weight of imidazole.
  • This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the ink generated bubbles over the entire printhead with very uniform nucleation at 490 milliamps at 138° C. with 3 microsecond pulses. No gas evolution or free bubbles were observed under microscope. Further, no residual deposits had formed on the heater surface after 3 hours of jetting, and the voltage required to enable stable bubble formation remained constant over this period.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified within 10 seconds of being deposited on the substrate.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 10 parts by weight of Paracin 285 (N,N'ethylene-bis-12-hydroxystearamide, CasChem Chemical Corporation), 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 10 parts by weight of decyl sulfone, and 40 parts by weight of imidazole.
  • Paracin 285 N,N'ethylene-bis-12-hydroxystearamide, CasChem Chemical Corporation
  • Unilin® 425 linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company
  • decyl sulfone 10 parts by weight of decyl sulfone
  • imidazole 40 parts by weight of imidazole.
  • the mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 10 percent by weight of N,N'ethylene-bis-12-hydroxystearamide, about 40 percent by weight of the linear primary alcohol, about 10 percent by weight of decyl sulfone, and about 40 percent by weight of imidazole.
  • This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified within 10 seconds of being deposited on the substrate.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a black hot melt ink composition was prepared by mixing 10 parts by weight of Paracin 285, 35 parts by weight of Unilin 425, 45 parts by weight of imidazole, and 10 parts by weight of decyl sulfone. To the transparent mixture was added about 10 percent by weight of Orasol Black RLP dye. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink.
  • a sample of the black hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state.
  • the ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
  • a transparent hot melt ink composition was prepared by mixing 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of cholesterol, and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 40 percent by weight of the linear primary alcohol, about 20 percent by weight of cholesterol, and about 40 percent by weight of imidazole.
  • This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the ink generated bubbles over the entire printhead with very uniform nucleation at 500 milliamps at 138° C. with 3 microsecond pulses and a drop frequency of 2,000 Hz.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 50 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of Aerosol OT100 (a dioctyl sodium sulfosuccinate surfactant, American Cyanamid, Stamford, Conn.), and 30 parts by weight of water. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. The presence of the surfactant increased compatibility between the water propellant and the long chain alcohol binder to form a stable dispersion.
  • Unilin® 425 linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company
  • Aerosol OT100 a dioctyl sodium sulfosuccinate surfactant, American Cyanamid, Stamford, Conn.
  • This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • the ink generated bubbles over the entire printhead heater at 343 milliamps at 138° C. with 3 microsecond pulses and a drop frequency of 2,000 Hz.
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C. Bubble nucleation was comparable to that observed for water alone, and drop size on the substrate was about 25 microns, indicating that the formulation was suitable for high resolution printing.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 75 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of imidazole, and 5 parts by weight of decyl sulfone. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images.
  • Unilin® 425 linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company
  • decyl sulfone 5 parts by weight
  • the molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and drop size on the substrate was about 80 microns.
  • the transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 30 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 30 parts by weight of Unithox® 520 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 520 and 3 ethoxy groups are present, Petrolite Chemical Company), 10 parts by weight of palmitic acid, and 30 parts by weight of dimethylurea. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink.
  • the bubble nucleation characteristics of this material were tested by incorporating it into a thermal ink jet printing test fixture and observing bubble nucleation under a microscope.
  • the ink generated bubbles over the entire heater at 525 milliamps at 138° C. with a drop frequency of 2,000 Hz. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • a transparent hot melt ink composition was prepared by mixing 40 parts by weight of Unithox® 720 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 720 and 4 ethoxy groups are present, Petrolite Chemical Company), 30 parts by weight of Unithox® 550 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 550 and 13 ethoxy groups are present, Petrolite Chemical Company), 10 parts by weight of palmitic acid, and 30 parts by weight of dimethyl sulfone.
  • Unithox® 720 ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 720 and 4 ethoxy groups are present, Petrolite Chemical Company
  • Unithox® 550 ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 550 and 13 ethoxy groups are present, Petrolite Chemical Company
  • 10 parts by weight of palmitic acid and 30 parts by weight of dimethyl sulf
  • the mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink.
  • the bubble nucleation characteristics of this material were tested by incorporating it into a thermal ink jet printing test fixture and observing bubble nucleation under a microscope.
  • the ink generated bubbles over the entire heater at 472 milliamps at 138° C. with a drop frequency of 2,000 Hz. After two hours, only minimal deposits of ink residue had formed on the heater surface. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
  • propellant materials listed in the table below were incorporated into a laboratory test fixture equipped with a printhead. The materials were heated to the indicated temperature under the indicated conditions and bubble nucleation was observed under a microscope. In each instance, the drop frequency was 600 Hz. It is believed that hot melt ink compositions containing these materials as propellants will exhibit good bubble nucleation under operating conditions in a thermal ink jet printer equipped for printing with hot melt inks.
  • a red ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio- ⁇ -D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Red dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
  • a propellant such as water or methyl sulfone
  • a blue ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio- ⁇ -D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Blue dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
  • a propellant such as water or methyl sulfone
  • a yellow ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio- ⁇ -D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Yellow dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
  • a propellant such as water or methyl sulfone
  • a black ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio- ⁇ -D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Typophor Black dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
  • a propellant such as water or methyl sulfone

Abstract

Disclosed are hot melt ink compositions suitable for ink jet printing which comprise a colorant, a binder, and a propellant selected from the group consisting of hydrazine; cyclic amines; ureas; carboxylic acids; sulfonic acids; aldehydes; ketones; hydrocarbons; esters; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; sulfonamindes; phosphites; phosphonates; phosphates; alkyl sulfines; alkyl acetates; and sulfur dioxide. Also disclosed are hot melt ink compositions suitable for ink jet printing which comprise a colorant, a propellant, and a binder selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; long chain alcohols; phthalate plasticizers; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; natural product waxes; mixtures of linear primary alcohols and linear long chain amides; and mixtures of linear primary alcohols and fatty acid amides. In one embodiment, the binder comprises a liquid crystalline material.

Description

BACKGROUND OF THE INVENTION
The present invention is directed to hot melt ink compositions. More specifically, the present invention is directed to ink compositions that are solid at room temperature and that are suitable for ink jet printing processes, particularly thermal ink jet printing processes.
Ink jet printing systems generally are of two types: continuous stream and drop-on-demand. In continuous stream ink jet systems, ink is emitted in a continuous stream under pressure through at least one orifice or nozzle. The stream is perturbed, causing it to break up into droplets at a fixed distance from the orifice. At the break-up point, the droplets are charged in accordance with digital data signals and passed through an electrostatic field which adjusts the trajectory of each droplet in order to direct it to a gutter for recirculation or a specific location on a recording medium. In drop-on-demand systems, a droplet is expelled from an orifice directly to a position on a recording medium in accordance with digital data signals. A droplet is not formed or expelled unless it is to be placed on the recording medium.
Since drop-on-demand systems require no ink recovery, charging, or deflection, they are much simpler than the continuous stream type. There are two types of drop-on-demand ink jet systems. One type of drop-on-demand system has as its major components an ink filled channel or passageway having a nozzle on one end and a piezoelectric transducer near the other end to produce pressure pulses. The relatively large size of the transducer prevents close spacing of the nozzles, and physical limitations of the transducer result in low ink drop velocity. Low drop velocity seriously diminishes tolerances for drop velocity variation and directionality, thus impacting the system's ability to produce high quality copies. Drop-on-demand systems which use piezoelectric devices to expel the droplets also suffer the disadvantage of a slow printing speed.
The second type of drop-on-demand system is known as thermal ink jet, or bubble jet, and produces high velocity droplets and allows very close spacing of nozzles. The major components of this type of drop-on-demand system are an ink-filled channel having a nozzle on one end and a heat generating resistor near the nozzle. Printing signals representing digital information originate an electric current pulse in a resistive layer within each ink passageway near the orifice or nozzle causing the ink in the immediate vicinity to evaporate almost instantaneously and create a bubble. The ink at the orifice is forced out as a propelled droplet as the bubble expands. When the hydrodynamic motion of the ink stops, the process is ready to start all over again. With the introduction of a droplet ejection system based upon thermally generated bubbles, commonly referred to as the "bubble jet" system, the drop-on-demand ink jet printers provide simpler, lower cost devices than their continuous stream counterparts, and yet have substantially the same high speed printing capability.
The operating sequence of the bubble jet system begins with a current pulse through the resistive layer in the ink filled channel, the resistive layer being in close proximity to the orifice or nozzle for that channel. Heat is transferred from the resistor to the ink. The ink becomes superheated far above its normal boiling point, and for water based ink, finally reaches the critical temperature for bubble formation or nucleation of around 280° C. Once nucleated, the bubble or water vapor thermally isolates the ink from the heater and no further heat can be applied to the ink. This bubble expands until all the heat stored in the ink in excess of the normal boiling point diffuses away or is used to convert liquid to vapor, which removes heat due to heat of vaporization. The expansion of the bubble forces a droplet of ink out of the nozzle, and once the excess heat is removed, the bubble collapses on the resistor. At this point, the resistor is no longer being heated because the current pulse has passed and, concurrently with the bubble collapse, the droplet is propelled at a high rate of speed in a direction towards a recording medium. The resistive layer encounters a severe cavitational force by the collapse of the bubble, which tends to erode it. Subsequently, the ink channel refills by capillary action. This entire bubble formation and collapse sequence occurs in about 10 microseconds. The channel can be refired after 100 to 500 microseconds minimum dwell time to enable the channel to be refilled and to enable the dynamic refilling factors to become somewhat dampened. Thermal ink jet processes are well known and are described, for example, in U.S. Pat. Nos. 4,601,777; 4,251,824; 4,410,899; 4,412,224; and 4,532,530, the disclosures of each of which are totally incorporated herein by reference.
Ink jet printing processes may also employ inks that are solid at room temperature and liquid at elevated temperatures. For example, U.S. Pat. No. 4,490,731, the disclosure of which is totally incorporated herein by reference, discloses an apparatus for dispensing solid ink for printing on a substrate such as paper. The ink dye vehicle is chosen to have a melting point above room temperature, so that the ink which is melted in the apparatus will not be subject to evaporation or spillage during periods of nonprinting. The vehicle is also chosen to have a low critical temperature to permit the use of the solid ink in a thermal ink jet printer. In thermal ink jet printing processes employing hot melt inks, the solid ink is melted by the heater in the printing apparatus and utilized as a liquid in a manner similar to that of conventional thermal ink jet printing. Upon contact with the printing substrate, the molten ink solidifies rapidly, enabling the dye to remain on the surface instead of being carried into the paper by capillary action, thereby enabling higher print density than is generally obtained with liquid inks. Advantages of a hot melt ink in ink jet printing are elimination of potential spillage of the ink during handling, a wide range of print density and quality, minimal paper cockle or distortion, and enablement of indefinite periods of nonprinting without the danger of nozzle clogging, even without capping the nozzles.
In addition, U.S. Pat. No. 4,751,528, the disclosure of which is totally incorporated herein by reference, discloses a hot melt ink jet system which includes a temperature-controlled platen provided with a heater and a thermoelectric cooler electrically connected to a heat pump and a temperature control unit for controlling the operation of the heater and the heat pump to maintain the platen temperature at a desired level. The apparatus also includes a second thermoelectric cooler to solidify hot melt ink in a selected zone more rapidly to avoid offset by a pinch roll coming in contact with the surface of the substrate to which hot melt ink has been applied. An airtight enclosure surrounding the platen is connected to a vacuum pump and has slits adjacent to the platen to hold the substrate in thermal contact with the platen.
Further, U.S. Pat. No. 4,791,439, the disclosure of which is totally incorporated by reference, discloses an apparatus for use with hot melt inks having an integrally connected ink jet head and reservoir system, the reservoir system including a highly efficient heat conducting plate inserted within an essentially non-heat conducting reservoir housing. The reservoir system has a sloping flow path between an inlet position and a sump from which ink is drawn to the head, and includes a plurality of vanes situated upon the plate for rapid heat transfer.
Some of the hot melt inks of the present invention contain liquid crystalline materials. Inks containing crystalline or liquid crystalline materials are known. For example, U.S. Pat. No. 3,776,742 discloses an electrically conductive aqueous base ink for use in printing on a cellulose containing base member by formation of discrete droplets. The ink comprises a water soluble dye, a water soluble inorganic conductive material in an amount of 1 to 20 percent, a water soluble polyol in an amount of from 5 to 50 percent, an organic crystallizable material in an amount of from 5 to 20 percent, which organic material acts temporarily as a plasticizer for cellulose, and water. Typical crystallizable materials include sugars such as glucose, sucrose, fructose, and the like, including glucono D-lactone. In addition, U.S. Pat. No. 4,617,371 discloses polymeric liquid crystals which retain their mesomorphic structure and properties associated therewith at temperatures below their glass transition temperature. The polymers contain mesogen and spacer units in alternating sequence in the main chain and may carry aliphatic substituents. The spacer moieties may be compounds having a flexible hydrocarbon chain with terminal functional groups at both ends of the chain that react, under appropriate reaction conditions, to form linkages with the mesogenic monomers.
The present invention is directed to hot melt ink compositions suitable for ink jet printing, particularly thermal ink jet printing. A need exists for hot melt inks that result in images needing no further fixing or fusing treatment, such as drying or heating. There is also a need for hot melt inks that generate prints of excellent color quality, print density, and fix, and with minimal paper cockle or distortion. In addition, there is a need for hot melt inks that generate high quality images on transparency materials. Further, a need exists for hot melt inks with excellent waterfastness and lightfastness. There is also a need for hot melt inks with rapid drying times. Additionally, there is a need for hot melt inks containing liquid crystalline materials with sharp melting points and low viscosities at temperatures of from about 60° to about 150° C. Further, there is a need for hot melt inks containing liquid crystalline materials that exhibit high shear-thinning behavior.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide hot melt inks that result in images needing no further fixing or fusing treatment.
It is another object of the present invention to provide hot melt inks that generate prints of excellent color quality, print density, and fix, and with minimal paper cockle or distortion.
It is yet another object of the present invention to provide hot melt inks that generate high quality images on transparency materials.
It is still another object of the present invention to provide hot melt inks with excellent waterfastness and lightfastness.
Another object of the present invention is to provide hot melt inks with rapid drying times.
Yet another object of the present invention is to provide hot melt inks containing liquid crystalline materials with sharp melting points and low viscosities at temperatures of from about 60° to about 150° C.
Still another object of the present invention is to provide hot melt inks containing liquid crystalline materials that exhibit high shear-thinning behavior.
These and other objects of the present invention are achieved by providing a hot melt ink composition comprising a binder, a propellant, and a colorant. The binder is optional, since the other ink components can also function as a binder. The binder is present in an effective amount, generally from 0 to about 85 percent by weight and preferably from about 50 to about 70 percent by weight. The propellant is present in an effective amount, generally from about 10 to about 90 percent by weight and preferably from about 30 to about 50 percent by weight. The colorant is present in an effective amount, generally from about 0.5 to about 10 percent by weight of the binder/propellant mixture and preferably from about 3 to about 5 percent by weight of the binder/propellant mixture. Optionally, the hot melt ink composition may comprise a biocide in an effective amount, generally from about 0.1 to about 1.0 percent by weight, although a biocide is not as necessary an ingredient for hot melt inks as it is for liquid inks. Suitable biocides include sorbic acid, 1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, commercially available as Dowicil 200 (Dow Chemical Company, Midland, Mich.), vinylenebis thiocyanate, commercially available as Cytox 3711 (American Cyanamid Company, Wayne, N.J.), disodium ethylenebis-dithiocarbamate, commercially available as Dithone D14 (Rohm & Haas Company, Philadelphia, Pa.), bis (trichloromethyl) sulfone, commercially available as Biocide N-1386 (Stauffer Chemical Company, Westport, Conn.), zinc pyridinethione, commercially available as zinc omadine (Olin Corporation Stamford, Conn.), 2-bromo-t-nitropropane-1,3-diol, commercially available as onyxide 500 (Onyx Chemical Company, Jersey City, N.J.), Bosquat MB50 (Louza, Inc., Fairtown, N.J.), and the like. In addition, other optional additives such as dispersing agents or surfactants may be present in the ink in amounts of from about 0.01 to about 20 percent by weight. Further, plasticizers such as pentaerythritol tetrabenzoate, commercially available as Benzoflex S552 (Velsicol Chemical Corporation, Chicago, Ill.), trimethyl citrate, commercially available as Citroflex 1 (Monflex Chemical Company, Greensboro, N.C.), N,N-dimethyl oleamide, commercially available as Halcomid M-18-OL (C. P. Hall Company, Chicago, Ill.), and the like, may be added to the binder, and may constitute from about 1 to 100 percent of the binder component of the ink. Plasticizers can either function as the binder or can act as an agent to provide compatibility between the ink propellant, which generally is polar, and the ink binder, which generally is non-polar.
Suitable colorants, present in an effective amount generally of from about 0.5 to about 10 percent by weight, include pigments and dyes, with solvent dyes being preferred. Any dye or pigment may be chosen, provided that it is capable of being dispersed or dissolved in the binder and is compatible with the other ink components. Examples of suitable pigments include Violet Toner VT-8015 (Paul Uhlich), Normandy Magenta RD-2400 (Paul Uhlich), Paligen Violet 5100 (BASF), Paliogen Violet 5890 (BASF), Permanent Violet VT2645 (Paul Uhlich), Heliogen Green L8730 (BASF), Argyle Green XP-111-S (Paul Uhlich), Brilliant Green Toner GR 0991 (Paul Uhlich), Lithol Scarlet D3700 (BASF), Tolidine Red (Aldrich), Scarlet for Thermoplast NSD PS PA (Ugine Kuhlmann of Canada), E. D. Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), Heliogen Blue L6900, L7020 (BASF), Heliogen Blue K6902, K6910 (BASF), Heliogen Blue D6840, D7080 (BASF), Sudan Blue OS (BASF), Neopen Blue FF4012 (BASF), PV Fast Blue B2G01 (American Hoechst), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (red orange) (Matheson, Coleman, Bell), Sudan II (orange) (Matheson, Coleman, Bell), Sudan IV (orange) (Matheson, Coleman, Bell), Sudan Orange G (Aldrich), Sudan Orange 220 (BASF), Paliogen Orange 3040 (BASF), Ortho Orange OR 2673 (Paul Uhlich), Paliogen Yellow 152, 1560 (BASF), Lithol Fast Yellow 0991K (BASF), Paliotol Yellow 1840 (BASF), Novoperm Yellow FGL (Hoechst), Permanent Yellow YE 0305 (Paul Uhlich), Lumogen Yellow D0790 (BASF), Suco-Gelb L1250 (BASF), Suco-Yellow D1355 (BASF), Sico Fast Yellow D1355, D1351 (BASF), Hostaperm Pink E (American Hoechst), Fanal Pink D4830 (BASF), Cinquasia Magenta (DuPont), Paliogen Black L0084 (BASF), Pigment Black K801 (BASF), and carbon blacks such as Regal 330® (Cabot), Carbon Black 5250 and Carbon Black 5750 (Columbian Chemicals Company). Suitable dyes for the inks of the present invention include Pontamine; Food Black 2; Carodirect Turquoise FBL Supra Conc. (Direct Blue 199), available from Carolina Color and Chemical; Special Fast Turquoise 8GL Liquid (Direct Blue 86), available from Mobay Chemical; Intrabond Liquid Turquoise GLL (Direct Blue 86), available from Crompton and Knowles; Cibracron Brilliant Red 38-A (Reactive Red 4), available from Aldrich Chemical; Drimarene Brilliant Red X-2B (Reactive Red 56), available from Pylam, Inc.; Levafix Brilliant Red E-4B, available from Mobay Chemical; Levafix Brilliant Red E-6BA, available from Mobay Chemical; Procion Red H8B (Reactive Red 31), available from ICI America; Pylam Certified D&C Red #28 (Acid Red 92), available from Pylam; Direct Brill Pink B Ground Crude, available from Crompton & Knowles; Cartasol Yellow GTF Presscake, available from Sandoz, Inc.; Tartrazine Extra Conc. (FD&C Yellow #5, Acid Yellow 23), available from Sandoz; Carodirect Yellow RL (Direct Yellow 86), available from Carolina Color and Chemical; Cartasol Yellow GTF Liquid Special 110, available from Sandoz, Inc.; D&C Yellow #10 (Acid Yellow 3), available from Tricon; Yellow Shade 16948, available from Tricon, Basacid Black X34, available from BASF, Carta Black 2GT, available from Sandoz, Inc., and the like. Particularly preferred are solvent dyes, and within the class of solvent dyes, spirit soluble dyes are preferred because of their high compatibility with binder materials. Examples of suitable spirit solvent dyes include Neozapon Red 492 (BASF), Orasol Red G (Ciba-Geigy), Direct Brilliant Pink B (Crompton-Knolls), Aizen Spilon Red C-BH (Hodagaya Chemical Company), Kayanol Red 3BL (Nippon Kayaku Company), Levanol Brilliant Red 3BW (Mobay Chemical Company), Levaderm Lemon Yellow (Mobay Chemical Company), Spirit Fast Yellow 3G, Aizen Spilon Yellow C-GNH (Hodagaya Chemical Company), Sirius Supra Yellow GD 167, Cartasol Brilliant Yellow 4GF (Sandoz), Pergasol Yellow CGP (Ciba-Geigy), Orasol Black RL (Ciba-Geigy), Orasol Black RLP (Ciba-Geigy), Savinyl Black RLS (Sandoz), Dermacarbon 2GT (Sandoz), Pyrazol Black BG (ICI), Morfast Black Conc A (Morton-Thiokol), Diazol Black RN Quad (ICI), Orasol Blue GN (Ciba-Geigy), Savinyl Blue GLS (Sandoz), Luxol Blue MBSN (Morton-Thiokol), Sevron Blue 5GMF (ICI), Basacid Blue 750 (BASF), and the like.
Typical binders for the hot melt inks of the present invention generally have melting points of from about 60° to about 150° C., and preferably from about 80° to about 120° C., as determined by observation and measurement on a microscope hot stage, wherein the binder material is heated on a glass slide and observed by microscope. Higher melting points are acceptable, although printhead life may be reduced at these temperatures. In addition, the surface tension of the binder at the operating temperature of the ink should be from about 20 to about 65 dynes per centimeter, and preferably from about 40 to about 65 dynes per centimeter to enhance refill rates, paper wetting, and color mixing. Operating temperatures of the inks of the present invention are generally from about 60° to about 150° C. Higher temperatures are acceptable, although they may reduce the lifetime of the heater and printhead. Generally, the operating temperature is selected to obtain low ink viscosity while avoiding extensive fuming or smoking. The viscosity of the binder at the operating temperature of the ink is generally from about 1 to about 10 centipoise, and preferably from about 1 to about 5 centipoise to enhance refilling of the jets, jettability, and substrate penetration. The binder should also be thermally stable in its molten state so that it does not undergo decomposition to yield gaseous products or to form heater deposites. Additionally, the binder should enable printed images with sufficient flexibility to prevent cracking or creasing.
Examples of suitable binders for the hot melt inks of the present invention, present in an effective amount, generally from 0 to about 85 percent by weight of the ink and preferably from about 30 to about 70 percent by weight of the ink, include rosin esters; polyamides; dimer acid amides; fatty acid amides, including Aramid C, available from Azko Chemie, Chicago, Ill.; epoxy resins, such as Epotuf 37001, available from Riechold Chemical Company; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides, including Ketjenflex MH and Ketjenflex MS80, available from Azko Chemie, Chicago, Ill.; benzoate esters, such as Benzoflex S552, available from Velsicol Chemical Company, Chicago, Ill.; long chain alcohols, including Unilin 425, available from Petrolite Corporation, Tulsa, Okla.; ethoxylated long chain alcohols, including Unithox 720 (molecular weight about 720, 4 ethoxy groups), Unithox 550 (molecular weight about 550, 13 ethoxy groups), and Unithox 520 (molecular weight about 520, 3 ethoxy groups), all available from Petrolite Corporation, Tulsa, Okla.; phthalate plasticizers; citrate plasticizers; maleate plasticizers; sulfones, such as diphenyl sulfone, n-decyl sulfone, n-amyl sulfone, chlorophenyl methyl sulfone; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins, such as Durez 12 686, available from Occidental Chemical Company, Buffalo, N.Y.; and natural product waxes, such as beeswax, monton wax, candelilla wax, Gilsonite (American Gilsonite Company), and the like. Particularly preferred as binders are long chain alcohols, such as linear primary alcohols with from about 16 to about 70 carbon atoms. Examples of these alcohols include Unilin 425, a linear primary alcohol with about 26 carbon atoms, available from Petrolite Corporation, Tulsa, Okla., Unilin 700, a linear primary alcohol with about 50 carbon atoms and a molecular weight of about 700, and Unilin 550, a linear primary alcohol with about 39 carbon atoms and a molecular weight of about 550. Other preferred binders include mixtures of linear primary alcohols with linear long chain amides or fatty acid amides, such as those with from about 6 to about 24 carbon atoms, including Paricin 9 (propylene glycol monohydroxystearate), Paricin 13 (glycerol monohydroxystearate), Paricin 15 (ethylene glycol monohydroxystearate), Paricin 220 (N(2-hydroxyethyl)-12-hydroxystearamide), Paricin 285 (N,N'-ethylene-bis-12-hydroxystearamide), Flexricin 185 (N,N'-ethylene-bis-ricinoleamide), and the like, all available from CasChem Company, Bayonne, N.J., in an amount of from about 20 to about 70 percent by weight of the binder; Kemamide B (benhenamide/arachidamide), Kemamide W40 (N,N'-ethylenebisstearamide), Kemamide P181 (oleyl palmitamide), Kemamide S (stearamide), Kemamide U (oleamide), Kemamide E (erucamide), Kemamide O (oleamide), Kemamide W45 (N,N'-thylenebisstearamide), Kanamide W20 (N,N'-ethylenebisoleamide), Kemamide E180 (stearyl erucamide), Kemamide E221 (erucyl erucamide), Kemamide S180 (stearyl stearamide), Kemamide S221 (erucyl stearamide), and the like, all available from Humko Chemical Company, Memphis, Tenn., in an amount of from about 10 to about 40 percent by weight of the binder. Further, linear long chain sulfones with from about 4 to about 16 carbon atoms, such as n-propyl sulfone, n-pentyl sulfone, n-hexyl sulfone, n-heptyl sulfone, n-octyl sulfone, n-nonyl sulfone, n-decyl sulfone, n-undecyl sulfone, n-dodecyl sulfone, n-tridecyl sulfone, n-tetradecyl sulfone, n-pentadecyl sulfone, n-hexadecyl sulfone, and the like, are preferred binder materials, with n-decyl sulfone being particularly preferred. The binders may comprise one or more of the aforementioned suitable materials.
Another class of materials suitable as binders for hot melt inks are liquid crystalline in nature. Hot melt inks with liquid crystalline binders according to the present invention exhibit sharp melting points, which enables rapid melting of the ink and rapid solidifying of the ink on the printing substrate, thereby enabling rapid printing speeds. In addition, hot melt inks with liquid crystalline binders according to the present invention exhibit high shear thinning behavior, which means that under shear or stress, the melt viscosity is lowered. The inks are subjected to shear or stress as they pass through the jetting nozzle of the printer, and the ink viscosity is lowered during the printing process, which enables increased printing speed and also results in enhanced print quality, since the lowered viscosity of the ink enables a high degree of interaction between the ink and the printing substrate. Examples of suitable liquid crystalline materials for the inks of the present invention include alkyl thio-β-D-glucosides, of the general formula: ##STR1## wherein n is a number between about 7 and about 100, preferably from about 7 to about 30. Materials of this type can be prepared by the methods described by K. Hamacher, Carbohydrate Research, vol. 128, pages 291 to 295 (1984), and by D. Horton, Methods in Carbohydrate Chemistry, vol. 2, pages 368 to 373 and 433 to 437 (1963), the disclosure of which is totally incorporated herein by reference, by the following reactions. ##STR2##
Generally, the synthesis entails activation of the anomeric carbon of D-glucose by a peracetylation step with acetic anhydride in the presence of pyridine, followed by a hydrogen bromide treatment in the presence of acetic acid. The resulting acetobromoglucose is then reacted with a n-alkyl thiolate having at least 7 carbon atoms. Subsequently, the acetyl groups on the glucose ring are removed by a sodium methoxide solution in methanol to yield a n-alkyl thio-β-D-glucoside having liquid crystalline properties. In one example, 30 grams of D-glucose is treated with 50 milliliters of acetic anhydride in the presence of 60 milliliters of pyridine, followed by hydrogen bromide treatment in the presence of acetic acid, and the resulting acetobromoglucose is then reacted with an equimolar amount of a n-alkyl thiolate, followed by treatment with a sodium methoxide solution in methanol.
Alternatively, another reaction scheme, shown below, may be used to prepare the alkyl-1-thio-β-D-glucoside. ##STR3##
Acetobromoglucose is treated with thiourea in acetone, and the resulting (2-tetra-O-acetyl-β-D-glucosyl)-2-thiopseudourea hydrobromide is then converted to tetra-O-acetyl-1-thio-β-D-glucose in the presence of potassium carbonate. Alkylation of this glucose derivative with an alkyl halide and subsequent de-O-acetylation with sodium methoxide in methanol yield alkyl-1-thio-β-D-glucoside. In one example, 200 grams of acetobromoglucose is treated with 40 grams of thiourea in 200 milliliters of acetone, followed by treatment of the resulting (2-tetra-O-acetyl-β-D-glucosyl)-2-thiopseudourea hydrobromide with 70 grams of potassium carbonate to form tetra-O-acetyl-1-thio-β-D-glucose, and subsequent alkylation with 75 milliliters of an alkyl halide and treatment with sodium methoxide in methanol.
Also suitable as liquid crystalline components of the hot melt inks of the present invention are n-alkyl-β-D-glycosides of the general formula: ##STR4## wherein n is a number between about 7 and about 100, preferably from about 7 to about 30. Alkylation of the glucose derivative of the formula ##STR5## with methyl iodide results in methyl tetra-O-acetyl-1-thio-β-D-glucoside, which may be used as an intermediate for obtaining a series of n-alkyl-O-glycosides by the procedure set forth by H. Lonn, Carbohydrate Research, vol. 139, pages 105 to 113 (1985), the disclosure of which is totally incorporated herein by reference. A process for preparing n-alkyl-β-D-gylcosides, which are another class of suitable binders for hot melt thermal ink jet inks, is as follows. ##STR6##
The n-alkyl-O-glycosides exhibit thermotropic properties if the n-alkyl chain has at least 7 carbon atoms. The process entails reaction of methyl tetra-O-acetyl-1-thio-β-D-glucoside with a n-alcohol in the presence of methyl trifluoromethanesulfonate, and subsequent de-O-acetylation yields n-alkyl-β-D-glucosides. n-Alkyl-β-D-glucosides may also be prepared by a Koenigs-Knorr reaction or by variations thereof, as follows: ##STR7##
As shown, a n-alcohol is reacted with a glycosyl bromide such as acetobromoglucose in the presence of silver oxide, as taught by E. A. Tally, Methods in Carbohydrate Chemistry, vol. 2, pages 337 to 340 (1963), the disclosure of which is totally incorporated herein by reference, or in the presence of mercury (II) cyanide, as taught by K. Takeo, K. Okushio, K. Fukuyama, and T. Kuge, Carbohydrate Research, vol. 121, page 163 (1983), the disclosure of which is totally incorporated herein by reference, and the resulting derivative is then de-O-acetylated to the n-alkyl-β-D-glucoside.
The above four reaction sequences may also be applied to other reducing carbohydrates or carbohydrate oligomers, such as galactose, xylose, mannose, arabinose, fructose, cellobiose, maltose, lactose, and the like.
n-Alkyl 1-O-glycosides or 1-S-glycosides incorporating modifications on the sugar component are also expected to be liquid crystalline. As employed herein, the term "n-alkyl" refers to an n-alkyl chain with from about 7 to about 100, and preferably from about 7 to about 30, carbon atoms. Examples of such modifications include deoxygenation, esterification, alkylation of one or several hydroxyl groups, oxydation of one or several hydroxyl groups to ketones, aldehyde, or acid functions, and the like.
Glycolipids with a n-alkyl chain linked to a carbohydrate or carbohydrate derivative molecule by linkages other than of the 1-O- and 1-S-glycosidic type are also liquid crystalline. In this instance, non-reducing carbohydrate derivatives such as glycosides, alditols, aldonic acids and their lactones, inositols, and non-reducing carbohydrate oligomers such as saccharose and trehalose can be employed as starting carbohydrates or carbohydrate derivatives. Suitable liquid crystalline binders include 1-O-alkyl derivatives of anhydroalditols, which can be prepared as reported in P. Koll and M. Oelting, Angewande Chemie International Edition in English, Vol. 25, pages 368 to 369 (1986), the disclosure of which is totally incorporated herein by reference. For example, 1,3:2,5-dianhydroglucitol reacts with n-alcohols in the presence of trifluoromethanesulfonic acid to yield 1-O-alkyl-2,5-anhydroglucitols as shown below. ##STR8##
Another class of liquid crystalline binders includes liquid crystalline n-alkylamide derivatives of aldonic acids which can be prepared as described in B, Pfannemuller and W. Welte, Chemistry and Physics of Lipids, vol. 37, pages 227 to 240 (1985), the disclosure of which is totally incorporated herein by reference, as shown below. ##STR9##
For example, the reaction of D-gluconic acid-δ-lactone with n-alkylamines yields 1-N gluconamides. Another class of liquid crystalline binders includes 1-N-alkyl derivatives of sugar alditols which can be obtained by processes such as reductive amination of carbonyl containing carbohydrates and carbohydrate oligomers such as glucose, galacctose, mannose, xylose, arabinose, fructose, cellobiose, maltose, and lactose with n-alkylamines in the presence of sodium cyanoborohydride under the reaction conditions described in M. Yalpani and L. Hall, Macromolecules, vol. 17, pages 272 to 281 (1984), the disclosure of which is totally incorporated herein by reference, as shown below. ##STR10##
n-Alkyl-β-D-glucopyranosides and n-Alkyl-β-D-maltosides wherein the n-alkyl portion has from about 7 to about 100 carbon atoms, and preferably from about 7 to about 30 carbon atoms, are also suitable as binders for the solid hot melt inks of the present invention. Some of these materials are commercially available, including n-heptyl-β-D-glucopyranoside, n-octyl-β-D-glucopyranoside, n-nonyl-β-D-glucopyranoside, n-decyl-β-D-glucopyranoside, n-dodecyl-β-D-glucopyranoside, n-octyl-α-D-glucopyranoside, n-dodecyl-β-D-maltoside, and the like, available from Sigma, St. Louis, Mo.
Particularly preferred liquid crystalline binders include n-dodecyl-1-thio-β-D-glucopyranoside, n-dodecyl-1-thio-β-D-galactopyranoside, and n-dodecyl-1-thio-β-D-xylopyranoside, which exhibit excellent shear-thinning behavior in the liquid crystalline state, as determined by dynamic sinusoidal oscillation cone and plate rheometry on a Rheometrics RMS7200 mechanical spectrometer.
Suitable propellants for the hot melt inks of the present invention, present in an effective amount generally of from about 10 to about 90 percent by weight and preferably from about 20 to about 50 percent by weight, generally have melting points of from about 50° to about 150° C., and preferably from about 80° to about 120° C. Although greater melting points are acceptable, they are generally not preferred because they may reduce printhead lifetime. In addition, the propellants generally have a boiling point of from about 180° to about 250° C., preferably from about 200° to about 230° C. Preferably, the melting point and the boiling point of the propellant are separated by at least 100° C. Further, the surface tension of the propellant in its liquid state at the operating temperature of the ink generally should be from about 20 to about 65 dynes per centimeter, and preferably from about 40 to about 65 dynes per centimeter to enhance refill rates, paper wetting, and color mixing. In addition, the propellants should have a viscosity at the operating temperature of the ink of from about 1 to about 10 centipoise, and preferably from about 1 to about 5 centipoise to enhance refill, jettability, and substrate penetration. The critical pressure of the propellant should be from about 40 to about 218 atmospheres, and preferably from about 60 to about 218 atmospheres to enhance drop velocity. The propellant should also be thermally stable in its molten state so that it does not undergo decomposition to yield gaseous products or to form heater deposits.
Examples of suitable propellants for the hot melt inks of the present invention include water; hydrazine; alcohols, such as ethanol, propanol, butanol, 2,5-dimethyl-2,5-hexanediol, 3-hydroxy benzyl alcohol, and the like; cyclic amines and ureas, including 1,3-dimethyl urea, such as imidazole, substituted imidazoles, including 2-imidazolidone, 2-ethyl imidazole, 1,2,4-triazole, and the like, pyrazole and substituted pyrazoles, including 3,5-dimethyl pyrazole and the like; pyrazine; carboxylic acids; sulfonic acids; aldehydes and ketones; hydrocarbons, such as biphenyl, hexane, benzene; esters; phenols, including phenol, dichlorophenol, other halogen substituted phenols, and cresols; amides, such as propionamide, lactamide, and the like; imides; halocarbons; urethanes; ethers; sulfones, including dimethyl sulfone, methyl sulfone, diethyl sulfone, and diphenyl sulfone; sulfamides, such as methyl sulfamide; sulfonamides, such as ortho, para-toluenesulfonamide, methyl sulfonamide, and the like; phosphites; phosphonates; phosphates; alkyl sulfides, such as methyl sulfide; alkyl acetates, such as methyl acetate; sulfur dioxide; alkylene carbonates, such as propylene carbonate; succinimide; and the like. Preferred propellants include water, imidazole, imidazoles substituted with hydrocarbon, keto, or hydroxyl substituents, pyrazine, pyrazole, and pyrazoles substituted with hydrocarbon, keto, or hydroxyl substituents. These compounds are five-membered heterocyclic rings, preferably with a molecular weight of about 60. Also preferred are sulfones, such as dimethyl sulfone, diethyl sulfone, diphenyl sulfone, and the like. In addition, methyl sulfamide, succinimide, and propionamide are preferred propellants.
Hot melt ink compositions of the present invention are generally prepared by combining all of the ingredients, heating the mixture to its melting point, which generally is from about 80° to about 120° C., and stirring the mixture for from about 5 seconds to about 10 minutes to obtain a homogeneous, uniform melt. When pigments are the selected colorants, the molten mixture may be subjected to grinding in an attritor or ball mill apparatus to effect dispersion of the pigment in the binder.
Printed images may be generated with the inks of the present invention by incorporating the inks into a thermal ink jet printer and causing droplets of the molten ink to be ejected in imagewise pattern onto a substrate such as paper or transparency material. Suitable printers for employing the inks of the present invention include commercially available ink jet printers, such as the ThinkJet®, PainJet®, and DeskJet® printers available from Hewlett-Packard Company. Coventional thermal ink jet printers may be modified to make them suitable for use with hot melt inks by including a means for heating the ink reservoir to the melting point of the ink. The inks of the present invention are also suitable for use in piezoelectric drop-on-demand ink jet printing systems and in continuous stream ink jet printing systems that have been modified to be suitable for use with hot melt inks.
Specific embodiments of the invention will now be described in detail. These examples are intended to be illustrative, and the invention is not limited to the materials, conditions, or process parameters set forth in these embodiments. All parts and percentages are by weight unless otherwise indicated. In some instances, transparent ink formulations were prepared so that bubble formation and jetting performance could be evaluated by observation under microscope, since bubble nucleation is difficult to observe in colored inks. It is believed that the transparent inks will exhibit similar performance when a dye is added to the ink composition.
EXAMPLE I
A black hot melt ink composition was prepared by mixing 14 parts by weight of pentaerythritol benzoate, commercially available as Benzoflex S552 from Velsicol Corporation, Chicago, Ill., 84 parts by weight of methyl sulfone, and 2 parts by weight of Orasol Black RLP dye. The mixture was heated to 130° C., stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink comprising about 14 percent by weight pentaerythritol benzoate, 84 percent by weight methyl sulfone, and 2 percent by weight of the dye.
A sample of the black hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state. The ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease resistance as determined by creasing the paper and smear resistance as determined by hand rubbing, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE II
A transparent hot melt ink composition was prepared by mixing 50 parts by weight of phenyl sulfone and 50 parts by weight of methyl sulfone. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 50 percent by weight phenyl sulfone and about 50 percent by weight methyl sulfone.
A sample of the transparent hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state. The ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE III
A magenta hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketjenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 64 parts by weight of methyl sulfone, and 1 part by weight of Neozapon Red 492 (BASF) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform magenta solid hot melt ink.
A sample of the magenta hot melt ink was hand coated onto Xerox® 4024 paper and onto transparency material while it was in its molten state. The ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE IV
A yellow hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketjenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 61 parts by weight of methyl sulfone, and 4 parts by weight of Orasol Yellow 4GN (Ciba-Geigy) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform yellow solid hot melt ink.
A sample of the yellow hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state. The ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE V
A cyan hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially available as Ketijenflex MS80 from Akzochemie, Netherlands, 10 parts by weight of an epoxy resin, commercially available as Epotuf 37001 from Reichold Chemical Company, 5 parts by weight of decyl sulfone, 64 parts by weight of methyl sulfone, and 1 part by weight of Neozapon Blue 807 (BASF) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform cyan solid hot melt ink
A sample of the cyan hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state. The ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE VI
A black hot melt ink composition was prepared by mixing 20 parts by weight of a formaldehyde-toluene-sulfonamide condensation polymer, commercially avaliable as Ketjenflex MH from Akzochemie, Netherlands, 80 parts by weight of methyl sulfone, and 1.5 parts by weight of Orasol Black RLP (Ciba-Geigy) dye. The mixture was heated to slightly beyond its melting temperature, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink.
A sample of the black hot melt ink was hand coated onto Xerox® 4024 paper and onto polysulfone transparency material while it was in its molten state. The ink exhibited good compatibility with the paper and the transparency material in that no flaking or chipping was observed, the ink exhibited excellent crease and smear resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE VII
A transparent hot melt ink composition was prepared by mixing 60 parts by weight of decyl sulfone and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 60 percent by weight of decyl sulfone and 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead at 535 milliamps at 138° C. with a drop frequency of from 600 to 2,000 Hz. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE VIII
A transparent hot melt ink composition was prepared by mixing 30 parts by weight of decyl sulfone, 30 parts by weight of amyl sulfone, and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 30 percent by weight of decyl sulfone, 30 percent by weight of amyl sulfone, and 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead at 535 milliamps at 138° C. with a drop frequency of from 600 to 2,000 Hz. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material. A comparison of this ink with the ink of Example VII indicated that the ink of Example VII, which contained a greater amount of decyl sulfone than the present ink, was more waxy and less crystalline in nature than the present ink. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE IX
A transparent hot melt ink composition was prepared by mixing 20 parts by weight of Paracin 285 (N,N'ethylene-bis-12-hydroxystearamide, CasChem Chemical Corporation), 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 20 percent by weight of N,N'ethylene-bis-12-hydroxystearamide, about 40 percent by weight of the linear primary alcohol, and about 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead with very uniform nucleation at 490 milliamps at 138° C. with 3 microsecond pulses. No gas evolution or free bubbles were observed under microscope. Further, no residual deposits had formed on the heater surface after 3 hours of jetting, and the voltage required to enable stable bubble formation remained constant over this period. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified within 10 seconds of being deposited on the substrate. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE X
A transparent hot melt ink composition was prepared by mixing 10 parts by weight of Paracin 285 (N,N'ethylene-bis-12-hydroxystearamide, CasChem Chemical Corporation), 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 10 parts by weight of decyl sulfone, and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 10 percent by weight of N,N'ethylene-bis-12-hydroxystearamide, about 40 percent by weight of the linear primary alcohol, about 10 percent by weight of decyl sulfone, and about 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead with very uniform nucleation at 490 milliamps at 138° C. with 3 microsecond pulses. No gas evolution or free bubbles were observed under microscope. Further, no residual deposits had formed on the heater surface after 3 hours of jetting, and the voltage required to enable stable bubble formation remained constant over this period. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified within 10 seconds of being deposited on the substrate. A comparison of this ink with the ink of Example IX indicated that substitution of 10 percent by weight of decyl sulfone for 10 percent by weight of the Paracin 285 imparted plasticizing characteristics to the ink mixture of the present example. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XI
A black hot melt ink composition was prepared by mixing 10 parts by weight of Paracin 285, 35 parts by weight of Unilin 425, 45 parts by weight of imidazole, and 10 parts by weight of decyl sulfone. To the transparent mixture was added about 10 percent by weight of Orasol Black RLP dye. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform black solid hot melt ink.
A sample of the black hot melt ink was hand coated onto Xerox® 4024 paper while it was in its molten state. The ink exhibited good compatibility with the paper in that no flaking or chipping was observed, the ink exhibited excellent crease resistance, and the ink remained on the paper after being soaked in hot water for 30 minutes.
EXAMPLE XII
A transparent hot melt ink composition was prepared by mixing 40 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of cholesterol, and 40 parts by weight of imidazole. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink comprising about 40 percent by weight of the linear primary alcohol, about 20 percent by weight of cholesterol, and about 40 percent by weight of imidazole. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead with very uniform nucleation at 500 milliamps at 138° C. with 3 microsecond pulses and a drop frequency of 2,000 Hz. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and solidified in two stages upon cooling, first to a viscous liquid and then to a crystalline, smooth, somewhat waxy solid material. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XIII
A transparent hot melt ink composition was prepared by mixing 50 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of Aerosol OT100 (a dioctyl sodium sulfosuccinate surfactant, American Cyanamid, Stamford, Conn.), and 30 parts by weight of water. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. The presence of the surfactant increased compatibility between the water propellant and the long chain alcohol binder to form a stable dispersion. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead heater at 343 milliamps at 138° C. with 3 microsecond pulses and a drop frequency of 2,000 Hz. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C. Bubble nucleation was comparable to that observed for water alone, and drop size on the substrate was about 25 microns, indicating that the formulation was suitable for high resolution printing. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XIV
A transparent hot melt ink composition was prepared by mixing 75 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 20 parts by weight of imidazole, and 5 parts by weight of decyl sulfone. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. This material was jetted onto Xerox® 4024 paper and onto polysulfone transparency material by incorporating it into a thermal ink jet printing test fixture equipped with a Hewlett-Packard ThinkJet® printhead and generating images. The ink generated bubbles over the entire printhead heater at 500 milliamps at 122° C. with 4.8 microsecond pulses and a drop frequency of 500 Hz. The molten composition exhibited a relatively low viscosity of less than 20 centipoise at 130° C., and drop size on the substrate was about 80 microns. The transparent images thus generated exhibited good adherence to the paper and to the transparency material, resistance to creasing and smearing, and waterfastness after being soaked in hot water for 10 minutes. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XV
A transparent hot melt ink composition was prepared by mixing 30 parts by weight of Unilin® 425 (linear primary alcohol with about 26 carbon atoms, Petrolite Chemical Company), 30 parts by weight of Unithox® 520 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 520 and 3 ethoxy groups are present, Petrolite Chemical Company), 10 parts by weight of palmitic acid, and 30 parts by weight of dimethylurea. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. The bubble nucleation characteristics of this material were tested by incorporating it into a thermal ink jet printing test fixture and observing bubble nucleation under a microscope. The ink generated bubbles over the entire heater at 525 milliamps at 138° C. with a drop frequency of 2,000 Hz. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XVI
A transparent hot melt ink composition was prepared by mixing 40 parts by weight of Unithox® 720 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 720 and 4 ethoxy groups are present, Petrolite Chemical Company), 30 parts by weight of Unithox® 550 (ethoxylated linear primary alcohol wherein the alcohol has a molecular weight of about 550 and 13 ethoxy groups are present, Petrolite Chemical Company), 10 parts by weight of palmitic acid, and 30 parts by weight of dimethyl sulfone. The mixture was heated to a temperature slightly beyond the temperature at which the mixture melted, stirred until a homogeneous melt mixture was obtained, and subsequently was cooled to room temperature to yield a homogeneous, uniform transparent solid hot melt ink. The bubble nucleation characteristics of this material were tested by incorporating it into a thermal ink jet printing test fixture and observing bubble nucleation under a microscope. The ink generated bubbles over the entire heater at 472 milliamps at 138° C. with a drop frequency of 2,000 Hz. After two hours, only minimal deposits of ink residue had formed on the heater surface. It is believed that an ink comprising these ingredients and a dye will exhibit similar characteristics.
EXAMPLE XVII
Various propellant materials listed in the table below were incorporated into a laboratory test fixture equipped with a printhead. The materials were heated to the indicated temperature under the indicated conditions and bubble nucleation was observed under a microscope. In each instance, the drop frequency was 600 Hz. It is believed that hot melt ink compositions containing these materials as propellants will exhibit good bubble nucleation under operating conditions in a thermal ink jet printer equipped for printing with hot melt inks.
______________________________________                                    
                Start                                                     
                Cur-                                                      
        Temp.   rent                                                      
Propellant                                                                
        (°C.)                                                      
                (mA)    Observations                                      
______________________________________                                    
propion-                                                                  
        138     437     Bubble formation over entire                      
amide                   heater; some gas formation at                     
                        currents over 700 mA.                             
2-ethyl 138     472     Bubble formation over entire                      
imidazole               heater; little gas formation;                     
                        stable bubble formation good                      
                        nucleation.                                       
2-      148     542     Large bubble formation; some                      
imidazoline             nonuniformities in nucleation.                    
1,2,4-  138     504     Bubble formation over entire                      
triazole                heater; bubbles large and somewhat                
                        irregular.                                        
3,5-    138     440     Bubble formation over entire                      
dimethyl-               heater; bubbles large.                            
pyrazole                                                                  
3-hydroxy                                                                 
        138     490     Bubble formation over entire                      
benzyl                  heater; bubbles large; some gas                   
alcohol                 formation.                                        
1,3-    138     483     Bubble formation over entire                      
dimethyl-               heater; bubbles large and agitated.               
urea                                                                      
methane 114     511     Bubble formation over entire                      
sulfonamide             heater.                                           
pyrazole                                                                  
        114     378     Bubble formation over entire                      
                        heater.                                           
pyrazine                                                                  
        114     329     Bubble formation over entire                      
                        heater; very large bubbles at                     
                        high power levels.                                
succinimide                                                               
        148     497     Bubble formation over entire                      
                        heater at high power levels.                      
propylene                                                                 
        138     400     Large bubble formation.                           
imidazole                                                                 
        138     434     Very large bubbles very similar                   
                        to water in conformation.                         
lactamide                                                                 
        138     459     Large bubbles formed with some                    
                        extraneous gas evolution.                         
methyl  138     400     Easy bubble formation with                        
sulfone                 bubbles forming over greater                      
                        than 50 percent of the heater                     
                        area at higher power levels.                      
______________________________________                                    
EXAMPLE XVIII
A red ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio-β-D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Red dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
EXAMPLE XIX
A blue ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio-β-D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Blue dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
EXAMPLE XX
A yellow ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio-β-D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Sudan Yellow dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
EXAMPLE XXI
A black ink formulation was prepared by heating 100 parts by weight of n-dodecyl-1-thio-β-D-glucoside to a temperature slightly above its melting point and adding 0.5 parts by weight of Typophor Black dye (BASF). The mixture was stirred until a homogeneous melt mixture was obtained. A sample of the resulting formulation was hand coated onto plain paper and exhibited good adhesion, low brittleness, good optical density, and transparency to unpolarized light. It is believed that when this formulation is mixed with a propellant such as water or methyl sulfone, the resulting ink will be suitable for generating images in a thermal ink jet printer equipped for printing with hot melt inks.
Other embodiments and modifications of the present invention may occur to those skilled in the art subsequent to a review of the information presented herein; these embodiments and modifications, as well as equivalents thereof, are also included within the scope of this invention.

Claims (39)

What is claimed is:
1. A hot melt ink composition which comprises a colorant, a binder, and a propellant selected from the group consisting of hydrazine; cyclic amines; ureas; aldehydes; ketones; biphenyl; hexane; benzene; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; methyl sulfonamide; phosphites; phosphonates; alkyl sulfides; alkyl acetates; and sulfur dioxide, said ink being a solid at room temperature.
2. A hot melt ink composition according to claim 1 wherein the colorant is selected from the group consisting of solvent dyes.
3. A hot melt ink composition according to claim 1 wherein the colorant is selected from the group consisting of spirit soluble dyes.
4. A hot melt ink composition according to claim 1 wherein the binder is selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; long chain alcohols; ethoxylated long chain alcohols; phthalate plasticizers; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; and natural product waxes.
5. A hot melt ink composition according to claim 1 wherein the propellant is selected from the group consisting of phenol, halogen substituted phenols, cresols, propionamide, sulfones, methyl sulfamide, methyl sulfide, methyl acetate, sulfur dioxide, imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, and succinimide.
6. A hot melt ink composition according to claim 1 wherein the propellant is selected from the group consisting of imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, methyl sulfamide, succinimide, dimethyl sulfone, methyl sulfone, diethyl sulfone, diphenyl sulfone, and propionamide.
7. A hot melt ink composition according to claim 1 wherein the colorant is present in an amount of from about 0.5 to about 10 percent by weight, the binder is present in an amount of from 0 to 85 percent by weight, and the propellant is present in an amount of from about 10 to about 90 percent by weight.
8. A hot melt ink composition according to claim 1 wherein the propellant has a melting point of from about 50° C. to about 150° C., a boiling point of from about 180° C. to about 250° C., a viscosity in the liquid state of from about 1 to about 10 centipoise, and a surface tension in the liquid state of from about 20 to about 65 dynes per centimeter.
9. A hot melt ink composition according to claim 8 wherein the propellant has a melting point of from about 80° C. to about 120° C., a viscosity of from about 1 to about 5 centipoise in the liquid state, a surface tension of from about 40 to about 65 dynes per centimeter in the liquid state, a boiling point of from about 200° C. to about 230° C., and a boiling point that exceeds the melting point by at least 100° C.
10. A hot melt ink composition which comprises a colorant, a propellant, and a binder selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; mixtures of linear primary alcohols and linear long chain amides; and mixtures of linear primary alcohols and fatty acid amides, said ink being a solid at room temperature.
11. A hot melt ink composition according to claim 10 wherein the colorant is selected from the group consisting of solvent dyes.
12. A hot melt ink composition according to claim 10 wherein the colorant is selected from the group consisting of spirit soluble dyes.
13. A hot melt ink composition according to claim 10 wherein the propellant is selected from the group consisting of water; hydrazine; alcohols; cyclic amines; ureas; carboxylic acids; sulfonic acids; aldehydes; ketones; hydrocarbons; esters; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; sulfonamides; phosphites; phosphonates; phosphates; alkyl sulfides; alkyl acetates; and sulfur dioxide.
14. A hot melt ink composition according to claim 10 wherein the propellant is selected from the group consisting of phenol, halogen substituted phenols, cresols, propionamide, sulfones, methyl sulfamide, ortho, para-toluenesulfonamide, methyl sulfide, methyl acetate, sulfur dioxide, imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, and succinimide.
15. A hot melt ink composition according to claim 10 wherein the propellant is selected from the group consisting of imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, methyl sulfamide, succinimide, dimethyl sulfone, methyl sulfone, diethyl sulfone, diphenyl sulfone, and propionamide.
16. A hot melt ink composition according to claim 10 wherein the binder is selected from the group consisting of ethoxylated linear primary alcohols with from about 16 to about 70 carbon atoms; mixtures of linear primary alcohols and linear long chain amides; mixtures of linear primary alcohols and fatty acid amides; linear long chain sulfones with from about 4 to about 16 carbon atoms; and mixtures thereof.
17. A hot melt ink composition according to claim 10 wherein the binder is selected from the group consisting of ethoxylated linear primary alcohols with from about 16 to about 70 carbon atoms; mixtures of linear primary alcohols with from about 16 to about 70 carbon atoms and a material selected from the group consisting of propylene glycol monohydroxystearate, glycerol monohydroxystearate, ethylene glycol monohydroxystearate, N(2-hydroxyethyl)-12-hydroxystearamide, N,N'-ethylene-bis-12-hydroxystearamide, N,N'-ethylene-bis-ricinoleamide, behenamide/arachidamide, N,N'-ethylenebisstearamide, oleyl palmitamide, stearamide, oleamide, erucamide, N,N'-ethylenebisoleamide, stearyl erucamide, erucyl erucamide, stearyl stearamide, erucyl stearamide, and mixtures thereof; linear long chain sulfones with from about 4 to about 16 carbon atoms; and mixtures thereof.
18. A hot melt ink composition according to claim 10 wherein the colorant is present in an amount of from about 0.5 to about 10 percent by weight, the binder is present in an amount of from 0 to 85 percent by weight, and the propellant is present in an amount of from about 10 to about 90 percent by weight.
19. A hot melt ink composition according to claim 10 wherein the binder has a melting point of from about 60° C. to about 150° C., a viscosity in the liquid state of from about 1 to about 10 centipoise, and a surface tension in the liquid state of from about 20 to about 65 dynes per centimeter.
20. A hot melt ink composition according to claim 19 wherein the binder has a melting point of from about 80° C. to about 120° C., a viscosity of from about 1 to about 5 centipoise in the liquid state, and a surface tension of from about 40 to about 65 dynes per centimeter in the liquid state.
21. A hot melt ink composition which comprises a colorant, a propellant selected from the group consisting of hydrazine; cyclic amines; ureas; aldehydes; ketones; biphenyl; hexane; benzene; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; methyl sulfonamide; phosphites; phosphonates; alkyl sulfides; alkyl acetates; and sulfur dioxide; and a binder selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidonone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; mixtures of linear primary alcohols and linear long chain amides; and mixtures of linear primary alcohols and fatty acid amides, said ink being a solid at room temperature.
22. A hot melt ink composition according to claim 21 wherein the colorant is selected from the group consisting of solvent dyes.
23. A hot melt ink composition according to claim 21 wherein the colorant is selected from the group consisting of spirit soluble dyes.
24. A hot melt ink composition according to claim 21 wherein the propellant is selected from the group consisting of phenol, halogen substituted phenols, cresols, propionamide, sulfones, methyl sulfamide, methyl sulfide, methyl acetate, sulfur dioxide, imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, and succinimide.
25. A hot melt ink composition according to claim 21 wherein the propellant is selected from the group consisting of imidazole, substituted imidazoles, pyrazine, pyrazole, substituted pyrazoles, methyl sulfamide, succinimide, dimethyl sulfone, methyl sulfone, diethyl sulfone, diphenyl sulfone, and propionamide.
26. A hot melt ink composition according to claim 21 wherein the binder is selected from the group consisting of ethoxylated linear primary alcohols with from about 16 to about 70 carbon atoms; mixtures of linear primary alcohols and linear long chain amides; mixtures of linear primary alcohols and fatty acid amides; linear long chain sulfones with from about 4 to about 16 carbon atoms; and mixtures thereof.
27. A hot melt ink composition according to claim 21 wherein the binder is selected from the group consisting of ethoxylated linear primary alcohols with from about 16 to about 70 carbon atoms; mixtures of linear primary alcohols with from about 16 to about 70 carbon atoms and a material selected from the group consisting of propylene glycol monohydroxystearate, glycerol monohydroxystearate, ethylene glycol monohydroxystearate, N(2-hydroxyethyl)-12-hydroxystearamide, N,N'-ethylene-bis-12-hydroxystearamide, N,N'-ethylene-bis-ricinoleamide, behenamide/arachidamide, N,N'-ethylenebisstearamide, oleyl palmitamide, stearamide, oleamide, erucamide, N,N'-ethylenebisoleamide, stearyl erucamide, erucyl erucamide, stearyl stearamide, erucyl stearamide, and mixtures thereof; linear long chain sulfones with from about 4 to about 16 carbon atoms; and mixtures thereof.
28. A hot melt ink composition according to claim 21 wherein the colorant is present in an amount of from about 0.5 to about 10 percent by weight, the binder is present in an amount of from 0 to 85 percent by weight, and the propellant is present in an amount of from about 10 to about 90 percent by weight.
29. A hot melt ink composition according to claim 21 wherein the propellant has a melting point of from about 50° C. to about 150° C., a boiling point of from about 180° C. to about 250° C., a viscosity in the liquid state of from about 1 to about 10 centipoise, and a surface tension in the liquid state of from about 20 to about 65 dynes per centimeter; and the binder has a melting point of from about 60° C. to about 150° C., a viscosity in the liquid state of from about 1 to about 10 centipoise, and a surface tension in the liquid state of from about 20 to about 65 dynes per centimeter.
30. A hot melt ink composition according to claim 29 wherein the propellant has a melting point of from about 80° C. to about 120° C., a viscosity of from about 1 to about 5 centipoise in the liquid state, a surface tension of from about 40 to about 65 dynes per centimeter in the liquid state, a boiling point of from about 200° C. to about 230° C., and a boiling point that exceeds the melting point by at least 100° C., and the binder has a melting point of from about 80° C. to about 120° C., a viscosity of from about 1 to about 5 centipoise in the liquid state, and a surface tension of from about 40 to about 65 dynes per centimeter in the liquid state.
31. A process for generating images which comprises incorporating into an ink jet printing apparatus an ink composition which comprises a colorant, a binder, and a propellant selected from the group consisting of hydrazine; cyclic amines; ureas; aldehydes; ketones; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; methyl sulfonamide; phosphites; phosphonates; alkyl sulfides; alkyl acetates; and sulfur dioxide; and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
32. A process for generating images which comprises incorporating into an ink jet printing apparatus an ink composition which comprises a colorant, a propellant, and a binder selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; mixtures of linear primary alcohols and linear long chain amides; and mixtures of linear primary alcohols and fatty acid amides; and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
33. A process for generating images which comprises incorporating into an ink jet printing apparatus an ink composition which comprises a colorant, a propellant selected from the group consisting of hydrazine; cyclic amines; ureas; carboxylic acids; sulfonic acids; aldehydes; ketones; hydrocarbons; esters; phenols; amides; imides; halocarbons; urethanes; ethers; sulfones; sulfamides; methyl sulfonamide; phosphites; phosphonates; alkyl sulfides; alkyl acetates; and sulfur dioxide; and a binder selected from the group consisting of rosin esters; polyamides; dimer acid amides; fatty acid amides; epoxy resins; fluid paraffin waxes; fluid microcrystalline waxes; Fischer-Tropsch waxes; polyvinyl alcohol resins; polyols; cellulose esters; cellulose ethers; polyvinyl pyridine resins; fatty acids; fatty acid esters; poly sulfonamides; benzoate esters; long chain alcohols; citrate plasticizers; maleate plasticizers; sulfones; polyvinyl pyrrolidinone copolymers; polyvinyl pyrrolidone/polyvinyl acetate copolymers; novalac resins; mixtures of linear primary alcohols and linear long chain amides; and mixtures of linear primary alcohols and fatty acid amides; and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
34. A process for generating images which comprises incorporating into an ink jet printing apparatus the ink composition of claim 6 and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
35. A process for generating images which comprises incorporating into an ink jet printing apparatus the ink composition of claim 15 and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
36. A process for generating images which comprises incorporating into an ink jet printing apparatus the ink composition of claim 25 and forming images by melting the ink and causing the melted ink to be expelled in droplets onto a substrate, thereby generating an image on the substrate.
37. A process according to claim 31 wherein the ink jet printing apparatus employs a thermal ink jet printing process.
38. A process according to claim 32 wherein the ink jet printing apparatus employs a thermal ink jet printing process.
39. A process according to claim 33 wherein the ink jet printing apparatus employs a thermal ink jet printing process.
US07/369,797 1989-06-22 1989-06-22 Hot melt ink compositions Expired - Lifetime US5006170A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/369,797 US5006170A (en) 1989-06-22 1989-06-22 Hot melt ink compositions
JP2157424A JP2554389B2 (en) 1989-06-22 1990-06-15 Hot melt ink composition
EP90306635A EP0404493B1 (en) 1989-06-22 1990-06-19 Hot melt ink compositions
DE69011593T DE69011593T2 (en) 1989-06-22 1990-06-19 Hot-melt ink composition.
US07/641,844 US5122187A (en) 1989-06-22 1991-01-17 Hot melt ink compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/369,797 US5006170A (en) 1989-06-22 1989-06-22 Hot melt ink compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/641,844 Division US5122187A (en) 1989-06-22 1991-01-17 Hot melt ink compositions

Publications (1)

Publication Number Publication Date
US5006170A true US5006170A (en) 1991-04-09

Family

ID=23456962

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/369,797 Expired - Lifetime US5006170A (en) 1989-06-22 1989-06-22 Hot melt ink compositions

Country Status (4)

Country Link
US (1) US5006170A (en)
EP (1) EP0404493B1 (en)
JP (1) JP2554389B2 (en)
DE (1) DE69011593T2 (en)

Cited By (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080716A (en) * 1990-02-09 1992-01-14 Canon Kabushiki Kaisha Ink having use in ink-jet recording
US5118347A (en) * 1991-03-19 1992-06-02 Hewlett-Packard Company Solid driver for the solid ink jet ink
US5141556A (en) * 1991-06-13 1992-08-25 E. I. Du Pont De Nemours And Company Penetrants for aqueous ink jet inks
US5151120A (en) * 1989-03-31 1992-09-29 Hewlett-Packard Company Solid ink compositions for thermal ink-jet printing having improved printing characteristics
US5169436A (en) * 1992-05-13 1992-12-08 E. I. Du Pont De Nemours And Company Sulfur-containing penetrants for ink jet inks
US5173112A (en) * 1992-04-03 1992-12-22 E. I. Du Pont De Nemours And Company Nitrogen-containing organic cosolvents for aqueous ink jet inks
US5174821A (en) * 1989-12-12 1992-12-29 Taisei Corporation Hydraulic composition, formed products therefrom and segregation reduction agent for hydraulic substances
US5185035A (en) * 1990-05-23 1993-02-09 Coates Electrographics Limited Transparent hot melt jet ink
US5207825A (en) * 1991-07-30 1993-05-04 Xerox Corporation Ink compositions for ink jet printing
US5230732A (en) * 1991-03-19 1993-07-27 Hewlett-Packard Company Solid driver for the solid ink jet ink
US5235350A (en) * 1990-01-22 1993-08-10 Dataproducts Corporation Pigmented semiconductive hot melt ink and ink jet apparatus employing same
US5242489A (en) * 1991-07-30 1993-09-07 Xerox Corporation Ink jet printing processes
US5259874A (en) * 1991-10-23 1993-11-09 Hewlett-Packard Company Solid ink compositions suitable for use in color transparencies
US5270730A (en) * 1990-09-29 1993-12-14 Canon Kabushiki Kaisha Jet recording method and apparatus for discharging normally solid recording material by causing generated bubble to communicate with ambience
US5279652A (en) * 1988-03-24 1994-01-18 Rainer Kaufmann Use of solids as antiblocking additives for marker liquids
US5298062A (en) * 1992-08-19 1994-03-29 Videojet Systems International, Inc. Eutectic compositions for hot melt jet inks
US5300143A (en) * 1991-07-30 1994-04-05 Xerox Corporation Ink compositions for ink jet printing
US5354368A (en) * 1993-05-04 1994-10-11 Markem Corporation Hot melt jet ink composition
US5389131A (en) * 1992-12-17 1995-02-14 Xerox Corporation Ink compositions and preparation processes thereof
US5421868A (en) * 1993-12-28 1995-06-06 International Business Machines Corporation Ink composition
US5427611A (en) * 1991-08-12 1995-06-27 Canon Kabushiki Kaisha Normally solid recording material and jet recording method using same
US5484475A (en) * 1994-08-29 1996-01-16 Xerox Corporation Micellar-based ink compositions
US5492559A (en) * 1994-10-19 1996-02-20 Xerox Corporation Liquid crystalline microemulsion ink compositions
US5514209A (en) * 1993-05-04 1996-05-07 Markem Corporation Hot melt jet ink composition
GB2294939A (en) * 1994-11-08 1996-05-15 Coates Brothers Plc Hot melt ink jet printing composition comprising an oligourea
US5554213A (en) * 1992-12-17 1996-09-10 Xerox Corporation Ink compositions for ink jet printing
US5593486A (en) * 1995-12-05 1997-01-14 Xerox Corporation Photochromic hot melt ink compositions
US5621447A (en) * 1991-10-25 1997-04-15 Canon Kabushiki Kaisha Jet recording method
US5643357A (en) * 1995-12-08 1997-07-01 Xerox Corporation Liquid crystalline ink compositions
US5667568A (en) * 1996-03-29 1997-09-16 Xerox Corporation Hot melt ink compositions
WO1997033943A1 (en) * 1996-03-14 1997-09-18 Coates Brothers Plc Hot melt ink composition
US5680165A (en) * 1991-10-25 1997-10-21 Canon Kabushiki Kaisha Jet recording method
US5688312A (en) * 1996-03-29 1997-11-18 Xerox Corporation Ink compositions
US5689426A (en) * 1995-05-30 1997-11-18 Matthias D. Kemeny Computer-controlled master reproducer for depositing a master reproduction on a substrate, method for depositing the same, and master reproduction
US5693128A (en) * 1997-01-21 1997-12-02 Xerox Corporation Phase change hot melt ink compositions
US5698017A (en) * 1996-09-27 1997-12-16 Xerox Corporation Oxazoline hot melt ink compositions
US5700313A (en) * 1995-03-13 1997-12-23 Markem Corporation Ink for ink jet printing
US5700316A (en) * 1996-03-29 1997-12-23 Xerox Corporation Acoustic ink compositions
US5747554A (en) * 1996-03-29 1998-05-05 Xerox Corporation Ink compositions
US5750604A (en) * 1996-06-28 1998-05-12 Tektronix, Inc. Phase change ink formulation using a urethane isocyanate-derived resin
US5766267A (en) * 1995-05-15 1998-06-16 Hoechst Aktiengesellschaft Use of carbohydrate compounds as auxiliaries for dyeing and printing fiber materials
US5780528A (en) * 1996-06-28 1998-07-14 Tektronix, Inc. Isocyanate-derived colored resins for use in phase change ink jet inks
US5782966A (en) * 1996-06-28 1998-07-21 Tektronix, Inc. Isocyanate-derived materials for use in phase change ink jet inks
US5783658A (en) * 1996-06-28 1998-07-21 Tektronix, Inc. Phase change ink formulation using a urethane isocyanate-derived resin and a urethane isocyanate-derived wax
US5827918A (en) * 1996-06-28 1998-10-27 Tektronix, Inc. Phase change ink formulation using urea and urethane isocyanate-derived resins
US5830942A (en) * 1996-06-28 1998-11-03 Tektronix, Inc. Phase change ink formulation using a urethane and urethane/urea isocyanate-derived resins
US5844020A (en) * 1997-03-31 1998-12-01 Xerox Corporation Phase change ink compositions
US5863319A (en) * 1996-12-10 1999-01-26 Markem Corporation Thermally stable hot melt ink
US5876492A (en) * 1997-09-23 1999-03-02 Xerox Corporation Ink compositions containing esters
EP0903383A1 (en) * 1997-09-23 1999-03-24 Xerox Corporation Hot melt ink compositions
US5902390A (en) * 1997-09-23 1999-05-11 Xerox Corporation Ink compositions containing ketones
US5919839A (en) * 1996-06-28 1999-07-06 Tektronix, Inc. Phase change ink formulation using an isocyanate-derived wax and a clear ink carrier base
US5922117A (en) * 1997-09-23 1999-07-13 Xerox Corporation Ink compositions containing alcohols
US5925177A (en) * 1998-05-01 1999-07-20 Xerox Corporation Yellow ink for ink jet printing
US5932630A (en) * 1996-05-02 1999-08-03 Xerox Corporation Ink compositions
US5931995A (en) * 1997-09-23 1999-08-03 Xerox Corporation Ink compositions
US5938826A (en) * 1997-05-16 1999-08-17 Markem Corporation Hot melt ink
US5938827A (en) * 1998-02-02 1999-08-17 Xerox Corporation Ink compositions
US5989325A (en) * 1998-03-05 1999-11-23 Xerox Corporation Ink compositions
US5994453A (en) * 1996-06-28 1999-11-30 Tektronix, Inc. Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urea resin, a mono-amide and a polyethylene wax
US6015847A (en) * 1998-02-13 2000-01-18 Tektronix, Inc. Magenta phase change ink formulation containing organic sulfonic acid
US6018005A (en) * 1996-06-28 2000-01-25 Tektronix, Inc. Phase change ink formulation using urethane isocyanate-derived resins and a polyethylene wax
US6028138A (en) * 1996-06-28 2000-02-22 Tektronix, Inc. Phase change ink formulation using urethane isocyanate-derived resins, a polyethylene wax and toughening agent
US6045607A (en) * 1999-03-30 2000-04-04 Xerox Corporation Ink compositions
US6048925A (en) * 1996-06-28 2000-04-11 Xerox Corporation Urethane isocyanate-derived resins for use in a phase change ink formulation
US6059871A (en) * 1998-11-30 2000-05-09 Xerox Corporation Ink compositions
US6066200A (en) * 1999-04-27 2000-05-23 Xerox Corporation Ink compositions
US6071333A (en) * 1999-04-27 2000-06-06 Xerox Corporation Ink compositions
US6086661A (en) * 1999-04-27 2000-07-11 Xerox Corporation Ink compositions
US6096125A (en) * 1999-04-27 2000-08-01 Xerox Corporation Ink compositions
US6096124A (en) * 1999-04-27 2000-08-01 Xerox Corporation Ink compositions
US6106599A (en) * 1999-06-29 2000-08-22 Xerox Corporation Inks
US6106601A (en) * 1999-04-27 2000-08-22 Xerox Corporation Ink compositions
US6110265A (en) * 1999-04-27 2000-08-29 Xerox Corporation Ink compositions
US6133353A (en) * 1999-11-11 2000-10-17 3D Systems, Inc. Phase change solid imaging material
US6132499A (en) * 1999-07-29 2000-10-17 Xerox Corporation Inks
US6132665A (en) * 1999-02-25 2000-10-17 3D Systems, Inc. Compositions and methods for selective deposition modeling
US6174355B1 (en) 1999-07-29 2001-01-16 Xerox Corporation Ink compositions
US6180692B1 (en) 1996-06-28 2001-01-30 Xerox Corporation Phase change ink formulation with organoleptic maskant additive
US6187082B1 (en) 1999-03-30 2001-02-13 Xerox Corporation Ink compositions
US6235094B1 (en) 1996-06-28 2001-05-22 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US6287373B1 (en) 2000-06-22 2001-09-11 Xerox Corporation Ink compositions
US6302536B1 (en) 1997-07-31 2001-10-16 Trident International, Inc. Fast drying ink jet ink compositions for capping ink jet printer nozzles
US6306203B1 (en) 1999-09-23 2001-10-23 Xerox Corporation Phase change inks
US6309453B1 (en) 1999-09-20 2001-10-30 Xerox Corporation Colorless compounds, solid inks, and printing methods
US6310174B1 (en) 1999-04-30 2001-10-30 Huntsman Petrochemical Corporation Primary alkanolamides
US6319310B1 (en) 1999-03-30 2001-11-20 Xerox Corporation Phase change ink compositions
US6322619B1 (en) 2000-02-22 2001-11-27 Xerox Corporation Ink compositions
US6328792B1 (en) 2000-02-22 2001-12-11 Xerox Corporation Ink compositions
US6328793B1 (en) 2000-08-03 2001-12-11 Xerox Corporation Phase change inks
US6336963B1 (en) 2000-08-03 2002-01-08 Xerox Corporation Phase change inks
US6350795B1 (en) 2000-06-07 2002-02-26 Xerox Corporation Ink compositions
US6350889B1 (en) 1999-06-24 2002-02-26 Arizona Chemical Company Ink jet printing compositions containing ester-terminated dimer acid-based oligo (ester/amide)
US6372030B1 (en) 2000-08-03 2002-04-16 Xerox Corporation Phase change inks
US6391943B2 (en) * 1998-09-04 2002-05-21 Trident International, Inc. High resolution pigment ink for impulse ink jet printing
US6395811B1 (en) 1999-11-11 2002-05-28 3D Systems, Inc. Phase change solid imaging material
US6395077B1 (en) 2000-08-03 2002-05-28 Xerox Corporation Phase change inks
US6398857B1 (en) 2000-08-03 2002-06-04 Xerox Corporation Phase change inks
US6432184B1 (en) 2000-08-24 2002-08-13 Xerox Corporation Ink compositions
US6439709B1 (en) * 1998-09-04 2002-08-27 Trident International, Inc. Method for reducing cavitation in impulse ink jet printing device
US6461417B1 (en) 2000-08-24 2002-10-08 Xerox Corporation Ink compositions
US6472523B1 (en) 2002-02-08 2002-10-29 Xerox Corporation Phthalocyanine compositions
US6476122B1 (en) 1998-08-20 2002-11-05 Vantico Inc. Selective deposition modeling material
US6476219B1 (en) 2002-02-08 2002-11-05 Xerox Corporation Methods for preparing phthalocyanine compositions
US20030004225A1 (en) * 1998-09-04 2003-01-02 Sarma Deverakonda S. High resolution pigment ink for impulse ink jet printing
US6509393B2 (en) 2001-03-22 2003-01-21 Xerox Corporation Phase change inks
US20030031484A1 (en) * 2001-08-08 2003-02-13 Mills Borden H. Method and system for reducing toner rub-off in an electrophotographic apparatus by using printers' anti-offset spray powder
US6567642B2 (en) 2001-08-08 2003-05-20 Heidelberger Druckmaschinen Ag Hybrid thermal transfer roller brush wax applicator for rub-off reduction
US20030096892A1 (en) * 2001-08-08 2003-05-22 Marsh Dana G. Enhanced phase change composition for rub-off reduction
US20030105185A1 (en) * 2001-09-07 2003-06-05 Xerox Corporation Phase change ink compositions
US6576748B1 (en) 2002-06-27 2003-06-10 Xerox Corporation Method for making dimeric azo pyridone colorants
US6576747B1 (en) 2002-06-27 2003-06-10 Xerox Corporation Processes for preparing dianthranilate compounds and diazopyridone colorants
US6585816B1 (en) 2001-11-09 2003-07-01 Xerox Corporation Phase change inks containing borate esters
US6590082B1 (en) 2002-06-27 2003-07-08 Xerox Corporation Azo pyridone colorants
US20030201659A1 (en) * 2002-04-26 2003-10-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle seat
US6646111B1 (en) 2002-06-27 2003-11-11 Xerox Corporation Dimeric azo pyridone colorants
US6652635B2 (en) 2001-09-07 2003-11-25 Xerox Corporation Cyan phase change inks
US6663703B1 (en) 2002-06-27 2003-12-16 Xerox Corporation Phase change inks containing dimeric azo pyridone colorants
US6673139B1 (en) 2002-06-27 2004-01-06 Xerox Corporation Phase change inks containing dimeric azo pyridone colorants
US20040006234A1 (en) * 2002-06-27 2004-01-08 Xerox Corporation Process for preparing substituted pyridone compounds
US6676255B2 (en) 2001-08-08 2004-01-13 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a colored phase change composition
US6688738B2 (en) 1998-09-04 2004-02-10 Illinois Tool Works Inc Method for reducing cavitation in impulse ink jet printing devices
US6692121B2 (en) 2001-08-08 2004-02-17 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a phase change composition with a rotary brush
US6695502B2 (en) 2001-08-08 2004-02-24 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a phase change composition on the non-image side of a substrate
US20040065227A1 (en) * 2002-09-04 2004-04-08 Xerox Corporation Phase change inks containing gelator additives
US6726755B2 (en) 2002-02-08 2004-04-27 Xerox Corporation Ink compositions containing phthalocyanines
US20040082801A1 (en) * 2002-09-27 2004-04-29 Xerox Corporation. Methods for making colorant compounds
US6730150B1 (en) 1996-06-28 2004-05-04 Xerox Corporation Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US20040091236A1 (en) * 2002-11-07 2004-05-13 International Business Machines Corp. User specific cable/personal video recorder preferences
US6741828B2 (en) 2001-08-08 2004-05-25 Heidelberg Digital L.L.C. Method for reducing rub-off from a toner image using a phase change composition
US20040102540A1 (en) * 2002-09-27 2004-05-27 Xerox Corporation Phase change inks
US6755902B2 (en) 2002-06-27 2004-06-29 Xerox Corporation Phase change inks containing azo pyridone colorants
US6761758B2 (en) 2002-09-04 2004-07-13 Xerox Corporation Alkylated tetrakis(triaminotriazine) compounds and phase change inks containing same
US6764541B1 (en) 2003-04-24 2004-07-20 Xerox Corporation Colorant compositions
US6775510B2 (en) 2001-08-08 2004-08-10 Heidelberg Digital L.L.C. Method for reducing rub-off from toner or printed images using a phase change composition
US20040167249A1 (en) * 2003-02-20 2004-08-26 Xerox Corporation Phase change inks with isocyanate-derived antioxidants and UV stabilizers
US6790267B1 (en) 2003-04-24 2004-09-14 Xerox Corporation Colorant compositions
WO2004085165A1 (en) * 2003-03-28 2004-10-07 Haeun Chemtec Co. Ltd. Organic silver compound and it's preparation method, organic silver ink and it's direct wiring method
US20040214918A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant compositions
US20040215038A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant precursor compositions
US6811595B2 (en) 2002-09-04 2004-11-02 Xerox Corporation Guanidinopyrimidinone compounds and phase change inks containing same
US6811596B1 (en) 2003-05-12 2004-11-02 Xerox Corporation Phase change inks with improved image permanence
US20040224486A1 (en) * 2001-07-10 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, and manufacturing method thereof
US20040231555A1 (en) * 2003-05-22 2004-11-25 Arizona Chemical Company Cyclic bisamides useful in formulating inks for phase-change printing
US20040249210A1 (en) * 2002-09-04 2004-12-09 Xerox Corporation Alkylated urea and triaminotriazine compounds and phase change inks containing same
US20040254084A1 (en) * 2002-03-07 2004-12-16 Mccall David B. Alkylated alkyl polyglucoside non-ionic surfactants
US6835238B1 (en) 2003-06-26 2004-12-28 Xerox Corporation Phase change inks containing colorant compounds
EP1491332A1 (en) * 2003-06-25 2004-12-29 Metronic AG Method of applying materials containing liquid crystals to a substrate
US20040261656A1 (en) * 2003-06-25 2004-12-30 Xerox Corporation Phase change inks containing branched triamides
US20050011411A1 (en) * 2003-06-26 2005-01-20 Xerox Corporation Colorant compounds
US20050011410A1 (en) * 2003-06-26 2005-01-20 Xerox Corporation Colorant compounds
US20050016417A1 (en) * 2003-06-26 2005-01-27 Xerox Corporation Phase change inks containing colorant compounds
US6858070B1 (en) 2003-11-25 2005-02-22 Xerox Corporation Phase change inks
US6878198B1 (en) 2003-11-25 2005-04-12 Xerox Corporation Phase change inks and process for the preparation thereof
US20050090690A1 (en) * 2003-10-22 2005-04-28 Xerox Corporation Process for preparing tetra-amide compounds
US20050113482A1 (en) * 2003-11-25 2005-05-26 Xerox Corporation Processes for preparing phase change inks
US20050134664A1 (en) * 2003-12-19 2005-06-23 Pavlin Mark S. Jet printing inks containing polymerized fatty acid-based polyamides
US20050163919A1 (en) * 2002-04-15 2005-07-28 Kazuhiro Murata Fast production method for printed board
US6958406B2 (en) 2002-09-27 2005-10-25 Xerox Corporation Colorant compounds
US20050285352A1 (en) * 2002-04-04 2005-12-29 Japan Metal Gasket Co., Ltd. Metallic gasket
US20060004123A1 (en) * 2004-06-30 2006-01-05 Xerox Corporation Phase change ink printing process
US20060020141A1 (en) * 2004-07-23 2006-01-26 Xerox Corporation Colorant compounds
US20060021546A1 (en) * 2004-07-23 2006-02-02 Xerox Corporation Processes for preparing phase change inks
US20060036095A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Colorant compounds
US20060032397A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Phase change inks
US20060035999A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Phase change inks containing modified pigment particles
US7033424B2 (en) 2004-07-23 2006-04-25 Xerox Corporation Phase change inks
US20060122416A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060122354A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Curable Trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060117991A1 (en) * 2004-12-03 2006-06-08 Xerox Corporation Multi-chromophoric azo pyridone colorants
US20060122291A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing bis(urea-urethane) compounds
US20060117993A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing curable trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060117992A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060122427A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation. Bis[urea-urethane] compounds
US20060128829A1 (en) * 2004-12-10 2006-06-15 Xerox Corporation Heterogeneous low energy gel ink composition
US20060128830A1 (en) * 2004-12-10 2006-06-15 Xerox Corporation Heterogeneous reactive ink composition
US20060244781A1 (en) * 2005-04-28 2006-11-02 Kommera Swaroop K Method and apparatus for printing a colloidal crystal structure
US20070030322A1 (en) * 2005-08-04 2007-02-08 Xerox Corporation Processes for preparing phase change inks
US20070123701A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Colorant compounds
US20070120910A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing photoinitiator with phase change properties and gellant affinity
US20070120916A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US20070123723A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Photoinitiator with phase change properties and gellant affinity
US20070120915A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing specific colorants
US20070123642A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds
US20070120917A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US20070120914A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing Fischer-Tropsch waxes
US20070120927A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US20070123606A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable amide gellant compounds
US20070120909A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds and phase change inducing components
US20070123724A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Method for preparing curable amide gellant compounds
US20070123641A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing compounds derived from isocyanate, unsaturated alcohol, and polyol
US20070120918A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US20070123663A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Process for making curable amide gellant compounds
US20070123722A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Curable amide gellant compounds
US20070211124A1 (en) * 2006-03-09 2007-09-13 Xerox Corporation Photochromic phase change inks
US20070252879A1 (en) * 2006-04-28 2007-11-01 Xerox Corporation Phase change ink additives
US7293868B2 (en) 2004-12-22 2007-11-13 Xerox Corporation Curable phase change ink composition
US20070282037A1 (en) * 2006-05-31 2007-12-06 Xerox Corporation Varnish
US20080000384A1 (en) * 2006-06-28 2008-01-03 Xerox Corporation Radiation curable ink containing gellant and radiation curable wax
US20080087190A1 (en) * 2006-10-12 2008-04-17 Xerox Corporation Fluorescent phase change inks
EP1916280A1 (en) 2006-10-26 2008-04-30 Xerox Corporation Pigmented Phase Change Inks
US20080098929A1 (en) * 2006-10-26 2008-05-01 Xerox Corporation Phase change inks
US20080098930A1 (en) * 2006-11-01 2008-05-01 Xerox Corporation Colorant dispersant
US7381831B1 (en) 2007-04-04 2008-06-03 Xerox Corporation Colorant compounds
US20080145557A1 (en) * 2006-12-18 2008-06-19 Xerox Corporation Phase change inks containing dialkyl ethers
US20080145559A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Phase change inks
US20080146794A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Colorant compounds
US20080152824A1 (en) * 2006-12-21 2008-06-26 Xerox Corporation Phase change inks
US20080154032A1 (en) * 2006-12-21 2008-06-26 Xerox Corporation Colorant compounds
US7407539B2 (en) 2005-11-30 2008-08-05 Xerox Corporation Phase change inks
US20080188672A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US20080188662A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US20080186371A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080187664A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080187665A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080186372A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080184910A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US20080184911A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US20080218570A1 (en) * 2006-06-28 2008-09-11 Xerox Corporation Imaging on flexible packaging substrates
US20080245264A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation. Phase change inks containing colorant compounds
US20080245263A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation Phase change inks containing colorant compounds
US20080249290A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation Colorant compounds
EP1985672A1 (en) 2007-04-24 2008-10-29 Xerox Corporation Phase Change Ink Compositions
US20090046134A1 (en) * 2007-08-14 2009-02-19 Xerox Corporation Phase change ink compositions
EP2028240A1 (en) 2007-08-07 2009-02-25 Xerox Corporation Phase Change Ink Compositions
US7544796B2 (en) 2006-12-19 2009-06-09 Xerox Corporation Colorant compounds
EP2107088A1 (en) 2008-04-03 2009-10-07 Xerox Corporation Phase change inks containing Fischer-Tropsch Waxes
US20090297669A1 (en) * 2006-05-12 2009-12-03 Gutierrez M Lydia E Food-grade toner
US20100028537A1 (en) * 2008-08-04 2010-02-04 Xerox Corporation Ink Carriers Containing Surface Modified Nanoparticles, Phase Change Inks Including Same, and Methods for Making Same
EP2166047A1 (en) 2008-09-19 2010-03-24 Xerox Corporation Solid phase change fluorescent ink and ink sets
US20100075038A1 (en) * 2008-09-23 2010-03-25 Xerox Corporation Ink Carriers Containing Low Viscosity Functionalized Waxes, Phase Change Inks Including Same, And Methods For Making Same
EP2169016A1 (en) 2008-09-30 2010-03-31 Xerox Corporation Phase change inks
US20100123746A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Ink jet inks containing nanodiamond black colorants
US20100124611A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants
US7781026B2 (en) 2006-12-19 2010-08-24 Xerox Corporation Ink compositions
US20100313788A1 (en) * 2009-06-10 2010-12-16 Xerox Corporation Solid or phase change inks with improved properties
US7910754B2 (en) 2007-02-06 2011-03-22 Xerox Corporation Colorant compounds
US20110152396A1 (en) * 2009-12-18 2011-06-23 Xerox Corporation Curable Solid Overcoat Compositions
US20110152397A1 (en) * 2009-12-18 2011-06-23 Xerox Corporation Curable Solid Ink Compositions
US20120227622A1 (en) * 2008-03-07 2012-09-13 Xerox Corporation Phase change inks
US8308286B2 (en) 2010-09-14 2012-11-13 Xerox Corporation Curable phase change ink containing alkoxysilane monomer
US8449095B2 (en) 2010-07-13 2013-05-28 Xerox Corporation Radiation curable solid ink compositions suitable for transfuse printing applications
DE102013210477A1 (en) 2012-06-12 2013-12-12 Xerox Corporation AQUEOUS COATED LAYER ON SOLID STAIN RAY PRINTS AND METHOD FOR THE PRODUCTION THEREOF
US8616693B1 (en) 2012-11-30 2013-12-31 Xerox Corporation Phase change ink comprising colorants derived from plants and insects
US8647422B1 (en) 2012-11-30 2014-02-11 Xerox Corporation Phase change ink comprising a modified polysaccharide composition
US8696100B1 (en) 2012-10-02 2014-04-15 Xerox Corporation Phase change ink containing synergist for pigment dispersion
US8714724B2 (en) 2012-10-02 2014-05-06 Xerox Corporation Phase change inks containing novel synergist
US8778069B2 (en) * 2012-11-19 2014-07-15 Xerox Corporation Phase change inks containing oligomeric rosin esters
US8974047B2 (en) 2012-11-27 2015-03-10 Xerox Corporation Phase change ink containing ethylene vinyl acetate
US8980406B2 (en) 2012-08-28 2015-03-17 3D Systems, Inc. Color stable inks and applications thereof
US9090758B2 (en) 2012-11-30 2015-07-28 Xerox Corporation Phase change ink comprising modified naturally-derived colorants
US9228099B2 (en) 2012-12-21 2016-01-05 Xerox Corporation Phase change ink composition and process for preparing same
US9410051B2 (en) 2014-09-25 2016-08-09 Markem-Imaje Corporation Hot melt inks
US9657186B2 (en) 2012-09-13 2017-05-23 3D Systems, Inc. Opaque inks and applications thereof
US9944806B2 (en) 2014-09-25 2018-04-17 Markem-Imaje Corporation Urethane compounds
DE102015223783B4 (en) 2014-12-13 2022-05-05 Xerox Corporation Water dispersible phase change ink composition, ink jet printer wand or beads and printing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69225634T2 (en) * 1991-03-29 1999-01-14 Lexmark Int Inc Solid ink jet composition
US5350789A (en) * 1992-01-23 1994-09-27 Hitachi Koki Co., Ltd. Hot-melt ink composition
GB9226772D0 (en) * 1992-12-23 1993-02-17 Coates Brothers Plc Hot melt ink jet printing
EP0825025A1 (en) * 1996-08-22 1998-02-25 Océ-Technologies B.V. Hot-melt ink-jet printhead
EP0825028A1 (en) * 1996-08-22 1998-02-25 Océ-Technologies B.V. Hot-melt ink-jet printhead
NL1005174C2 (en) * 1997-02-04 1998-08-06 Oce Tech Bv Ink composition for a fusible ink.
KR100355466B1 (en) * 1999-10-28 2002-10-09 류봉영 Hot-melted color ink composition
US8664330B2 (en) * 2003-04-04 2014-03-04 Henkel US IP LLC Reactive hot melt adhesive with improved hydrolysis resistance
US8287632B1 (en) * 2011-04-27 2012-10-16 Xerox Corporation Solid ink compositions comprising amorphous esters of citric acid
US8690309B2 (en) * 2011-04-27 2014-04-08 Xerox Corporation Print process for phase separation ink
US8814999B2 (en) * 2012-04-26 2014-08-26 Xerox Corporation Phase change ink compositions comprising crystalline sulfone compounds and derivatives thereof
US9528016B2 (en) * 2012-04-26 2016-12-27 Xerox Corporation Phase change inks comprising crystalline amides
US9388320B2 (en) * 2014-12-13 2016-07-12 Xerox Corporation Water cleanable phase change ink for ophthalmic lens marking

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907694A (en) * 1973-05-25 1975-09-23 Xerox Corp Non-volatile conductive inks
US4047943A (en) * 1973-05-25 1977-09-13 Xerox Corporation Method of developing electrostatic latent images with conductive liquid developer
US4108671A (en) * 1976-04-12 1978-08-22 Milton Richlin Dye-based inks with improved vehicles
US4153467A (en) * 1974-09-03 1979-05-08 Dai Nippon Toryo Co., Ltd. Method of ink jet printing
US4259675A (en) * 1979-03-05 1981-03-31 Whittaker Corporation Jet ink process
US4404251A (en) * 1980-03-26 1983-09-13 Bayer Aktiengesellschaft Copying systems, a process for their production, and suitable printing inks for both offset and book printing
US4614682A (en) * 1984-10-11 1986-09-30 Ricoh Company, Ltd. Thermosensitive image transfer recording medium
US4738889A (en) * 1985-10-28 1988-04-19 Dai Nippon Insatsu Kabushiki Kaisha Heat transfer sheet
US4830671A (en) * 1987-09-18 1989-05-16 Union Camp Corporation Ink compositions for ink jet printing
US4840674A (en) * 1987-06-01 1989-06-20 Xerox Corporation Ink compositions
US4878946A (en) * 1987-02-27 1989-11-07 Dainippon Ink And Chemicals, Inc. Hot-melt type ink for thermal ink-jet printer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962526A (en) * 1974-07-23 1976-06-08 The Mazer Corporation Tissueless pre-printed spirit duplicating masters
US4484948A (en) * 1981-12-17 1984-11-27 Exxon Research And Engineering Co. Natural wax-containing ink jet inks
US4659383A (en) * 1981-12-17 1987-04-21 Exxon Printing Systems, Inc. High molecular weight, hot melt impulse ink jet ink
JPS61159470A (en) * 1984-11-05 1986-07-19 データプロダクツ コーポレイション Hot melt ink composition
JPS62295973A (en) * 1985-08-01 1987-12-23 Seiko Epson Corp Printer ink
US5000786A (en) * 1987-11-02 1991-03-19 Seiko Epson Corporation Ink composition and ink jet recording apparatus and method
JPH02206661A (en) * 1989-02-03 1990-08-16 Seiko Epson Corp Ink composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907694A (en) * 1973-05-25 1975-09-23 Xerox Corp Non-volatile conductive inks
US4047943A (en) * 1973-05-25 1977-09-13 Xerox Corporation Method of developing electrostatic latent images with conductive liquid developer
US4153467A (en) * 1974-09-03 1979-05-08 Dai Nippon Toryo Co., Ltd. Method of ink jet printing
US4108671A (en) * 1976-04-12 1978-08-22 Milton Richlin Dye-based inks with improved vehicles
US4259675A (en) * 1979-03-05 1981-03-31 Whittaker Corporation Jet ink process
US4404251A (en) * 1980-03-26 1983-09-13 Bayer Aktiengesellschaft Copying systems, a process for their production, and suitable printing inks for both offset and book printing
US4614682A (en) * 1984-10-11 1986-09-30 Ricoh Company, Ltd. Thermosensitive image transfer recording medium
US4738889A (en) * 1985-10-28 1988-04-19 Dai Nippon Insatsu Kabushiki Kaisha Heat transfer sheet
US4878946A (en) * 1987-02-27 1989-11-07 Dainippon Ink And Chemicals, Inc. Hot-melt type ink for thermal ink-jet printer
US4840674A (en) * 1987-06-01 1989-06-20 Xerox Corporation Ink compositions
US4830671A (en) * 1987-09-18 1989-05-16 Union Camp Corporation Ink compositions for ink jet printing

Cited By (426)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279652A (en) * 1988-03-24 1994-01-18 Rainer Kaufmann Use of solids as antiblocking additives for marker liquids
US5151120A (en) * 1989-03-31 1992-09-29 Hewlett-Packard Company Solid ink compositions for thermal ink-jet printing having improved printing characteristics
US5174821A (en) * 1989-12-12 1992-12-29 Taisei Corporation Hydraulic composition, formed products therefrom and segregation reduction agent for hydraulic substances
US5235350A (en) * 1990-01-22 1993-08-10 Dataproducts Corporation Pigmented semiconductive hot melt ink and ink jet apparatus employing same
US5080716A (en) * 1990-02-09 1992-01-14 Canon Kabushiki Kaisha Ink having use in ink-jet recording
US5185035A (en) * 1990-05-23 1993-02-09 Coates Electrographics Limited Transparent hot melt jet ink
US5538550A (en) * 1990-09-29 1996-07-23 Canon Kabushiki Kaisha Jet recording method, normally solid recording material and recording apparatus for the method
US5270730A (en) * 1990-09-29 1993-12-14 Canon Kabushiki Kaisha Jet recording method and apparatus for discharging normally solid recording material by causing generated bubble to communicate with ambience
US5118347A (en) * 1991-03-19 1992-06-02 Hewlett-Packard Company Solid driver for the solid ink jet ink
US5230732A (en) * 1991-03-19 1993-07-27 Hewlett-Packard Company Solid driver for the solid ink jet ink
US5141556A (en) * 1991-06-13 1992-08-25 E. I. Du Pont De Nemours And Company Penetrants for aqueous ink jet inks
US5207825A (en) * 1991-07-30 1993-05-04 Xerox Corporation Ink compositions for ink jet printing
US5242489A (en) * 1991-07-30 1993-09-07 Xerox Corporation Ink jet printing processes
US5300143A (en) * 1991-07-30 1994-04-05 Xerox Corporation Ink compositions for ink jet printing
US5427611A (en) * 1991-08-12 1995-06-27 Canon Kabushiki Kaisha Normally solid recording material and jet recording method using same
US5259874A (en) * 1991-10-23 1993-11-09 Hewlett-Packard Company Solid ink compositions suitable for use in color transparencies
US5680165A (en) * 1991-10-25 1997-10-21 Canon Kabushiki Kaisha Jet recording method
US5621447A (en) * 1991-10-25 1997-04-15 Canon Kabushiki Kaisha Jet recording method
US5173112A (en) * 1992-04-03 1992-12-22 E. I. Du Pont De Nemours And Company Nitrogen-containing organic cosolvents for aqueous ink jet inks
US5169436A (en) * 1992-05-13 1992-12-08 E. I. Du Pont De Nemours And Company Sulfur-containing penetrants for ink jet inks
US5298062A (en) * 1992-08-19 1994-03-29 Videojet Systems International, Inc. Eutectic compositions for hot melt jet inks
AU669203B2 (en) * 1992-08-19 1996-05-30 Videojet Systems International, Inc. Printing inks and method of ink jet printing
US5389131A (en) * 1992-12-17 1995-02-14 Xerox Corporation Ink compositions and preparation processes thereof
US5554213A (en) * 1992-12-17 1996-09-10 Xerox Corporation Ink compositions for ink jet printing
US5354368A (en) * 1993-05-04 1994-10-11 Markem Corporation Hot melt jet ink composition
US5514209A (en) * 1993-05-04 1996-05-07 Markem Corporation Hot melt jet ink composition
US5421868A (en) * 1993-12-28 1995-06-06 International Business Machines Corporation Ink composition
US5484475A (en) * 1994-08-29 1996-01-16 Xerox Corporation Micellar-based ink compositions
US5551973A (en) * 1994-10-19 1996-09-03 Xerox Corporation Photochromic microemulsion ink compositions
US5492559A (en) * 1994-10-19 1996-02-20 Xerox Corporation Liquid crystalline microemulsion ink compositions
GB2294939A (en) * 1994-11-08 1996-05-15 Coates Brothers Plc Hot melt ink jet printing composition comprising an oligourea
US5700313A (en) * 1995-03-13 1997-12-23 Markem Corporation Ink for ink jet printing
US5766267A (en) * 1995-05-15 1998-06-16 Hoechst Aktiengesellschaft Use of carbohydrate compounds as auxiliaries for dyeing and printing fiber materials
US5689426A (en) * 1995-05-30 1997-11-18 Matthias D. Kemeny Computer-controlled master reproducer for depositing a master reproduction on a substrate, method for depositing the same, and master reproduction
US5890798A (en) * 1995-05-30 1999-04-06 Advanced Electro Mechanical, L.L.C. Computer-controlled master reproducer for depositing a master reproduction on a substrate, method for depositing the same, and master reproduction
US5593486A (en) * 1995-12-05 1997-01-14 Xerox Corporation Photochromic hot melt ink compositions
US5643357A (en) * 1995-12-08 1997-07-01 Xerox Corporation Liquid crystalline ink compositions
WO1997033943A1 (en) * 1996-03-14 1997-09-18 Coates Brothers Plc Hot melt ink composition
US5688312A (en) * 1996-03-29 1997-11-18 Xerox Corporation Ink compositions
US5667568A (en) * 1996-03-29 1997-09-16 Xerox Corporation Hot melt ink compositions
US5700316A (en) * 1996-03-29 1997-12-23 Xerox Corporation Acoustic ink compositions
US5747554A (en) * 1996-03-29 1998-05-05 Xerox Corporation Ink compositions
US5932630A (en) * 1996-05-02 1999-08-03 Xerox Corporation Ink compositions
US5783658A (en) * 1996-06-28 1998-07-21 Tektronix, Inc. Phase change ink formulation using a urethane isocyanate-derived resin and a urethane isocyanate-derived wax
US5780528A (en) * 1996-06-28 1998-07-14 Tektronix, Inc. Isocyanate-derived colored resins for use in phase change ink jet inks
US5782966A (en) * 1996-06-28 1998-07-21 Tektronix, Inc. Isocyanate-derived materials for use in phase change ink jet inks
US6303185B1 (en) 1996-06-28 2001-10-16 Xerox Corporation Overcoating of printed substrates
US7985865B2 (en) 1996-06-28 2011-07-26 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US5827918A (en) * 1996-06-28 1998-10-27 Tektronix, Inc. Phase change ink formulation using urea and urethane isocyanate-derived resins
US5830942A (en) * 1996-06-28 1998-11-03 Tektronix, Inc. Phase change ink formulation using a urethane and urethane/urea isocyanate-derived resins
US6730150B1 (en) 1996-06-28 2004-05-04 Xerox Corporation Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US7022879B2 (en) 1996-06-28 2006-04-04 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US20040176634A1 (en) * 1996-06-28 2004-09-09 Titterington Donald R. Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US6235094B1 (en) 1996-06-28 2001-05-22 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US7323595B2 (en) 1996-06-28 2008-01-29 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US5750604A (en) * 1996-06-28 1998-05-12 Tektronix, Inc. Phase change ink formulation using a urethane isocyanate-derived resin
US20040176500A1 (en) * 1996-06-28 2004-09-09 Titterington Donald R. Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US5919839A (en) * 1996-06-28 1999-07-06 Tektronix, Inc. Phase change ink formulation using an isocyanate-derived wax and a clear ink carrier base
US6180692B1 (en) 1996-06-28 2001-01-30 Xerox Corporation Phase change ink formulation with organoleptic maskant additive
US7345200B2 (en) 1996-06-28 2008-03-18 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US7939678B2 (en) 1996-06-28 2011-05-10 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US20080091037A1 (en) * 1996-06-28 2008-04-17 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US6048925A (en) * 1996-06-28 2000-04-11 Xerox Corporation Urethane isocyanate-derived resins for use in a phase change ink formulation
US6620228B1 (en) 1996-06-28 2003-09-16 Xerox Corporation Isocyanate-derived materials for use in phase change ink jet inks
US20080091036A1 (en) * 1996-06-28 2008-04-17 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US7520222B2 (en) 1996-06-28 2009-04-21 Xerox Corporation Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US20060161009A1 (en) * 1996-06-28 2006-07-20 Xerox Corporation Phase change ink formulations, colorant formulations, and methods of forming colorants
US5994453A (en) * 1996-06-28 1999-11-30 Tektronix, Inc. Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urea resin, a mono-amide and a polyethylene wax
US7064230B2 (en) 1996-06-28 2006-06-20 Xerox Corporation Phase change ink formulation containing a combination of a urethane resin, a mixed urethane/urearesin, a mono-amide and a polyethylene wax
US6018005A (en) * 1996-06-28 2000-01-25 Tektronix, Inc. Phase change ink formulation using urethane isocyanate-derived resins and a polyethylene wax
US6028138A (en) * 1996-06-28 2000-02-22 Tektronix, Inc. Phase change ink formulation using urethane isocyanate-derived resins, a polyethylene wax and toughening agent
US5698017A (en) * 1996-09-27 1997-12-16 Xerox Corporation Oxazoline hot melt ink compositions
US5817169A (en) * 1996-09-27 1998-10-06 Xerox Corporation Oxazoline hot melt ink compositions
US5863319A (en) * 1996-12-10 1999-01-26 Markem Corporation Thermally stable hot melt ink
US5693128A (en) * 1997-01-21 1997-12-02 Xerox Corporation Phase change hot melt ink compositions
US5844020A (en) * 1997-03-31 1998-12-01 Xerox Corporation Phase change ink compositions
US5938826A (en) * 1997-05-16 1999-08-17 Markem Corporation Hot melt ink
US6093239A (en) * 1997-05-16 2000-07-25 Markem Corporation Hot melt ink
US6302536B1 (en) 1997-07-31 2001-10-16 Trident International, Inc. Fast drying ink jet ink compositions for capping ink jet printer nozzles
US5902390A (en) * 1997-09-23 1999-05-11 Xerox Corporation Ink compositions containing ketones
US5958119A (en) * 1997-09-23 1999-09-28 Xerox Corporation Hot melt ink compositions
US5931995A (en) * 1997-09-23 1999-08-03 Xerox Corporation Ink compositions
US5922117A (en) * 1997-09-23 1999-07-13 Xerox Corporation Ink compositions containing alcohols
EP0903383A1 (en) * 1997-09-23 1999-03-24 Xerox Corporation Hot melt ink compositions
EP0903382A1 (en) * 1997-09-23 1999-03-24 Xerox Corporation Semi-solid hot melt ink compositions containing esters
US5876492A (en) * 1997-09-23 1999-03-02 Xerox Corporation Ink compositions containing esters
US5938827A (en) * 1998-02-02 1999-08-17 Xerox Corporation Ink compositions
US6015847A (en) * 1998-02-13 2000-01-18 Tektronix, Inc. Magenta phase change ink formulation containing organic sulfonic acid
US5989325A (en) * 1998-03-05 1999-11-23 Xerox Corporation Ink compositions
EP0953612A1 (en) * 1998-05-01 1999-11-03 Xerox Corporation Yellow ink for ink jet printing
US5925177A (en) * 1998-05-01 1999-07-20 Xerox Corporation Yellow ink for ink jet printing
US6476122B1 (en) 1998-08-20 2002-11-05 Vantico Inc. Selective deposition modeling material
US20030004225A1 (en) * 1998-09-04 2003-01-02 Sarma Deverakonda S. High resolution pigment ink for impulse ink jet printing
US6391943B2 (en) * 1998-09-04 2002-05-21 Trident International, Inc. High resolution pigment ink for impulse ink jet printing
US6688738B2 (en) 1998-09-04 2004-02-10 Illinois Tool Works Inc Method for reducing cavitation in impulse ink jet printing devices
US6439709B1 (en) * 1998-09-04 2002-08-27 Trident International, Inc. Method for reducing cavitation in impulse ink jet printing device
US7030173B2 (en) 1998-09-04 2006-04-18 Illinois Tool Works, Inc. High resolution pigment ink for impulse ink jet printing
US6059871A (en) * 1998-11-30 2000-05-09 Xerox Corporation Ink compositions
US6132665A (en) * 1999-02-25 2000-10-17 3D Systems, Inc. Compositions and methods for selective deposition modeling
US6406531B1 (en) 1999-02-25 2002-06-18 3D Systems, Inc. Compositions and methods for selective deposition modeling
US6187082B1 (en) 1999-03-30 2001-02-13 Xerox Corporation Ink compositions
US6319310B1 (en) 1999-03-30 2001-11-20 Xerox Corporation Phase change ink compositions
US6045607A (en) * 1999-03-30 2000-04-04 Xerox Corporation Ink compositions
US6066200A (en) * 1999-04-27 2000-05-23 Xerox Corporation Ink compositions
US6334890B1 (en) 1999-04-27 2002-01-01 Xerox Corporation Ink compositions
US6110265A (en) * 1999-04-27 2000-08-29 Xerox Corporation Ink compositions
US6106601A (en) * 1999-04-27 2000-08-22 Xerox Corporation Ink compositions
US6096124A (en) * 1999-04-27 2000-08-01 Xerox Corporation Ink compositions
US6096125A (en) * 1999-04-27 2000-08-01 Xerox Corporation Ink compositions
US6071333A (en) * 1999-04-27 2000-06-06 Xerox Corporation Ink compositions
US6086661A (en) * 1999-04-27 2000-07-11 Xerox Corporation Ink compositions
US6514190B2 (en) 1999-04-30 2003-02-04 Huntsman Petrochemical Corporation Primary alkanolamides
US6310174B1 (en) 1999-04-30 2001-10-30 Huntsman Petrochemical Corporation Primary alkanolamides
US6350889B1 (en) 1999-06-24 2002-02-26 Arizona Chemical Company Ink jet printing compositions containing ester-terminated dimer acid-based oligo (ester/amide)
US6106599A (en) * 1999-06-29 2000-08-22 Xerox Corporation Inks
US6174355B1 (en) 1999-07-29 2001-01-16 Xerox Corporation Ink compositions
US6132499A (en) * 1999-07-29 2000-10-17 Xerox Corporation Inks
US6380423B2 (en) 1999-09-20 2002-04-30 Xerox Corporation Colorless compounds
US6309453B1 (en) 1999-09-20 2001-10-30 Xerox Corporation Colorless compounds, solid inks, and printing methods
US6464766B1 (en) 1999-09-20 2002-10-15 Xerox Corporation Solid inks and printing methods
US6306203B1 (en) 1999-09-23 2001-10-23 Xerox Corporation Phase change inks
US6133353A (en) * 1999-11-11 2000-10-17 3D Systems, Inc. Phase change solid imaging material
US6528613B1 (en) 1999-11-11 2003-03-04 3D Systems, Inc. Phase change solid imaging material
US6395811B1 (en) 1999-11-11 2002-05-28 3D Systems, Inc. Phase change solid imaging material
US6322619B1 (en) 2000-02-22 2001-11-27 Xerox Corporation Ink compositions
US6328792B1 (en) 2000-02-22 2001-12-11 Xerox Corporation Ink compositions
US6350795B1 (en) 2000-06-07 2002-02-26 Xerox Corporation Ink compositions
US6287373B1 (en) 2000-06-22 2001-09-11 Xerox Corporation Ink compositions
US6395077B1 (en) 2000-08-03 2002-05-28 Xerox Corporation Phase change inks
US6372030B1 (en) 2000-08-03 2002-04-16 Xerox Corporation Phase change inks
US6398857B1 (en) 2000-08-03 2002-06-04 Xerox Corporation Phase change inks
US6336963B1 (en) 2000-08-03 2002-01-08 Xerox Corporation Phase change inks
US6328793B1 (en) 2000-08-03 2001-12-11 Xerox Corporation Phase change inks
US6432184B1 (en) 2000-08-24 2002-08-13 Xerox Corporation Ink compositions
US6461417B1 (en) 2000-08-24 2002-10-08 Xerox Corporation Ink compositions
US6509393B2 (en) 2001-03-22 2003-01-21 Xerox Corporation Phase change inks
US20040224486A1 (en) * 2001-07-10 2004-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, and manufacturing method thereof
US6567642B2 (en) 2001-08-08 2003-05-20 Heidelberger Druckmaschinen Ag Hybrid thermal transfer roller brush wax applicator for rub-off reduction
US6676255B2 (en) 2001-08-08 2004-01-13 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a colored phase change composition
US6692121B2 (en) 2001-08-08 2004-02-17 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a phase change composition with a rotary brush
US6695502B2 (en) 2001-08-08 2004-02-24 Heidelberger Druckmaschinen Ag Method for reducing rub-off from a toner image using a phase change composition on the non-image side of a substrate
US20030031484A1 (en) * 2001-08-08 2003-02-13 Mills Borden H. Method and system for reducing toner rub-off in an electrophotographic apparatus by using printers' anti-offset spray powder
US6775510B2 (en) 2001-08-08 2004-08-10 Heidelberg Digital L.L.C. Method for reducing rub-off from toner or printed images using a phase change composition
US20030096892A1 (en) * 2001-08-08 2003-05-22 Marsh Dana G. Enhanced phase change composition for rub-off reduction
US6801746B2 (en) 2001-08-08 2004-10-05 Eastman Kodak Company Method and system for reducing toner rub-off in an electrophotographic apparatus by using printers' anti-offset spray powder
US6741828B2 (en) 2001-08-08 2004-05-25 Heidelberg Digital L.L.C. Method for reducing rub-off from a toner image using a phase change composition
US6652635B2 (en) 2001-09-07 2003-11-25 Xerox Corporation Cyan phase change inks
US20030105185A1 (en) * 2001-09-07 2003-06-05 Xerox Corporation Phase change ink compositions
US6906118B2 (en) 2001-09-07 2005-06-14 Xerox Corporation Phase change ink compositions
US6585816B1 (en) 2001-11-09 2003-07-01 Xerox Corporation Phase change inks containing borate esters
US6726755B2 (en) 2002-02-08 2004-04-27 Xerox Corporation Ink compositions containing phthalocyanines
US6472523B1 (en) 2002-02-08 2002-10-29 Xerox Corporation Phthalocyanine compositions
US6476219B1 (en) 2002-02-08 2002-11-05 Xerox Corporation Methods for preparing phthalocyanine compositions
US6958314B2 (en) * 2002-03-07 2005-10-25 Master Chemical Corporation Alkylated alkyl polyglucoside non-ionic surfactants
US20040254084A1 (en) * 2002-03-07 2004-12-16 Mccall David B. Alkylated alkyl polyglucoside non-ionic surfactants
US20050285352A1 (en) * 2002-04-04 2005-12-29 Japan Metal Gasket Co., Ltd. Metallic gasket
US20050163919A1 (en) * 2002-04-15 2005-07-28 Kazuhiro Murata Fast production method for printed board
US20030201659A1 (en) * 2002-04-26 2003-10-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle seat
US6576747B1 (en) 2002-06-27 2003-06-10 Xerox Corporation Processes for preparing dianthranilate compounds and diazopyridone colorants
US6590082B1 (en) 2002-06-27 2003-07-08 Xerox Corporation Azo pyridone colorants
US6663703B1 (en) 2002-06-27 2003-12-16 Xerox Corporation Phase change inks containing dimeric azo pyridone colorants
US6646111B1 (en) 2002-06-27 2003-11-11 Xerox Corporation Dimeric azo pyridone colorants
US6673139B1 (en) 2002-06-27 2004-01-06 Xerox Corporation Phase change inks containing dimeric azo pyridone colorants
US6576748B1 (en) 2002-06-27 2003-06-10 Xerox Corporation Method for making dimeric azo pyridone colorants
US20040006234A1 (en) * 2002-06-27 2004-01-08 Xerox Corporation Process for preparing substituted pyridone compounds
US6696552B2 (en) 2002-06-27 2004-02-24 Xerox Corporation Process for preparing substituted pyridone compounds
US6755902B2 (en) 2002-06-27 2004-06-29 Xerox Corporation Phase change inks containing azo pyridone colorants
US6761758B2 (en) 2002-09-04 2004-07-13 Xerox Corporation Alkylated tetrakis(triaminotriazine) compounds and phase change inks containing same
US20040249210A1 (en) * 2002-09-04 2004-12-09 Xerox Corporation Alkylated urea and triaminotriazine compounds and phase change inks containing same
US20040065227A1 (en) * 2002-09-04 2004-04-08 Xerox Corporation Phase change inks containing gelator additives
US6835833B2 (en) 2002-09-04 2004-12-28 Xerox Corporation Alkylated tetrakis(triaminotriazine) compounds and phase change inks containing same
US7371858B2 (en) 2002-09-04 2008-05-13 Xerox Corporation Guanidinopyrimidinone compounds and phase change inks containing same
US6872243B2 (en) 2002-09-04 2005-03-29 Xerox Corporation Phase change inks containing gelator additives
US7504502B2 (en) 2002-09-04 2009-03-17 Xerox Corporation Guanidinopyrimidinone compounds and phase change inks containing same
US7157601B2 (en) 2002-09-04 2007-01-02 Xerox Corporation Alkylated urea and triaminotriazine compounds and phase change inks containing same
US6860928B2 (en) 2002-09-04 2005-03-01 Xerox Corporation Alkylated urea and triaminotriazine compounds and phase change inks containing same
US6811595B2 (en) 2002-09-04 2004-11-02 Xerox Corporation Guanidinopyrimidinone compounds and phase change inks containing same
US20080171877A1 (en) * 2002-09-04 2008-07-17 Xerox Corporation Guanidinopyrimidinone compounds and phase change inks containing same
US7087752B2 (en) 2002-09-04 2006-08-08 Xerox Corporation Alkylated urea and triaminotriazine compounds and phase change inks containing same
US6821327B2 (en) 2002-09-27 2004-11-23 Xerox Corporation Phase change inks
US7524979B2 (en) 2002-09-27 2009-04-28 Xerox Corporation Methods of making colorant compounds
US20060178458A1 (en) * 2002-09-27 2006-08-10 Xerox Corporation Methods of making colorant compounds
US20040102540A1 (en) * 2002-09-27 2004-05-27 Xerox Corporation Phase change inks
US7053227B2 (en) 2002-09-27 2006-05-30 Xerox Corporation Methods for making colorant compounds
US6958406B2 (en) 2002-09-27 2005-10-25 Xerox Corporation Colorant compounds
US20040082801A1 (en) * 2002-09-27 2004-04-29 Xerox Corporation. Methods for making colorant compounds
US20040091236A1 (en) * 2002-11-07 2004-05-13 International Business Machines Corp. User specific cable/personal video recorder preferences
US20040167249A1 (en) * 2003-02-20 2004-08-26 Xerox Corporation Phase change inks with isocyanate-derived antioxidants and UV stabilizers
US7084189B2 (en) 2003-02-20 2006-08-01 Xerox Corporation Phase change inks with isocyanate-derived antioxidants and UV stabilizers
US20070176150A1 (en) * 2003-03-28 2007-08-02 Chung Kwang C Organic silver compound and it's preparation method, organic silver ink and it's direct wiring method
CN100377891C (en) * 2003-03-28 2008-04-02 海隐化学科技株式会社 Organic silver compound and it's preparation method, organic silver ink and it's direct wiring method
WO2004085165A1 (en) * 2003-03-28 2004-10-07 Haeun Chemtec Co. Ltd. Organic silver compound and it's preparation method, organic silver ink and it's direct wiring method
US7618561B2 (en) 2003-03-28 2009-11-17 Haeun Chemtec Co. Ltd. Organic silver compound and it's preparation method, organic silver ink and it's direct wiring method
US7619075B2 (en) 2003-04-24 2009-11-17 Xerox Corporation Colorant compositions
US20060264674A1 (en) * 2003-04-24 2006-11-23 Xerox Corporation Colorant compositions
US7304173B2 (en) 2003-04-24 2007-12-04 Xerox Corporation Colorant compositions
US7034185B2 (en) 2003-04-24 2006-04-25 Xerox Corporation Colorant precursor compositions
US20040214918A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant compositions
US7572845B2 (en) 2003-04-24 2009-08-11 Xerox Corporation Phase change inks
US20040215022A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant compositions
US7582687B2 (en) 2003-04-24 2009-09-01 Xerox Corporation Phase change inks
US7592460B2 (en) 2003-04-24 2009-09-22 Xerox Corporation Colorant compositions
US20040215038A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant precursor compositions
US20080114159A1 (en) * 2003-04-24 2008-05-15 Xerox Corporation Colorant compositions
US7094812B2 (en) 2003-04-24 2006-08-22 Xerox Corporations Colorant compositions
US20060264536A1 (en) * 2003-04-24 2006-11-23 Xerox Corporation Phase change inks
US6764541B1 (en) 2003-04-24 2004-07-20 Xerox Corporation Colorant compositions
US20040215002A1 (en) * 2003-04-24 2004-10-28 Xerox Corporation Colorant compositions
US6969759B2 (en) 2003-04-24 2005-11-29 Xerox Corporation Colorant compositions
US7772377B2 (en) 2003-04-24 2010-08-10 Xerox Corporation Colorant compositions
US6790267B1 (en) 2003-04-24 2004-09-14 Xerox Corporation Colorant compositions
US20060270757A1 (en) * 2003-04-24 2006-11-30 Xerox Corporation Phase change inks
US20080119644A1 (en) * 2003-04-24 2008-05-22 Xerox Corporation Colorant compositions
US6811596B1 (en) 2003-05-12 2004-11-02 Xerox Corporation Phase change inks with improved image permanence
US20040231555A1 (en) * 2003-05-22 2004-11-25 Arizona Chemical Company Cyclic bisamides useful in formulating inks for phase-change printing
US8269046B2 (en) 2003-05-22 2012-09-18 Arizona Chemical Company, Llc Cyclic bisamides useful in formulating inks for phase-change printing
US20060128992A1 (en) * 2003-05-22 2006-06-15 Arizona Chemical Company Cyclic bisamides useful in formulating inks for phase-change printing
US6960248B2 (en) 2003-05-22 2005-11-01 Arizona Chemical Company Cyclic bisamides useful in formulating inks for phase-change printing
US6860930B2 (en) 2003-06-25 2005-03-01 Xerox Corporation Phase change inks containing branched triamides
EP1491332A1 (en) * 2003-06-25 2004-12-29 Metronic AG Method of applying materials containing liquid crystals to a substrate
US20040261656A1 (en) * 2003-06-25 2004-12-30 Xerox Corporation Phase change inks containing branched triamides
US20040263592A1 (en) * 2003-06-25 2004-12-30 Metronic Ag Method for applying substances with liquid crystals to substrates
US7298427B2 (en) * 2003-06-25 2007-11-20 Kba-Metronic Ag Method for applying substances with liquid crystals to substrates
US7176317B2 (en) 2003-06-26 2007-02-13 Xerox Corporation Colorant compounds
US6860931B2 (en) 2003-06-26 2005-03-01 Xerox Corporation Phase change inks containing colorant compounds
US7301025B2 (en) 2003-06-26 2007-11-27 Xerox Corporation Colorant compounds
US6835238B1 (en) 2003-06-26 2004-12-28 Xerox Corporation Phase change inks containing colorant compounds
US20040261657A1 (en) * 2003-06-26 2004-12-30 Xerox Corporation Phase change inks containing colorant compounds
US20050011411A1 (en) * 2003-06-26 2005-01-20 Xerox Corporation Colorant compounds
US20050011410A1 (en) * 2003-06-26 2005-01-20 Xerox Corporation Colorant compounds
US20050016417A1 (en) * 2003-06-26 2005-01-27 Xerox Corporation Phase change inks containing colorant compounds
US6998493B2 (en) 2003-06-26 2006-02-14 Xerox Corporation Colorant compounds
US6946025B2 (en) 2003-10-22 2005-09-20 Xerox Corporation Process for preparing tetra-amide compounds
US20050090690A1 (en) * 2003-10-22 2005-04-28 Xerox Corporation Process for preparing tetra-amide compounds
US6858070B1 (en) 2003-11-25 2005-02-22 Xerox Corporation Phase change inks
US6878198B1 (en) 2003-11-25 2005-04-12 Xerox Corporation Phase change inks and process for the preparation thereof
US7186762B2 (en) 2003-11-25 2007-03-06 Xerox Corporation Processes for preparing phase change inks
US20050113482A1 (en) * 2003-11-25 2005-05-26 Xerox Corporation Processes for preparing phase change inks
US7207669B2 (en) * 2003-12-19 2007-04-24 Arizona Chemical Company Jet printing inks containing polymerized fatty acid-based polyamides
US20050134664A1 (en) * 2003-12-19 2005-06-23 Pavlin Mark S. Jet printing inks containing polymerized fatty acid-based polyamides
US20060004123A1 (en) * 2004-06-30 2006-01-05 Xerox Corporation Phase change ink printing process
US6989052B1 (en) 2004-06-30 2006-01-24 Xerox Corporation Phase change ink printing process
US7732625B2 (en) 2004-07-23 2010-06-08 Xerox Corporation Colorant compounds
US7311767B2 (en) 2004-07-23 2007-12-25 Xerox Corporation Processes for preparing phase change inks
US7033424B2 (en) 2004-07-23 2006-04-25 Xerox Corporation Phase change inks
US20060020141A1 (en) * 2004-07-23 2006-01-26 Xerox Corporation Colorant compounds
US20060021546A1 (en) * 2004-07-23 2006-02-02 Xerox Corporation Processes for preparing phase change inks
US20060035999A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Phase change inks containing modified pigment particles
US20060032397A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Phase change inks
US20060036095A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Colorant compounds
US7347892B2 (en) 2004-08-13 2008-03-25 Xerox Corporation Phase change inks containing modified pigment particles
US7211131B2 (en) 2004-08-13 2007-05-01 Xerox Corporation Phase change inks
US20080064875A1 (en) * 2004-08-13 2008-03-13 Xerox Corporation Colorant compounds
US7737278B2 (en) 2004-08-13 2010-06-15 Xerox Corporation Colorant compounds
US7622580B2 (en) 2004-08-13 2009-11-24 Xerox Corporation Colorant compounds
US20080071051A1 (en) * 2004-12-03 2008-03-20 Xerox Corporation Multi-chromophoric azo pyridone colorants
US20060117991A1 (en) * 2004-12-03 2006-06-08 Xerox Corporation Multi-chromophoric azo pyridone colorants
US7381253B2 (en) 2004-12-03 2008-06-03 Xerox Corporation Multi-chromophoric azo pyridone colorants
US7754862B2 (en) 2004-12-03 2010-07-13 Xerox Corporation Multi-chromophoric AZO pyridone colorants
US20060122291A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing bis(urea-urethane) compounds
US7314949B2 (en) 2004-12-04 2008-01-01 Xerox Corporation Trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060122416A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Trans-1,2-cyclohexane bis(urea-urethane) compounds
US7144450B2 (en) 2004-12-04 2006-12-05 Xerox Corporation Phase change inks containing trans-1,2-cyclohexane bis(urea-urethane) compounds
US7560587B2 (en) 2004-12-04 2009-07-14 Xerox Corporation Bis[urea-urethane] compounds
US7153349B2 (en) 2004-12-04 2006-12-26 Xerox Corporation Phase change inks containing curable trans-1,2-cyclohexane bis(urea-urethane) compounds
US7220300B2 (en) 2004-12-04 2007-05-22 Xerox Corporation Phase change inks containing bis(urea-urethane) compounds
US7317122B2 (en) 2004-12-04 2008-01-08 Xerox Corporation Curable trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060122427A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation. Bis[urea-urethane] compounds
US20060117992A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060122354A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Curable Trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060117993A1 (en) * 2004-12-04 2006-06-08 Xerox Corporation Phase change inks containing curable trans-1,2-cyclohexane bis(urea-urethane) compounds
US20060128830A1 (en) * 2004-12-10 2006-06-15 Xerox Corporation Heterogeneous reactive ink composition
US7172276B2 (en) 2004-12-10 2007-02-06 Xerox Corporation Heterogeneous low energy gel ink composition
US20060128829A1 (en) * 2004-12-10 2006-06-15 Xerox Corporation Heterogeneous low energy gel ink composition
US7202883B2 (en) 2004-12-10 2007-04-10 Xerox Corporation Heterogeneous reactive ink composition
US20080022892A1 (en) * 2004-12-22 2008-01-31 Xerox Corporation Curable phase change ink composition
US7293868B2 (en) 2004-12-22 2007-11-13 Xerox Corporation Curable phase change ink composition
US7553011B2 (en) 2004-12-22 2009-06-30 Xerox Corporation Curable phase change ink composition
US20060244781A1 (en) * 2005-04-28 2006-11-02 Kommera Swaroop K Method and apparatus for printing a colloidal crystal structure
US20070030322A1 (en) * 2005-08-04 2007-02-08 Xerox Corporation Processes for preparing phase change inks
US7556679B2 (en) 2005-08-04 2009-07-07 Xerox Corporation Processes for preparing phase change inks
US20070123663A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Process for making curable amide gellant compounds
US7276614B2 (en) 2005-11-30 2007-10-02 Xerox Corporation Curable amide gellant compounds
US20070120914A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing Fischer-Tropsch waxes
US20070123701A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Colorant compounds
US20070120910A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing photoinitiator with phase change properties and gellant affinity
US20070123606A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable amide gellant compounds
US20070120909A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds and phase change inducing components
US20070120917A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US20070123642A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds
US20070120915A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing specific colorants
US7377971B2 (en) 2005-11-30 2008-05-27 Xerox Corporation Phase change inks
US7381254B2 (en) 2005-11-30 2008-06-03 Xerox Corporation Phase change inks
US20070123724A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Method for preparing curable amide gellant compounds
US20070123723A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Photoinitiator with phase change properties and gellant affinity
US7381255B2 (en) 2005-11-30 2008-06-03 Xerox Corporation Phase change inks
US20070123641A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks containing compounds derived from isocyanate, unsaturated alcohol, and polyol
US20070120918A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US7449515B2 (en) 2005-11-30 2008-11-11 Xerox Corporation Phase change inks containing compounds derived from isocyanate, unsaturated alcohol, and polyol
US7625956B2 (en) 2005-11-30 2009-12-01 Xerox Corporation Phase change inks containing photoinitiator with phase change properties and gellant affinity
US20070120927A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US7279587B2 (en) 2005-11-30 2007-10-09 Xerox Corporation Photoinitiator with phase change properties and gellant affinity
US20070120916A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Phase change inks
US7407539B2 (en) 2005-11-30 2008-08-05 Xerox Corporation Phase change inks
US7541406B2 (en) 2005-11-30 2009-06-02 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds
US7311768B2 (en) 2005-11-30 2007-12-25 Xerox Corporation Phase change inks containing Fischer-Tropsch waxes
US20070123722A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Curable amide gellant compounds
US7442242B2 (en) 2005-11-30 2008-10-28 Xerox Corporation Phase change inks containing specific colorants
US7658486B2 (en) 2005-11-30 2010-02-09 Xerox Corporation Phase change inks
US7259275B2 (en) 2005-11-30 2007-08-21 Xerox Corporation Method for preparing curable amide gellant compounds
US7674842B2 (en) 2005-11-30 2010-03-09 Xerox Corporation Phase change inks containing curable isocyanate-derived compounds and phase change inducing components
US7271284B2 (en) 2005-11-30 2007-09-18 Xerox Corporation Process for making curable amide gellant compounds
US7294730B2 (en) 2005-11-30 2007-11-13 Xerox Corporation Colorant compounds
US7714040B2 (en) 2005-11-30 2010-05-11 Xerox Corporation Phase change inks containing curable amide gellant compounds
US7708396B2 (en) 2006-03-09 2010-05-04 Xerox Corporation Photochromic phase change inks
US20070211124A1 (en) * 2006-03-09 2007-09-13 Xerox Corporation Photochromic phase change inks
US20070252879A1 (en) * 2006-04-28 2007-11-01 Xerox Corporation Phase change ink additives
US20090297669A1 (en) * 2006-05-12 2009-12-03 Gutierrez M Lydia E Food-grade toner
US20070282037A1 (en) * 2006-05-31 2007-12-06 Xerox Corporation Varnish
US7576149B2 (en) 2006-05-31 2009-08-18 Xerox Corporation Varnish
US20080218570A1 (en) * 2006-06-28 2008-09-11 Xerox Corporation Imaging on flexible packaging substrates
US20080000384A1 (en) * 2006-06-28 2008-01-03 Xerox Corporation Radiation curable ink containing gellant and radiation curable wax
US7887176B2 (en) 2006-06-28 2011-02-15 Xerox Corporation Imaging on flexible packaging substrates
US8142557B2 (en) * 2006-06-28 2012-03-27 Xerox Corporation Radiation curable ink containing gellant and radiation curable wax
US7674326B2 (en) 2006-10-12 2010-03-09 Xerox Corporation Fluorescent phase change inks
US20080087190A1 (en) * 2006-10-12 2008-04-17 Xerox Corporation Fluorescent phase change inks
EP1916280A1 (en) 2006-10-26 2008-04-30 Xerox Corporation Pigmented Phase Change Inks
US20080098927A1 (en) * 2006-10-26 2008-05-01 Xerox Corporation Pigmented phase change inks
US20080098929A1 (en) * 2006-10-26 2008-05-01 Xerox Corporation Phase change inks
US20080098930A1 (en) * 2006-11-01 2008-05-01 Xerox Corporation Colorant dispersant
EP1935950A1 (en) 2006-12-18 2008-06-25 Xerox Corporation Phase Change Inks Containing Dialkyl Ethers
US20080145557A1 (en) * 2006-12-18 2008-06-19 Xerox Corporation Phase change inks containing dialkyl ethers
US7781026B2 (en) 2006-12-19 2010-08-24 Xerox Corporation Ink compositions
US20080145559A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Phase change inks
US20080146794A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Colorant compounds
US7645875B2 (en) 2006-12-19 2010-01-12 Xerox Corporation Colorant compounds
US7713342B2 (en) 2006-12-19 2010-05-11 Xerox Corporation Phase change inks
US7544796B2 (en) 2006-12-19 2009-06-09 Xerox Corporation Colorant compounds
US20080152824A1 (en) * 2006-12-21 2008-06-26 Xerox Corporation Phase change inks
US20080154032A1 (en) * 2006-12-21 2008-06-26 Xerox Corporation Colorant compounds
US8057589B2 (en) 2006-12-21 2011-11-15 Xerox Corporation Phase change inks
US20080187665A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080188662A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US7485737B2 (en) 2007-02-06 2009-02-03 Xerox Corporation Colorant compounds
US7997712B2 (en) 2007-02-06 2011-08-16 Xerox Corporation Phase change inks containing colorant compounds
US8163074B2 (en) 2007-02-06 2012-04-24 Xerox Corporation Phase change inks containing colorant compounds
US7910754B2 (en) 2007-02-06 2011-03-22 Xerox Corporation Colorant compounds
US20080186371A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
EP1956052A2 (en) 2007-02-06 2008-08-13 Xerox Corporation Colorant compounds
US20080187664A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080188672A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US20080186372A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Phase change inks containing colorant compounds
US20080184910A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
US7736426B2 (en) 2007-02-06 2010-06-15 Xerox Corporation Phase change inks containing colorant compounds
US20080184911A1 (en) * 2007-02-06 2008-08-07 Xerox Corporation Colorant compounds
EP1956053A2 (en) 2007-02-06 2008-08-13 Xerox Corporation Colorant compounds
EP1961794A1 (en) 2007-02-06 2008-08-27 Xerox Corporation Phase change inks containing colorant compounds
EP1961793A1 (en) 2007-02-06 2008-08-27 Xerox Corporation Phase change inks containing colorant compounds
EP1958993A1 (en) 2007-02-06 2008-08-20 Xerox Corporation Phase change inks containing colorant compounds
US7485728B2 (en) 2007-02-06 2009-02-03 Xerox Corporation Colorant compounds
US8303671B2 (en) 2007-02-06 2012-11-06 Xerox Corporation Colorant compounds
EP1956054A2 (en) 2007-02-06 2008-08-13 Xerox Corporation Colorant compounds
US20080245263A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation Phase change inks containing colorant compounds
EP1983033A1 (en) 2007-04-04 2008-10-22 Xerox Corporation Phase change inks containing colourant compounds
EP1985667A2 (en) 2007-04-04 2008-10-29 Xerox Corporation Pyrazolone-azo colourant compounds
US7811368B2 (en) 2007-04-04 2010-10-12 Xerox Corporation Phase change inks containing colorant compounds
US7381831B1 (en) 2007-04-04 2008-06-03 Xerox Corporation Colorant compounds
US7812140B2 (en) 2007-04-04 2010-10-12 Xerox Corporation Colorant compounds
EP1983032A1 (en) 2007-04-04 2008-10-22 Xerox Corporation Phase change inks containing colorant compounds
US7732581B2 (en) 2007-04-04 2010-06-08 Xerox Corporation Colorant compounds
US20080245264A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation. Phase change inks containing colorant compounds
US20090182152A1 (en) * 2007-04-04 2009-07-16 Banning Jeffrey H Colorant Compounds
US20080249290A1 (en) * 2007-04-04 2008-10-09 Xerox Corporation Colorant compounds
US7749315B2 (en) 2007-04-04 2010-07-06 Xerox Corporation Phase change inks containing colorant compounds
EP1980593A2 (en) 2007-04-04 2008-10-15 Xerox Corporation Colourant compounds for phase change inks
US20080264288A1 (en) * 2007-04-24 2008-10-30 Xerox Corporation. Phase change ink compositions
US7811370B2 (en) 2007-04-24 2010-10-12 Xerox Corporation Phase change ink compositions
EP1985672A1 (en) 2007-04-24 2008-10-29 Xerox Corporation Phase Change Ink Compositions
EP2028240A1 (en) 2007-08-07 2009-02-25 Xerox Corporation Phase Change Ink Compositions
US7812064B2 (en) 2007-08-07 2010-10-12 Xerox Corporation Phase change ink compositions
US20090046134A1 (en) * 2007-08-14 2009-02-19 Xerox Corporation Phase change ink compositions
US7905948B2 (en) 2007-08-14 2011-03-15 Xerox Corporation Phase change ink compositions
US20120227622A1 (en) * 2008-03-07 2012-09-13 Xerox Corporation Phase change inks
US20090249977A1 (en) * 2008-04-03 2009-10-08 Xerox Corporation Phase change inks containing fischer-tropsch waxes
EP2107088A1 (en) 2008-04-03 2009-10-07 Xerox Corporation Phase change inks containing Fischer-Tropsch Waxes
US8603235B2 (en) 2008-04-03 2013-12-10 Xerox Corporation Phase change inks containing Fischer-Tropsch waxes
US8123344B2 (en) 2008-08-04 2012-02-28 Xerox Corporation Ink carriers containing surface modified nanoparticles, phase change inks including same, and methods for making same
US20100028537A1 (en) * 2008-08-04 2010-02-04 Xerox Corporation Ink Carriers Containing Surface Modified Nanoparticles, Phase Change Inks Including Same, and Methods for Making Same
US7857900B2 (en) 2008-09-19 2010-12-28 Xerox Corporation Solid phase change fluorescent ink and ink sets
EP2166047A1 (en) 2008-09-19 2010-03-24 Xerox Corporation Solid phase change fluorescent ink and ink sets
US20100071590A1 (en) * 2008-09-19 2010-03-25 Xerox Corporation Solid phase change fluorescent ink and ink sets
US8029861B2 (en) 2008-09-23 2011-10-04 Xerox Corporation Ink carriers containing low viscosity functionalized waxes, phase change inks including same, and methods for making same
US20100075038A1 (en) * 2008-09-23 2010-03-25 Xerox Corporation Ink Carriers Containing Low Viscosity Functionalized Waxes, Phase Change Inks Including Same, And Methods For Making Same
US9234109B2 (en) 2008-09-30 2016-01-12 Xerox Corporation Phase change inks
EP2169016A1 (en) 2008-09-30 2010-03-31 Xerox Corporation Phase change inks
US20100080922A1 (en) * 2008-09-30 2010-04-01 Xerox Corporation Phase change inks
US8177897B2 (en) 2008-11-17 2012-05-15 Xerox Corporation Phase change inks containing graphene-based carbon allotrope colorants
US20100124611A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Phase Change Inks Containing Graphene-Based Carbon Allotrope Colorants
US20100123746A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Ink jet inks containing nanodiamond black colorants
US8348409B2 (en) 2008-11-17 2013-01-08 Xerox Corporation Ink jet inks containing nanodiamond black colorants
US20100313788A1 (en) * 2009-06-10 2010-12-16 Xerox Corporation Solid or phase change inks with improved properties
US20120227621A1 (en) * 2009-06-10 2012-09-13 Xerox Corporation Solid or phase change inks with improved properties
US8915993B2 (en) * 2009-06-10 2014-12-23 Xerox Corporation Solid or phase change inks with improved properties
US20140338563A1 (en) * 2009-06-10 2014-11-20 Xerox Corporation Solid Or Phase Change Inks With Improved Properties
US20110152396A1 (en) * 2009-12-18 2011-06-23 Xerox Corporation Curable Solid Overcoat Compositions
US8853293B2 (en) 2009-12-18 2014-10-07 Xerox Corporation Curable solid ink compositions
US20110152397A1 (en) * 2009-12-18 2011-06-23 Xerox Corporation Curable Solid Ink Compositions
US8449095B2 (en) 2010-07-13 2013-05-28 Xerox Corporation Radiation curable solid ink compositions suitable for transfuse printing applications
US8308286B2 (en) 2010-09-14 2012-11-13 Xerox Corporation Curable phase change ink containing alkoxysilane monomer
DE102013210477A1 (en) 2012-06-12 2013-12-12 Xerox Corporation AQUEOUS COATED LAYER ON SOLID STAIN RAY PRINTS AND METHOD FOR THE PRODUCTION THEREOF
US9228105B2 (en) 2012-06-12 2016-01-05 Xerox Corporation Aqueous overcoat on solid ink jet prints and methods of producing the same
US8980406B2 (en) 2012-08-28 2015-03-17 3D Systems, Inc. Color stable inks and applications thereof
US9469073B2 (en) 2012-08-28 2016-10-18 3D Systems, Inc. Color stable inks and applications thereof
US9657186B2 (en) 2012-09-13 2017-05-23 3D Systems, Inc. Opaque inks and applications thereof
US8714724B2 (en) 2012-10-02 2014-05-06 Xerox Corporation Phase change inks containing novel synergist
US8696100B1 (en) 2012-10-02 2014-04-15 Xerox Corporation Phase change ink containing synergist for pigment dispersion
US8778069B2 (en) * 2012-11-19 2014-07-15 Xerox Corporation Phase change inks containing oligomeric rosin esters
US8974047B2 (en) 2012-11-27 2015-03-10 Xerox Corporation Phase change ink containing ethylene vinyl acetate
US8647422B1 (en) 2012-11-30 2014-02-11 Xerox Corporation Phase change ink comprising a modified polysaccharide composition
US8616693B1 (en) 2012-11-30 2013-12-31 Xerox Corporation Phase change ink comprising colorants derived from plants and insects
US9090758B2 (en) 2012-11-30 2015-07-28 Xerox Corporation Phase change ink comprising modified naturally-derived colorants
DE102013223281A1 (en) 2012-11-30 2014-06-05 Xerox Corporation Phase change Ink with colorants derived from plants and insects
US9228099B2 (en) 2012-12-21 2016-01-05 Xerox Corporation Phase change ink composition and process for preparing same
US9410051B2 (en) 2014-09-25 2016-08-09 Markem-Imaje Corporation Hot melt inks
US9944806B2 (en) 2014-09-25 2018-04-17 Markem-Imaje Corporation Urethane compounds
DE102015223783B4 (en) 2014-12-13 2022-05-05 Xerox Corporation Water dispersible phase change ink composition, ink jet printer wand or beads and printing method

Also Published As

Publication number Publication date
DE69011593D1 (en) 1994-09-22
EP0404493A2 (en) 1990-12-27
DE69011593T2 (en) 1995-03-30
EP0404493B1 (en) 1994-08-17
EP0404493A3 (en) 1991-07-03
JP2554389B2 (en) 1996-11-13
JPH0337278A (en) 1991-02-18

Similar Documents

Publication Publication Date Title
US5006170A (en) Hot melt ink compositions
US5122187A (en) Hot melt ink compositions
EP1916281B1 (en) Phase Change Inks
US6048388A (en) Ink compositions containing ionic liquid solvents
US5164232A (en) Ink compositions
JP5865764B2 (en) Phase change ink and method for producing the same
EP1916280B1 (en) Pigmented phase change inks
DE102012205874B4 (en) Hot melt ink
CA2674216C (en) Ink carriers containing surface modified nanoparticles, phase change inks including same, and methods for making same
US5932630A (en) Ink compositions
US5484475A (en) Micellar-based ink compositions
JP5849002B2 (en) Solid ink composition comprising an amorphous ester of citric acid
EP2166048A1 (en) Ink carriers containing low viscosity functionalized waxes, phase change inks including same, and methods for making same
EP0854177A1 (en) Ink compositions
EP0913436B1 (en) Improved ink compositions for thermal ink jet printing
US6200369B1 (en) Ink compositions
US5882389A (en) Ink jet inks containing oxazolidinones
US8741042B2 (en) Phase change inks comprising linear primary alcohols
EP0953612A1 (en) Yellow ink for ink jet printing
US6585816B1 (en) Phase change inks containing borate esters
US6288164B2 (en) Ink jet printing compositions
US6176911B1 (en) Ink compositions
US5958120A (en) Ink compositions with improved waterfastness
US5958118A (en) Aqueous inks containing dye blends
JP3796365B2 (en) Recording unit, image recording method, and image recording apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALEXANDRU, LUPU;REEL/FRAME:005151/0770

Effective date: 19890614

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARCHESSAULT, ROBERT H.;REEL/FRAME:005151/0769

Effective date: 19890526

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HENRISSAT, BERNARD;REEL/FRAME:005151/0771

Effective date: 19890531

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCHWARZ, WILLIAM M.;REEL/FRAME:005151/0768

Effective date: 19890611

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013153/0001

Effective date: 20020621

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK;REEL/FRAME:066728/0193

Effective date: 20220822