US4982789A - Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery - Google Patents

Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery Download PDF

Info

Publication number
US4982789A
US4982789A US07/465,680 US46568090A US4982789A US 4982789 A US4982789 A US 4982789A US 46568090 A US46568090 A US 46568090A US 4982789 A US4982789 A US 4982789A
Authority
US
United States
Prior art keywords
surfactant
urea
formation
weight
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/465,680
Inventor
Gabriel Prukop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US07/465,680 priority Critical patent/US4982789A/en
Priority to CA002030330A priority patent/CA2030330A1/en
Application granted granted Critical
Publication of US4982789A publication Critical patent/US4982789A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/845Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery

Definitions

  • This invention relates to a method of injecting chemicals into a hydrocarbon reservoir for the purpose of increasing hydrocarbon recovery. More particularly, the invention pertains to the use of urea as a sacrificial agent to decrease adsorption of surfactants within hydrocarbon reservoirs.
  • the main cause of surfactant loss is adsorption within the formation due to physical contact of the surfactant with the formation matrix or entrapment within pores of the matrix.
  • Surfactant systems contacting a sandstone matrix encounter a range of adsorptive sites. Although a number of adsorptive sites in sandstone are negatively charged, there are also a number of positively charged sites.
  • the surfaces of clay platelets which are invariably present in sandstone reservoirs, have negatively charged sites, and the edges of clay platelets frequently have positively charged sites.
  • the presence of small amounts of limestone or dolomite in sandstone will additionally introduce positively charged absorptive sites.
  • different types of clays will have different adsorptive characteristics.
  • the most promising approach for reducing the amount of surfactants retained by the formation matrix has been to use sacrificial agent compounds, either in a preflush solution injected before the surfactant-containing solution, or in the surfactant solution.
  • the compounds are sacrificial in that their loss to the formation matrix reduces the loss of the more expensive surfactants and solubilizers contained within the surfactant solutions.
  • Lignosulfonates form one class of compounds which have been found to have excellent properties as sacrificial agents. They are economically attractive because they are by-products of the pulp industry. Supply is plentiful and product costs are much less than the costs of surfactants employed in enhanced oil recovery floods. The use of various lignosulfonates has been disclosed extensively in the literature.
  • U.S. Pat. No. 4,147,214 discloses the use of synthetic tannin materials as sacrificial agents in surfactant floods.
  • the synthetic tannins may be condensation products of formaldehyde and naphthalene sulfonic acids, various phenols and sulfonated phenols, diaryl sufones, urea, melamine and diamide.
  • U.S. Pat. No. 4,493,370 discloses the use of urea as a cosurfactant with hydrocarbon sulfonates and alcohol in a surfactant system for enhanced oil recovery.
  • the disclosed invention is a method of injecting a solution, emulsion or surfactant foam system containing about 0.05% to about 10% by weight of urea as a sacrificial agent into an underground formation in enhanced oil recovery operations.
  • the underground formation must have a temperature greater than about 130° F., a temperature sufficient to hydrolyze the injected urea over time.
  • the urea solution is injected into the formation to decrease the loss of more costly surfactant and solubilizer to the formation.
  • the invention sacrificial agent system is injected into the hydrocarbon formation in conjunction with a surfactant solution or prior to the injection of the surfactant system.
  • the highly undesirable loss of surfactant in chemical flooding may generally be attributed to two main phenomena.
  • the first phenomenon is chemical removal or inactivation of the surfactant after contact with polyvalent cations or other materials dissolved in the formation fluids. Frequently, the end result is precipitation which leaves less surfactant in solution and lowers formation permeability.
  • the second phenomenon is adsorption within the formation due to physical contact of the surfactant with the formation matrix or entrapment within pores of the matrix. It is believed that both phenomena exist simultaneously to varying degrees in most chemical flooding operations.
  • sacrificial agents generally work by one or more of several chemical mechanisms. However, it must be emphasized that these chemical mechanisms are theoretical and the extent to which any one of these mechanisms may be responsible for the effectiveness of a sacrificial agent is unknown.
  • One possible sacrificial mechanism is the complexing of the sacrificial agent with polyvalent cations in solution, both by neutral and by charged sacrificial complexing agents. To the extent that the sacrificial agent complexes with polyvalent cations in the formation fluids, there will be less polyvalent cations left for the surfactant to interact with.
  • a second possible mechanism is the electrostatic attraction of the matrix and the sacrificial agent for each other. This is predominantly controlled by the surface charge at the multitudes of matrix adsorption sites.
  • the electrostatic attraction mechanism is highly dependent upon the composition of the formation matrix. For instance, sandstones which may contain many different types of clays, will have different types of attractions for sacrificial agents and surfactants.
  • a third possible sacrificial mechanism arises from the fact that polymers have many functional groups and may attach themselves to the rock surface at plural sites, thereby blocking access to other sites on which injected surfactants, solubilizers and polymers could adsorb. In this manner, the large size of polymer molecules may block entrances to very small pores where much of the surface area and many adsorption sites lie.
  • a fourth sacrificial mechanism is the alteration of formation pH. It is uncertain how pH changes affect the various mechanisms by which surfactant is lost to the formation, but it is known that surfactant adsorption decreases upon increase in pH.
  • an aqueous solution containing about 0.05% to about 10% urea by weight is injected into an underground formation.
  • the underground formation must have a temperature sufficient to substantially hydrolyze the injected urea. This temperature should be at least 130° F. Below this temperature, urea hydrolysis is not significant. More preferably, the temperature of the underground formation will be greater than about 160° F., or most preferably, greater than about 200° F. Urea hydrolysis becomes substantial at about 160° F. and above.
  • hydrocarbon reservoirs which are naturally hot or warm and provide at least the minimum 130° F. needed to practice this invention.
  • One option is to treat a cooler formation by injecting a hot fluid, which may be water, steam or solvent.
  • urea Compared to other compounds injected into underground formations during enhanced oil recovery operations, urea is exceptionally inexpensive. Recently, urea has been selling for about 5 ⁇ per pound and has sold for as low as 3.5 ⁇ per pound in recent years. Enhanced oil recovery surfactants cost in the 0.80 to 1.50 dollars per pound range. The price of most enhanced oil recovery polymers is measured in the multiple dollars per pound.
  • the sacrificial agent system may be coinjected into the subterranean formation in solution, emulsion or surfactant foam system with about 0.1% to about 10% by weight of surfactant, solubilizer, polymer, or mixture thereof.
  • the urea may also be injected as a preflush slug prior to the injection of the surfactant system in an amount of about 0.05% to about 10% by weight, preferably about 0.05% to about 5% by weight.
  • the most preferred system is a urea preflush slug followed by a surfactant slug containing urea, with an optional polymer drive containing urea.
  • the sacrificial agent system When the sacrificial agent system is injected in a mixture with the surfactant or micellar formulation, it is necessary that the admixture be phase stable. Chromatographic separation complications can be minimized by introducing the sacrificial agent system in both the surfactant slug and in the trailing mobility control polymer slug.
  • the quantity of sacrificial agent system to be injected should be sufficient to cover substantially all of the active adsorption sites of the formation matrix or prevent adsorption on those sites in order to achieve a maximum reduction in the amount of surfactant loss to the formation. If less than this optimum amount is used, the corresponding reduction and surfactant loss to the formation will not be as great as in the case where the formation adsorption sites were completely saturated. A balance must be struck with the economics of the surfactant flood. Of course, the use of excess sacrificial agent materials will increase the cost of the chemical flood.
  • the preferred total amount of urea injected will vary with the composition of the formation, the thickness of the formation, the pattern area to be swept and various other formation characteristics.
  • Process design data coupled with field experience can determine the approximate quantity of sacrificial agent system needed for best results. But it should be noted that surfactant losses in the field have been found to be invariably higher than the projected losses from laboratory work. This is particularly so when the formation matrix contains large quantities of clays.
  • urea 0.5% by weight urea was placed in Kern River produced brine (hereafter KRPB) which is relatively fresh water having 828 ppm TDS, and a divalent ion content of 40 mg/l.
  • KRPB Kern River produced brine
  • Sodium chloride was added to the solutions in the amounts indicated in Table 1. The pH of the solutions was measured at the beginning and after 5 days at 200° F. In every case, the hydroxyl ions from the urea hydrolysis raised the pH almost one unit from a beginning pH of about 8.6 to 8.7.
  • Adsorption bottle tests and core floods can be performed in the laboratory which will give a round indication of the performance of sacrificial agent systems in the field.
  • the effectiveness of urea at reducing surfactant adsorption is demonstrated in Examples 5-10 of Table 2.
  • the solutions are the same as in Table 1 with and without urea.
  • the surfactants employed in the 2% by weight solution of Examples 5-10 was Aristol B Sulfonate, a trademarked linear alkylbenzene sulfonate averaging about 10%-20% dialkyl with about 16 to 18 carbon atoms in the alkyl chains sold by Pilot Chemical Co.
  • the adsorption bottle tests were conducted by contacting the crushed core materials with the surfactant and surfactant plus urea solutions for 24 hours at 200° F. This contact was accomplished by gentle tumbling at four rpm. The amount of surfactant adsorbed was determined from the difference between the uncontacted and contacted surfactant concentrations.
  • the surfactant slug was formulated with added polymer and a paraffinic wax to increase its viscosity and stability.
  • the Example 13 flood without urea recovered 57.5% of the waterflood residual oil.
  • the coreflood was revised in Example 14 to include 1% urea in the preflush slug and 0.1% urea in the surfactant and polymer slugs, the recovery efficiency substantially increased to 79.1%.
  • Example 11 was a linear coreflood performed with surfactant and polymer slugs without added urea.
  • the surfactant employed was the Aristol B sulfonate in a 2% solution.
  • the polymer was Cyanatrol 740, a trademarked polyacrylamide in a granular form having a molecular weight of about 9-10 million sold by American Cyanamid.
  • the core was packed with Kern River sand with a hydraulic press at 1500-1600 psi. It was initially cleaned with a mixture of 75% xylene and 25% methanol. A pentane slug was injected behind the cleaning slug until the produced fluid came out clear. Nitrogen was injected overnight to clean out the pentane. A vacuum was pulled on the core and the core weighed. The core was resaturated with KRPB and weighed to yield porosity and pore volume values. The core was 30.5 cm long with a diameter of 3.8 cm. The pore volume was 144 ml, porosity was 41.4% and permeability was 2217 md.
  • a preflush slug of 2.5% added sodium chloride in KRPB was injected for 0.25 pore volumes. This was followed with a 0.25 pore volume surfactant slug of 2% by weight Aristol B Sulfonate in 2.5% added sodium chloride in KRPB. The surfactant slug was heated and stirred during injection. A polymer drive of 1750 ppm Cyanatrol 740 in KRPB was injected continuously until zero oil was produced.
  • Example 12 core with 1% by weight urea in the surfactant slug was prepared for flooding in exactly the same way as Example 11, except that the core was initially packed at 2500 psi.
  • the porosity of the core was 39% and the permeability was 1247 md.
  • a radial sandpack flood was conducted on a rectangular quarter section of core which measured 15.24 cm by 15.24 cm by 5.08 cm thick. This rectangular section represents one-quarter of a standard five-spot pattern.
  • the core was handpacked with Kern River sand crumbled to a size between 20 and 100 mesh.
  • the core was then prepared for flooding in the same fashion as Example 11, including heating to 250° F.
  • the core had a porosity of 46.8% and permeability of 2530 md.
  • the 0.25 pore volume preflush slug contained 1500 ppm of RC-470H, a trademarked AMPS homopolymer with a molecular weight of about 6-8 million sold by American Cyanamid. AMPS is an abbreviation for 2-acrylamido-2-methylpropane sulfonate monomer. It is a very stable high temperature polymer.
  • the preflush also contained 2.5% by weight sodium chloride added to KRPB.
  • a 0.25 pore volume surfactant slug was injected at 250° F. containing 2% by weight Aristol B Sulfonate, 2500 ppm RC-470H, 3.5% Wax H-40 and 2.5% sodium chloride added to KRPB.
  • the Wax H-40 was a refinery paraffinic wax by-product having a melting point of about 140° F.
  • the polymer slug was 1500 ppm RC-470H in KRPB. The polymer was injected continuously until zero additional oil was produced, for a total of 1.86 pore volumes of polymer. The viscosity of the polymer slug was 22.2 cp at 23° C. and 23 sec -1 .
  • Example 14 was a radial section of Kern River sand prepared in the same fashion as Example 13. Porosity of the core was 47.5% and permeability was 656 md. The only significant differences of Example 14 over the coreflood of Example 13 were a different polymer, 1% urea in the preflush, and 0.1% urea in the surfactant slug.
  • the 0.25 pore volume preflush contained 1500 ppm of Cyanatrol 740, 1% by weight urea, and 2.5% sodium chloride added to KRPB.
  • the 0.25% pore volume surfactant slug contained 0.1% urea, 2% Aristol B Sulfonate, 2500 ppm Cyanatrol 740, 3.5% wax H-40, and 2.5% sodium chloride added to KRPB.
  • the pH of the surfactant slug was 8.06.
  • the polymer slug contained 1750 ppm Cyanatrol 740 in KRPB with 0.1% urea added.
  • the viscosity of the polymer slug was 49.8 cp at 23° C. and 23 sec -1 .
  • the viscosity at 90° C. and 7.34 sec -1 was 62.5 cp. 1.99 pore volumes of polymer slug was injected before the end of the flood.

Abstract

The disclosed invention is a method of injecting a solution or emulsion containing about 0.05% to about 10% by weight of urea as a sacrificial agent for surfactants into an underground formation in enhanced oil recovery operations, said underground formation having a temperature greater than about 130° F.

Description

BACKGROUND OF THE INVENTION
This invention relates to a method of injecting chemicals into a hydrocarbon reservoir for the purpose of increasing hydrocarbon recovery. More particularly, the invention pertains to the use of urea as a sacrificial agent to decrease adsorption of surfactants within hydrocarbon reservoirs.
One of the most vexing problems in the use of surfactant flooding for enhanced oil recovery is the frequent, substantial loss of surfactant due to adsorption on the formation matrix and precipitation by polyvalent cations such as calcium and magnesium. A significant percentage of surfactants are also physically entrapped within the pore spaces of the rock matrix. Of chief concern is surfactant adsorption on the formation matrix which significantly decreases surfactant flood efficiency, making it necessary to inject a greater quantity of surfactant and increasing the cost of any surfactant flood.
Additionally, most surfactants are satisfactory for surfactant flooding only if the calcium and magnesium concentrations of the formation water fall below about 500 ppm. Alkyl or alkylaryl sulfonates, the most popular type of surfactants, precipitate where divalent ion concentrations exceed about 500 ppm. Such precipitation renders the sulfonates inoperative for recovering oil and in some instances, causes formation plugging.
The main cause of surfactant loss is adsorption within the formation due to physical contact of the surfactant with the formation matrix or entrapment within pores of the matrix. Surfactant systems contacting a sandstone matrix encounter a range of adsorptive sites. Although a number of adsorptive sites in sandstone are negatively charged, there are also a number of positively charged sites. For example, the surfaces of clay platelets, which are invariably present in sandstone reservoirs, have negatively charged sites, and the edges of clay platelets frequently have positively charged sites. The presence of small amounts of limestone or dolomite in sandstone will additionally introduce positively charged absorptive sites. Of course, different types of clays will have different adsorptive characteristics.
In addition to the composition of the formation matrix, it is known that the pH of the formation brine and of injected solutions can have a marked effect on adsorption of anionic surfactants. See M. J. Rosen, Surfactants and Interfacial Phenomena, John Wiley and Sons, New York, N.Y. (1978) p. 47.
The most promising approach for reducing the amount of surfactants retained by the formation matrix has been to use sacrificial agent compounds, either in a preflush solution injected before the surfactant-containing solution, or in the surfactant solution. The compounds are sacrificial in that their loss to the formation matrix reduces the loss of the more expensive surfactants and solubilizers contained within the surfactant solutions.
Various chemicals have been employed as sacrificial agents to decrease the adsorption of surfactants or to tie up polyvalent cations and prevent them from precipitating surfactants from the flooding medium. Lignosulfonates form one class of compounds which have been found to have excellent properties as sacrificial agents. They are economically attractive because they are by-products of the pulp industry. Supply is plentiful and product costs are much less than the costs of surfactants employed in enhanced oil recovery floods. The use of various lignosulfonates has been disclosed extensively in the literature.
U.S. Pat. No. 4,147,214 discloses the use of synthetic tannin materials as sacrificial agents in surfactant floods. The synthetic tannins may be condensation products of formaldehyde and naphthalene sulfonic acids, various phenols and sulfonated phenols, diaryl sufones, urea, melamine and diamide. U.S. Pat. No. 4,493,370 discloses the use of urea as a cosurfactant with hydrocarbon sulfonates and alcohol in a surfactant system for enhanced oil recovery.
SUMMARY OF THE INVENTION
The disclosed invention is a method of injecting a solution, emulsion or surfactant foam system containing about 0.05% to about 10% by weight of urea as a sacrificial agent into an underground formation in enhanced oil recovery operations. The underground formation must have a temperature greater than about 130° F., a temperature sufficient to hydrolyze the injected urea over time.
The urea solution is injected into the formation to decrease the loss of more costly surfactant and solubilizer to the formation. The invention sacrificial agent system is injected into the hydrocarbon formation in conjunction with a surfactant solution or prior to the injection of the surfactant system.
DETAILED DESCRIPTION
The highly undesirable loss of surfactant in chemical flooding may generally be attributed to two main phenomena. The first phenomenon is chemical removal or inactivation of the surfactant after contact with polyvalent cations or other materials dissolved in the formation fluids. Frequently, the end result is precipitation which leaves less surfactant in solution and lowers formation permeability. The second phenomenon is adsorption within the formation due to physical contact of the surfactant with the formation matrix or entrapment within pores of the matrix. It is believed that both phenomena exist simultaneously to varying degrees in most chemical flooding operations.
It is believed that most sacrificial agents generally work by one or more of several chemical mechanisms. However, it must be emphasized that these chemical mechanisms are theoretical and the extent to which any one of these mechanisms may be responsible for the effectiveness of a sacrificial agent is unknown. One possible sacrificial mechanism is the complexing of the sacrificial agent with polyvalent cations in solution, both by neutral and by charged sacrificial complexing agents. To the extent that the sacrificial agent complexes with polyvalent cations in the formation fluids, there will be less polyvalent cations left for the surfactant to interact with.
A second possible mechanism is the electrostatic attraction of the matrix and the sacrificial agent for each other. This is predominantly controlled by the surface charge at the multitudes of matrix adsorption sites. The electrostatic attraction mechanism is highly dependent upon the composition of the formation matrix. For instance, sandstones which may contain many different types of clays, will have different types of attractions for sacrificial agents and surfactants.
A third possible sacrificial mechanism arises from the fact that polymers have many functional groups and may attach themselves to the rock surface at plural sites, thereby blocking access to other sites on which injected surfactants, solubilizers and polymers could adsorb. In this manner, the large size of polymer molecules may block entrances to very small pores where much of the surface area and many adsorption sites lie.
A fourth sacrificial mechanism is the alteration of formation pH. It is uncertain how pH changes affect the various mechanisms by which surfactant is lost to the formation, but it is known that surfactant adsorption decreases upon increase in pH.
In carrying out the invention sacrificial agent method, an aqueous solution containing about 0.05% to about 10% urea by weight is injected into an underground formation. The underground formation must have a temperature sufficient to substantially hydrolyze the injected urea. This temperature should be at least 130° F. Below this temperature, urea hydrolysis is not significant. More preferably, the temperature of the underground formation will be greater than about 160° F., or most preferably, greater than about 200° F. Urea hydrolysis becomes substantial at about 160° F. and above.
There are numerous hydrocarbon reservoirs which are naturally hot or warm and provide at least the minimum 130° F. needed to practice this invention. One option is to treat a cooler formation by injecting a hot fluid, which may be water, steam or solvent.
Urea hydrolyzes in water according to the following equation.
(H.sub.2 N).sub.2 CO+3H.sub.2 O→CO.sub.2 +2NH.sub.4.sup.+ +2OH.sup.-
The in situ generation of hydroxyl ion by urea hydrolysis should minimize the high consumption of chemical associated with other methods of increasing pH, such as caustic flooding. Urea hydrolysis should also give more uniform protection of the surfactants in hydrocarbon formations.
Compared to other compounds injected into underground formations during enhanced oil recovery operations, urea is exceptionally inexpensive. Recently, urea has been selling for about 5¢ per pound and has sold for as low as 3.5¢ per pound in recent years. Enhanced oil recovery surfactants cost in the 0.80 to 1.50 dollars per pound range. The price of most enhanced oil recovery polymers is measured in the multiple dollars per pound.
The sacrificial agent system may be coinjected into the subterranean formation in solution, emulsion or surfactant foam system with about 0.1% to about 10% by weight of surfactant, solubilizer, polymer, or mixture thereof. The urea may also be injected as a preflush slug prior to the injection of the surfactant system in an amount of about 0.05% to about 10% by weight, preferably about 0.05% to about 5% by weight. The most preferred system is a urea preflush slug followed by a surfactant slug containing urea, with an optional polymer drive containing urea.
When sacrificial agents are used in a preflush solution and injected prior to the surfactant system, the length of time before oil recovery is increased since the sacrificial agents will not recover any oil. Any extra time imposed by the flooding process before additional oil recovery may reduce the overall economics of the process. In addition, preflushes in general are often not as effective as expected because of conformity problems and large reservoir volumes. There is no assurance that the flow path of the surfactant solution will sufficiently coincide with that of the preflush sacrificial agent solution.
When the sacrificial agent system is injected in a mixture with the surfactant or micellar formulation, it is necessary that the admixture be phase stable. Chromatographic separation complications can be minimized by introducing the sacrificial agent system in both the surfactant slug and in the trailing mobility control polymer slug.
The quantity of sacrificial agent system to be injected should be sufficient to cover substantially all of the active adsorption sites of the formation matrix or prevent adsorption on those sites in order to achieve a maximum reduction in the amount of surfactant loss to the formation. If less than this optimum amount is used, the corresponding reduction and surfactant loss to the formation will not be as great as in the case where the formation adsorption sites were completely saturated. A balance must be struck with the economics of the surfactant flood. Of course, the use of excess sacrificial agent materials will increase the cost of the chemical flood.
The preferred total amount of urea injected will vary with the composition of the formation, the thickness of the formation, the pattern area to be swept and various other formation characteristics. Process design data coupled with field experience can determine the approximate quantity of sacrificial agent system needed for best results. But it should be noted that surfactant losses in the field have been found to be invariably higher than the projected losses from laboratory work. This is particularly so when the formation matrix contains large quantities of clays.
Thus, considerable knowledge of the formation matrix and formation fluids is necessary in order to determine the optimum amount of sacrificial agent system of urea to be injected to achieve the maximum economical reduction in surfactant and polymer loss. If the hydrocarbon formation is relatively clean sandstone lacking substantial clay content, smaller quantities of sacrificial agent may be needed than in the case where the formation contains large amounts of highly absorbent clays.
The effectiveness of using a sacrificial agent system of urea for reducing surfactant, solubilizer and polymer loss in chemical flooding operations is demonstrated by the following examples. These examples are presented for illustrative purposes only and should not be construed to limit the scope of the invention, which is defined in the claims that follow.
EXAMPLES 1-4
Although the producing sands in the Kern River Field are relatively shallow, 200° F. is a typical temperature encountered by an injected solution because of years of steam injection. The hydrolysis of urea occurs rapidly at elevated temperatures such as 200° F.
In Examples 1-4 of Table 1, 0.5% by weight urea was placed in Kern River produced brine (hereafter KRPB) which is relatively fresh water having 828 ppm TDS, and a divalent ion content of 40 mg/l. Sodium chloride was added to the solutions in the amounts indicated in Table 1. The pH of the solutions was measured at the beginning and after 5 days at 200° F. In every case, the hydroxyl ions from the urea hydrolysis raised the pH almost one unit from a beginning pH of about 8.6 to 8.7.
              TABLE l                                                     
______________________________________                                    
HYDROLYSIS OF UREA AT 200° F. OVER 5 DAYS                          
EXAMPLES   NaCl, %     pH before pH after                                 
______________________________________                                    
l          1.5         8.73      9.66                                     
2          2.0         8.66      9.45                                     
3          2.5         8.57      9.62                                     
4          3.0         8.65      9.54                                     
______________________________________                                    
EXAMPLES 5-10
Adsorption bottle tests and core floods can be performed in the laboratory which will give a round indication of the performance of sacrificial agent systems in the field. The effectiveness of urea at reducing surfactant adsorption is demonstrated in Examples 5-10 of Table 2. The solutions are the same as in Table 1 with and without urea.
Five grams of 1.5% to 2.5% NaCl in KRPB and five grams of sandstone core material from a Kern River, California hydrocarbon reservoir were employed in the bottle tests. Kern River sandstone is unconsolidated and friable. For these examples, the sandstone was crumbled by hand. In every case, the core material was sieved to a size between 80 and 200 mesh. X-ray mineralogical analysis of several samples of this core material yielded clay compositions of about 14% illite, 86% montmorillonite, and a total clay content of about 11%. The remaining material was quartz and feldspar in approximately equal amounts. All of the above percentage figures are percent by weight.
The surfactants employed in the 2% by weight solution of Examples 5-10 was Aristol B Sulfonate, a trademarked linear alkylbenzene sulfonate averaging about 10%-20% dialkyl with about 16 to 18 carbon atoms in the alkyl chains sold by Pilot Chemical Co.
The adsorption bottle tests were conducted by contacting the crushed core materials with the surfactant and surfactant plus urea solutions for 24 hours at 200° F. This contact was accomplished by gentle tumbling at four rpm. The amount of surfactant adsorbed was determined from the difference between the uncontacted and contacted surfactant concentrations.
              TABLE 2                                                     
______________________________________                                    
ADSORPTION OF SURFACTANT A 200° F.                                 
              Adsorption, % (meg/meq)                                     
                               2% Aristol B +                             
Examples NaCl, %    2% Aristol B                                          
                               0.5% UREA                                  
______________________________________                                    
5-6      1.5        99.9       0.0                                        
7-8      2.0        99.9       0.0                                        
 9-10    2.5        99.8       0.0                                        
______________________________________                                    
EXAMPLES 11-14
The benefits of using urea as a sacrificial agent in surfactant/polymer enhanced oil recover systems was dramatically demonstrated in corefloods which used sand, oil and water from the California Kern River Field. These floods, conducted at 250° F., were composed of a thorough waterflood, a 0.25 pore volume of 2.5% salt preflush, a 0.25 pore volume of 2% surfactant slug, and a final polymer drive solution. Table 3 below summarizes the results.
              TABLE 3                                                     
______________________________________                                    
SURFACTANT COREFLOODS WITH UREA AT 250° F.                         
                                   Recovery                               
Ex-   Surfactant  Residual Oil Saturation, %                              
                                   Efficiency,                            
amples                                                                    
      Solution.sup.1                                                      
                  To Water  To Surfactant                                 
                                     %                                    
______________________________________                                    
11    2% Aristol B                                                        
                  36        19       48                                   
12    2% Aristol B +                                                      
                  37        14       63                                   
      1% Urea                                                             
13    2% Aristol B/                                                       
                  33        14       58                                   
      Polymer/Oil                                                         
14    2% Aristol B/                                                       
                  27         6       79                                   
      Polymer/Oil +                                                       
      Urea.sup.2                                                          
______________________________________                                    
 .sup.1 All floods included 0.25 pore volumes of salt preflush, 0.25 pore 
 volumes of surfactant solution, and were pushed with a polymer solution. 
 .sup.2 1% urea was used in the preflush. The surfactant and polymer      
 solutions contained 0.1% urea.                                           
In the linear coreflood of Example 11, a surfactant solution recovered 48% of the oil left after waterflooding. When 1% urea was incorporated in the surfactant slug of Example 12, a similar coreflood, the recovery efficiency dramatically jumped to 63%.
In the two radial sandpack floods of Examples 13 and 14, the surfactant slug was formulated with added polymer and a paraffinic wax to increase its viscosity and stability. The Example 13 flood without urea recovered 57.5% of the waterflood residual oil. When the coreflood was revised in Example 14 to include 1% urea in the preflush slug and 0.1% urea in the surfactant and polymer slugs, the recovery efficiency substantially increased to 79.1%.
The dramatic improvement in oil recovery with added urea is due to the ability of the urea to minimize the loss of both surfactant and polymer. Detailed information on each of these four corefloods follows.
EXAMPLE 11
Example 11 was a linear coreflood performed with surfactant and polymer slugs without added urea. The surfactant employed was the Aristol B sulfonate in a 2% solution. The polymer was Cyanatrol 740, a trademarked polyacrylamide in a granular form having a molecular weight of about 9-10 million sold by American Cyanamid.
The core was packed with Kern River sand with a hydraulic press at 1500-1600 psi. It was initially cleaned with a mixture of 75% xylene and 25% methanol. A pentane slug was injected behind the cleaning slug until the produced fluid came out clear. Nitrogen was injected overnight to clean out the pentane. A vacuum was pulled on the core and the core weighed. The core was resaturated with KRPB and weighed to yield porosity and pore volume values. The core was 30.5 cm long with a diameter of 3.8 cm. The pore volume was 144 ml, porosity was 41.4% and permeability was 2217 md.
Heat was applied to raise the core temperature to 250° F. with a back pressure regulator set at 50 psi. KRPB was heated and flowed overnight through the core at 250° F. The core was then saturated with a stock tank oil from Kern River having an API gravity of about 13.6°. A waterflood was undertaken with KRPB to reduce the core to residual oil saturation to water. This completed the preparation of the core for the coreflood.
A preflush slug of 2.5% added sodium chloride in KRPB was injected for 0.25 pore volumes. This was followed with a 0.25 pore volume surfactant slug of 2% by weight Aristol B Sulfonate in 2.5% added sodium chloride in KRPB. The surfactant slug was heated and stirred during injection. A polymer drive of 1750 ppm Cyanatrol 740 in KRPB was injected continuously until zero oil was produced.
Initial oil saturation was 60%, residual oil saturation to water was 36%, residual oil saturation after surfactant flood was 19%, yielding a recovery efficiency of 48%.
EXAMPLE 12
The Example 12 core with 1% by weight urea in the surfactant slug was prepared for flooding in exactly the same way as Example 11, except that the core was initially packed at 2500 psi. The porosity of the core was 39% and the permeability was 1247 md.
Initial oil saturation was 61%, residual oil saturation to water was 37%, and residual oil saturation after surfactant flood was 14%, yielding an improved recovery efficiency of 63%.
EXAMPLE 13
A radial sandpack flood was conducted on a rectangular quarter section of core which measured 15.24 cm by 15.24 cm by 5.08 cm thick. This rectangular section represents one-quarter of a standard five-spot pattern. The core was handpacked with Kern River sand crumbled to a size between 20 and 100 mesh. The core was then prepared for flooding in the same fashion as Example 11, including heating to 250° F. The core had a porosity of 46.8% and permeability of 2530 md.
The 0.25 pore volume preflush slug contained 1500 ppm of RC-470H, a trademarked AMPS homopolymer with a molecular weight of about 6-8 million sold by American Cyanamid. AMPS is an abbreviation for 2-acrylamido-2-methylpropane sulfonate monomer. It is a very stable high temperature polymer. The preflush also contained 2.5% by weight sodium chloride added to KRPB. A 0.25 pore volume surfactant slug was injected at 250° F. containing 2% by weight Aristol B Sulfonate, 2500 ppm RC-470H, 3.5% Wax H-40 and 2.5% sodium chloride added to KRPB. The Wax H-40 was a refinery paraffinic wax by-product having a melting point of about 140° F.
The polymer slug was 1500 ppm RC-470H in KRPB. The polymer was injected continuously until zero additional oil was produced, for a total of 1.86 pore volumes of polymer. The viscosity of the polymer slug was 22.2 cp at 23° C. and 23 sec-1.
Initial oil saturation was 61.6%, residual oil saturation to water was 32.6%, and residual oil saturation to surfactant flood was 13.9%, yielding a recovery efficiency of 57.5%.
EXAMPLE 14
The core of Example 14 was a radial section of Kern River sand prepared in the same fashion as Example 13. Porosity of the core was 47.5% and permeability was 656 md. The only significant differences of Example 14 over the coreflood of Example 13 were a different polymer, 1% urea in the preflush, and 0.1% urea in the surfactant slug.
The 0.25 pore volume preflush contained 1500 ppm of Cyanatrol 740, 1% by weight urea, and 2.5% sodium chloride added to KRPB. The 0.25% pore volume surfactant slug contained 0.1% urea, 2% Aristol B Sulfonate, 2500 ppm Cyanatrol 740, 3.5% wax H-40, and 2.5% sodium chloride added to KRPB. The pH of the surfactant slug was 8.06.
The polymer slug contained 1750 ppm Cyanatrol 740 in KRPB with 0.1% urea added. The viscosity of the polymer slug was 49.8 cp at 23° C. and 23 sec-1. The viscosity at 90° C. and 7.34 sec-1 was 62.5 cp. 1.99 pore volumes of polymer slug was injected before the end of the flood.
Initial oil saturation was 59.1%, residual oil saturation to water 27.1%, and residual oil saturation to surfactant flooding was 5.7%, yielding a dramatic increase in recovery efficiency to 79.1%.
Many other variations and modifications may be made in the concepts described by those skilled in the art without departing from the concepts of the present invention. Accordingly, it should be clearly understood that the concepts disclosed in the description are illustrative only and are not intended as limitations on the scope of the invention.

Claims (9)

What is claimed is:
1. A sacrificial agent method for reducing the loss of surfactants to an underground formation in enhanced oil recovery operations, which comprises:
injecting an aqueous solution of about 0.05% to about 10% urea by weight into an underground formation to reduce the loss of surfactant to the underground formation,
said underground formation having a temperature greater than about 130° F. to hydrolyze the injected urea.
2. The method of claim 1, wherein the temperature of the underground formation is greater than about 160° F.
3. The method of claim 1, wherein the temperature of the underground formation is greater than about 200° F.
4. The method of claim 1, wherein the solution contains about 0.05% to about 5% urea by weight.
5. The method of claim 1, wherein the urea solution is injected as a preflush prior to the injection of a surfactant slug.
6. The method of claim 5, further comprising injecting a solution comprising about 0.05% to about 5% urea by weight and about 0.1% to about 10% surfactant by weight after the injection of the urea preflush solution.
7. The method of claim 1, wherein the solution further comprises about 0.1% to about 10% by weight of surfactant, solubilizer, polymer, or mixture thereof.
8. The method of claim 1, wherein the formation temperature has been increased by the injection of hot fluids.
9. A sacrificial agent method for reducing the loss of surfactants to an underground formation in enhanced oil recovery operations, which comprises:
injecting an aqueous solution of about 5% to about 10% urea by weight to reduce the loss of surfactant to the underground formation and about 0.5% to about 5% by weight of surfactant, solubilizer or mixture thereof into an underground formation,
said underground formation having a temperature greater than about 160° F. to hydrolyze the injected urea.
US07/465,680 1990-01-16 1990-01-16 Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery Expired - Fee Related US4982789A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/465,680 US4982789A (en) 1990-01-16 1990-01-16 Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery
CA002030330A CA2030330A1 (en) 1990-01-16 1990-11-20 Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/465,680 US4982789A (en) 1990-01-16 1990-01-16 Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery

Publications (1)

Publication Number Publication Date
US4982789A true US4982789A (en) 1991-01-08

Family

ID=23848748

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/465,680 Expired - Fee Related US4982789A (en) 1990-01-16 1990-01-16 Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery

Country Status (2)

Country Link
US (1) US4982789A (en)
CA (1) CA2030330A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209295A (en) * 1991-12-02 1993-05-11 Intevep, S.A. In-situ reduction of oil viscosity during steam injection process in EOR
US6736211B2 (en) 2002-07-22 2004-05-18 Oil Chem Technologies Method of using alkylsulfonated phenol/aldehyde resins as adsorption reducing agents for chemical flooding
EP2537910A1 (en) 2011-06-22 2012-12-26 Wintershall Holding GmbH Method for procuring viscous crude oil from an underground storage facility
WO2013050364A1 (en) * 2011-10-04 2013-04-11 Wintershall Holding GmbH Method for extracting petroleum from an underground deposit
WO2014022626A1 (en) * 2012-08-03 2014-02-06 Shell Oil Company Enhanced oil recovery methods using a fluid containing a sacrificial agent
WO2014049015A1 (en) * 2012-09-27 2014-04-03 Wintershall Holding GmbH Method for the recovery of natural gas and natural gas condensate from subterranean gas condensate reservoirs
US20140262242A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons
US20140262241A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons
US20140262243A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for Accelerating Production of Viscous Hydrocarbons in a Subterranean Reservoir with Thermally Activated Chemical Agents
US10214683B2 (en) 2015-01-13 2019-02-26 Bp Corporation North America Inc Systems and methods for producing hydrocarbons from hydrocarbon bearing rock via combined treatment of the rock and subsequent waterflooding
US11352867B2 (en) 2020-08-26 2022-06-07 Saudi Arabian Oil Company Enhanced hydrocarbon recovery with electric current
US11421148B1 (en) 2021-05-04 2022-08-23 Saudi Arabian Oil Company Injection of tailored water chemistry to mitigate foaming agents retention on reservoir formation surface
US11608723B2 (en) 2021-01-04 2023-03-21 Saudi Arabian Oil Company Stimulated water injection processes for injectivity improvement
US11649693B2 (en) 2021-02-11 2023-05-16 Saudi Arabian Oil Company Handling produced water in a wellbore

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414053A (en) * 1966-11-18 1968-12-03 Pan American Petroleum Corp Removal of interfering ions in waterflood
US3777817A (en) * 1971-12-30 1973-12-11 Texaco Inc Oil recovery process
US4482015A (en) * 1983-04-14 1984-11-13 Marathon Oil Company Selectively plugging subterranean formations with a hydrocarbon soluble fluid
US4493370A (en) * 1983-01-27 1985-01-15 Phillips Petroleum Company Urea as a cosurfactant in enhanced oil recovery processes
US4572296A (en) * 1984-09-20 1986-02-25 Union Oil Company Of California Steam injection method
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414053A (en) * 1966-11-18 1968-12-03 Pan American Petroleum Corp Removal of interfering ions in waterflood
US3777817A (en) * 1971-12-30 1973-12-11 Texaco Inc Oil recovery process
US4493370A (en) * 1983-01-27 1985-01-15 Phillips Petroleum Company Urea as a cosurfactant in enhanced oil recovery processes
US4482015A (en) * 1983-04-14 1984-11-13 Marathon Oil Company Selectively plugging subterranean formations with a hydrocarbon soluble fluid
US4572296A (en) * 1984-09-20 1986-02-25 Union Oil Company Of California Steam injection method
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209295A (en) * 1991-12-02 1993-05-11 Intevep, S.A. In-situ reduction of oil viscosity during steam injection process in EOR
US6736211B2 (en) 2002-07-22 2004-05-18 Oil Chem Technologies Method of using alkylsulfonated phenol/aldehyde resins as adsorption reducing agents for chemical flooding
EP2537910A1 (en) 2011-06-22 2012-12-26 Wintershall Holding GmbH Method for procuring viscous crude oil from an underground storage facility
WO2013050364A1 (en) * 2011-10-04 2013-04-11 Wintershall Holding GmbH Method for extracting petroleum from an underground deposit
WO2014022626A1 (en) * 2012-08-03 2014-02-06 Shell Oil Company Enhanced oil recovery methods using a fluid containing a sacrificial agent
WO2014022622A1 (en) * 2012-08-03 2014-02-06 Shell Oil Company Enhanced oil recovery fluid containing a sacrificial agent
WO2014049015A1 (en) * 2012-09-27 2014-04-03 Wintershall Holding GmbH Method for the recovery of natural gas and natural gas condensate from subterranean gas condensate reservoirs
US20140262242A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons
US20140262241A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for the Production of a Subterranean Reservoir Containing Viscous Hydrocarbons
US20140262243A1 (en) * 2013-03-15 2014-09-18 Suncor Energy, Inc. Systems and Methods for Accelerating Production of Viscous Hydrocarbons in a Subterranean Reservoir with Thermally Activated Chemical Agents
US10214683B2 (en) 2015-01-13 2019-02-26 Bp Corporation North America Inc Systems and methods for producing hydrocarbons from hydrocarbon bearing rock via combined treatment of the rock and subsequent waterflooding
US11352867B2 (en) 2020-08-26 2022-06-07 Saudi Arabian Oil Company Enhanced hydrocarbon recovery with electric current
US11608723B2 (en) 2021-01-04 2023-03-21 Saudi Arabian Oil Company Stimulated water injection processes for injectivity improvement
US11649693B2 (en) 2021-02-11 2023-05-16 Saudi Arabian Oil Company Handling produced water in a wellbore
US11421148B1 (en) 2021-05-04 2022-08-23 Saudi Arabian Oil Company Injection of tailored water chemistry to mitigate foaming agents retention on reservoir formation surface

Also Published As

Publication number Publication date
CA2030330A1 (en) 1991-07-17

Similar Documents

Publication Publication Date Title
US4479894A (en) Oil recovery by surfactant-alcohol waterflooding
US4982789A (en) Method of using urea as a sacrificial agent for surfactants in enhanced oil recovery
US4157115A (en) Lignosulfonates as additives in recovery processes involving chemical recovery processes
EP0170893B1 (en) Microbiocidal anionic sequesterants with polyvalent metal cations for permeability correction process
US4536303A (en) Methods of minimizing fines migration in subterranean formations
US4502540A (en) Tertiary oil recovery
US4524829A (en) Method of altering the permeability of a subterranean formation
US4463806A (en) Method for surfactant waterflooding in a high brine environment
US4154301A (en) Surfactant oil recovery process usable in a formation having high salinity connate water
US4448697A (en) Secondary recovery process
US4630678A (en) In-situ formation of polyvalent metal ions for crosslinking polymers within carbonate rock-containing reservoirs
US4269270A (en) Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents
US4143716A (en) Tertiary oil recovery process utilizing a preflush
US3709297A (en) Petroleum recovery process
CA1184023A (en) Oil recovery by surfactant-alcohol waterflooding
US4214999A (en) Surfactant flooding oil recovery process
US4266611A (en) Oil recovery method employing alternate slugs of surfactant and fresh water solution of polymer
US4231427A (en) Surfactant waterflooding oil recovery method
US4276933A (en) Surfactant waterflood method for the recovery of oil
EP0136773B1 (en) Composition for cross-linking carboxyl polymers and the use thereof in treating subterranean formations
US3908764A (en) Method of treating petroleum-bearing formations for supplemental oil recovery
US3973629A (en) Injection profiles with radiation induced copolymers
US4074759A (en) Oil recovery process using a polymer slug with tapered surfactant concentration
US4271906A (en) Oil recovery method employing alternate slugs of surfactant and fresh water solution of sacrificial agent
US3523581A (en) Oil recovery process using viscosifier and shear-thickening liquid

Legal Events

Date Code Title Description
CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20030108