US4904391A - Method and apparatus for removal of cells from bone marrow - Google Patents

Method and apparatus for removal of cells from bone marrow Download PDF

Info

Publication number
US4904391A
US4904391A US06/785,729 US78572985A US4904391A US 4904391 A US4904391 A US 4904391A US 78572985 A US78572985 A US 78572985A US 4904391 A US4904391 A US 4904391A
Authority
US
United States
Prior art keywords
cells
magnetic field
magnetic
chamber
liquid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/785,729
Inventor
Richard B. Freeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Florida
Original Assignee
University of Florida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Florida filed Critical University of Florida
Priority to US06/785,729 priority Critical patent/US4904391A/en
Assigned to FLORIDA, UNIVERSITY OF reassignment FLORIDA, UNIVERSITY OF ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FREEMAN, RICHARD B.
Application granted granted Critical
Publication of US4904391A publication Critical patent/US4904391A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to improvements in systems for removing cells from bone marrow.
  • the small magnetic beads can be targeted to the surface of tumor cells to render them magnetic. See Treleaven et al, Lancet, Jan. 14, 1984, pp. 70-73.
  • the flow system which uses permanent samarium cobalt magnets and an electromagnet effects the removal of the "magnetic" tumor cells from the bone marrow.
  • the system is designed to be used with a wide variety of tumor cells, so that by changing panels of monoclonal antibody the system can be used for "cleaning" the bone marrow in many different malignancies.
  • the present invention provides an improvement in a system for removing cells from bone marrow wherein the cells are bound by monoclonal antibodies, conjugated to magnetic particles, the system comprising (1) a chamber provided with inlet and outlet means adapted to enable a flow through the chamber of a liquid sample containing the bone marrow and magnetic conjugated particles bound to the cells and (2) a magnetic field source associated with the chamber such that said liquid sample flowing therethrough passes through the magnetic field whereby only the bound cells are removed from the liquid sample by magnetic attraction, the improvement wherein:
  • the magnetic field contacting the liquid sample is non-uniform.
  • the present invention further provides an improvement in a method for removing cells from bone marrow wherein the cells are bound by monoclonal antibodies, conjugated to magnetic particles, the method comprising flowing through a zone provided with an inlet and an outlet a liquid sample containing the bone marrow and magnetic conjugated microspheres bound to the cells, the zone being associated with a magnetic field such that the liquid sample passes through the magnetic field whereby the bound cells are removed from the liquid sample by magnetic attraction, the improvement wherein:
  • the magnetic field is non-uniform.
  • the system and method of the invention are particularly applicable for the removal of tumor cells, e.g., neuroblastoma cells from bone marrow in chemotherapeutic methods involving autologous bone marrow rescue [See Mal et al, Surg. Gynecol. Obstet., Vol. 150, pp. 193-97 (1980); Blumgart et al, Br. J. Surg. (in press) and Lamois et al, Ann. Surg., Vol. 190, pp. 151-157 (1979)].
  • Treleaven et al, supra discloses a system and method for the removal of such malignant cells from bone marrow.
  • the system and method of the present invention are improvements over those disclosed by Treleaven et al, supra.
  • a critical feature of the present invention resides in the use, as the source of the magnetic field, of an assembly of plural, preferably permanent, magnets arranged in such a manner that the magnetic field contacting the flowing liquid sample is non-uniform.
  • the magnets are stacked, arranged or magnetically oriented in such a manner that the non-uniform magnetic field is an ascending gradient from the inlet to the outlet of the chamber or zone containing the flowing liquid sample.
  • the gradient is established such that the weakest magnetic attraction is exerted on the sample upon entering the separation chamber and the strongest field is exerted thereon upon exiting the chamber.
  • This flexibility in being able to create a variable gradient allows the design of a separation protocol which accounts for differences in retained magnetism by the microspheres during manufacture, packed cell volumes and other processing parameters which affect the ability of the microspheres to be attracted by the magnetic field.
  • the bond between the cell/monoclonal antibody and the magnetic microspheres is relatively weak and subject to disruption by excess jarring, eddy currents or pulsatile flows in the sample, sharp corners in the flow system, etc. It is essential, therefore, that magnetic separation take place in a chamber or zone with smooth walls and no sharp corners and that a steady, even flow of the sample be maintained. Failure to remove all unbound magnetic microspheres from the autologous bone marrow sample may result in microembolisms. Moreover, failure to remove all bound magnetic microspheres would additionally allow tumor cells to be returned to the patient.
  • a lessened weak magnetic field at the inlet to the separation zone would provide a "soft" attractive force to prevent breaking the bond of the conjugated microspheres at this point on the chamber surface where a large proportion of the bound particles are removed.
  • the magnetic field is intensified as necessary to ensure removal of all of the remaining magnet particles, bound and unbound, prior to exiting the system.
  • a further preferred feature of the invention is the incorporation in the separation chamber or zone of a mesh element for eliminating movement of the magnetic particles after capture thereof by the magnetic field.
  • a problem associated with the previously used systems is that the smooth surfaces of the chamber walls to which the magnetic microspheres are attracted encourage dislodgement by the flow of the liquid sample, particularly at high flow rates. This is particularly true of the rounded shapes of the conventionally used plastic or resinous microspheres.
  • the mesh element may be positioned at any location in the chamber which will result in the retention of the magnetic microspheres attracted by the magnetic field. It is preferred to position the mesh element along the full length of the interior wall(s) of the chamber adjacent to the magnetic field, i.e., the wall(s) to which the magnetic particles are attracted. Thus, if a single magnetic field is positioned at one side of the chamber, a single mesh element or layer is positioned along the interior wall of the chamber adjacent to the magnetic field source. If magnetic fields are positioned at more than one wall of the chamber, additional mesh elements or layers are positioned along the interior walls of the chamber adjacent each magnetic field.
  • a further preferred feature of the invention comprises the inclusion in the system of means for monitoring the flow of the liquid sample through the chamber.
  • a still further preferred feature of the invention is the provision in the system of means for controlling the flow of liquid sample through the chamber in response to signals from the flow monitoring means to ensure a steady, even, non-bond disruption flow of the sample through the system.
  • FIG. 1 is a side elevational view of the system of the invention.
  • FIG. 2 is a depiction of the intensity of the magnetic field across the separation chamber.
  • FIG. 3 depicts an arrangement or assembly of magnets in the system of the invention.
  • FIG. 4 depicts an arrangement of the mesh element and separation chamber of the system.
  • the cell separation system 10 consists of the separation or perfusion chamber 12, preferably constructed of polycarbonate or other non-toxic sterilizable material to ensure a smooth flow of liquid therethrough.
  • the chamber may be of any desired shape but is preferably substantially cylindrical at the inlet and outlet and uniform in cross-section except for an exterior flat wall surface(s) for placement upon the magnet assembly comprising plural magnets.
  • the chamber is provided with inlet 14 and outlet 16 means, respectively, for the flow of bone marrow-containing liquid sample.
  • the chamber is provided with mesh element 18 positioned along the lower wall thereof adjacent to the magnet assembly 20 which is conveniently located on table 22.
  • the liquid sample is provided by a supply system comprising a saline supply 24 and a bone marrow supply.
  • the latter preferably consists of container 26 which houses a source of bone marrow 28 surrounded by ice packs 30 or other temperature maintaining means to keep the marrow cold.
  • Saline and bone marrow are conveyed through lines 32 and 34, respectively, to the inlet 14 of the chamber 12. Flow of the saline and bone marrow is controlled by valves 16 and 38, respectively, and the flow of saline and bone marrow may be combined at +-connector 40 prior to entry into the chamber 12.
  • the magnetic microsphere cell conjugates and microspheres Upon flowing through the chamber 12 the magnetic microsphere cell conjugates and microspheres are deflected by the magnet assembly 20 and collect on the mesh 18 to form an amorphous sediment which is firmly anchored by the mesh.
  • the liquid sample continues flowing through outlet 16 into line 42 where it is conveyed through flow meter 44 which monitors the rate of flow.
  • the liquid sample then flows through line 46 and into pump 48 [which may be peristaltic, gravity or chamber type] which operates to propel the fluid sample throughout the entire system either in response to signals from the flow monitoring device 50 conveyed by sensing and control system or at a pre-set rate of flow determined by circuit parameters and other physiological criteria.
  • pump 48 which may be peristaltic, gravity or chamber type
  • the product sample is conveyed through line 56 to container 58.
  • the saline supply may be used to prime the cell separation system including the pump and flow meter prior to perfusion.
  • flow control valves 36 and 38 are shut off and the marrow supply source 28 lowered to position 52.
  • the supply valves 36 and 38 are slowly opened to fill the lines with saline and eliminate air.
  • the valve 38 on the marrow supply line 34 is closed and the saline supply valves 36 are opened and the system primed with saline.
  • Adjusting leg 61 by means of clamp element 62 permits elevation of the inlet end of chamber 12 to enhance recovery of viable cells which may otherwise be prone to remain on the horizontal surfaces of the chamber.
  • any viable cells remaining in the chamber may be flushed with saline as described above for priming, or flow control valve 60 on line 59 may be opened and any viable cells remaining in the chamber 12 will be emptied into the marrow collection pack without the addition of flushing saline (air flushing).
  • FIG. 2 depicts the ascending gradient magnetic field generated from the inlet to the outlet of the chamber by the multiple stacked magnets.
  • an array of magnets alternately oriented north to south and shunted at the bottom by "keeper” creates a magnetic field which covers the entire cross-section of the perfusion chamber (not shown), resting on the top of the array of magnets.
  • mesh element preferably constructed of plastic monofilaments, is curled at the edges and positioned within chamber by insertion through either the inlet or outlet. After insertion, the mesh is retained in place by the natural recovery (memory) characteristics of the polymer.
  • the inlet 14 and outlet 16 means of the chamber 12 preferably comprise enlarged chambers compared to the cross-section of the separation zone to provide a space for capture of air bubbles. No transition angles to fluid flow greater than 45° should be present in the system to minimize bond disruption by eddy flows, etc.
  • the magnet assembly is preferably removable from beneath the perfusion chamber to facilitate stacking, removal, placement, orientation, etc. of the magnets in order to alter the magnetic field as desired.
  • Non-magnetic spacer material is preferably provided between the stacks of magnets, to provide for low magnetic field spots in the chamber thereby cushioning the impact of magnetic particles with the wall of the chamber.
  • Soft iron keepers are preferably provided at the bottom of the magnet stack to preserve the magnetic field and act as shunting means where desired.
  • a further advantage of the present system is that it may be sterilized after assembly thereby avoiding the necessity for pre-sterilization and subsequent assembly of the sterilized components as is the case with the systems currently in use.
  • the magnetic particles are preferably microspheres constructed of any suitable material such as polystyrene. See Treleaven et al, supra, the disclosure of which is incorporated by reference herein.
  • the microspheres are preferably formed with magnetic material, e.g., magnetite, contained therein.

Abstract

An improved system for removing cells from bone marrow wherein the cells are bound by monoclonal antibodies conjugated to magnetic particles, the system comprising a chamber provided with inlets and outlets for flowing through the chamber a liquid sample containing the bone marrow and magnetic conjugated antibodies bound to the cells and a magnetic field source associated with the chamber wherein the improvement comprises a non-uniform magnetic field in an ascending gradient from the inlet to the outlet.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to improvements in systems for removing cells from bone marrow.
2. Prior Art
Monoclonal antibodies bound to e.g., polystyrene microspheres containing magnetite, have been used to remove tumor and other types of cells from bone marrow destined for autologous transplantation. The small magnetic beads can be targeted to the surface of tumor cells to render them magnetic. See Treleaven et al, Lancet, Jan. 14, 1984, pp. 70-73. The flow system which uses permanent samarium cobalt magnets and an electromagnet effects the removal of the "magnetic" tumor cells from the bone marrow. The system is designed to be used with a wide variety of tumor cells, so that by changing panels of monoclonal antibody the system can be used for "cleaning" the bone marrow in many different malignancies.
Although the systems presently in use provide for relatively rapid and efficient removal of the cells, they are subject to several disadvantages. Thus, the general utility of the system is limited by the requirement for a large electromagnet with its associated power supply. Moreover, the system must be assembled only after sterilization of the components. The system is also subject to large variations in the efficiency of conjugated microsphere removal throughout the circuit. There is also no capability for varying the magnetic field strength along the flow path to ameliorate the difficulties associated with the above noted variations along the system. Finally, it is difficult to obtain positive retention of the microspheres on the smooth interior surfaces of the removal chamber.
It is an object of the present invention to provide an improved method and apparatus for the removal of conjugated, magnetic cells from bone marrow which do not suffer from the above noted disadvantages.
SUMMARY OF THE INVENTION
The present invention provides an improvement in a system for removing cells from bone marrow wherein the cells are bound by monoclonal antibodies, conjugated to magnetic particles, the system comprising (1) a chamber provided with inlet and outlet means adapted to enable a flow through the chamber of a liquid sample containing the bone marrow and magnetic conjugated particles bound to the cells and (2) a magnetic field source associated with the chamber such that said liquid sample flowing therethrough passes through the magnetic field whereby only the bound cells are removed from the liquid sample by magnetic attraction, the improvement wherein:
the magnetic field contacting the liquid sample is non-uniform.
The present invention further provides an improvement in a method for removing cells from bone marrow wherein the cells are bound by monoclonal antibodies, conjugated to magnetic particles, the method comprising flowing through a zone provided with an inlet and an outlet a liquid sample containing the bone marrow and magnetic conjugated microspheres bound to the cells, the zone being associated with a magnetic field such that the liquid sample passes through the magnetic field whereby the bound cells are removed from the liquid sample by magnetic attraction, the improvement wherein:
the magnetic field is non-uniform.
DETAILED DESCRIPTION OF THE INVENTION
The system and method of the invention are particularly applicable for the removal of tumor cells, e.g., neuroblastoma cells from bone marrow in chemotherapeutic methods involving autologous bone marrow rescue [See Mal et al, Surg. Gynecol. Obstet., Vol. 150, pp. 193-97 (1980); Blumgart et al, Br. J. Surg. (in press) and Lamois et al, Ann. Surg., Vol. 190, pp. 151-157 (1979)]. Treleaven et al, supra, discloses a system and method for the removal of such malignant cells from bone marrow. The system and method of the present invention are improvements over those disclosed by Treleaven et al, supra.
A critical feature of the present invention resides in the use, as the source of the magnetic field, of an assembly of plural, preferably permanent, magnets arranged in such a manner that the magnetic field contacting the flowing liquid sample is non-uniform.
Most preferably, the magnets are stacked, arranged or magnetically oriented in such a manner that the non-uniform magnetic field is an ascending gradient from the inlet to the outlet of the chamber or zone containing the flowing liquid sample. The gradient is established such that the weakest magnetic attraction is exerted on the sample upon entering the separation chamber and the strongest field is exerted thereon upon exiting the chamber.
This flexibility in being able to create a variable gradient allows the design of a separation protocol which accounts for differences in retained magnetism by the microspheres during manufacture, packed cell volumes and other processing parameters which affect the ability of the microspheres to be attracted by the magnetic field.
The bond between the cell/monoclonal antibody and the magnetic microspheres is relatively weak and subject to disruption by excess jarring, eddy currents or pulsatile flows in the sample, sharp corners in the flow system, etc. It is essential, therefore, that magnetic separation take place in a chamber or zone with smooth walls and no sharp corners and that a steady, even flow of the sample be maintained. Failure to remove all unbound magnetic microspheres from the autologous bone marrow sample may result in microembolisms. Moreover, failure to remove all bound magnetic microspheres would additionally allow tumor cells to be returned to the patient.
A lessened weak magnetic field at the inlet to the separation zone would provide a "soft" attractive force to prevent breaking the bond of the conjugated microspheres at this point on the chamber surface where a large proportion of the bound particles are removed. By increasing the gradient, the magnetic field is intensified as necessary to ensure removal of all of the remaining magnet particles, bound and unbound, prior to exiting the system. Thus, the method and system of the present invention greatly minimizes the chance of disruption of the bound cell/monoclonal antibody and magnetic microspheres conjugate with concomitant re-contamination of the bone marrow with undesired cells as well as ensuring the complete removal of all magnetic particles.
A further preferred feature of the invention is the incorporation in the separation chamber or zone of a mesh element for eliminating movement of the magnetic particles after capture thereof by the magnetic field. A problem associated with the previously used systems is that the smooth surfaces of the chamber walls to which the magnetic microspheres are attracted encourage dislodgement by the flow of the liquid sample, particularly at high flow rates. This is particularly true of the rounded shapes of the conventionally used plastic or resinous microspheres.
The mesh element may be positioned at any location in the chamber which will result in the retention of the magnetic microspheres attracted by the magnetic field. It is preferred to position the mesh element along the full length of the interior wall(s) of the chamber adjacent to the magnetic field, i.e., the wall(s) to which the magnetic particles are attracted. Thus, if a single magnetic field is positioned at one side of the chamber, a single mesh element or layer is positioned along the interior wall of the chamber adjacent to the magnetic field source. If magnetic fields are positioned at more than one wall of the chamber, additional mesh elements or layers are positioned along the interior walls of the chamber adjacent each magnetic field.
A further preferred feature of the invention comprises the inclusion in the system of means for monitoring the flow of the liquid sample through the chamber.
A still further preferred feature of the invention is the provision in the system of means for controlling the flow of liquid sample through the chamber in response to signals from the flow monitoring means to ensure a steady, even, non-bond disruption flow of the sample through the system.
The invention is further illustrated by the accompanying drawings wherein:
FIG. 1 is a side elevational view of the system of the invention.
FIG. 2 is a depiction of the intensity of the magnetic field across the separation chamber.
FIG. 3 depicts an arrangement or assembly of magnets in the system of the invention.
FIG. 4 depicts an arrangement of the mesh element and separation chamber of the system.
DETAILED DESCRIPTION OF THE DRAWINGS
Referring to FIG. 1, the cell separation system 10 consists of the separation or perfusion chamber 12, preferably constructed of polycarbonate or other non-toxic sterilizable material to ensure a smooth flow of liquid therethrough. The chamber may be of any desired shape but is preferably substantially cylindrical at the inlet and outlet and uniform in cross-section except for an exterior flat wall surface(s) for placement upon the magnet assembly comprising plural magnets.
The chamber is provided with inlet 14 and outlet 16 means, respectively, for the flow of bone marrow-containing liquid sample. The chamber is provided with mesh element 18 positioned along the lower wall thereof adjacent to the magnet assembly 20 which is conveniently located on table 22.
The liquid sample is provided by a supply system comprising a saline supply 24 and a bone marrow supply. The latter preferably consists of container 26 which houses a source of bone marrow 28 surrounded by ice packs 30 or other temperature maintaining means to keep the marrow cold. Saline and bone marrow are conveyed through lines 32 and 34, respectively, to the inlet 14 of the chamber 12. Flow of the saline and bone marrow is controlled by valves 16 and 38, respectively, and the flow of saline and bone marrow may be combined at +-connector 40 prior to entry into the chamber 12.
Upon flowing through the chamber 12 the magnetic microsphere cell conjugates and microspheres are deflected by the magnet assembly 20 and collect on the mesh 18 to form an amorphous sediment which is firmly anchored by the mesh.
The liquid sample continues flowing through outlet 16 into line 42 where it is conveyed through flow meter 44 which monitors the rate of flow.
The liquid sample then flows through line 46 and into pump 48 [which may be peristaltic, gravity or chamber type] which operates to propel the fluid sample throughout the entire system either in response to signals from the flow monitoring device 50 conveyed by sensing and control system or at a pre-set rate of flow determined by circuit parameters and other physiological criteria. The product sample is conveyed through line 56 to container 58.
The saline supply may be used to prime the cell separation system including the pump and flow meter prior to perfusion. In operation, flow control valves 36 and 38 are shut off and the marrow supply source 28 lowered to position 52. The supply valves 36 and 38 are slowly opened to fill the lines with saline and eliminate air. The valve 38 on the marrow supply line 34 is closed and the saline supply valves 36 are opened and the system primed with saline. When the system is completely filled (saline is ultimately delivered through the system and from pump 48 via line 53 to container 54) and all air pockets eliminated, the system is ready for perfusion.
Adjusting leg 61 by means of clamp element 62 permits elevation of the inlet end of chamber 12 to enhance recovery of viable cells which may otherwise be prone to remain on the horizontal surfaces of the chamber.
After perfusion, any viable cells remaining in the chamber may be flushed with saline as described above for priming, or flow control valve 60 on line 59 may be opened and any viable cells remaining in the chamber 12 will be emptied into the marrow collection pack without the addition of flushing saline (air flushing).
FIG. 2 depicts the ascending gradient magnetic field generated from the inlet to the outlet of the chamber by the multiple stacked magnets.
In FIG. 3, an array of magnets alternately oriented north to south and shunted at the bottom by "keeper" creates a magnetic field which covers the entire cross-section of the perfusion chamber (not shown), resting on the top of the array of magnets. By varying the number and/or orientation of magnets in each stack, the "throwing" power or depth of the magnetic field and intensity throughout the chamber can be altered.
In FIG. 4, mesh element, preferably constructed of plastic monofilaments, is curled at the edges and positioned within chamber by insertion through either the inlet or outlet. After insertion, the mesh is retained in place by the natural recovery (memory) characteristics of the polymer.
The inlet 14 and outlet 16 means of the chamber 12 preferably comprise enlarged chambers compared to the cross-section of the separation zone to provide a space for capture of air bubbles. No transition angles to fluid flow greater than 45° should be present in the system to minimize bond disruption by eddy flows, etc.
The magnet assembly is preferably removable from beneath the perfusion chamber to facilitate stacking, removal, placement, orientation, etc. of the magnets in order to alter the magnetic field as desired. Non-magnetic spacer material is preferably provided between the stacks of magnets, to provide for low magnetic field spots in the chamber thereby cushioning the impact of magnetic particles with the wall of the chamber.
Soft iron keepers are preferably provided at the bottom of the magnet stack to preserve the magnetic field and act as shunting means where desired.
A further advantage of the present system is that it may be sterilized after assembly thereby avoiding the necessity for pre-sterilization and subsequent assembly of the sterilized components as is the case with the systems currently in use.
The magnetic particles are preferably microspheres constructed of any suitable material such as polystyrene. See Treleaven et al, supra, the disclosure of which is incorporated by reference herein. The microspheres are preferably formed with magnetic material, e.g., magnetite, contained therein.

Claims (9)

I claim:
1. In a method for removing cells from bone marrow wherein said cells, bound to monoclonal antibodies, conjugated to magnetic particles, said method comprising flowing a liquid sample containing said bone marrow and magnetic conjugated antibodies bound to said cells through a zone provided with an inlet and an outlet associated with a magnetic field such that said liquid sample flowing there through and passes through said magnetic field whereby said bound cells and unconjugated particles are removed from said liquid sample by magnetic attraction, the improvement wherein:
said magnetic field through which said liquid sample flows is non-uniform and is an ascending gradient from said inlet to said outlet.
2. The method of claim 1 wherein said particles are microspheres.
3. The method of claim 2 wherein said microspheres contain magnetite.
4. The method of claim 2 wherein said microspheres comprise polystyrene.
5. The method of claim 1 wherein said cells are malignant.
6. In a system for removing cells from bone marrow wherein said cells are bound by monoclonal antibodies, conjugated to magnetic particles, said system comprising (1) means defining a chamber provided with inlet and outlet means adapted to enable to flow through said chamber of a liquid sample containing said bone marrow and magnetic conjugated antibodies bound to said cells and (2) at least one magnetic field source associated with said chamber such that said liquid sample flowing therethrough passes through said magnetic field whereby said bound cells are removed from said liquid sample by magnetic attraction, the improvement wherein:
said at least one magnetic field source comprises an assembly of plural magnets arranged such that said magnetic field is non-uniform and is an ascending gradient from said inlet means to said outlet means.
said improvement further comprising means for eliminating movement in said chamber of said conjugated and any unconjugated magnetic particles after removal from said liquid sample.
7. The system of claim 6 wherein said movement elimination means is positioned so as to retard the flow of said conjugated and any unconjugated magnetic particles after capture thereof by said magnetic field.
8. The system of claim 7 wherein said movement elimination means comprises a mesh element adapted to prevent the escape of said conjugated and any unconjugated particles from said magnetic field.
9. The system of claim 8 wherein said mesh element is positioned adjacent the wall or walls of said chamber to which said conjugated or any unconjugated magnetic particles are attracted by said magnetic field.
US06/785,729 1985-10-09 1985-10-09 Method and apparatus for removal of cells from bone marrow Expired - Fee Related US4904391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/785,729 US4904391A (en) 1985-10-09 1985-10-09 Method and apparatus for removal of cells from bone marrow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/785,729 US4904391A (en) 1985-10-09 1985-10-09 Method and apparatus for removal of cells from bone marrow

Publications (1)

Publication Number Publication Date
US4904391A true US4904391A (en) 1990-02-27

Family

ID=25136459

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/785,729 Expired - Fee Related US4904391A (en) 1985-10-09 1985-10-09 Method and apparatus for removal of cells from bone marrow

Country Status (1)

Country Link
US (1) US4904391A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008133A1 (en) * 1990-10-29 1992-05-14 Dekalb Plant Genetics Isolation of biological materials using magnetic particles
EP0522322A1 (en) * 1991-06-18 1993-01-13 Olympus Optical Co., Ltd. An immunological test method
US5336760A (en) * 1989-09-14 1994-08-09 Baxter International Inc. Method and useful apparatus for preparing pharmaceutical compositions
US5536475A (en) * 1988-10-11 1996-07-16 Baxter International Inc. Apparatus for magnetic cell separation
US5541072A (en) * 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5571408A (en) * 1995-04-21 1996-11-05 Rising; William R. Compound clarification system
US5665582A (en) * 1990-10-29 1997-09-09 Dekalb Genetics Corp. Isolation of biological materials
US5795470A (en) * 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
EP1093393A1 (en) * 1998-05-17 2001-04-25 Chaim Davidson Method and apparatus for magnetically separating selected particles, particularly biological cells
US6489092B1 (en) 1997-07-01 2002-12-03 Vicam, L.P. Method for sex determination of mammalian offspring
US20040142384A1 (en) * 2003-01-16 2004-07-22 Cohen Barb Ariel Magnetic separator
US20050187514A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in a torsional mode
US20050187513A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050256410A1 (en) * 2004-05-14 2005-11-17 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon
US20050267488A1 (en) * 2004-05-13 2005-12-01 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to treat urolithiasis
US20060084089A1 (en) * 2004-08-03 2006-04-20 Becton, Dickinson And Company Use of magnetic material to direct isolation of compounds and fractionation of multipart samples
US20060100547A1 (en) * 2004-10-27 2006-05-11 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to reinforce bone
US20060116610A1 (en) * 2004-11-30 2006-06-01 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with variable frequency drive
US20070031880A1 (en) * 2003-02-06 2007-02-08 Becton, Dickinson And Company Chemical treatment of biological samples for nucleic acid extraction and kits therefor
US20070196833A1 (en) * 2005-04-21 2007-08-23 Gjerde Douglas T Open channel solid phase extraction systems and methods
US20080125784A1 (en) * 2006-11-10 2008-05-29 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20090054900A1 (en) * 2006-11-10 2009-02-26 Illuminoss Medical, Inc. Systems and Methods for Internal Bone Fixation
US20090061497A1 (en) * 2007-06-29 2009-03-05 Becton, Dickinson And Company Methods for Extraction and Purification of Components of Biological Samples
US20090112196A1 (en) * 2007-10-31 2009-04-30 Illuminoss Medical, Inc. Light Source
US7806900B2 (en) 2006-04-26 2010-10-05 Illuminoss Medical, Inc. Apparatus and methods for delivery of reinforcing materials to bone
US20100256641A1 (en) * 2007-12-26 2010-10-07 Illuminoss Medical, Inc. Apparatus and Methods for Repairing Craniomaxillofacial Bones Using Customized Bone Plates
US7811290B2 (en) 2006-04-26 2010-10-12 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US20100262069A1 (en) * 2009-04-07 2010-10-14 Illuminoss Medical, Inc. Photodynamic Bone Stabilization Systems and Methods for Reinforcing Bone
US20100265733A1 (en) * 2009-04-06 2010-10-21 Illuminoss Medical, Inc. Attachment System for Light-Conducting Fibers
US20110118740A1 (en) * 2009-11-10 2011-05-19 Illuminoss Medical, Inc. Intramedullary Implants Having Variable Fastener Placement
US8684965B2 (en) 2010-06-21 2014-04-01 Illuminoss Medical, Inc. Photodynamic bone stabilization and drug delivery systems
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US8870965B2 (en) 2009-08-19 2014-10-28 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
US8936644B2 (en) 2011-07-19 2015-01-20 Illuminoss Medical, Inc. Systems and methods for joint stabilization
US8939977B2 (en) 2012-07-10 2015-01-27 Illuminoss Medical, Inc. Systems and methods for separating bone fixation devices from introducer
US9144442B2 (en) 2011-07-19 2015-09-29 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US9179959B2 (en) 2010-12-22 2015-11-10 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US9687281B2 (en) 2012-12-20 2017-06-27 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US11071572B2 (en) 2018-06-27 2021-07-27 Illuminoss Medical, Inc. Systems and methods for bone stabilization and fixation
US11413378B2 (en) 2018-05-08 2022-08-16 Biomagnetic Solutions Llc Rigid chamber for cell separation from a flexible disposable bag
EP4055381A4 (en) * 2019-11-05 2024-03-20 Biomagnetic Solutions Llc An improved large scale immunomagnetic separation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU484894A1 (en) * 1972-04-24 1975-09-25 Институт проблем литья АН УССР Electromagnetic Separator
GB1578396A (en) * 1976-06-23 1980-11-05 Siemens Ag Magnetic separator
US4508625A (en) * 1982-10-18 1985-04-02 Graham Marshall D Magnetic separation using chelated magnetic ions
WO1985003649A1 (en) * 1984-02-21 1985-08-29 Kronenberg Klaus J Resonating magnetic fluid conditioning apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU484894A1 (en) * 1972-04-24 1975-09-25 Институт проблем литья АН УССР Electromagnetic Separator
GB1578396A (en) * 1976-06-23 1980-11-05 Siemens Ag Magnetic separator
US4508625A (en) * 1982-10-18 1985-04-02 Graham Marshall D Magnetic separation using chelated magnetic ions
WO1985003649A1 (en) * 1984-02-21 1985-08-29 Kronenberg Klaus J Resonating magnetic fluid conditioning apparatus and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Treleaven et al; "Removal of Neuroblastoma Cells . . . " The Lancet, 1/14/84, pp. 70-73.
Treleaven et al; Removal of Neuroblastoma Cells . . . The Lancet , 1/14/84, pp. 70 73. *

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536475A (en) * 1988-10-11 1996-07-16 Baxter International Inc. Apparatus for magnetic cell separation
US5336760A (en) * 1989-09-14 1994-08-09 Baxter International Inc. Method and useful apparatus for preparing pharmaceutical compositions
US5665582A (en) * 1990-10-29 1997-09-09 Dekalb Genetics Corp. Isolation of biological materials
WO1992008133A1 (en) * 1990-10-29 1992-05-14 Dekalb Plant Genetics Isolation of biological materials using magnetic particles
US5508164A (en) * 1990-10-29 1996-04-16 Dekalb Genetics Corporation Isolation of biological materials using magnetic particles
US5795470A (en) * 1991-03-25 1998-08-18 Immunivest Corporation Magnetic separation apparatus
EP0522322A1 (en) * 1991-06-18 1993-01-13 Olympus Optical Co., Ltd. An immunological test method
US5476796A (en) * 1991-06-18 1995-12-19 Olympus Optical Co., Ltd. Immunological test method
US5541072A (en) * 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5571408A (en) * 1995-04-21 1996-11-05 Rising; William R. Compound clarification system
US6489092B1 (en) 1997-07-01 2002-12-03 Vicam, L.P. Method for sex determination of mammalian offspring
EP1093393A1 (en) * 1998-05-17 2001-04-25 Chaim Davidson Method and apparatus for magnetically separating selected particles, particularly biological cells
JP2002515319A (en) * 1998-05-17 2002-05-28 チェイム デヴィッドソン, Method and apparatus for magnetically separating selected particles, especially biological cells
JP4713735B2 (en) * 1998-05-17 2011-06-29 バイオセプ リミテッド Method and apparatus for magnetic separation of selected particles, especially biological cells
EP1093393B1 (en) * 1998-05-17 2008-06-25 Biocep Ltd. Method and apparatus for magnetically separating selected particles, particularly biological cells
US8790359B2 (en) 1999-10-05 2014-07-29 Cybersonics, Inc. Medical systems and related methods
US20040142384A1 (en) * 2003-01-16 2004-07-22 Cohen Barb Ariel Magnetic separator
US20070031880A1 (en) * 2003-02-06 2007-02-08 Becton, Dickinson And Company Chemical treatment of biological samples for nucleic acid extraction and kits therefor
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050187513A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050187514A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in a torsional mode
US20100331743A1 (en) * 2004-02-09 2010-12-30 Emigrant Bank, N. A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050267488A1 (en) * 2004-05-13 2005-12-01 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to treat urolithiasis
US20050256410A1 (en) * 2004-05-14 2005-11-17 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon
US20060084089A1 (en) * 2004-08-03 2006-04-20 Becton, Dickinson And Company Use of magnetic material to direct isolation of compounds and fractionation of multipart samples
US20060100547A1 (en) * 2004-10-27 2006-05-11 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to reinforce bone
US20060116610A1 (en) * 2004-11-30 2006-06-01 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with variable frequency drive
US20070196833A1 (en) * 2005-04-21 2007-08-23 Gjerde Douglas T Open channel solid phase extraction systems and methods
US9265549B2 (en) 2006-04-26 2016-02-23 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US11331132B2 (en) 2006-04-26 2022-05-17 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US7806900B2 (en) 2006-04-26 2010-10-05 Illuminoss Medical, Inc. Apparatus and methods for delivery of reinforcing materials to bone
US9254156B2 (en) 2006-04-26 2016-02-09 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US7811290B2 (en) 2006-04-26 2010-10-12 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US10456184B2 (en) 2006-04-26 2019-10-29 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US9724147B2 (en) 2006-04-26 2017-08-08 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US20100331850A1 (en) * 2006-04-26 2010-12-30 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US8668701B2 (en) 2006-04-26 2014-03-11 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US8348956B2 (en) 2006-04-26 2013-01-08 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US20110009871A1 (en) * 2006-04-26 2011-01-13 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US8246628B2 (en) 2006-04-26 2012-08-21 Illuminoss Medical, Inc. Apparatus for delivery of reinforcing materials to bone
US8734460B2 (en) 2006-11-10 2014-05-27 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US11259847B2 (en) 2006-11-10 2022-03-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20080125784A1 (en) * 2006-11-10 2008-05-29 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US7811284B2 (en) 2006-11-10 2010-10-12 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20090054900A1 (en) * 2006-11-10 2009-02-26 Illuminoss Medical, Inc. Systems and Methods for Internal Bone Fixation
US10543025B2 (en) 2006-11-10 2020-01-28 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20110004213A1 (en) * 2006-11-10 2011-01-06 IlluminOss Medical , Inc. Systems and methods for internal bone fixation
US8366711B2 (en) 2006-11-10 2013-02-05 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US9717542B2 (en) 2006-11-10 2017-08-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US8906031B2 (en) 2006-11-10 2014-12-09 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US8906030B2 (en) 2006-11-10 2014-12-09 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20110098713A1 (en) * 2006-11-10 2011-04-28 Illuminoss Medical, Inc. Systems and Methods for Internal Bone Fixation
US11793556B2 (en) 2006-11-10 2023-10-24 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US9433450B2 (en) 2006-11-10 2016-09-06 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US7879041B2 (en) 2006-11-10 2011-02-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
US20090061497A1 (en) * 2007-06-29 2009-03-05 Becton, Dickinson And Company Methods for Extraction and Purification of Components of Biological Samples
US20090112196A1 (en) * 2007-10-31 2009-04-30 Illuminoss Medical, Inc. Light Source
US9427289B2 (en) 2007-10-31 2016-08-30 Illuminoss Medical, Inc. Light source
US8403968B2 (en) 2007-12-26 2013-03-26 Illuminoss Medical, Inc. Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates
US20100256641A1 (en) * 2007-12-26 2010-10-07 Illuminoss Medical, Inc. Apparatus and Methods for Repairing Craniomaxillofacial Bones Using Customized Bone Plates
US8672982B2 (en) 2007-12-26 2014-03-18 Illuminoss Medical, Inc. Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates
US9005254B2 (en) 2007-12-26 2015-04-14 Illuminoss Medical, Inc. Methods for repairing craniomaxillofacial bones using customized bone plate
US8936382B2 (en) 2009-04-06 2015-01-20 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US20100265733A1 (en) * 2009-04-06 2010-10-21 Illuminoss Medical, Inc. Attachment System for Light-Conducting Fibers
US8328402B2 (en) 2009-04-06 2012-12-11 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US8210729B2 (en) 2009-04-06 2012-07-03 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US8574233B2 (en) 2009-04-07 2013-11-05 Illuminoss Medical, Inc. Photodynamic bone stabilization systems and methods for reinforcing bone
US8512338B2 (en) 2009-04-07 2013-08-20 Illuminoss Medical, Inc. Photodynamic bone stabilization systems and methods for reinforcing bone
US20100262069A1 (en) * 2009-04-07 2010-10-14 Illuminoss Medical, Inc. Photodynamic Bone Stabilization Systems and Methods for Reinforcing Bone
US8870965B2 (en) 2009-08-19 2014-10-28 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
US9125706B2 (en) 2009-08-19 2015-09-08 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
US8915966B2 (en) 2009-08-19 2014-12-23 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
US20110118740A1 (en) * 2009-11-10 2011-05-19 Illuminoss Medical, Inc. Intramedullary Implants Having Variable Fastener Placement
US8684965B2 (en) 2010-06-21 2014-04-01 Illuminoss Medical, Inc. Photodynamic bone stabilization and drug delivery systems
US10111689B2 (en) 2010-12-22 2018-10-30 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US9179959B2 (en) 2010-12-22 2015-11-10 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US10772664B2 (en) 2010-12-22 2020-09-15 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US9855080B2 (en) 2010-12-22 2018-01-02 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US10292823B2 (en) 2011-07-19 2019-05-21 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US9254195B2 (en) 2011-07-19 2016-02-09 Illuminoss Medical, Inc. Systems and methods for joint stabilization
US8936644B2 (en) 2011-07-19 2015-01-20 Illuminoss Medical, Inc. Systems and methods for joint stabilization
US9775661B2 (en) 2011-07-19 2017-10-03 Illuminoss Medical, Inc. Devices and methods for bone restructure and stabilization
US9855145B2 (en) 2011-07-19 2018-01-02 IlluminsOss Medical, Inc. Systems and methods for joint stabilization
US11559343B2 (en) 2011-07-19 2023-01-24 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US11141207B2 (en) 2011-07-19 2021-10-12 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US9144442B2 (en) 2011-07-19 2015-09-29 Illuminoss Medical, Inc. Photodynamic articular joint implants and methods of use
US8939977B2 (en) 2012-07-10 2015-01-27 Illuminoss Medical, Inc. Systems and methods for separating bone fixation devices from introducer
US10575882B2 (en) 2012-12-20 2020-03-03 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US9687281B2 (en) 2012-12-20 2017-06-27 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US11413378B2 (en) 2018-05-08 2022-08-16 Biomagnetic Solutions Llc Rigid chamber for cell separation from a flexible disposable bag
US11419649B2 (en) 2018-06-27 2022-08-23 Illuminoss Medical, Inc. Systems and methods for bone stabilization and fixation
US11071572B2 (en) 2018-06-27 2021-07-27 Illuminoss Medical, Inc. Systems and methods for bone stabilization and fixation
EP4055381A4 (en) * 2019-11-05 2024-03-20 Biomagnetic Solutions Llc An improved large scale immunomagnetic separation device

Similar Documents

Publication Publication Date Title
US4904391A (en) Method and apparatus for removal of cells from bone marrow
EP0869838B1 (en) Magnetic separation apparatus
US4910148A (en) Magnetic separation of magnetized particles from biological fluids
US5536475A (en) Apparatus for magnetic cell separation
JP4642227B2 (en) Method for continuous magnetic separation of components from mixtures.
EP1093393B1 (en) Method and apparatus for magnetically separating selected particles, particularly biological cells
Xia et al. Combined microfluidic-micromagnetic separation of living cells in continuous flow
US6120735A (en) Fractional cell sorter
US5968820A (en) Method for magnetically separating cells into fractionated flow streams
US6361749B1 (en) Apparatus and methods for magnetic separation
US7985340B2 (en) Magnetic separator
CN107530486B (en) Apparatus and method for immunomagnetic cell separation
CN110218648B (en) Method and apparatus for separating biological entities in a fluid sample
WO1990004019A1 (en) System for magnetic affinity cell separation from cell concentrates
AU708810B2 (en) Method and apparatus for semi-automated cell separation
EP0513219B1 (en) Flexible bag assembly for magnetic separator
JP2745047B2 (en) Apparatus and method for separating magnetotactic bacteria
EP1954396B1 (en) Magnetic separator and method
US20210069712A1 (en) Particle manipulation system with multisort valve
AU5945599A (en) Method and apparatus for semi automated cell separation

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLORIDA, UNIVERSITY OF, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FREEMAN, RICHARD B.;REEL/FRAME:005213/0573

Effective date: 19891226

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19940227

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362