US4880001A - Process for controlling the photocoagulation of biological tissue - Google Patents

Process for controlling the photocoagulation of biological tissue Download PDF

Info

Publication number
US4880001A
US4880001A US07/145,140 US14514088A US4880001A US 4880001 A US4880001 A US 4880001A US 14514088 A US14514088 A US 14514088A US 4880001 A US4880001 A US 4880001A
Authority
US
United States
Prior art keywords
luminance
area
partial
partial area
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/145,140
Inventor
Wolfram S. Weinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BONNET RESOURCES Corp A CORP OF OH AS AGENT
Cardiofocus Inc
Original Assignee
PROMED Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROMED Tech Inc filed Critical PROMED Tech Inc
Application granted granted Critical
Publication of US4880001A publication Critical patent/US4880001A/en
Assigned to BANK ONE TEXAS, N.A., BONNET RESOURCES CORPORATION, A CORP. OF OH, AS AGENT reassignment BANK ONE TEXAS, N.A. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PROMED TECHNOLOGY INCORPORATED, A CORP. OF TX
Assigned to PROMED TECHNOLOGY, INC. A TX CORPORATION reassignment PROMED TECHNOLOGY, INC. A TX CORPORATION ASSIGNOR HERELY CONFIRMS THE ENTIRE INTEREST IN SAID INVENTION TO ASSIGNEE EXECUTED ON MARCH 13, 1985, AND RECORDED AT REEL 4376 FRAME 584. (SEE RECORDS FOR DETAILS). Assignors: WEINBERG, WOLFRAM S.
Assigned to RARE EARTH MEDICAL LASERS CORPORATION A MA CORPORATION reassignment RARE EARTH MEDICAL LASERS CORPORATION A MA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BANK ONE TEXAS, N.A., ACTING BY AND THROUGH ITS DULY ATHORIZED AGENT AND ATTORNEY-IN-FACT, BONNET RESOURCES CORPORATION
Assigned to CARDIOFOCUS, INC. reassignment CARDIOFOCUS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIOFOCUS, INC.
Assigned to CARDIOFOCUS, INC. reassignment CARDIOFOCUS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RARE EARTH MEDICAL, INC.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00821Methods or devices for eye surgery using laser for coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2015Miscellaneous features
    • A61B2018/2025Miscellaneous features with a pilot laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00863Retina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms

Definitions

  • the present invention relates to a process for controlling the coagulation of biological tissue and improvements in apparatus for controlling the coagulation of tissue of the type disclosed in German Application No.P 30 24 169.1-35; in Documenta Ophthalmologica Proceedings Series 36--"Laser Treatment and Photocoagulation of the Eye,” Proceeding of the International Symposium Kunststoff, F.R.G. September 1982; and GSF-Bericht BPT 5, published by Deutschen Fur Strahlen-und Anlagenaba, Kunststoff, West Germany, "Time Dependence of the Retina-Reaction during and after Laser coagulation with Various Coagulation Parameters.”
  • the method and apparatus are, for example, used in ophthalmology for the treatment of retinal diseases. However, the method may be used in processes wherein a change in reflectance of a surface results from treatment of the surface and the underlying material on which the surface is formed.
  • the area or part of said area which is to undergo photocoagulation is imaged in the form of an intermediate image by means of an optical device.
  • the light flux passing through a diaphragm installed in the intermediate image is proportional to the luminance prevailing in the diaphragm field and is supplied to a detector.
  • the time behaviour of the luminance has a certain "latent period", during which the luminance is initially constant, this being followed by a second phase in which the luminance increases linearly with time.
  • Information is obtained from the length of the latent period and the size of the growth rate in the linear luminance increase phase, which enables forecasts to be made regarding the further course of the coagulation action. This makes it possible to influence the total coagulation action obtained during the actual irradiation, in that the exposure parameters are adapted in a planned manner during irradiation.
  • the known process can only be performed with satisfactory results, if either the absorption characteristics of the irradiated objects are known and/or are the same for all the irradiated areas, or if the intensity distribution of the coagulation irradiation at the location of the action is known and/or is constant for all the irradiations.
  • Recent research has shown that conclusions can only be drawn on the energy quantities deposited in the absorption coatings when at least one of these prerequisites regarding the measurement of the latent period and the constant luminance growth rate at the start of the luminance change is known. Only then is it possible to forecast the further course of the irradiation action, which can be controlled by varying the irradiation parameters.
  • the known process also assumes that the irradiation action and the extension of the coagulation zone can be adequately monitored, in that the luminance prevailing in the complete area imaged in the diaphragm in the intermediate image plane is measured.
  • an integral measurement which supplies a mean value, cannot distinguish whether a narrowly defined partial area within the measured area has become brighter, i.e. the luminance has locally increased, or whether, in said area, the partial area in which an increased luminance exists has spread.
  • a local coagulation acting in the depth of the tissue, cannot be distinguished from a radial expansion or a radial extension of the coagulation zone of the surface of the tissue and both are in fact evaluated as the same reaction.
  • both the absorption characteristics which can vary widely, known or obtainable by measurement, or is it possible to reliably adjust and control the intensity distribution of the coagulation radiation at the point of action, because it is often considerably impaired by fine irregularities in transmitting and imaging media.
  • both the intensity distribution and the absorption and consequently the effectiveness of the irradiation can be greatly impaired by inhomogeneities, such as differences in the tissue structure or the nature of the tissue, or also portions of adjacent, already coagulated areas within the area irradiated with the intense light source.
  • the imaging and transmission conditions for the intense light irradiation also locally vary in different ways with the increase in the light scattering in the coagulated area during the coagulation process. These local differences cannot be individually determined with the integral measurement of the luminance, which merely supplies a mean value for the total surface area illuminated by the measuring beam. Moreover, incorrect measurement of the luminance caused by reflections of the measuring beam on other surfaces of the measuring system, i.e. the illuminating and measuring optics are only detected if made apparent by considerable divergences from the customary values.
  • the problem of the invention is to provide a process making it possible to determine local differences within the area to be measured and more particularly making it possible during the coagulation process to distinguish whether the luminance has locally increased in a partial area or whether said partial area has increased in size with increased luminance.
  • the invention is based on the finding that the increase in the luminance during the coagulation of biological tissue is a measure of the size of the volume of the coagulated tissue, in accordance with the relation:
  • R is the luminance increase in the coagulated area and V the volume of the coagulated tissue
  • p is a coefficient, which is dependent on the nature of the tissue and can be experimentally determined.
  • the process according to the invention makes it possible to determine irregularities in the intense light irradiation and/or measuring radiation, which are for example due to reflections and/or limitations to the radiation in the optical system. These irregularities can be detected by means of the pattern of the local luminance distribution.
  • the process according to the invention advantageously makes it possible to determine the depth of the coagulation action in a given partial area if its surface is known and the ratio of the luminance to the size of the tissue volume re-emitting the light is known on the basis of experimental investigation.
  • the process according to the invention also has the advantage that it can detect irregularities in the spatial extension of the coagulation zone, which can be taken into consideration during the control.
  • solid-state image sensors involves employing known technology, which is particularly suitable for performing the process according to the invention when combined with laser treatment apparatus and a precise computerized control circuit.
  • FIG. 1 is a diagrammatic view of the apparatus
  • FIG. 2 is an enlarged elevational view of an array of photodiodes or an arrangement of individual light detectors
  • FIG. 3 is a graph diagrammatically indicating the spatial intensity distribution of the intense light of a first laser reflected from an area and a second laser reflected from the area measuring radiation, as can be determined by means of detectors arranged along a diameter of the detector surface to indicate the light intensity across the irradiated surface;
  • FIG. 4 a diagram in which the luminance increase within the individual partial area groups is plotted during an irradiation with a constant intensity distribution up to 1000 ms and relative to time;
  • FIG. 5 a block circuit diagram of the evaluation and control circuit.
  • the numeral 20 generally designates apparatus which may be employed for accomplishing the process described herein.
  • the apparatus includes an argon laser 22 connected through a flexible fiberoptic cable 24 and a connector tube 22' connectable to a slit lamp 26 and microscope 26' of a type which are commercially available from Coherent Medical Group of Palo Alto, Calif., and is referred to as Innova 910 ophthalmic photocoagulator and multipurpose laser system.
  • the argon laser 22 produces the treatment beam of light of approximately 4.0 watts of blue-green argon light having a wave length of 488 and 514 nanometers (nm) or 1.5 watts of green-only argon light with green-only option having a wave length of 514 nm.
  • the lens structure is adjustable to provide spot sizes ranging from 50 to 2,000 microns.
  • a control module permits adjustment of power levels and adjustment of the spot size. Since argon lasers and slit lamps for use as a photocoagulator are well known to persons skilled in the art, further description of this aspect of the apparatus is not deemed necessary. An early form of a similar laser photocoagulator is disclosed in U.S. Pat. No. 3,720,213.
  • the slit lamp 26 is preferably of the type commercially available from Carl Zeiss, Inc. of New York City, NY., and distributed as a "Slit Lamp 30 SL-M" which is conventionally used by ophthalmologists for examination and treatment of eyes.
  • the exposure time of the argon laser 22 is controlled by a shutter controller 23, as will be hereinafter more fully explained, which is provided as a component of the argon laser 22 but controlled by a computer circuit.
  • a helium-neon laser 28 preferably has a power output of 0.5 mW and forms a beam having a wave length of 632 nm to function as a pilot laser.
  • a suitable laser is commercially available from Newport Corporation of Fountain Valley, Calif. and is distributed under the trademark Spectra-Physics HeNe Laser Model Sp-155A.
  • An electronic shutter 30 is mounted to selectively interrupt the light beam measuring radiation emitted from the pilot laser 28.
  • a suitable shutter is available from Newport Corporation and is generally referred to as a Model 884 Electronic Shutter featuring a 6 mm diameter open aperture, black tefloncoated plates rated at up to one watt and one millisecond minimum open time.
  • a mounting system including a lens holder (not shown) is employed for supporting a lens system 34 and mirror 36 and a beam splitter 40 as illustrated in FIG. 1 of the drawing for combining the beam 50 of the heliumneon laser with the beam 60 of the argon laser to form a combined beam 70 which is directed into the eye by a mirror 38 on the slit lamp 26.
  • the combined beam 70 impinges against tissue such as the retina in the posterior aspect of the eye or other tissue.
  • the mirror 38 is manually controlled by a joy stick 38' or remotely controlled by horizontal and vertical actuators 102 and 104 as will be hereinafter more fully explained.
  • Light from the combined beam 70 from lasers 22 and 28 is reflected from surface 75 in the eye and delivered by a mirror 80 through a lens system 82 and a filter 84 to a two dimensional photodiode array 85.
  • Each photodiode in array 85 generates electrical signals related to the light intensity reflected from a corresponding portion of the area on surface 75.
  • a suitable photodiode array is available from Reticon Corporation of Sunnyvale, Calif., which is a subsidiary of EG&G, Inc. of Wellesley, Mass.
  • the photodiode array is distributed as EG&G Reticon RA100 ⁇ 100A and is a two-dimensional self-scanned optical sensor array which has 10,000 diodes arranged in a 100 ⁇ 100 matrix.
  • Diode spacing is on sixty micron centers in either dimension. Scanning is by means of two shift registers, one running at a sample rate and the other at a line rate. The maximum sample rate is 10 MHz.
  • the individual diodes are packaged in a twenty-four pin dual-in-line package with a ground and polished window covering the mask-defined active area.
  • a MOS dynamic shift register sequentially selects the diode rows while two bucket brigades select the diodes from each column. Each position of the shift register selects two diode rows through two multiplexing gates, one for the odd and the other for selecting the even. This property of odd and even selection gives the array an added feature by providing the user the choice of selecting the odd and even fields.
  • the shift register selects rows by a clock.
  • the transfer gates parallel transfer the selected diode in each column into the bucket brigade.
  • One bucket brigade obtains information from odd and the other bucket brigade the information from even diode columns. Each bucket brigade then shifts that information sequentially to the output.
  • the system hereinbefore described is controlled by a computer 90 which processes data received from the photodiode array 85 and controls the lasers 23 and 28.
  • a suitable computer 90 for controlling the apparatus is a Hewlett Packard, Model 26S computer, product number HP9826S equipped with a multi-programmer main frame 92 (Hewlett Packard Model 6944A) and plug-in cards to provide the required control functions.
  • Analog-to-digital converter card 94 (Hewlett Packard 69759A) measures bipolar DC voltages and return the digitized value to the controller to indicate the magnitude and sign of the measured voltage on cable 93 connected to the photodetector array 85. Up to 100,000 readings per second can be transferred from the A/D converter 94 to a Hewlett Packard 69791A memory card 95 (via the external data outputs). Each reading can be initiated by program commands or by an external trigger signal.
  • a timer/pacer card 96 (Hewlett Packard Product No. 69736A) provides an output which is a programmable pulse from one microsecond to 18 hours in duration. In the normal mode, the output is a single pulse that can be used as a programmable delay. This card controls and triggers the other cards in the system.
  • a stepping motor controller card 106 (Hewlett Packard Product No. 69735A) delivers current through cable 107 to energize stepping motor 108 to rotate a screw 110 for adjusting the spacing between the lenses of the laser focusing lens system 25 in the argon laser 22.
  • a relay output card 134 (Hewlett Packard Product No. 69730A) is connected through line 130 to shutter 23 of the argon laser 22 and through lines 132 and 136 to filter 84 and shutter 30.
  • This circuit operates as a flip-flop such that when shutter 30 is open to pass the light beam from the HeNe laser 28, the filter 84 is in position to pass only light having a wave length of 632 nm. When shutter 30 is closed, the filter 84 is moved to an inactive position to pass reflected light from the argon beam.
  • a digital output card 140 having sixteen separate channels, is connected through cable 142 to control power of the laser 22 and through cables 144 and 146 to the photodiode array 85.
  • a remote control module and interface 148 (Newport Corporation 855C Programmable Controller) is connected to the computer 90 by a cable 150 and delivers pulses through cables 100 and 101, respectively, to actuators 102 and 104 for moving the joy stick controller 38'.
  • a video monitor 152 is connected through cable 154 to cable 93 to display the output of the photodiode array 85. This output provides for visual observation of the tissue in surface 75 in the eye.
  • An interrupt card 160 is controlled by a suitable software program to initiate the digital output functions which are controlled by output cards 140 and 134.
  • the irradiation optics of the argon laser intense light source 22, as well as the photodiode detector device 85 and the helium-neon laser 28 for measuring the local luminance distribution is aligned by adjusting the patient and rotating the microscope with the area in which coagulation is to take place.
  • this area is also imaged in the plane, in which is located the detector elements di in the photodiode array 85 corresponding to the center of the irradiated surface area as illustrated in FIG. 2.
  • the local luminance distribution which still does not have an effective intensity within this area due to the irradiation with the intense light source is measured by interrogating each of the photodiode detectors di in the array 85 which, by means of the selection circuit element according to the block diagram of FIG. 5, are connected via a data bus with the various evaluation circuits.
  • the quotients Ri/Rj of the luminances Ri in the individual partial areas Ti represented by each photodiode light detector element by the largest luminance Rj in the partial area Tj the relative luminance distribution and consequently the relative local intensity distribution of the coagulation radiation are determined.
  • the relative local luminance distribution of the measuring radiation is determined in the same way.
  • FIG. 3 shows a cross-section of the luminance distributions of the sub-threshold intense light radiation K of the argon laser 22 and the measuring radiation M of the heliumneon laser 28.
  • a check is made beforehand by comparing the luminance distributions of the intense light irradiation and the measuring radiation to establish whether the area illuminated by the latter also covers in the intended manner the area irradiated by the intense light source.
  • the luminance R1 prevailing in the partial area groups Gi is then retained as values Roi at the start of coagulation irradiation and before coagulation is started with a preselected and now effective irradiation intensity.
  • the relative luminance Ri/Roi is measured at regular intervals in the individual partial area groups Gi.
  • the interval between this time and the end of the latent period is dependent both on the irradiation intensity prevailing in this partial area group, the energy which has taken place there and the size of said partial area group.
  • the further course of the coagulation spread can be regulated by a planned change to the radiation intensity and/or the radiation time and/or the diameter of the area irradiated by the intense light source.
  • the irradiation and measuring optics can be moved by using the actuators 102 and 104 so far out of the previous irradiation field that it is possible to measure a distribution pattern, which is not impaired any more than intended by projecting in of the previous coagulation zone. This permits rapid coagulation in reliable uniform intervals, as is frequently required in practice.
  • FIG. 5 diagrammatically shows a block logic circuit diagram of the evaluation and control circuit. It compresses a timer 1 and a selection circuit 2 for selecting and interrogating detectors Di. The outputs of the timer and the selection circuit are connected across a data line with the individual circuits 3-16 and logic circuit 17, which determine the aforementioned quantities, e.g. the relative luminance, its time and spatial gradient, etc. The outputs of circuit 3-16 are connected to the inputs of a logic circuit. From the data fed in, the logic circuit determines control data for the regulating units 18, 19 connected thereto, which in turn act on the intense light source 22, as well as its imaging optics and the sighting unit.
  • the logic circuit determines control data for the regulating units 18, 19 connected thereto, which in turn act on the intense light source 22, as well as its imaging optics and the sighting unit.

Abstract

A process to control the extent of photocoagulation of the retina wherein light reflected from discrete portions (Ti) of the retina (75) in the eye is projected by a lens system (82) to individual photodiodes (DI) in an array (85) to generate electrical signals related to the light intensity reflected from a corresponding portion (Ti) on the retina (75) being treated. A change in the reflectance of any discrete portion (Ti) of an area on the retina relative to the reflectance of any discrete portion of the area on the retina actuates a control mechanism associated with laser (22). Upon a change to a threshold reflectance or a maximum rate of change in reflectance, a control apparatus (90) automatically adjusts parameters of treatment including power (22), focus (25) or sighting (102, 104).

Description

This is a division of application Ser. No. 07/057,692, filed May 26, 1987, now U.S. Pat. No. 4,719,912, issued Jan. 19, 1988.
The present invention relates to a process for controlling the coagulation of biological tissue and improvements in apparatus for controlling the coagulation of tissue of the type disclosed in German Application No.P 30 24 169.1-35; in Documenta Ophthalmologica Proceedings Series 36--"Laser Treatment and Photocoagulation of the Eye," Proceeding of the International Symposium Munich, F.R.G. September 1982; and GSF-Bericht BPT 5, published by Gesellschaft Fur Strahlen-und Umweltforschung, Munich, West Germany, "Time Dependence of the Retina-Reaction during and after Laser coagulation with Various Coagulation Parameters." The method and apparatus are, for example, used in ophthalmology for the treatment of retinal diseases. However, the method may be used in processes wherein a change in reflectance of a surface results from treatment of the surface and the underlying material on which the surface is formed.
In the known process and the associated apparatus, the area or part of said area which is to undergo photocoagulation is imaged in the form of an intermediate image by means of an optical device. The light flux passing through a diaphragm installed in the intermediate image is proportional to the luminance prevailing in the diaphragm field and is supplied to a detector. This makes it possible to measure the average luminance prevailing in the complete area illuminated by the measuring radiation and imaged in the intermediate image, as well as its time change during the coagulation process. Typically, the time behaviour of the luminance has a certain "latent period", during which the luminance is initially constant, this being followed by a second phase in which the luminance increases linearly with time. Information is obtained from the length of the latent period and the size of the growth rate in the linear luminance increase phase, which enables forecasts to be made regarding the further course of the coagulation action. This makes it possible to influence the total coagulation action obtained during the actual irradiation, in that the exposure parameters are adapted in a planned manner during irradiation.
However, the known process can only be performed with satisfactory results, if either the absorption characteristics of the irradiated objects are known and/or are the same for all the irradiated areas, or if the intensity distribution of the coagulation irradiation at the location of the action is known and/or is constant for all the irradiations. Recent research has shown that conclusions can only be drawn on the energy quantities deposited in the absorption coatings when at least one of these prerequisites regarding the measurement of the latent period and the constant luminance growth rate at the start of the luminance change is known. Only then is it possible to forecast the further course of the irradiation action, which can be controlled by varying the irradiation parameters. The known process also assumes that the irradiation action and the extension of the coagulation zone can be adequately monitored, in that the luminance prevailing in the complete area imaged in the diaphragm in the intermediate image plane is measured. However, such an integral measurement, which supplies a mean value, cannot distinguish whether a narrowly defined partial area within the measured area has become brighter, i.e. the luminance has locally increased, or whether, in said area, the partial area in which an increased luminance exists has spread. This means that with the known process, a local coagulation, acting in the depth of the tissue, cannot be distinguished from a radial expansion or a radial extension of the coagulation zone of the surface of the tissue and both are in fact evaluated as the same reaction.
Under the normal conditions prevailing in the photocoagulation of biological tissue, for example in the case of retina treatment with intense light, neither are the absorption characteristics, which can vary widely, known or obtainable by measurement, or is it possible to reliably adjust and control the intensity distribution of the coagulation radiation at the point of action, because it is often considerably impaired by fine irregularities in transmitting and imaging media. In addition, both the intensity distribution and the absorption and consequently the effectiveness of the irradiation, can be greatly impaired by inhomogeneities, such as differences in the tissue structure or the nature of the tissue, or also portions of adjacent, already coagulated areas within the area irradiated with the intense light source. The imaging and transmission conditions for the intense light irradiation also locally vary in different ways with the increase in the light scattering in the coagulated area during the coagulation process. These local differences cannot be individually determined with the integral measurement of the luminance, which merely supplies a mean value for the total surface area illuminated by the measuring beam. Moreover, incorrect measurement of the luminance caused by reflections of the measuring beam on other surfaces of the measuring system, i.e. the illuminating and measuring optics are only detected if made apparent by considerable divergences from the customary values.
Thus, the problem of the invention is to provide a process making it possible to determine local differences within the area to be measured and more particularly making it possible during the coagulation process to distinguish whether the luminance has locally increased in a partial area or whether said partial area has increased in size with increased luminance.
The invention is based on the finding that the increase in the luminance during the coagulation of biological tissue is a measure of the size of the volume of the coagulated tissue, in accordance with the relation:
R=p V
in which R is the luminance increase in the coagulated area and V the volume of the coagulated tissue, while p is a coefficient, which is dependent on the nature of the tissue and can be experimentally determined. The measurement of the local distribution of the luminance in the coagulation area makes it possible to precisely establish which volume has been assumed by the coagulated area. This evaluation can take place during irradiation and it is then possible to reliably control the intense light source and its imaging optics and consequently the coagulation action.
The process according to the invention makes it possible to determine irregularities in the intense light irradiation and/or measuring radiation, which are for example due to reflections and/or limitations to the radiation in the optical system. These irregularities can be detected by means of the pattern of the local luminance distribution. In particular, the process according to the invention advantageously makes it possible to determine the depth of the coagulation action in a given partial area if its surface is known and the ratio of the luminance to the size of the tissue volume re-emitting the light is known on the basis of experimental investigation.
The process according to the invention also has the advantage that it can detect irregularities in the spatial extension of the coagulation zone, which can be taken into consideration during the control.
The performance of the process according to the invention leads to the following advantages:
1. With the formation of the quotients of the luminances in the partial areas, it is possible to determine the relative luminance distribution and consequently also the relative size of the local irregularities, which in turn make it possible to discriminate inhomogeneities of the object and interferences in the irradiating and measuring optics.
2. On the basis of this information and using the regulating member 19 and the sighting unit, it is possible to correct the distribution in which the intense light source and/or measuring radiation source is imaged on the measured area, while also making it possible to select the target area.
3. By subtracting the relative luminance changes in the partial areas and/or partial area groups, it is possible to determine relative divergences with respect to the symmetrical coagulation action.
4. By subtracting the relative luminances, time interval of the latent periods and the time gradients of the luminance changes in the partial areas and/or partial area groups, it is possible to determine the spatial gradients of the coagulation action.
5. By forming the quotients of the luminances, time interval of the latent periods and the time gradients of the luminance changes in the partial areas and/or partial area groups, it is possible to determine relative divergences with respect to the symmetrical spread of the coagulation action.
6. By comparing the measured local luminances, and the magnitudes determined therefrom with predetermined values, it is possible to fix limits for the coagulation action which, if exceeded, can have undesired effects.
7. By combining the partial areas into partial area groups, it is possible to reduce the quantity of data to be processed and consequently the measurement and control of the expected coagulation action can be adapted as regards time and space.
8. Time adaptation of the measurement and control of the expected coagulation action is made possible by the variable selectable scanning rates of the luminances.
9. The use of solid-state image sensors involves employing known technology, which is particularly suitable for performing the process according to the invention when combined with laser treatment apparatus and a precise computerized control circuit.
10. By measuring the luminance in the transmission, it is possible to measure and control the coagulation action with increased sensitivity with respect to its extension in the depth of the tissue.
DESCRIPTION OF DRAWING
The invention is described in greater detail hereinafter relative to a preferred embodiment of the invention illustrated in the attached drawings, wherein:
FIG. 1 is a diagrammatic view of the apparatus;
FIG. 2 is an enlarged elevational view of an array of photodiodes or an arrangement of individual light detectors;
FIG. 3 is a graph diagrammatically indicating the spatial intensity distribution of the intense light of a first laser reflected from an area and a second laser reflected from the area measuring radiation, as can be determined by means of detectors arranged along a diameter of the detector surface to indicate the light intensity across the irradiated surface;
FIG. 4 a diagram in which the luminance increase within the individual partial area groups is plotted during an irradiation with a constant intensity distribution up to 1000 ms and relative to time; and
FIG. 5 a block circuit diagram of the evaluation and control circuit.
Numeral references are employed to designate like parts throughout the various figures of the drawing.
DESCRIPTION OF A PREFERRED EMBODIMENT
Referring to FIG. 1 of the drawing, the numeral 20 generally designates apparatus which may be employed for accomplishing the process described herein. The apparatus includes an argon laser 22 connected through a flexible fiberoptic cable 24 and a connector tube 22' connectable to a slit lamp 26 and microscope 26' of a type which are commercially available from Coherent Medical Group of Palo Alto, Calif., and is referred to as Innova 910 ophthalmic photocoagulator and multipurpose laser system.
The argon laser 22 produces the treatment beam of light of approximately 4.0 watts of blue-green argon light having a wave length of 488 and 514 nanometers (nm) or 1.5 watts of green-only argon light with green-only option having a wave length of 514 nm. The lens structure is adjustable to provide spot sizes ranging from 50 to 2,000 microns. A control module permits adjustment of power levels and adjustment of the spot size. Since argon lasers and slit lamps for use as a photocoagulator are well known to persons skilled in the art, further description of this aspect of the apparatus is not deemed necessary. An early form of a similar laser photocoagulator is disclosed in U.S. Pat. No. 3,720,213.
The slit lamp 26 is preferably of the type commercially available from Carl Zeiss, Inc. of New York City, NY., and distributed as a "Slit Lamp 30 SL-M" which is conventionally used by ophthalmologists for examination and treatment of eyes.
The exposure time of the argon laser 22 is controlled by a shutter controller 23, as will be hereinafter more fully explained, which is provided as a component of the argon laser 22 but controlled by a computer circuit.
A helium-neon laser 28 preferably has a power output of 0.5 mW and forms a beam having a wave length of 632 nm to function as a pilot laser. A suitable laser is commercially available from Newport Corporation of Fountain Valley, Calif. and is distributed under the trademark Spectra-Physics HeNe Laser Model Sp-155A. An electronic shutter 30 is mounted to selectively interrupt the light beam measuring radiation emitted from the pilot laser 28. A suitable shutter is available from Newport Corporation and is generally referred to as a Model 884 Electronic Shutter featuring a 6 mm diameter open aperture, black tefloncoated plates rated at up to one watt and one millisecond minimum open time.
A mounting system including a lens holder (not shown) is employed for supporting a lens system 34 and mirror 36 and a beam splitter 40 as illustrated in FIG. 1 of the drawing for combining the beam 50 of the heliumneon laser with the beam 60 of the argon laser to form a combined beam 70 which is directed into the eye by a mirror 38 on the slit lamp 26. The combined beam 70 impinges against tissue such as the retina in the posterior aspect of the eye or other tissue. The mirror 38 is manually controlled by a joy stick 38' or remotely controlled by horizontal and vertical actuators 102 and 104 as will be hereinafter more fully explained.
Light from the combined beam 70 from lasers 22 and 28 is reflected from surface 75 in the eye and delivered by a mirror 80 through a lens system 82 and a filter 84 to a two dimensional photodiode array 85. Each photodiode in array 85 generates electrical signals related to the light intensity reflected from a corresponding portion of the area on surface 75. A suitable photodiode array is available from Reticon Corporation of Sunnyvale, Calif., which is a subsidiary of EG&G, Inc. of Wellesley, Mass. The photodiode array is distributed as EG&G Reticon RA100×100A and is a two-dimensional self-scanned optical sensor array which has 10,000 diodes arranged in a 100×100 matrix. Diode spacing is on sixty micron centers in either dimension. Scanning is by means of two shift registers, one running at a sample rate and the other at a line rate. The maximum sample rate is 10 MHz. The individual diodes are packaged in a twenty-four pin dual-in-line package with a ground and polished window covering the mask-defined active area.
A MOS dynamic shift register sequentially selects the diode rows while two bucket brigades select the diodes from each column. Each position of the shift register selects two diode rows through two multiplexing gates, one for the odd and the other for selecting the even. This property of odd and even selection gives the array an added feature by providing the user the choice of selecting the odd and even fields.
Together the shift register and the bucket brigade process the signal. The shift register selects rows by a clock. The transfer gates parallel transfer the selected diode in each column into the bucket brigade. One bucket brigade obtains information from odd and the other bucket brigade the information from even diode columns. Each bucket brigade then shifts that information sequentially to the output.
The system hereinbefore described is controlled by a computer 90 which processes data received from the photodiode array 85 and controls the lasers 23 and 28.
A suitable computer 90 for controlling the apparatus is a Hewlett Packard, Model 26S computer, product number HP9826S equipped with a multi-programmer main frame 92 (Hewlett Packard Model 6944A) and plug-in cards to provide the required control functions.
Analog-to-digital converter card 94 (Hewlett Packard 69759A) measures bipolar DC voltages and return the digitized value to the controller to indicate the magnitude and sign of the measured voltage on cable 93 connected to the photodetector array 85. Up to 100,000 readings per second can be transferred from the A/D converter 94 to a Hewlett Packard 69791A memory card 95 (via the external data outputs). Each reading can be initiated by program commands or by an external trigger signal.
A timer/pacer card 96 (Hewlett Packard Product No. 69736A) provides an output which is a programmable pulse from one microsecond to 18 hours in duration. In the normal mode, the output is a single pulse that can be used as a programmable delay. This card controls and triggers the other cards in the system.
A stepping motor controller card 106 (Hewlett Packard Product No. 69735A) delivers current through cable 107 to energize stepping motor 108 to rotate a screw 110 for adjusting the spacing between the lenses of the laser focusing lens system 25 in the argon laser 22.
A relay output card 134 (Hewlett Packard Product No. 69730A) is connected through line 130 to shutter 23 of the argon laser 22 and through lines 132 and 136 to filter 84 and shutter 30. This circuit operates as a flip-flop such that when shutter 30 is open to pass the light beam from the HeNe laser 28, the filter 84 is in position to pass only light having a wave length of 632 nm. When shutter 30 is closed, the filter 84 is moved to an inactive position to pass reflected light from the argon beam.
A digital output card 140, having sixteen separate channels, is connected through cable 142 to control power of the laser 22 and through cables 144 and 146 to the photodiode array 85.
A remote control module and interface 148 (Newport Corporation 855C Programmable Controller) is connected to the computer 90 by a cable 150 and delivers pulses through cables 100 and 101, respectively, to actuators 102 and 104 for moving the joy stick controller 38'.
A video monitor 152 is connected through cable 154 to cable 93 to display the output of the photodiode array 85. This output provides for visual observation of the tissue in surface 75 in the eye.
An interrupt card 160 is controlled by a suitable software program to initiate the digital output functions which are controlled by output cards 140 and 134.
The manufacturer's descriptions and specifications of the various computer and laser devices referred to above are incorporated herein by reference for all purposes.
Firstly, the irradiation optics of the argon laser intense light source 22, as well as the photodiode detector device 85 and the helium-neon laser 28 for measuring the local luminance distribution is aligned by adjusting the patient and rotating the microscope with the area in which coagulation is to take place. Thus, this area is also imaged in the plane, in which is located the detector elements di in the photodiode array 85 corresponding to the center of the irradiated surface area as illustrated in FIG. 2. The local luminance distribution, which still does not have an effective intensity within this area due to the irradiation with the intense light source is measured by interrogating each of the photodiode detectors di in the array 85 which, by means of the selection circuit element according to the block diagram of FIG. 5, are connected via a data bus with the various evaluation circuits. By the formation of the quotients Ri/Rj of the luminances Ri in the individual partial areas Ti represented by each photodiode light detector element by the largest luminance Rj in the partial area Tj, the relative luminance distribution and consequently the relative local intensity distribution of the coagulation radiation are determined. Then, the relative local luminance distribution of the measuring radiation is determined in the same way. FIG. 3 shows a cross-section of the luminance distributions of the sub-threshold intense light radiation K of the argon laser 22 and the measuring radiation M of the heliumneon laser 28.
On the basis of each of these measured local distributions, a check is made by comparing the known distributions whether and to what extent irregularities are present. Their divergence from the predetermined distribution patterns are recognized by forming differences Ri-Rj of the luminances Ri, Rj in the adjacent partial areas Ti, Tj with equal distances from the partial area with the maximum luminance. On the basis of the size and location of the irregularity in the distribution pattern, conclusions can be drawn regarding their cause as an inhomogeneity in the tissue and/or interference in the irradiation and imaging optics.
On the basis of these luminance distributions of the measuring radiation, the field illuminated by said measuring radiation is combined into m=10 partial area groups Gi of photodiodes di of array 85 by corresponding linking of individual adjacent detector elements. These represent half-ring surfaces of equal area with the same number of diodes in each half-ring area, which are concentric to the partial area with the maximum luminance and with increasing distance from said center, and are in each case displaced by 90° (of FIG. 2). A check is made beforehand by comparing the luminance distributions of the intense light irradiation and the measuring radiation to establish whether the area illuminated by the latter also covers in the intended manner the area irradiated by the intense light source. The luminance R1 prevailing in the partial area groups Gi is then retained as values Roi at the start of coagulation irradiation and before coagulation is started with a preselected and now effective irradiation intensity.
During the following coagulation irradiation, the relative luminance Ri/Roi is measured at regular intervals in the individual partial area groups Gi. The number of measuring times, at the end of which the relative luminance Ri/Roi in the partial area group Gi is greater than 0.1 for the first time, is the latent period Di (of FIG. 4). After the latent period Dj in another area group Gj has been determined, by subtracting the latent periods Di-Dj of the luminance change in adjacent partial area groups Gi, Gj within the different radii (of FIG. 2, e.g. i=4., j=2), it is possible to determine the speed of the radial extension of the coagulation zone. By forming the quotients Di/Dj of the latent periods of partial area groups Gi, Gj within the same radii (of FIG. 2, e.g. i=3, j=4), it is possible to determine the relative difference in the radial propagation rate in different directions. The luminance in the individual partial area groups then increases firstly with a rising and then with a falling increment rate Si (FIG. 4). For example, S5 in FIG. 4 indicates the slope or rate of change of the relative intensity of light reflected to a specific group of photodiodes in the array 85. This is determined as the gradient of the luminance change. The number of measuring time intervals up to the time when the increment rate Si in the partial area group Gi decreases again for the first time, represents time "tsi." The interval between this time and the end of the latent period is dependent both on the irradiation intensity prevailing in this partial area group, the energy which has taken place there and the size of said partial area group.
Conclusions can be drawn regarding the ratio of the local coagulation action to its radial extension on the basis of experimental investigations based on the differences of the gradients of the luminance change in the partial area groups at different distances from the irradiation center. The relative difference in the coagulation action in the case of the asymmetrical formation of the coagulation zone can be established by forming the quotients of the gradients of the luminance change in two partial areas and at the same distance from the irradiation center. By subtracting the gradients of adjacent partial area groups at different distances from the center, on the basis of the 90° displacement, it is possible to further define the direction of the irregular spread. On the basis of experimental investigations, it is possible to forecast the further course of the luminance change and consequently also the spatial spread of the coagulation zone from the size of the latent period Di and the gradients of the luminance change Si at time "tsi," as well as the time interval tsi-Di (FIG. 5). As soon as the saturation value of the luminance change is reached within any one of the partial area groups, this value marks the complete coagulation of the tissue volume, whose surface is represented within this partial area group.
On the basis of this information, which can be determined at a very early stage of the coagulation action on subdividing the detector area into correspondingly small concentric surfaces around the radiation center, the further course of the coagulation spread can be regulated by a planned change to the radiation intensity and/or the radiation time and/or the diameter of the area irradiated by the intense light source.
At the end of the coagulation and while constantly measuring the luminance distribution in a predetermined direction, the irradiation and measuring optics can be moved by using the actuators 102 and 104 so far out of the previous irradiation field that it is possible to measure a distribution pattern, which is not impaired any more than intended by projecting in of the previous coagulation zone. This permits rapid coagulation in reliable uniform intervals, as is frequently required in practice.
FIG. 5 diagrammatically shows a block logic circuit diagram of the evaluation and control circuit. It compresses a timer 1 and a selection circuit 2 for selecting and interrogating detectors Di. The outputs of the timer and the selection circuit are connected across a data line with the individual circuits 3-16 and logic circuit 17, which determine the aforementioned quantities, e.g. the relative luminance, its time and spatial gradient, etc. The outputs of circuit 3-16 are connected to the inputs of a logic circuit. From the data fed in, the logic circuit determines control data for the regulating units 18, 19 connected thereto, which in turn act on the intense light source 22, as well as its imaging optics and the sighting unit.
The mathematical calculations described above and outlined in the logic diagram illustrated in FIG. 5 are accomplished by the software program in the computer 90. Having described the details of the cards in the computer circuit, further description of the manipulation of the data in the memory of the computer is not deemed necessary.

Claims (15)

Having described my invention, I claim:
1. A process for controlling the photocoagulation of biological tissue in which light is imaged on a zone which includes the area to be coagulated by a treatment light source and the region around it, comprising the steps of: measuring luminance in partial areas of the zone covering the area irradiated by the treatment light source and the region around it; determining values of luminance of the partial areas; comparing the determined values of the luminance of the partial areas and the quantities derived therefrom with predetermined values; and controlling irradiation by the treatment light source in response to a change in the luminance of a partial area of the zone relative to the luminance of the same or another partial area of the zone or of a partial area of the region around the zone.
2. A process according to claim 1 wherein partial areas are combined to form partial area groups and the combination of the partial areas to partial area groups is carried out on the basis of the measured luminances of the partial areas.
3. A process according to claim 2 wherein the combination of the partial areas to partial area groups take place in such a way that the surface contents of the partial area groups are predetermined and/or are of the same size, and/or that they are located along the lines of identical intensity within the intensity distribution of the intense light irradiation or the measuring radiation.
4. A process according to claim 1, wherein a pilot light source is imaged on the zone which includes the area to be coagulated by the treatment light source.
5. A process according to claim 4, wherein the treatment light source and the pilot light source are alternately used for measuring the luminances in the partial areas and the quantities derived therefrom in a predetermined manner.
6. A process according to claim 1, wherein the luminance is measured in transmission through the biological tissue.
7. A process according to claim 1, wherein the light of the treatment light source is used for measuring the luminance.
8. A process according to claim 1, wherein the area to be measured is imaged on an array of photodetectors and the individual photodetectors are interrogated for measuring the luminance.
9. A process of claim 1, wherein the area to be measured is imaged on a photodetector and the individual partial areas are successively scanned by a measured beam for measuring the luminance.
10. A process for controlling the photocoagulation of biological tissue comprising the steps of: imaging a pilot light source on a zone which includes an area to be coagulated by a treatment light source; dividing the zone into an array of individual partial areas; combining individual partial areas to form a plurality of partial area groups; and controlling photocoagulation by a treatment light source when one or more of the following derived quantities reaches a predetermined value:
(a) the quotient of the momentarily measured luminance of a partial group in the array divided the luminance in the same or a different partial area group measured at the start of irradiation,
(b) the difference between the momentarily measured luminance in a partial area group and the luminance of another partial area group,
(c) the quotient of the momentarily measured luminance of a first partial area group divided by the momentarily measured luminance of another partial area group,
(d) the difference of the quotient of the momentarily measured luminance in a first group divided by the luminance in the same partial area group measured at the start of irradiation and the quotient of the momentarily measured luminance of a second group divided by the luminance of the second group measured at the start of irradiation,
(e) the time interval for a specified change in luminance in a partial area group,
(f) the difference between the time interval of a specified luminance change in two different subgroups,
(g) the quotient of the time interval required for a specified luminance change in a first partial group divided by the time interval for a specified luminance change in a second partial area group,
(h) the time gradient of the luminance in a partial area group,
(i) the difference between the gradient of the luminance in a first partial area group and a second partial area group,
(j) the quotient of the time gradient of luminance in a first partial area group divided by the time gradient of luminance in a second partial area group,
(k) the spatial gradient of the luminance of a partial area group
11. A process for controlling the photocoagulation of biological tissue comprising the steps of: focusing a pilot light source to illuminate an area around a target area; providing an array of diodes; directing light reflected from each of a plurality of discrete portions of the illuminated area to corresponding photodiodes in the array; delivering a treatment beam having a wave length different from the wave length of the pilot light source to a target area inside the illuminated area; and controlling the treatment beam in response to changes in reflected light to a diode in the array of diodes resulting from changes in the tissue in the target area.
12. The process of claim 11 wherein the step of controlling the beam comprises: moving the beam across the tissue.
13. The process of claim 11 wherein the step of controlling the beam comprises: controlling the intensity of the treatment beam.
14. The process of claim 11, the step of controlling the treatment beam in response to changes in reflected light comprising the steps of: combining individual photodiodes to form groups of photodiodes corresponding to groups of discrete portions of the illuminated area; and controlling the treatment beam in response to relative values of luminance of the partial area groups.
15. A process for controlling the photocoagulation of biological tissue comprising the steps of:
dividing a zone to be treated by a light source into a array of partial areas of the zone covering the area to be irradiated by an intense light source and the region around it; initiating irradiation by an intense light source; comparing characteristics of biological tissue in each partial area in the array with biological tissue in each of the partial areas at the start of the irradiation; and controlling irradiation in response to a pre-determined degree of change in characteristics of tissue in a partial area relative to the characteristics of biological tissue in a partial area of the array at the start of the irradiation.
US07/145,140 1983-02-28 1988-01-19 Process for controlling the photocoagulation of biological tissue Expired - Fee Related US4880001A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3306981A DE3306981C2 (en) 1983-02-28 1983-02-28 Device for the photocoagulation of biological tissue
DE3306981 1983-02-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/057,692 Division US4719912A (en) 1983-02-28 1987-05-26 Apparatus for controlling the photocoagulation of biological tissue

Publications (1)

Publication Number Publication Date
US4880001A true US4880001A (en) 1989-11-14

Family

ID=6192051

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/057,692 Expired - Lifetime US4719912A (en) 1983-02-28 1987-05-26 Apparatus for controlling the photocoagulation of biological tissue
US07/145,140 Expired - Fee Related US4880001A (en) 1983-02-28 1988-01-19 Process for controlling the photocoagulation of biological tissue

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/057,692 Expired - Lifetime US4719912A (en) 1983-02-28 1987-05-26 Apparatus for controlling the photocoagulation of biological tissue

Country Status (7)

Country Link
US (2) US4719912A (en)
EP (1) EP0137835B1 (en)
JP (1) JPS60500603A (en)
AU (1) AU576756B2 (en)
CA (1) CA1215747A (en)
DE (2) DE3306981C2 (en)
WO (1) WO1984003220A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007424A1 (en) * 1992-10-07 1994-04-14 Summit Technology, Inc. Method and system for laser thermokeratoplasty
US5493109A (en) * 1994-08-18 1996-02-20 Carl Zeiss, Inc. Optical coherence tomography assisted ophthalmologic surgical microscope
US5571108A (en) * 1992-02-29 1996-11-05 Nidek Co., Ltd. Binocular stereo microscope
US5643250A (en) * 1992-08-07 1997-07-01 O'donnell, Jr.; Francis E. Laser probe hand piece
US6342053B1 (en) 1990-07-23 2002-01-29 Laser Biotech, Inc. Apparatus for cornea reshaping
US20030060811A1 (en) * 1998-11-30 2003-03-27 Mcdaniel David H. Process for treatment of psoriasis
US6585722B1 (en) 1999-08-05 2003-07-01 Nidek Co., Ltd. Photocoagulation apparatus
US6887260B1 (en) 1998-11-30 2005-05-03 Light Bioscience, Llc Method and apparatus for acne treatment
US20060129209A1 (en) * 1998-11-30 2006-06-15 Light Bioscience, Llc Method and apparatus for the stimulation of hair growth
WO2006091890A2 (en) * 2005-02-25 2006-08-31 The Board Of Trustees Of The Leland Stanford Junior University Real-time therapeutic dosimetry based on dynamic response of treated tissue
US20060200116A1 (en) * 2005-03-04 2006-09-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for temporary hair removal
US20060212025A1 (en) * 1998-11-30 2006-09-21 Light Bioscience, Llc Method and apparatus for acne treatment
US20080091187A1 (en) * 2005-03-04 2008-04-17 Searete Llc Hair treatment system
US20100137950A1 (en) * 2003-07-31 2010-06-03 Mcdaniel David H System and method for the photodynamic treatment of burns, wounds, and related skin disorders
US20110022039A1 (en) * 2008-03-21 2011-01-27 Koninklijke Philips Electronics N.V. Hair removal system and method
US8157807B2 (en) 2005-06-02 2012-04-17 The Invention Science Fund I, Llc Skin treatment including patterned light
US8540701B2 (en) 2005-03-04 2013-09-24 The Invention Science Fund I, Llc Hair treatment system
US8651111B2 (en) 2003-04-10 2014-02-18 David H. McDaniel Photomodulation methods and devices for regulating cell proliferation and gene expression
US20140228823A1 (en) * 2006-11-10 2014-08-14 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US20140277455A1 (en) * 2006-08-22 2014-09-18 National University Corporation Hokkaido University Laser processing apparatus, osseointegration method, implant material, and implant-material fabrication method
US9055958B2 (en) 2005-06-29 2015-06-16 The Invention Science Fund I, Llc Hair modification using converging light
US9192780B2 (en) 1998-11-30 2015-11-24 L'oreal Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3306981C2 (en) * 1983-02-28 1987-11-12 Wolfram 8048 Haimhausen Weinberg Device for the photocoagulation of biological tissue
DE3319203C2 (en) * 1983-05-27 1986-03-27 Fa. Carl Zeiss, 7920 Heidenheim Device for dose measurement during photocoagulation
HU191642B (en) * 1984-03-21 1987-03-30 Adam Kovacs Method and instrument for discriminating from one another and separating by way of operation organic tissues
AU602123B2 (en) * 1985-05-17 1990-10-04 Laser Holdings Limited Optical therapeutic and surgical system
JPS6290153A (en) * 1985-10-16 1987-04-24 興和株式会社 Laser beam coagulation apparatus
JPS6294154A (en) * 1985-10-18 1987-04-30 興和株式会社 Laser beam coagulation apparatus
JPS6294153A (en) * 1985-10-18 1987-04-30 興和株式会社 Laser beam coagulation apparatus
DE3776042D1 (en) * 1986-03-08 1992-02-27 Rodenstock Instr DEVICE FOR OBSERVING AND LASER TREATMENT.
US6267756B1 (en) * 1986-03-08 2001-07-31 G. Rodenstock Instrumente Gmbh Apparatus for the observation and the treatment of the eye using a laser
DE3607721A1 (en) * 1986-03-08 1987-09-10 Rodenstock Instr DEVICE FOR LASER TREATMENT OF THE EYE
DE3638226A1 (en) * 1986-11-08 1988-05-11 Rodenstock Instr DEVICE FOR OBSERVING THE REAR EYE SECTIONS
US4911711A (en) * 1986-12-05 1990-03-27 Taunton Technologies, Inc. Sculpture apparatus for correcting curvature of the cornea
US5401880A (en) * 1987-06-04 1995-03-28 Oculon Corporation Chemical prevention or reversal of cataract by phase separation inhibitors
US5338545A (en) * 1987-06-04 1994-08-16 Oculon Corporation Chemical prevention or reversal of cataract by phase separation inhibitors
JPH02500370A (en) * 1987-06-04 1990-02-08 マサチユーセツツ インステイテユート オブ テクノロジイ Cataract suppression method and cataract suppression reagent
US5091421A (en) * 1987-06-04 1992-02-25 Massachusetts Institute Of Technology Chemical prevention or reversal of cataract by phase separation inhibitors
US5290813A (en) * 1987-06-04 1994-03-01 Massachusetts Institute Of Technology Chemical prevention or reversal of cataract by phase separation inhibitors
US4957113A (en) * 1987-09-01 1990-09-18 Massachusetts Institute Of Technology Method for detecting cataractogenesis using quasi-elastic light scattering
US4993827A (en) * 1987-09-01 1991-02-19 Massachusetts Institute Of Technology Method for detecting cataractogenesis
US4788975B1 (en) * 1987-11-05 1999-03-02 Trimedyne Inc Control system and method for improved laser angioplasty
IL90318A (en) * 1988-05-19 1994-05-30 Refractive Laser Res & Dev Apparatus for performing surgery utilizing laser energy
US5364390A (en) * 1988-05-19 1994-11-15 Refractive Laser Research And Development, Inc. Handpiece and related apparatus for laser surgery and dentistry
DE3830378C2 (en) * 1988-09-07 1997-11-27 Zeiss Carl Fa Ophthalmic device
US5147349A (en) * 1988-10-07 1992-09-15 Spectra-Physics, Inc. Diode laser device for photocoagulation of the retina
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
JP2933945B2 (en) * 1989-05-29 1999-08-16 株式会社トプコン Laser therapy equipment
JPH031882A (en) * 1989-05-30 1991-01-08 Topcon Corp Laser treatment apparatus
DE3934647C2 (en) * 1989-10-17 1994-05-26 Deutsche Aerospace Surgical laser instrument
WO1991005515A1 (en) * 1989-10-19 1991-05-02 Australian Electro Optics Pty. Ltd. Fibre bundle coupled ophthalmic laser
US4972836A (en) * 1989-12-18 1990-11-27 General Electric Company Motion detector for high-resolution magnetic resonance imaging
US5071417A (en) * 1990-06-15 1991-12-10 Rare Earth Medical Lasers, Inc. Laser fusion of biological materials
US5725522A (en) * 1990-06-15 1998-03-10 Rare Earth Medical, Inc. Laser suturing of biological materials
US5540677A (en) * 1990-06-15 1996-07-30 Rare Earth Medical, Inc. Endoscopic systems for photoreactive suturing of biological materials
JP3165146B2 (en) * 1990-11-16 2001-05-14 株式会社ニデック Laser therapy equipment
US5279296A (en) * 1991-01-04 1994-01-18 Oculon Corporation Method and apparatus for detecting cataractogenesis
US5331649A (en) * 1991-07-10 1994-07-19 Alson Surgical, Inc. Multiple wavelength laser system
JPH06509952A (en) * 1991-08-22 1994-11-10 ディ・ビアッジョ、ロベルト・エンツォ Medical phototherapy device
DE4240477C1 (en) * 1992-12-02 1994-02-24 Preusner Paul Rolf Dipl Phys D Sunlight powered ophthalmic photocoagulator
US5312393A (en) * 1992-12-31 1994-05-17 Douglas Mastel Ring lighting system for microsurgery
IL108335A (en) * 1994-01-14 1999-04-11 Laser Ind Ltd Laser microscope adaptor apparatus with auto-focus
US6071275A (en) * 1995-01-05 2000-06-06 Laser Industries, Ltd. Laser microscope adaptor apparatus
US5921981A (en) * 1995-11-09 1999-07-13 Alcon Laboratories, Inc. Multi-spot laser surgery
US7655002B2 (en) * 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
AU5279898A (en) 1996-03-29 1998-03-26 Eclipse Surgical Technologies, Inc. Minimally invasive method and apparatus for forming revascularization channels
US5738679A (en) * 1996-06-26 1998-04-14 S.L.T. Japan Company Limited Apparatus for laser treatment for living tissue
US6056742A (en) * 1997-02-03 2000-05-02 Eclipse Surgical Technologies, Inc. Revascularization with laser outputs
US5993443A (en) * 1997-02-03 1999-11-30 Eclipse Surgical Technologies, Inc. Revascularization with heartbeat verification
DE19814095C2 (en) * 1998-03-30 2003-08-14 Zeiss Carl Jena Gmbh Method and arrangement for checking and controlling the treatment parameters on an ophthalmic treatment device
IT1316146B1 (en) * 2000-10-26 2003-03-28 Viptronic Srl PHOTOELECTRIC MEASUREMENT DEVICE WITH MULTIPLE SENSOR.
CA2359835A1 (en) * 2000-10-26 2002-04-26 Viptronic Gmbh Photo electric measuring device
US7160287B1 (en) * 2001-08-23 2007-01-09 Jerry Siegel Apparatus and method for performing radiation energy treatments
US8287524B2 (en) * 2001-08-23 2012-10-16 Jerry Siegel Apparatus and method for performing radiation energy treatments
US6733890B2 (en) * 2001-10-23 2004-05-11 Fujitsu Limited Integrated ceramic module and microwave dielectric composition
DE102005055885B4 (en) * 2005-11-23 2019-03-28 Carl Zeiss Meditec Ag Device for photocoagulation of the retina
US9889043B2 (en) * 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US10842675B2 (en) * 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US9545338B2 (en) * 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
DE502008001155D1 (en) * 2008-05-02 2010-09-30 Leister Process Tech Method and laser device for machining and / or connecting workpieces by means of laser radiation with power acting and pilot laser and at least one diffractive optical element
US8480659B2 (en) * 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US8500723B2 (en) * 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
EP2456402B1 (en) * 2009-07-24 2014-08-20 Lensar, Inc. Liquid holding interface device for ophthalmic laser procedures
US8382745B2 (en) * 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
CN102639078B (en) * 2009-07-24 2015-10-21 能斯雅有限公司 A kind of is the para-operative system and method for eye lens enforcement laser radar
AU2010275482A1 (en) * 2009-07-24 2012-02-16 Lensar, Inc. System and method for providing laser shot patterns to the lens of an eye
US8758332B2 (en) * 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
WO2011094678A1 (en) 2010-02-01 2011-08-04 Lensar, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
EP2531090A4 (en) * 2010-02-01 2014-11-12 Lensar Inc Placido ring measurement of astigmatism axis and laser marking of astigmatism axis
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
WO2012051490A1 (en) 2010-10-15 2012-04-19 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US9393154B2 (en) 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU251860A1 (en) * Э. С. Аветисов, Л. С. Урмахер, Ш. Шапиро , В. В. Набатчиков INFRARED ACCOMODOMETER
US3720213A (en) * 1971-02-05 1973-03-13 Coherent Radiation Laser photocoagulator
US3806829A (en) * 1971-04-13 1974-04-23 Sys Inc Pulsed laser system having improved energy control with improved power supply laser emission energy sensor and adjustable repetition rate control features
DE2829516A1 (en) * 1978-07-05 1980-01-17 Messerschmitt Boelkow Blohm Monitor for medical laser coagulator - detects changes in thermal radiation from irradiated tissue for conversion to temperature values
US4266549A (en) * 1978-10-12 1981-05-12 Hiroaki Kimura Laser scalpel
DE3024169A1 (en) * 1980-06-27 1982-01-28 Reginald Dipl.-Phys. Dr. 8021 Taufkirchen Birngruber DEVICE FOR PHOTOCOAGULATING BIOLOGICAL TISSUE
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
US4438765A (en) * 1981-06-04 1984-03-27 Jack Wilinsky Motion sensitive firable device
US4564012A (en) * 1981-09-28 1986-01-14 Hitachi, Ltd. Laser surgical equipment

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1113521A (en) * 1909-04-07 1914-10-13 Atlas Still Mfg Co Distilling apparatus.
US1361910A (en) * 1919-03-28 1920-12-14 Brownferrier Company Evaporator and condenser
US2423205A (en) * 1943-02-02 1947-07-01 Rowntree Joseph Seebohm Still with vapor separator
US2475482A (en) * 1945-10-05 1949-07-05 Higgins Ind Inc Water distillation unit
US3080302A (en) * 1958-11-04 1963-03-05 Submerged Comb Inc Process and apparatus for converting non-potable water to potable water
US3181351A (en) * 1962-11-06 1965-05-04 Honeywell Inc Non-contacting tonometer
US3334027A (en) * 1963-12-26 1967-08-01 Aqua Chem Inc Separation of entrained liquid droplets from vapors
US3326202A (en) * 1965-09-17 1967-06-20 Sullivan Valve & Engineering Co Atmospheric type water heating apparatus
US4164686A (en) * 1968-02-13 1979-08-14 Ponder & Best Inc. Load current pulse control devices
US3689159A (en) * 1970-06-11 1972-09-05 Mitsubishi Electric Corp Laser processing apparatus
US3694321A (en) * 1970-11-03 1972-09-26 Us Army Portable distillation unit
US3795784A (en) * 1971-08-06 1974-03-05 Singer Co Balancing system for a rotating mass
DE2202120A1 (en) * 1972-01-18 1973-07-26 Zeiss Carl Fa OPTICAL DEVICE FOR GENERATING COAGULATIONS, PREFERABLY ON THE RETINES OF ONE EYE
US3830705A (en) * 1972-10-16 1974-08-20 K Dewegeli Water distiller
SU555576A1 (en) * 1973-01-22 1977-09-05 Предприятие П/Я В-8117 Apparatus for laser therapy
US3907683A (en) * 1973-10-29 1975-09-23 Gilmont Instr Inc Multitubular constant head reflux condenser
US4148693A (en) * 1975-02-26 1979-04-10 Williamson William R Horizontal cylindrical distillation apparatus
JPS6057853B2 (en) * 1975-12-08 1985-12-17 キヤノン株式会社 fundus camera
JPS52111295A (en) * 1976-03-15 1977-09-17 Mochida Pharm Co Ltd Operational laser optical device under microscope
US4110170A (en) * 1976-04-28 1978-08-29 Kirschman Fred C Home water distiller
DE2620846C2 (en) * 1976-05-11 1982-02-04 Rostislav Antonovič Charševskij Laser therapy device
FR2357447A1 (en) * 1976-07-09 1978-02-03 Lucas Raymond DEVICE FOR CENTERING, STRAIGHTENING AND TURNING LOADS MOVED BY MOTORIZED CONVEYORS
IT1072136B (en) * 1976-12-07 1985-04-10 Indesit CIRCUIT TO OBTAIN A SAW TOOTH CURRENT IN A COIL
US4339307A (en) * 1977-01-21 1982-07-13 Ellis Jr John C Distillation apparatus
US4122853A (en) * 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4154530A (en) * 1977-12-22 1979-05-15 National Semiconductor Corporation Laser beam error correcting process
US4215694A (en) * 1978-06-01 1980-08-05 Isakov Viktor L Laser therapy apparatus
US4289378A (en) * 1978-06-21 1981-09-15 Ernst Remy Apparatus for adjusting the focal point of an operating laser beam focused by an objective
US4289373A (en) * 1978-08-17 1981-09-15 Nippon Electric Co., Ltd. Bidirectional optical fiber transmission system
US4249825A (en) * 1979-05-14 1981-02-10 The Trustees Of Boston University Method and apparatus suitable for ocular blood flow analysis
US4350163A (en) * 1980-05-29 1982-09-21 Ford Jr Norman C Method and apparatus for analyzing contaminants in aqueous humor
US4331514A (en) * 1980-08-12 1982-05-25 Bauer Martin G Still
US4350568A (en) * 1981-04-15 1982-09-21 Dalupan Romulo V High efficiency water distillation apparatus
DE3306981C2 (en) * 1983-02-28 1987-11-12 Wolfram 8048 Haimhausen Weinberg Device for the photocoagulation of biological tissue

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU251860A1 (en) * Э. С. Аветисов, Л. С. Урмахер, Ш. Шапиро , В. В. Набатчиков INFRARED ACCOMODOMETER
US3720213A (en) * 1971-02-05 1973-03-13 Coherent Radiation Laser photocoagulator
US3806829A (en) * 1971-04-13 1974-04-23 Sys Inc Pulsed laser system having improved energy control with improved power supply laser emission energy sensor and adjustable repetition rate control features
DE2829516A1 (en) * 1978-07-05 1980-01-17 Messerschmitt Boelkow Blohm Monitor for medical laser coagulator - detects changes in thermal radiation from irradiated tissue for conversion to temperature values
US4266549A (en) * 1978-10-12 1981-05-12 Hiroaki Kimura Laser scalpel
US4316467A (en) * 1980-06-23 1982-02-23 Lorenzo P. Maun Control for laser hemangioma treatment system
DE3024169A1 (en) * 1980-06-27 1982-01-28 Reginald Dipl.-Phys. Dr. 8021 Taufkirchen Birngruber DEVICE FOR PHOTOCOAGULATING BIOLOGICAL TISSUE
US4438765A (en) * 1981-06-04 1984-03-27 Jack Wilinsky Motion sensitive firable device
US4564012A (en) * 1981-09-28 1986-01-14 Hitachi, Ltd. Laser surgical equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Process for Automatic Sensing of Thermal Effects of Laser Beams and Arrangement for Implementation of the Process", Halldorsson et al., (Translation), 1980.
Process for Automatic Sensing of Thermal Effects of Laser Beams and Arrangement for Implementation of the Process , Halldorsson et al., (Translation), 1980. *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342053B1 (en) 1990-07-23 2002-01-29 Laser Biotech, Inc. Apparatus for cornea reshaping
US5571108A (en) * 1992-02-29 1996-11-05 Nidek Co., Ltd. Binocular stereo microscope
US5643250A (en) * 1992-08-07 1997-07-01 O'donnell, Jr.; Francis E. Laser probe hand piece
WO1994007424A1 (en) * 1992-10-07 1994-04-14 Summit Technology, Inc. Method and system for laser thermokeratoplasty
US5437658A (en) * 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
US5493109A (en) * 1994-08-18 1996-02-20 Carl Zeiss, Inc. Optical coherence tomography assisted ophthalmologic surgical microscope
US20100174222A1 (en) * 1998-11-30 2010-07-08 Mcdaniel David H Method and apparatus for acne treatment using low intensity light therapy
US20070191822A1 (en) * 1998-11-30 2007-08-16 Light Bioscience, Llc Method and apparatus for acne prevention
US6887260B1 (en) 1998-11-30 2005-05-03 Light Bioscience, Llc Method and apparatus for acne treatment
US20050261750A1 (en) * 1998-11-30 2005-11-24 Light Bioscience, Llc Method and apparatus for acne treatment
US20060129209A1 (en) * 1998-11-30 2006-06-15 Light Bioscience, Llc Method and apparatus for the stimulation of hair growth
US9017391B2 (en) 1998-11-30 2015-04-28 L'oreal Method and apparatus for skin treatment
US20060200213A1 (en) * 1998-11-30 2006-09-07 Mcdaniel David H Method and apparatus for skin treatment
US9227082B2 (en) 1998-11-30 2016-01-05 L'oreal Method and apparatus for acne treatment using low intensity light therapy
US20060212025A1 (en) * 1998-11-30 2006-09-21 Light Bioscience, Llc Method and apparatus for acne treatment
US9814906B2 (en) 1998-11-30 2017-11-14 L'oreal Method and apparatus for skin treatment
US7201765B2 (en) 1998-11-30 2007-04-10 Light Bioscience Llc Method and apparatus for acne treatment
US9192780B2 (en) 1998-11-30 2015-11-24 L'oreal Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders
US20100256550A1 (en) * 1998-11-30 2010-10-07 Mcdaniel David Process for treatment of psoriasis
US7494503B2 (en) 1998-11-30 2009-02-24 Light Bioscience, Llc Method and apparatus for acne prevention
US8651112B2 (en) 1998-11-30 2014-02-18 David McDaniel Process for treatment of psoriasis
US20100055789A1 (en) * 1998-11-30 2010-03-04 Mcdaniel David H Method and apparatus for the stimulation of hair growth
US20100121254A1 (en) * 1998-11-30 2010-05-13 Mcdaniel David H Method and apparatus for skin treatment
US20030060811A1 (en) * 1998-11-30 2003-03-27 Mcdaniel David H. Process for treatment of psoriasis
US6585722B1 (en) 1999-08-05 2003-07-01 Nidek Co., Ltd. Photocoagulation apparatus
US8651111B2 (en) 2003-04-10 2014-02-18 David H. McDaniel Photomodulation methods and devices for regulating cell proliferation and gene expression
US20100137950A1 (en) * 2003-07-31 2010-06-03 Mcdaniel David H System and method for the photodynamic treatment of burns, wounds, and related skin disorders
US9144690B2 (en) 2003-07-31 2015-09-29 L'oreal System and method for the photodynamic treatment of burns, wounds, and related skin disorders
US20060217691A1 (en) * 2005-02-25 2006-09-28 Georg Schuele Real-time therapeutic dosimetry based on dynamic response of treated tissue
WO2006091890A3 (en) * 2005-02-25 2009-04-16 Univ Leland Stanford Junior Real-time therapeutic dosimetry based on dynamic response of treated tissue
WO2006091890A2 (en) * 2005-02-25 2006-08-31 The Board Of Trustees Of The Leland Stanford Junior University Real-time therapeutic dosimetry based on dynamic response of treated tissue
US8529560B2 (en) 2005-03-04 2013-09-10 The Invention Science Fund I, Llc Hair treatment system
US8540701B2 (en) 2005-03-04 2013-09-24 The Invention Science Fund I, Llc Hair treatment system
US8562657B2 (en) 2005-03-04 2013-10-22 The Invention Science Fund I, Llc Photopatterning of skin
US20080091187A1 (en) * 2005-03-04 2008-04-17 Searete Llc Hair treatment system
US8679101B2 (en) 2005-03-04 2014-03-25 The Invention Science Fund I, Llc Method and system for temporary hair removal
US20060200116A1 (en) * 2005-03-04 2006-09-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for temporary hair removal
US8157807B2 (en) 2005-06-02 2012-04-17 The Invention Science Fund I, Llc Skin treatment including patterned light
US9055958B2 (en) 2005-06-29 2015-06-16 The Invention Science Fund I, Llc Hair modification using converging light
US20140277455A1 (en) * 2006-08-22 2014-09-18 National University Corporation Hokkaido University Laser processing apparatus, osseointegration method, implant material, and implant-material fabrication method
US20140228823A1 (en) * 2006-11-10 2014-08-14 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US9387123B2 (en) * 2006-11-10 2016-07-12 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US9872798B2 (en) 2006-11-10 2018-01-23 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US10052229B2 (en) 2006-11-10 2018-08-21 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US10603215B2 (en) 2006-11-10 2020-03-31 Topcon Medical Laser Systems, Inc. System and method for determining dosimetry in ophthalmic photomedicine
US8784407B2 (en) * 2008-03-21 2014-07-22 Koninklijke Philips N.V. Hair removal system and method
RU2497478C2 (en) * 2008-03-21 2013-11-10 Конинклейке Филипс Электроникс Н.В. System and method of depilation
JP2011515142A (en) * 2008-03-21 2011-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Hair removal system and method
US20110022039A1 (en) * 2008-03-21 2011-01-27 Koninklijke Philips Electronics N.V. Hair removal system and method

Also Published As

Publication number Publication date
JPS60500603A (en) 1985-05-02
US4719912A (en) 1988-01-19
AU2692384A (en) 1984-09-10
EP0137835A1 (en) 1985-04-24
DE3306981C2 (en) 1987-11-12
EP0137835B1 (en) 1991-07-24
DE3306981A1 (en) 1984-09-13
CA1215747A (en) 1986-12-23
DE3484837D1 (en) 1991-08-29
AU576756B2 (en) 1988-09-08
WO1984003220A1 (en) 1984-08-30
EP0137835A4 (en) 1986-11-27

Similar Documents

Publication Publication Date Title
US4880001A (en) Process for controlling the photocoagulation of biological tissue
KR101161187B1 (en) Apparatus for monitoring and controlling laser-induced tissue treatment
JP4126054B2 (en) Ophthalmic surgery equipment
US6275718B1 (en) Method and apparatus for imaging and analysis of ocular tissue
KR100797857B1 (en) Customized corneal profiling
DE69534571T2 (en) Laser beam delivery and eye-searching system
US7238177B2 (en) Methods and systems for laser calibration and eye tracker camera alignment
EP0392743B1 (en) Ophthalmological measurement method and apparatus
US20220175578A1 (en) Ophthalmic treatment device and control method therefor
CN101605504A (en) Be used for determining dosimetric system and method at ophthalmic photomedicine
US6337993B1 (en) Blood flow measuring apparatus
EP1437084B1 (en) Eye optical characteristic measuring instrument
EP1051103A1 (en) Corneal topographer with central and peripheral measurement capability
DE69818478T2 (en) Interferometric calibration of laser ablation
US5713893A (en) Test substrate for laser evaluation
EP0296769B1 (en) Ophthalmic disease detection method and apparatus
EP0479502B1 (en) Apparatus for measuring ocular refracting power
JPH0479933A (en) Measuring device for ophthalmology
US20030018275A1 (en) Fundus blood flowmeter
JP2557393B2 (en) Ophthalmic measuring device
JPH0554772B2 (en)
DE19804029A1 (en) Monitoring and control device for excimer laser treatment of eyes
Barrett et al. Integrated computer-aided retinal photocoagulation system
Chizh et al. Methods of measuring the refraction of the eye with spatial resolution over the pupil
JPS63288135A (en) Ophthalmic measuring apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BONNET RESOURCES CORPORATION, A CORP. OF OH, AS AG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PROMED TECHNOLOGY INCORPORATED, A CORP. OF TX;REEL/FRAME:005430/0232

Effective date: 19900705

Owner name: BANK ONE TEXAS, N.A.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PROMED TECHNOLOGY INCORPORATED, A CORP. OF TX;REEL/FRAME:005430/0232

Effective date: 19900705

PA Patent available for licence or sale
PA Patent available for licence or sale
PA Patent available for licence or sale
PA Patent available for licence or sale
AS Assignment

Owner name: PROMED TECHNOLOGY, INC. A TX CORPORATION, TEXAS

Free format text: ASSIGNOR HERELY CONFIRMS THE ENTIRE INTEREST IN SAID INVENTION TO ASSIGNEE EXECUTED ON MARCH 13, 1985, AND RECORDED AT REEL 4376 FRAME 584.;ASSIGNOR:WEINBERG, WOLFRAM S.;REEL/FRAME:005909/0149

Effective date: 19911018

Owner name: RARE EARTH MEDICAL LASERS CORPORATION A MA CORPOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BANK ONE TEXAS, N.A., ACTING BY AND THROUGH ITS DULY ATHORIZED AGENT AND ATTORNEY-IN-FACT, BONNET RESOURCES CORPORATION;REEL/FRAME:005909/0167

Effective date: 19911023

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: CARDIOFOCUS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:RARE EARTH MEDICAL, INC.;REEL/FRAME:010822/0136

Effective date: 19990305

Owner name: CARDIOFOCUS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIOFOCUS, INC.;REEL/FRAME:010822/0143

Effective date: 19990618

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20011114