US4674057A - Ultrasonic ranging control system for industrial robots - Google Patents

Ultrasonic ranging control system for industrial robots Download PDF

Info

Publication number
US4674057A
US4674057A US06/842,057 US84205786A US4674057A US 4674057 A US4674057 A US 4674057A US 84205786 A US84205786 A US 84205786A US 4674057 A US4674057 A US 4674057A
Authority
US
United States
Prior art keywords
robot
transducer array
arm
ultrasonic
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/842,057
Inventor
Donald O. Caughman
Wallace J. Plumley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Corp filed Critical Lockheed Corp
Priority to US06/842,057 priority Critical patent/US4674057A/en
Assigned to LOCKHEED CORPORATION reassignment LOCKHEED CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CAUGHMAN, DONALD O., PLUMLEY, WALLACE J.
Application granted granted Critical
Publication of US4674057A publication Critical patent/US4674057A/en
Anticipated expiration legal-status Critical
Assigned to LOCKHEED MARTIN CORPORATION reassignment LOCKHEED MARTIN CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: LOCKHEED CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/107Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics using frequency agility of carrier wave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/026Acoustical sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer

Definitions

  • This invention generally relates to a safety system for an industrial robot which assures a safe environment for the robot during operation and more particularly to a robotic safety system whereby any aberrant motion of the robot as well as abnormal obstructions of personnel or equipment within the robot's path of travel are sensed so that the robot is put on hold upon such sensing to avoid injury to personnel or damage to equipment.
  • Prior art safety systems regarding industrial robots have involved alarm and restraint systems of a fixed or static nature over substantially the entire area of the robot's capability of operational movement regardless of the specific area or precise pattern of movements to be made during the operational assignment of the robot.
  • alarm and restraint systems of a fixed or static nature over substantially the entire area of the robot's capability of operational movement regardless of the specific area or precise pattern of movements to be made during the operational assignment of the robot.
  • Examples of fixed nature alarm systems are pressure sensitive floor and light beam arrays established around the perimeter of the total capable traval area of the robot, while examples of static restraint systems include a chain or guard rail structure surrounding such overall area of operational capability of the robot.
  • an object of the present invention to provide a safety system for a robot, the safety system being adapted to monitor the presence of unexpected people or objects in a work area, or detect aberrant motion behavior of a robot and subsequently modify the robot's behavior and/or warn any intruder or operator of the exception condition.
  • This invention teaches the use of a plurality of individual ultrasonic ranging transducers arranged in a horizontal array, and mounted at the end of the arm of an industrial robot, but independent of any end manipulator or hand installed on the robot arm.
  • the mounting of the array on the robot arm is such that the array is arcuately pivotable in a horizontal sense so as to be located horizontally in the intended direction of movement of the robot arm, as well as being arcuately pivotable in a vertical sense.
  • the pivotal movements of the array are effected by a pair of stepping motors which in turn are controlled by a microcomputer or controller which monitors the sensing array and provides the necessary interaction with the robot and its directions of movements whereby the detection of an unprogrammed object (personnel or equipment) in the intended path of travel of the robot will interrupt such travel thereof before any physical contact takes place.
  • a microcomputer or controller which monitors the sensing array and provides the necessary interaction with the robot and its directions of movements whereby the detection of an unprogrammed object (personnel or equipment) in the intended path of travel of the robot will interrupt such travel thereof before any physical contact takes place.
  • the major components of the ultrasonic safety system comprise azimuth and elevation stepping motors, stepping motor controllers, a microcomputer, an ultrasonic ranging transducer or sensor array, position encoders and robot interface logic.
  • the safety system or device is contained in three packages.
  • the transducer array, motors and encoders sit on the end of the robot on top of, for example, the link between the fifth and sixth axes (yaw and roll, respectively).
  • the ultrasonic electronics are likewise mounted on the robot arm just behind the transducer array.
  • the stepping motor controllers and the microcomputer and robot interface logic reside in a cabinet sitting on a support behind the robot.
  • the motors, their controllers and encoders are used to move the ultrasonic sensor array in two directions. Azimuth movement is used to point the sensor in the direction of the robot's intended motion.
  • the elevation motor steps the array through an up/down sweep in the vertical plane.
  • the sensor array comprises, for example, five Polaroid sensors arranged in an arc in a single substantially horizontal plane.
  • the robot interface logic is employed to interface the signals of the robot with the microcomputer.
  • the microcomputer controls the signals necessary for obtaining motion for the two stepping motors, calculates ranging information based on the ultrasonic array, and activates the hold signal of the robot.
  • the ultrasonic sensor array scans in an up/down fashion the entire time the robot is active.
  • the sensor array direction can be one of sixteen horizontal positions. Outputs from the robot are used to select one of these positions which faces the sensor array in the direction of the robot's intended movement.
  • a signal is sent which stops the robot, starts a warning signal and results in a message being started from the computer overseeing the application.
  • the hold circuit is disabled once the robot approaches a work jig and enabled once it is at the work jig where the sensor array is looking away from the robot to the side.
  • the system is programmed to detect motion during a hold condition. Thus, any unexpected motion of the robot during a hold condition is sensed by the system and the hold condition re-established.
  • FIG. 1 is an overall perspective view of one exemplary industrial robot with the movable ultrasonic sensing array of one embodiment of this invention shown mounted proximate the robot arm end;
  • FIG. 2 is a perspective view showing the portion of the ultrasonic transducer array assembly to be mounted to the end of a robot arm;
  • FIG. 3 is a block diagram of the preferred embodiment of the invention.
  • FIG. 4 is an exemplary pattern array of the plurality of sonar or ultrasonic transducers utilized in the depicted embodiment of the invention.
  • FIG. 5 is a flow diagram representative of the preferred embodiment of the invention showing the signal processing by the microcomputer to effect operation of the safety system.
  • the invention comprises an array 10 of ultrasonic ranging transducers 11 mounted on the end 12 of the arm 13 of an industrial robot 14.
  • the array 10 comprises a plurality of ultrasonic transducers 11 which each emit an individual beam of acoustical energy.
  • the transducers 11 are mounted on the array in an angular manner so as to emulate a single transducer with a wide transmit/receive pattern in the horizontal plane as shown in FIG. 4.
  • the individual transducers 11 are arranged, for example, arcuately about a horizontal plane approximately 20 degrees apart whereby with a quantity of five such transducers a horizontal beam width of approximately 100 degrees can be attained.
  • the transducers 11 utilized in the preferred embodiment of the invention are commercially available from the Polaroid Corporation of Cambridge, Mass. These items are marketed as a Polaroid Ultrasonic Ranging Unit, which comprises two primary components, an acoustical transducer, which is identified in the drawings by the numeral 11, and an ultrasonic transducer circuit board or circuit means.
  • the ultrasonic transducer circuit boards are contained in a circuit board magazine 15 that is mounted near array 10 with each individual transducer 11 connected to its respective ultrasonic transducer circuit board in magazine 15 by appropriate wiring.
  • the base supporting the vertically pivotable array 10 is located, for example, atop a horizontal pivoting bidirectional stepping motor 17 that, in turn, is located on the top or upper surface of the end 12 of robot 14.
  • the array 10 and drive motor 20 are adapted to be positioned or swung in the directions of arrows A about a vertical axis relative to the end 12 by bi-directional stepping motor 17.
  • the array 10 is also pivotally mounted in a horizontal sense to the shaft of a second bi-directional stepping motor 20 to drive the array 10 in an up and down vertical sweep about a horizontal axis in the directions of arrows B.
  • the transducer array 10 provides wide coverage in the vertical plane by physically sweeping the array 10 with stepping motor 20. The motion is, however, not continuous, but rather the array 10 stops, transmits, listens and moves.
  • the extent of the rotational movement of array 10 and its drive motor 20, such movement being represented by arrows A, is approximately 270° or approximately 135° in each direction from the horizontal centerline defined by arm 13 of robot 14.
  • the extent of vertical rotation or up and down sweep of array 10 represented by arrows B is approximately 150° or approximately 75° in each direction from a position of array 10 parallel to the end of robot arm 12.
  • FIG. 3 it will be seen that certain components of the disclosed embodiment are depicted within a cabinet 21; it being understood, however, that the disclosed placement of a particular component or components in a designated or particular cabinet is a matter of design selection and is not critical.
  • controller or microcomputer 22 comprising a microprocessor chip or circuit board, a program storage memory including read only memory (ROM), and random access memory (RAM); each of which may be appropriately selected from a number of such microcomputer elements which are currently available and familiar to those skilled in the art.
  • ROM read only memory
  • RAM random access memory
  • Microcomputer 22 is connected by bi-directional buses or lines 23, 24, and 25, respectively, to the transducer electronics of circuit board magazine 15, the azimuth motor electronics 26, and the elevation motor electronics 27. Data and information are also received by microcomputer or controller 22 from limit and position sensors 28 associated with both the azimuth and elevational stepping motors 17 and 20, and from the main control 29 of robot 14 over lines 30 and 31. Line 32 interconnects the microcomputer 22 with the robot control 29 to transmit a "hold" or "stop” signal to the robot 14 should an unprogrammed or abnormal obstruction in the path of travel of the end 12 of robot 14 be sensed by operation of the array 10.
  • line 32 is also connected to an audio warning circuit 33 to energize an appropriate audio warning device upon the occurrence of transmittal of a "hold" signal to robot 14; it being understood this feature of audio warning being merely operational and not constituting a critical feature or element of the invention.
  • an appropriate power supply 34 which while not shown in FIG. 3, is to be understood as supplying electrical power to all of the various components of the system through well-known cabling and bussing techniques.
  • FIG. 4 there is depicted a typical transmitting beam or acoustical lobe composite of the five ultrasonic transducers 11 that form array 10.
  • Each acoustical transducer 11, controlled by its individual ultrasonic circuit board contained in magazine 15, is capable of detecting the presence and distance of objects within a range of approximately 0.9 to 35 feet that is within the individual acoustical lobe pattern.
  • the sensitivity of the transducers 11 is set at approximately 10 feet. It should be noted that up to the maximum achievable limit of 35 feet, the operating range of the system is totally programmable. This is due to the fact that the threshold limits are determined by the software.
  • Each transducer 11 serves as both an emitter to transmit an outgoing signal and an electrostatic sensor to receive a reflected signal or echo.
  • the diameter of the transducer 11 determines the individual acoustical lobe pattern, or acceptance angle, during the transmitting and receiving operations, with each lobe pattern comprising a main or central peak 35 and reduced side lobe patterns 36 on each side of the main peak 35.
  • the side lobe patterns 36 of each transducer 11 will overlap with each of their adjacent transducers 11 to produce an overall total pattern of five peaks 35 and four valleys 37 as seen in FIG. 4.
  • valleys 37 may be reduced, if not completely eliminated, by a modification of the signals to the azimuth and elevation stepping control motors (17 and 20, respectively) by microcomputer 22 as will be explained in more detail hereinafter.
  • each transducer 11 When the transducers 11 of array 10 are activated, each transducer 11 emits a sound pulse, then waits to receive the echo returning from whatever object the sound pulse has struck.
  • the emitted pulse is a high-frequency, inaudible "chirp" lasting for approximately one millisecond and comprising fifty-six pulses at four separate ultrasonic frequencies: e.g., 60 kHz, 57 kHz, 53 KHz and 50 kHz. Occasionally, a single frequency could be cancelled because of certain target topographical characteristics, and no echo would be reflected. Thus, by the use of four frequencies, such possibility is minimized if not overcome.
  • the elapsed time between transmissions and echo detections is converted to distance with respect to the speed of sound. For example, for a transmitted pulse to leave a transducer 11, strike an object ten feet (3.05 meters) away, and to return to the transducer 11, requires an average time lapse of 17.75 milliseconds or 1.78 milliseconds per foot (0.3 meters) of round trip distance. Thus, utilizing the elapsed time between transmission and detection, it is possible to determine the distance of a detected object.
  • FIG. 5 reflects the flow chart of the control and operation effected by microcomputer 22 (FIG. 3) when the arm 13 of robot 14 is in operation.
  • microcomputer 22 FIG. 3
  • initialize flags indicate the boundary of the field of movement of the transducer array 10.
  • the array 10 begins a vertical sweep which comprises a reciprocating up and down motion which is continued during the operation of the device.
  • the array 10 As the array 10 is scanned in the vertical direction, information is acquired concerning the range or distance of the nearest object. If the distance sensed is less than a preset threshold then a hold enable evaluation is conducted. If the object detected is not expected then a hold signal is sent to robot control 29 and the operation of the robot 14 is stopped. However, should the object be an expected object then operation of the device continues uninterrupted. Once the upper or lower limit of vertical pivot of the array 10 is sensed, the operation of stepping motor 20 is reversed and the array is moved in the opposite direction.
  • the output signals from robot control 29 are fed via input 31 to microcomputer 22 for horizontal plane positioning of array 10 under the control of stepping motor 17.
  • array 10 is positioned so as to look in the quadrant that the robot arm 13 is moving toward. If the input information from the robot control 29 is the same as the current position, then the position of the array 10 is maintained. However, should horizontal reposition be required, the new position is calculated and the array 10 moved accordingly prior to the movement of the robot arm 13. This operation is continued and repeated during the operation of the device.
  • the controller 22 reads simple binary signals from the robot's control console. Based on these signals, the controller 22 instructs the stepping motor 17 to position the array 10 in the desired horizontal quadrant of intended robot movement. No special interface is required from the robot 14 other than the ability to provide simple binary (on-off) outputs at any desired point in the robot's program.
  • the ultrasonic sensor array 10 continuously scans in an up/down fashion during the entire time the robot is active; however, the positioning of the array 10 in the horizontal plane comprises one of 16 predetermined positions.
  • the stepping motor 17, thus, has the ability to precisely attain fixed and repeatable positions. Single step error is noncumulative and is generally specified at tolerances of less than about 5% of one step. Therefore, the motor 17 is intended to move the array 10 to a specific position and hold if necessary.
  • the electronic drive circuitry is basically digital to simplify interface requirements to the microcomputer 22. Because of their positional accuracy, the stepping motor can be employed without feedback in an "open-loop" control system. However, to preclude the possibility of a missing step, preferably, optical encoders (not shown) are mounted on the shafts of both axes to provide both feedback and positional reference points.
  • the microcomputer 22 comprises, for example, an INTEL 8085 microprocessor having 2K of RAM. Port assignments are used for controlling the direction and pulsing of both motors 17 and 20, reading the limit and position sensors 28, resetting and monitoring the ultrasonic sensor array 10 and interfacing with the robot control 29. From a programming point of view, the system provides the robot 14 with a primitive sensing capability in the direction of movement of the robot 14 utilizing the system of the present invention.
  • the control of the safety system comprises two different activities. First, it is necessary to activate and monitor the ultrasonic sensor array 10 and second, it is necessary to control the positioning of the array 10 utilizing the stepping motors 17 and 20. In activating and monitoring the array 11, all five sensors 11 are treated as one. All are fired simultaneously and an echo is received by the system when any one of the sensors 11 receives an echo. Once an echo is received, the value of a counter included in the ultrasonic transducer electronics 15 is compared with a predetermined threshold counter value programmed into the microcomputer 22. When the counter is below the predetermined threshold, this indicates that an object is closer to the robot 14 than desired and therefore a flag is set putting the robot in a hold mode. The system continues with this cycle regard1ess of whether the robot is in a hold mode or not.
  • Another predetermined counter value is stored in the microcomputer 22 which indicates the maximum distance of concern. This prevents the problem of a "no echo" situation from putting the microcomputer 22 in an impasse situation, waiting for a nonexistant echo.
  • the robot hold circuit is disabled. Either the program running on the ultrasonic ranging unit can inhibit the halting of the robot or a simple on-off signal derived from the robot program itself can disable the halt function. This allows the robot to maneuver and operate in areas when detection of an object would normally halt the robot.
  • the system is programmed to detect motion of the robot arm 13 during a hold condition. This is accomplished by providing the system with the sensitivity to detect changes in ranging information which results when the robot arm unexpectedly moves during a hold conditon. Because the array 10 constantly scans in an up/down fashion the entire time the robot is activated, including a hold condition; any change in position of the array 10 due to the movement of the robot arm 13 will produce a change in the ranging information. By programming the system to sense such changes in ranging information during a hold condition, it is possible for the system to instruct the robot 14 to reestablish the hold condition when aberrant motion is detected or shut down the robot all together.

Abstract

The invention combines a plurality of ultrasonic ranging transducers (11) arrayed proximate the end (12) of a movable robot arm (13), all transducers (11) being mounted to a common base so as to be pivotally movable both horizontally and vertically relative to the robot arm (13) by stepping motors (17 and 20). By controlling the pivotal movements of the transducer array (10) by a microcomputer (22) so as to look in the direction of intended travel of the robot arm end (13), and as to the robot arm end (13) moves, unexpected objects in the path of the robot (14) or aberrant motion by the robot (14) become easily detected. Upon the sensing of an obstruction to the direction of motion of the robot arm (13), or aberrant motion thereof, a signal from the microcomputer (22) to the robot (14) controls will halt further operation until the obstruction is removed or the problem corrected.

Description

This is a continuation of co-pending application Ser. No. 580,064 filed on Feb. 14, 1984 now abandoned.
TECHNICAL FIELD
This invention generally relates to a safety system for an industrial robot which assures a safe environment for the robot during operation and more particularly to a robotic safety system whereby any aberrant motion of the robot as well as abnormal obstructions of personnel or equipment within the robot's path of travel are sensed so that the robot is put on hold upon such sensing to avoid injury to personnel or damage to equipment.
BACKGROUND ART
Prior art safety systems regarding industrial robots have involved alarm and restraint systems of a fixed or static nature over substantially the entire area of the robot's capability of operational movement regardless of the specific area or precise pattern of movements to be made during the operational assignment of the robot. Examples of fixed nature alarm systems are pressure sensitive floor and light beam arrays established around the perimeter of the total capable traval area of the robot, while examples of static restraint systems include a chain or guard rail structure surrounding such overall area of operational capability of the robot.
These prior art safety systems are an inefficient use of floor space or area when the robot is to be operated over only a portion of the area of its capability. Due to this lack of specific correlation between the movement of the robot and the area sensed by the safety system, a false alarm will result should an individual or piece of equipment enter into the controlled area or to a location that would not interfere in any manner with the operational mode of the robot. Thus, the prior art safety systems provide an inefficient means of protection when viewed in terms of operational productivity.
Additionlly, these prior art safety systems are poorly adapted for handling a situation where the robot exhibits aberrant motion, which oftentimes, occurs when the robot is unattended. Aberrant motion usually results when the robot is put on hold, for example, to permit the operator to leave the immediate area, and despite the hold condition, the robot exhibits unprogammed motion. With the prior art safety systems, this aberrant motion will remain undetected unless the robot blocks a light beam or the like of the safety system.
DISCLOSURE OF THE INVENTION
It is, therefore, an object of the present invention to provide a safety system for a robot, the safety system being adapted to monitor the presence of unexpected people or objects in a work area, or detect aberrant motion behavior of a robot and subsequently modify the robot's behavior and/or warn any intruder or operator of the exception condition.
This invention teaches the use of a plurality of individual ultrasonic ranging transducers arranged in a horizontal array, and mounted at the end of the arm of an industrial robot, but independent of any end manipulator or hand installed on the robot arm. The mounting of the array on the robot arm is such that the array is arcuately pivotable in a horizontal sense so as to be located horizontally in the intended direction of movement of the robot arm, as well as being arcuately pivotable in a vertical sense. The pivotal movements of the array are effected by a pair of stepping motors which in turn are controlled by a microcomputer or controller which monitors the sensing array and provides the necessary interaction with the robot and its directions of movements whereby the detection of an unprogrammed object (personnel or equipment) in the intended path of travel of the robot will interrupt such travel thereof before any physical contact takes place.
The major components of the ultrasonic safety system comprise azimuth and elevation stepping motors, stepping motor controllers, a microcomputer, an ultrasonic ranging transducer or sensor array, position encoders and robot interface logic. Physically, the safety system or device is contained in three packages. The transducer array, motors and encoders sit on the end of the robot on top of, for example, the link between the fifth and sixth axes (yaw and roll, respectively). The ultrasonic electronics are likewise mounted on the robot arm just behind the transducer array. The stepping motor controllers and the microcomputer and robot interface logic reside in a cabinet sitting on a support behind the robot.
The motors, their controllers and encoders are used to move the ultrasonic sensor array in two directions. Azimuth movement is used to point the sensor in the direction of the robot's intended motion. The elevation motor steps the array through an up/down sweep in the vertical plane. The sensor array comprises, for example, five Polaroid sensors arranged in an arc in a single substantially horizontal plane. The robot interface logic is employed to interface the signals of the robot with the microcomputer. The microcomputer controls the signals necessary for obtaining motion for the two stepping motors, calculates ranging information based on the ultrasonic array, and activates the hold signal of the robot.
The ultrasonic sensor array scans in an up/down fashion the entire time the robot is active. The sensor array direction can be one of sixteen horizontal positions. Outputs from the robot are used to select one of these positions which faces the sensor array in the direction of the robot's intended movement. When any object or person moves within a predetermined threshold distance of the robot, a signal is sent which stops the robot, starts a warning signal and results in a message being started from the computer overseeing the application. Once the obstacle is removed and the stop or hold condition eliminated the robot continues in its programmed path. Since simple thresholding is used with no discriminatory capabilities, the hold circuit is disabled once the robot approaches a work jig and enabled once it is at the work jig where the sensor array is looking away from the robot to the side. In the case of aberrant motion, the system is programmed to detect motion during a hold condition. Thus, any unexpected motion of the robot during a hold condition is sensed by the system and the hold condition re-established.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is an overall perspective view of one exemplary industrial robot with the movable ultrasonic sensing array of one embodiment of this invention shown mounted proximate the robot arm end;
FIG. 2 is a perspective view showing the portion of the ultrasonic transducer array assembly to be mounted to the end of a robot arm;
FIG. 3 is a block diagram of the preferred embodiment of the invention;
FIG. 4 is an exemplary pattern array of the plurality of sonar or ultrasonic transducers utilized in the depicted embodiment of the invention; and,
FIG. 5 is a flow diagram representative of the preferred embodiment of the invention showing the signal processing by the microcomputer to effect operation of the safety system.
BEST MODE OF CARRYING OUT THE INVENTION
Referring to FIGS. 1 and 2, the invention comprises an array 10 of ultrasonic ranging transducers 11 mounted on the end 12 of the arm 13 of an industrial robot 14. In the preferred embodiment, the array 10 comprises a plurality of ultrasonic transducers 11 which each emit an individual beam of acoustical energy. The transducers 11 are mounted on the array in an angular manner so as to emulate a single transducer with a wide transmit/receive pattern in the horizontal plane as shown in FIG. 4. The individual transducers 11 are arranged, for example, arcuately about a horizontal plane approximately 20 degrees apart whereby with a quantity of five such transducers a horizontal beam width of approximately 100 degrees can be attained.
The transducers 11 utilized in the preferred embodiment of the invention are commercially available from the Polaroid Corporation of Cambridge, Mass. These items are marketed as a Polaroid Ultrasonic Ranging Unit, which comprises two primary components, an acoustical transducer, which is identified in the drawings by the numeral 11, and an ultrasonic transducer circuit board or circuit means. The ultrasonic transducer circuit boards are contained in a circuit board magazine 15 that is mounted near array 10 with each individual transducer 11 connected to its respective ultrasonic transducer circuit board in magazine 15 by appropriate wiring.
The base supporting the vertically pivotable array 10 is located, for example, atop a horizontal pivoting bidirectional stepping motor 17 that, in turn, is located on the top or upper surface of the end 12 of robot 14. The array 10 and drive motor 20 are adapted to be positioned or swung in the directions of arrows A about a vertical axis relative to the end 12 by bi-directional stepping motor 17.
The array 10 is also pivotally mounted in a horizontal sense to the shaft of a second bi-directional stepping motor 20 to drive the array 10 in an up and down vertical sweep about a horizontal axis in the directions of arrows B. Thus, the transducer array 10 provides wide coverage in the vertical plane by physically sweeping the array 10 with stepping motor 20. The motion is, however, not continuous, but rather the array 10 stops, transmits, listens and moves.
In the preferred embodiment, the extent of the rotational movement of array 10 and its drive motor 20, such movement being represented by arrows A, is approximately 270° or approximately 135° in each direction from the horizontal centerline defined by arm 13 of robot 14. Likewise, the extent of vertical rotation or up and down sweep of array 10 represented by arrows B is approximately 150° or approximately 75° in each direction from a position of array 10 parallel to the end of robot arm 12.
Referring to FIG. 3, it will be seen that certain components of the disclosed embodiment are depicted within a cabinet 21; it being understood, however, that the disclosed placement of a particular component or components in a designated or particular cabinet is a matter of design selection and is not critical.
Operational control of this invention is effected by a controller or microcomputer 22 comprising a microprocessor chip or circuit board, a program storage memory including read only memory (ROM), and random access memory (RAM); each of which may be appropriately selected from a number of such microcomputer elements which are currently available and familiar to those skilled in the art.
Microcomputer 22 is connected by bi-directional buses or lines 23, 24, and 25, respectively, to the transducer electronics of circuit board magazine 15, the azimuth motor electronics 26, and the elevation motor electronics 27. Data and information are also received by microcomputer or controller 22 from limit and position sensors 28 associated with both the azimuth and elevational stepping motors 17 and 20, and from the main control 29 of robot 14 over lines 30 and 31. Line 32 interconnects the microcomputer 22 with the robot control 29 to transmit a "hold" or "stop" signal to the robot 14 should an unprogrammed or abnormal obstruction in the path of travel of the end 12 of robot 14 be sensed by operation of the array 10. In the embodiment shown, line 32 is also connected to an audio warning circuit 33 to energize an appropriate audio warning device upon the occurrence of transmittal of a "hold" signal to robot 14; it being understood this feature of audio warning being merely operational and not constituting a critical feature or element of the invention.
Also contained within cabinet 21 is an appropriate power supply 34, which while not shown in FIG. 3, is to be understood as supplying electrical power to all of the various components of the system through well-known cabling and bussing techniques.
Referring to FIG. 4, there is depicted a typical transmitting beam or acoustical lobe composite of the five ultrasonic transducers 11 that form array 10. Each acoustical transducer 11, controlled by its individual ultrasonic circuit board contained in magazine 15, is capable of detecting the presence and distance of objects within a range of approximately 0.9 to 35 feet that is within the individual acoustical lobe pattern. Preferably, the sensitivity of the transducers 11 is set at approximately 10 feet. It should be noted that up to the maximum achievable limit of 35 feet, the operating range of the system is totally programmable. This is due to the fact that the threshold limits are determined by the software. Each transducer 11, (heretofore identified as a component in a Polaroid Ultrasonic Ranging Unit from Polaroid Corporation), serves as both an emitter to transmit an outgoing signal and an electrostatic sensor to receive a reflected signal or echo. The diameter of the transducer 11 determines the individual acoustical lobe pattern, or acceptance angle, during the transmitting and receiving operations, with each lobe pattern comprising a main or central peak 35 and reduced side lobe patterns 36 on each side of the main peak 35. With the array 10 consisting of five transducers in the preferred embodiment, the side lobe patterns 36 of each transducer 11 will overlap with each of their adjacent transducers 11 to produce an overall total pattern of five peaks 35 and four valleys 37 as seen in FIG. 4.
Should the presence of the pattern valleys 37 be objectionable or undesirable in any application or practice of this invention, such valleys 37 may be reduced, if not completely eliminated, by a modification of the signals to the azimuth and elevation stepping control motors (17 and 20, respectively) by microcomputer 22 as will be explained in more detail hereinafter.
When the transducers 11 of array 10 are activated, each transducer 11 emits a sound pulse, then waits to receive the echo returning from whatever object the sound pulse has struck. The emitted pulse is a high-frequency, inaudible "chirp" lasting for approximately one millisecond and comprising fifty-six pulses at four separate ultrasonic frequencies: e.g., 60 kHz, 57 kHz, 53 KHz and 50 kHz. Occasionally, a single frequency could be cancelled because of certain target topographical characteristics, and no echo would be reflected. Thus, by the use of four frequencies, such possibility is minimized if not overcome.
The elapsed time between transmissions and echo detections is converted to distance with respect to the speed of sound. For example, for a transmitted pulse to leave a transducer 11, strike an object ten feet (3.05 meters) away, and to return to the transducer 11, requires an average time lapse of 17.75 milliseconds or 1.78 milliseconds per foot (0.3 meters) of round trip distance. Thus, utilizing the elapsed time between transmission and detection, it is possible to determine the distance of a detected object.
The utilization of the invention will be explained with reference to FIG. 5 which reflects the flow chart of the control and operation effected by microcomputer 22 (FIG. 3) when the arm 13 of robot 14 is in operation. Upon actuation of the robot 14, initialize flags indicate the boundary of the field of movement of the transducer array 10. Thereafter, the array 10 begins a vertical sweep which comprises a reciprocating up and down motion which is continued during the operation of the device.
As the array 10 is scanned in the vertical direction, information is acquired concerning the range or distance of the nearest object. If the distance sensed is less than a preset threshold then a hold enable evaluation is conducted. If the object detected is not expected then a hold signal is sent to robot control 29 and the operation of the robot 14 is stopped. However, should the object be an expected object then operation of the device continues uninterrupted. Once the upper or lower limit of vertical pivot of the array 10 is sensed, the operation of stepping motor 20 is reversed and the array is moved in the opposite direction.
As described previously, the output signals from robot control 29 are fed via input 31 to microcomputer 22 for horizontal plane positioning of array 10 under the control of stepping motor 17. Essentially, array 10 is positioned so as to look in the quadrant that the robot arm 13 is moving toward. If the input information from the robot control 29 is the same as the current position, then the position of the array 10 is maintained. However, should horizontal reposition be required, the new position is calculated and the array 10 moved accordingly prior to the movement of the robot arm 13. This operation is continued and repeated during the operation of the device.
Thus, to position the array 10 in the desired direction, which is not necessarily the direction that the robot 14 is moving, the controller 22 reads simple binary signals from the robot's control console. Based on these signals, the controller 22 instructs the stepping motor 17 to position the array 10 in the desired horizontal quadrant of intended robot movement. No special interface is required from the robot 14 other than the ability to provide simple binary (on-off) outputs at any desired point in the robot's program.
The ultrasonic sensor array 10 continuously scans in an up/down fashion during the entire time the robot is active; however, the positioning of the array 10 in the horizontal plane comprises one of 16 predetermined positions. The stepping motor 17, thus, has the ability to precisely attain fixed and repeatable positions. Single step error is noncumulative and is generally specified at tolerances of less than about 5% of one step. Therefore, the motor 17 is intended to move the array 10 to a specific position and hold if necessary. The electronic drive circuitry is basically digital to simplify interface requirements to the microcomputer 22. Because of their positional accuracy, the stepping motor can be employed without feedback in an "open-loop" control system. However, to preclude the possibility of a missing step, preferably, optical encoders (not shown) are mounted on the shafts of both axes to provide both feedback and positional reference points.
The microcomputer 22 comprises, for example, an INTEL 8085 microprocessor having 2K of RAM. Port assignments are used for controlling the direction and pulsing of both motors 17 and 20, reading the limit and position sensors 28, resetting and monitoring the ultrasonic sensor array 10 and interfacing with the robot control 29. From a programming point of view, the system provides the robot 14 with a primitive sensing capability in the direction of movement of the robot 14 utilizing the system of the present invention.
The control of the safety system comprises two different activities. First, it is necessary to activate and monitor the ultrasonic sensor array 10 and second, it is necessary to control the positioning of the array 10 utilizing the stepping motors 17 and 20. In activating and monitoring the array 11, all five sensors 11 are treated as one. All are fired simultaneously and an echo is received by the system when any one of the sensors 11 receives an echo. Once an echo is received, the value of a counter included in the ultrasonic transducer electronics 15 is compared with a predetermined threshold counter value programmed into the microcomputer 22. When the counter is below the predetermined threshold, this indicates that an object is closer to the robot 14 than desired and therefore a flag is set putting the robot in a hold mode. The system continues with this cycle regard1ess of whether the robot is in a hold mode or not.
Another predetermined counter value is stored in the microcomputer 22 which indicates the maximum distance of concern. This prevents the problem of a "no echo" situation from putting the microcomputer 22 in an impasse situation, waiting for a nonexistant echo.
If there are areas in the robot's path where it needs to operate despite the detection of an object, the robot hold circuit is disabled. Either the program running on the ultrasonic ranging unit can inhibit the halting of the robot or a simple on-off signal derived from the robot program itself can disable the halt function. This allows the robot to maneuver and operate in areas when detection of an object would normally halt the robot.
In the case of aberrant motion, the system is programmed to detect motion of the robot arm 13 during a hold condition. This is accomplished by providing the system with the sensitivity to detect changes in ranging information which results when the robot arm unexpectedly moves during a hold conditon. Because the array 10 constantly scans in an up/down fashion the entire time the robot is activated, including a hold condition; any change in position of the array 10 due to the movement of the robot arm 13 will produce a change in the ranging information. By programming the system to sense such changes in ranging information during a hold condition, it is possible for the system to instruct the robot 14 to reestablish the hold condition when aberrant motion is detected or shut down the robot all together.
While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description rather than limitation and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the invention in its broader aspects.

Claims (6)

We claim:
1. An ultrasonic ranging control system for a robot having a movable arm, said system comprising:
(a) an ultrasonic transducer array for transmitting an acoustical pulse and for detecting a reflected echo, said transducer array being mounted proximate to the distal end of the movable arm so as to be arcuately pivotable in both a horizontal and vertical direction, said ultrasonic transducer array including a plurality of ultrasonic transducers arrayed in an angularly manner so as to emulate a single transducer with a wide transmit and receive pattern in substantially the horizontal plane, and each transducer having an individual beam width of approximately 10 degrees to each side, said individual transducers being arranged arcuately about a horizontal plane approximately 20 degrees apart, whereby with a quantity of five such transducers, a horizontal beam width of approximately 100 degrees is attained;
(b) circuit means for measuring the elapsed time between initial transmission and echo detection by said transducer array and for providing an output signal indicative of said elapsed time and for conversion of said elapsed time to a signal representative of distance;
(c) azimuth bi-directional stepping motor for positioning said transducer array horizontally about a vertical axis relative to the distal end of the movable arm independent of and prior to the movement of the arm;
(d) an elevation bi-directional stepping motor for reciprocating said transducer array in an up and down vertical sweep about a horizontal axis relative to the distal end of the movable arm independent of and prior to movement of the arm;
(e) a controller for activating and monitoring said ultrasonic transducer array to provide a command signal when said transducer array senses an unprogrammed obstruction within a predetermined threshold distance in the intended direction of travel of the robot arm and for effecting the control of said azimuth and elevation stepping motors whereby a continual up and down vertical sweep of said transducer array is performed as said transducer array is positioned in the horizontal plane so as to look in the intended direction of travel of the movable arm;
(f) a hold circuit means for receiving said command signal from said controller and for providing a continuous hold signal to the robot arm as long as said transducer array senses the continuing presence of said unprogrammed obstruction within said predetermined threshold distance in the intended direction of travel of the robot arm; and
(g) an end effector means positioned proximate the distal end of the movable arm for performing a predetermined robot work function, said end effector means being separate from and operating independent of said ultrasonic transducer array.
2. A systemm according to claim 1, further comprising means for controlling aberrant motion of said robot arm while said system is in the hold mode.
3. An ultrasonic ranging control safety system according to claim 1, wherein the extent of horizontal pivot of said transducer array about a vertical axis relative to the proximal end of the robot arm is about 135° in each direction from the horizontal centerline defined by the robot arm.
4. An ultrasonic ranging control safety system according to claim 3, wherein the extent of vertical sweep of said transducer array about a horizontal axis relative to the proximal end of the robot arm is about 75° in each direction from the position of the transducer array facing in a direction substantially parallel to the upper surface of the robot arm.
5. An ultrasonic ranging control safety system according to claim 4, wherein an audio alarm is sounded when an unprogrammed obstruction is sensed within a predetermined threshold distance of the robot arm.
6. An ultrasonic ranging control system for a robot having a movable arm, said system comprising:
(a) an ultrasonic transducer array for transmitting an acoustical pulse and for detecting a reflected echo, said transducer array being mounted on said robot so as to be arcuately pivotable in both a horizontal and vertical direction independently of robot motion, said ultrasonic transducer array including a plurality of ultrasonic transducers arrayed in an angular manner so as to emulate a single transducer with a wide transmit and receive pattern in substantially the horizontal plane, and each transducer having an individual beam width of approximately 10 degrees to each side, said individual transducers being arranged arcuately about a horizontal plane approximately 20 degrees apart, whereby with a quantity of five such transducers, a horizontal beam width of approximately 100 degrees is attained;
(b) means for arcuately moving said transducer array in a horizontal plane about a vertical axis prior to movement of the arm;
(c) means for arcuately moving said transducer array in a vertical plane about a horizontal axis contemporaneously with said arcuate motion in a horizontal plane bout a vertical axis prior to movement of the arm;
(d) means for measuring the elapsed time between initial transmission and echo detection by said transducer array and for providing an output signal indicative of said elapsed time for conversion of said elapsed time to a distance function;
(e) controller means for activating and monitoring said ultrasonic transducer array to provide a command signal when said transducer array senses an unprogrammed obstruction within a predetermined threshold distance of said robot along an intended path of travel;
(f) a hold circuit means for receiving said command signal from said controller means and for providing a continuous hold signal to the robot arm as long as said transducer array senses the continuing presence of said unprogrammed obstruction; and
(g) an end effector means positioned proximate the distal end of the movable arm for performing a predetermined robot work function; said end effector means being separate from and operating independent of said ultrasonic transducer array.
US06/842,057 1984-02-14 1986-03-18 Ultrasonic ranging control system for industrial robots Expired - Lifetime US4674057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/842,057 US4674057A (en) 1984-02-14 1986-03-18 Ultrasonic ranging control system for industrial robots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58006484A 1984-02-14 1984-02-14
US06/842,057 US4674057A (en) 1984-02-14 1986-03-18 Ultrasonic ranging control system for industrial robots

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US58006484A Continuation 1984-02-14 1984-02-14

Publications (1)

Publication Number Publication Date
US4674057A true US4674057A (en) 1987-06-16

Family

ID=27077938

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/842,057 Expired - Lifetime US4674057A (en) 1984-02-14 1986-03-18 Ultrasonic ranging control system for industrial robots

Country Status (1)

Country Link
US (1) US4674057A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821206A (en) * 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4845992A (en) * 1987-12-22 1989-07-11 Dean Michael J Method and apparatus for bending rotor vanes
US4932414A (en) * 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US4980626A (en) * 1989-08-10 1990-12-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for positioning a robotic end effector
US4985846A (en) * 1989-05-11 1991-01-15 Fallon Patrick J Acoustical/optical bin picking system
AU636258B2 (en) * 1991-07-10 1993-04-22 Bloomfield Research And Development Corporation Mobile monitoring device
US5227973A (en) * 1991-02-26 1993-07-13 Siemens Corporate Research, Inc. Control arbitration system for a mobile robot vehicle
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5305203A (en) * 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5307273A (en) * 1990-08-29 1994-04-26 Goldstar Co., Ltd. Apparatus and method for recognizing carpets and stairs by cleaning robot
US5369346A (en) * 1992-05-22 1994-11-29 Honda Giken Kogyo Kabushiki Kaisha Emergency stop control system for mobile robot
US5666325A (en) * 1995-07-31 1997-09-09 Nordson Corporation Method and apparatus for monitoring and controlling the dispensing of materials onto a substrate
US5848967A (en) * 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US5851183A (en) * 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5871445A (en) * 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6006126A (en) * 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6146390A (en) * 1992-04-21 2000-11-14 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6167295A (en) * 1991-01-28 2000-12-26 Radionics, Inc. Optical and computer graphic stereotactic localizer
US6167145A (en) * 1996-03-29 2000-12-26 Surgical Navigation Technologies, Inc. Bone navigation system
US6202034B1 (en) * 1999-01-27 2001-03-13 Delphi Technologies, Inc. Ultrasonic ranging system and method for improving accuracy thereof
US6236875B1 (en) 1994-10-07 2001-05-22 Surgical Navigation Technologies Surgical navigation systems including reference and localization frames
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US20020109705A1 (en) * 1999-05-03 2002-08-15 Robert Hofstetter System and method for preparing an image corrected for the presence of a gravity induced distortion
US20020183610A1 (en) * 1994-10-07 2002-12-05 Saint Louis University And Surgical Navigation Technologies, Inc. Bone navigation system
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US6675040B1 (en) 1991-01-28 2004-01-06 Sherwood Services Ag Optical object tracking system
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
WO2006037137A1 (en) * 2004-10-05 2006-04-13 Keba Ag Working space monitoring for automated programme-controlled machines and robots
US20080021597A1 (en) * 2004-08-27 2008-01-24 Abb Research Ltd. Device And Method For Safeguarding A Machine-Controlled Handling Device
US20090024245A1 (en) * 2007-03-23 2009-01-22 Truetzschler Gmbh & Co., Kg Apparatus for monitoring and securing danger zones on power-driven textile machines
CN101739030B (en) * 2009-12-18 2011-12-14 重庆大学 Spray robot control system
US20120262727A1 (en) * 2010-11-05 2012-10-18 Kuka Laboratories Gmbh Method And Apparatus For Secure Control Of A Robot
US20120282064A1 (en) * 2011-05-02 2012-11-08 John Anthony Payne Apparatus and methods of positioning a subsea object
DE102013020596A1 (en) * 2013-12-13 2015-06-18 Daimler Ag Workstation and method for performing at least one work step, in particular for producing a motor vehicle
US9310482B2 (en) 2012-02-10 2016-04-12 Ascent Ventures, Llc Methods for locating and sensing the position, orientation, and contour of a work object in a robotic system
DE102016110164A1 (en) * 2016-06-02 2017-12-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Connecting device for connecting a robot device with an ultrasonic measuring device
CN108818566A (en) * 2018-07-24 2018-11-16 昆山市工业技术研究院有限责任公司 A kind of full-automatic dining assistant robot
US11187678B2 (en) * 2017-11-09 2021-11-30 Meiji Co., Ltd. Solid-liquid distribution detection apparatus
CN114137082A (en) * 2021-11-26 2022-03-04 中国科学院合肥物质科学研究院 Automatic ultrasonic imaging detection method and system for six-axis mechanical arm
CN114407025A (en) * 2022-03-29 2022-04-29 北京云迹科技股份有限公司 Robot emergency stop mode automatic control method and device and robot
WO2023170868A1 (en) * 2022-03-10 2023-09-14 株式会社Fuji Safety device and robot system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934457A (en) * 1975-01-13 1976-01-27 General Electric Company Vessel nozzle inspection apparatus
US3967242A (en) * 1973-06-15 1976-06-29 Hitachi, Ltd. Automatic working machine
US4028533A (en) * 1974-12-31 1977-06-07 Techno-Venture Co., Ltd. Robot movable in a group
US4119900A (en) * 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
US4166543A (en) * 1976-08-13 1979-09-04 Asea Aktiebolag Method and means for controlling an industrial robot
US4196049A (en) * 1977-03-25 1980-04-01 Westinghouse Electric Corp. Segmented articulating manipulator arm for nuclear reactor vessel inspection apparatus
US4326155A (en) * 1980-06-03 1982-04-20 Griebeler Elmer L Shockwave probe
US4370889A (en) * 1979-09-12 1983-02-01 Kraftwerk Union Aktiengesellschaft Test device for the detection and analysis of material faults
US4490660A (en) * 1982-06-07 1984-12-25 Hitachi, Ltd. Safety system and method for a robot
US4575304A (en) * 1982-04-07 1986-03-11 Hitachi, Ltd. Robot system for recognizing three dimensional shapes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967242A (en) * 1973-06-15 1976-06-29 Hitachi, Ltd. Automatic working machine
US4119900A (en) * 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
US4028533A (en) * 1974-12-31 1977-06-07 Techno-Venture Co., Ltd. Robot movable in a group
US3934457A (en) * 1975-01-13 1976-01-27 General Electric Company Vessel nozzle inspection apparatus
US4166543A (en) * 1976-08-13 1979-09-04 Asea Aktiebolag Method and means for controlling an industrial robot
US4196049A (en) * 1977-03-25 1980-04-01 Westinghouse Electric Corp. Segmented articulating manipulator arm for nuclear reactor vessel inspection apparatus
US4370889A (en) * 1979-09-12 1983-02-01 Kraftwerk Union Aktiengesellschaft Test device for the detection and analysis of material faults
US4326155A (en) * 1980-06-03 1982-04-20 Griebeler Elmer L Shockwave probe
US4575304A (en) * 1982-04-07 1986-03-11 Hitachi, Ltd. Robot system for recognizing three dimensional shapes
US4490660A (en) * 1982-06-07 1984-12-25 Hitachi, Ltd. Safety system and method for a robot

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Computer Controlled Robot with Ultrasonic Sensor," Affinito et al., IBM Technical Disclosure Bulletin, vol. 18, No. 8, Jan. 1976.
"Ultrasonic Ranging System", Polaroid Corporation.
Computer Controlled Robot with Ultrasonic Sensor, Affinito et al., IBM Technical Disclosure Bulletin, vol. 18, No. 8, Jan. 1976. *
Ultrasonic Ranging System , Polaroid Corporation. *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821206A (en) * 1984-11-27 1989-04-11 Photo Acoustic Technology, Inc. Ultrasonic apparatus for positioning a robot hand
US4932414A (en) * 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US4845992A (en) * 1987-12-22 1989-07-11 Dean Michael J Method and apparatus for bending rotor vanes
US5748767A (en) * 1988-02-01 1998-05-05 Faro Technology, Inc. Computer-aided surgery apparatus
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5305203A (en) * 1988-02-01 1994-04-19 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4985846A (en) * 1989-05-11 1991-01-15 Fallon Patrick J Acoustical/optical bin picking system
US4980626A (en) * 1989-08-10 1990-12-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for positioning a robotic end effector
US5307273A (en) * 1990-08-29 1994-04-26 Goldstar Co., Ltd. Apparatus and method for recognizing carpets and stairs by cleaning robot
US6490467B1 (en) 1990-10-19 2002-12-03 Surgical Navigation Technologies, Inc. Surgical navigation systems including reference and localization frames
US7072704B2 (en) 1990-10-19 2006-07-04 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US20060241400A1 (en) * 1990-10-19 2006-10-26 St. Louis University Method of determining the position of an instrument relative to a body of a patient
US6463319B1 (en) 1990-10-19 2002-10-08 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6434415B1 (en) 1990-10-19 2002-08-13 St. Louis University System for use in displaying images of a body part
US5851183A (en) * 1990-10-19 1998-12-22 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US20020087075A1 (en) * 1990-10-19 2002-07-04 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5891034A (en) * 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6374135B1 (en) 1990-10-19 2002-04-16 Saint Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6076008A (en) * 1990-10-19 2000-06-13 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6678545B2 (en) 1990-10-19 2004-01-13 Saint Louis University System for determining the position in a scan image corresponding to the position of an imaging probe
US5848967A (en) * 1991-01-28 1998-12-15 Cosman; Eric R. Optically coupled frameless stereotactic system and method
US6167295A (en) * 1991-01-28 2000-12-26 Radionics, Inc. Optical and computer graphic stereotactic localizer
US6275725B1 (en) 1991-01-28 2001-08-14 Radionics, Inc. Stereotactic optical navigation
US6675040B1 (en) 1991-01-28 2004-01-06 Sherwood Services Ag Optical object tracking system
US6662036B2 (en) 1991-01-28 2003-12-09 Sherwood Services Ag Surgical positioning system
US6351661B1 (en) 1991-01-28 2002-02-26 Sherwood Services Ag Optically coupled frameless stereotactic space probe
US6006126A (en) * 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US6405072B1 (en) 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US5227973A (en) * 1991-02-26 1993-07-13 Siemens Corporate Research, Inc. Control arbitration system for a mobile robot vehicle
AU636258B2 (en) * 1991-07-10 1993-04-22 Bloomfield Research And Development Corporation Mobile monitoring device
US6146390A (en) * 1992-04-21 2000-11-14 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6165181A (en) * 1992-04-21 2000-12-26 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US6491702B2 (en) 1992-04-21 2002-12-10 Sofamor Danek Holdings, Inc. Apparatus and method for photogrammetric surgical localization
US5369346A (en) * 1992-05-22 1994-11-29 Honda Giken Kogyo Kabushiki Kaisha Emergency stop control system for mobile robot
US5871445A (en) * 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6236875B1 (en) 1994-10-07 2001-05-22 Surgical Navigation Technologies Surgical navigation systems including reference and localization frames
US6978166B2 (en) 1994-10-07 2005-12-20 Saint Louis University System for use in displaying images of a body part
US8046053B2 (en) 1994-10-07 2011-10-25 Foley Kevin T System and method for modifying images of a body part
US20060122483A1 (en) * 1994-10-07 2006-06-08 Surgical Navigation Technologies, Inc. System for use in displaying images of a body part
US20020183610A1 (en) * 1994-10-07 2002-12-05 Saint Louis University And Surgical Navigation Technologies, Inc. Bone navigation system
US5666325A (en) * 1995-07-31 1997-09-09 Nordson Corporation Method and apparatus for monitoring and controlling the dispensing of materials onto a substrate
US6167145A (en) * 1996-03-29 2000-12-26 Surgical Navigation Technologies, Inc. Bone navigation system
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6694168B2 (en) 1998-06-22 2004-02-17 Synthes (U.S.A.) Fiducial matching using fiducial implants
US6202034B1 (en) * 1999-01-27 2001-03-13 Delphi Technologies, Inc. Ultrasonic ranging system and method for improving accuracy thereof
US6725082B2 (en) 1999-03-17 2004-04-20 Synthes U.S.A. System and method for ligament graft placement
US6585651B2 (en) 1999-04-20 2003-07-01 Synthes Ag Chur Method and device for percutaneous determination of points associated with the surface of an organ
US20020109705A1 (en) * 1999-05-03 2002-08-15 Robert Hofstetter System and method for preparing an image corrected for the presence of a gravity induced distortion
US7277594B2 (en) 1999-05-03 2007-10-02 Ao Technology Ag System and method for preparing an image corrected for the presence of a gravity induced distortion
US7783386B2 (en) * 2004-08-27 2010-08-24 Abb Research Ltd Device and method for safeguarding a machine-controlled handling device
US20080021597A1 (en) * 2004-08-27 2008-01-24 Abb Research Ltd. Device And Method For Safeguarding A Machine-Controlled Handling Device
WO2006037137A1 (en) * 2004-10-05 2006-04-13 Keba Ag Working space monitoring for automated programme-controlled machines and robots
US20090024245A1 (en) * 2007-03-23 2009-01-22 Truetzschler Gmbh & Co., Kg Apparatus for monitoring and securing danger zones on power-driven textile machines
US8214072B2 (en) * 2007-03-23 2012-07-03 Truetzschler Gmbh & Co. Kg Apparatus for monitoring and securing danger zones on power-driven textile machines
CN101739030B (en) * 2009-12-18 2011-12-14 重庆大学 Spray robot control system
US20120262727A1 (en) * 2010-11-05 2012-10-18 Kuka Laboratories Gmbh Method And Apparatus For Secure Control Of A Robot
US9030674B2 (en) * 2010-11-05 2015-05-12 Kuka Roboter Gmbh Method and apparatus for secure control of a robot
US20120282064A1 (en) * 2011-05-02 2012-11-08 John Anthony Payne Apparatus and methods of positioning a subsea object
US9310482B2 (en) 2012-02-10 2016-04-12 Ascent Ventures, Llc Methods for locating and sensing the position, orientation, and contour of a work object in a robotic system
DE102013020596A1 (en) * 2013-12-13 2015-06-18 Daimler Ag Workstation and method for performing at least one work step, in particular for producing a motor vehicle
DE102016110164A1 (en) * 2016-06-02 2017-12-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Connecting device for connecting a robot device with an ultrasonic measuring device
US11187678B2 (en) * 2017-11-09 2021-11-30 Meiji Co., Ltd. Solid-liquid distribution detection apparatus
CN108818566A (en) * 2018-07-24 2018-11-16 昆山市工业技术研究院有限责任公司 A kind of full-automatic dining assistant robot
CN114137082A (en) * 2021-11-26 2022-03-04 中国科学院合肥物质科学研究院 Automatic ultrasonic imaging detection method and system for six-axis mechanical arm
WO2023092788A1 (en) * 2021-11-26 2023-06-01 中国科学院合肥物质科学研究院 Automated ultrasonic imaging test method and system of six-shaft mechanical arm
WO2023170868A1 (en) * 2022-03-10 2023-09-14 株式会社Fuji Safety device and robot system
CN114407025A (en) * 2022-03-29 2022-04-29 北京云迹科技股份有限公司 Robot emergency stop mode automatic control method and device and robot
CN114407025B (en) * 2022-03-29 2022-06-28 北京云迹科技股份有限公司 Robot sudden stop mode automatic control method and device and robot

Similar Documents

Publication Publication Date Title
US4674057A (en) Ultrasonic ranging control system for industrial robots
US4821206A (en) Ultrasonic apparatus for positioning a robot hand
JPH06175714A (en) Safe interlock system for detecting foreign matter in working space
CA2402660C (en) Obstruction sensing system utilizing physical shielding to prevent errant detection
US4996468A (en) Automated guided vehicle
US4790402A (en) Automated guided vehicle
EP0835459B1 (en) System and device for a self orienting device
US5942869A (en) Mobile robot control device
US5935179A (en) System and device for a self orienting device
CA1195408A (en) Non-contact visual proximity sensing apparatus
US6265725B1 (en) Optoelectronic device for detecting objects in a monitoring range with a distance sensor
US4968878A (en) Dual bumper-light curtain obstacle detection sensor
US9283677B2 (en) Visual indication of target tracking
US4958068A (en) Dual bumper-light curtain obstacle detection sensor
US20200171662A1 (en) Monitor system for robot and robot system
US6243011B1 (en) Optoelectric safety system for a folding press
JPH07241790A (en) Robot collision preventing method
EP1214632B1 (en) Machine system having optical endpoint control
JPH09158258A (en) Monitoring device of construction equipment
JP2981943B2 (en) Work machine alarm system
Everett A Computer Controlled Sentry Robot
JP2661034B2 (en) A processing machine with a surface detection function
JP2018200310A (en) Device for monitoring position of object by sound wave
Friedman Gestural control of robot end effectors
JPH0938891A (en) Safety device of industrial robot

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOCKHEED CORPORATION, BURBANK, CA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CAUGHMAN, DONALD O.;PLUMLEY, WALLACE J.;REEL/FRAME:004646/0147

Effective date: 19840208

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: LOCKHEED MARTIN CORPORATION, MARYLAND

Free format text: MERGER;ASSIGNOR:LOCKHEED CORPORATION;REEL/FRAME:015386/0365

Effective date: 19960128