US4607469A - Seal for water proofing a utility line conduit and a method of forming the seal - Google Patents

Seal for water proofing a utility line conduit and a method of forming the seal Download PDF

Info

Publication number
US4607469A
US4607469A US06/600,526 US60052684A US4607469A US 4607469 A US4607469 A US 4607469A US 60052684 A US60052684 A US 60052684A US 4607469 A US4607469 A US 4607469A
Authority
US
United States
Prior art keywords
sealant
conduit
seal
consistency
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/600,526
Inventor
George W. Harrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Team Inc
Original Assignee
Team Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Team Inc filed Critical Team Inc
Priority to US06/600,526 priority Critical patent/US4607469A/en
Assigned to TEAM, INC. reassignment TEAM, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HARRISON, GEORGE W.
Application granted granted Critical
Publication of US4607469A publication Critical patent/US4607469A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • F16L5/08Sealing by means of axial screws compressing a ring or sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L5/00Devices for use where pipes, cables or protective tubing pass through walls or partitions
    • F16L5/02Sealing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/22Installations of cables or lines through walls, floors or ceilings, e.g. into buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/80Processes of waterproofing

Definitions

  • This invention relates to methods of sealing a conduit surrounding a utility line passing through a wall, one side of which is exposed to water, and the other side of which demarcates an area to be kept dry; and especially, the invention involves waterproofing electrical power line conduits entering underground vaults or basement walls.
  • Underground vaults typically of a concrete or masonry construction, that are accessed, for example, through ceiling towers to manholes, or by other service manways.
  • telephone lines, television cables and other public or private lines are run underground within the protective shield of a conduit for collection or distribution at underground vaults.
  • the underground vault may be a power station and may contain switching and/or distribution junctions and/or transformers or other equipment which can be shortened or damaged by vault flooding, with potential loss of service to the customers of the utility and life endangering work situations for the utility company's workmen who enter the vault.
  • a similar flooding problem is often presented in underground basement levels of building equipment rooms, where utility lines enter through conduits in the subterranean walls of the building.
  • these objects are satisfied by fitting, within the electrical line conduit, and about the electrical line or lines inside the conduit, a plurality of dams, spacing the dams apart within the conduit along the axis of the conduit to define a cell that is penetrated on opposed sides by the electrical lines.
  • the walls of the cell which form the dams are of solid rubber and are compressed so that the rubber forms a sealing surface with the conduit and the lines or lines.
  • the cell is then pressurized in a two step procedure with a thixotropic, moisture activated, room temperature curable, dimethylpolysillxane or dialkylpolysillxane which are generally referred to as silicone or room temperature vulcanized ("RTV”) rubber.
  • the silicone or RTV rubber reacts with available water within and at the boundaries of the cell to form silanol groups which cure to form a resilient silicon rubber seal. Resin within the cell which does not hydrolize remains unpolymerized to provide a thixotropic reservoir which is yieldable to accommodate line movement under power surges and which is a standby reserve ready to polymerize to provide further sealing action upon any subsequent intrusion of water into the cell at places which have not previously experienced water intrusion.
  • FIG. 1 is a perspective cutaway, schematic view of an electrical line conduit passing through a wall
  • FIG. 2 is a perspective cutaway view of a dam fitted over the electrical line run within the conduit illustrated in FIG. 1;
  • FIG. 3 is a sectional view along the lines 3--3 of FIG. 2 illustrating within the conduit a cell undergoing pressurization;
  • FIG. 4 is cross sectional view similar to FIG. 3 showing the seal resulting from the process illustrated in FIG. 3;
  • FIG. 5 is a perspective, cutaway view of the preferred embodiment of the apparatus of the cell of the present invention.
  • FIG. 6 is a partial sectional view of the preferred embodiment of the apparatus of the cell of the present invention shown in FIG. 5.
  • a plurality of electric power lines 10, 11 enter an underground vault 12.
  • the lines are shielded within a conduit 13 which passes through an underground wall 14 separating the vault 12 from earth 15.
  • Reference 16 indicates moisture being admitted into the vault 12 by water flowing in the lumen of the conduit 13.
  • a dam 17 is illustrated fitted about each of electrical lines 10 and 11.
  • the dam suitably is a rubber disk, preferably solid, having an outer diameter approximating the inner diameter of conduit 13. Foam rubber disks, such as in the prior art, are not preferred.
  • the outer diameter of dam 17 is not less than about 1/4 of an inch less than the inner diameter of conduit 13.
  • the rubber dam is fitted about electrical conduits 10 and 11 by slicing the dam 17, from a peripheral edge inwardly, as illustrated at 18, the distance of the center line of power line 10 from the inner wall of conduit 13; a similar slice 19 is made for power line 11.
  • an aperture 20 of diameter approximating the diameter of power line 10 is cut; similarly an aperture 21 for power line 11 is formed into slice 19.
  • Dam 17 is then fitted over electrical power lines 10, 11 by slipping the dam at slice 10 over power line 11 until it seats into aperture 20, and by slipping the dam 17 over power line 11 at slice 19 until the power line seats into aperture 21.
  • one continuous slice could be made from a peripheral edge of dam 17. Dam 17 is then pushed along line 10, 11 into conduit 13 preferably until lined up with the exterior face 14a of wall 14, as illustrated in FIG. 3.
  • a second dam 22 is fitted within conduit 13 about electrical lines 10, 11 inside the conduit and is spaced from dam 17 along the axis of conduit 13 to define a cell indicated generally by reference numeral 23.
  • Cell 23 is defined by the inner periphery of conduit 13 and by dams 17, 22, and is penetrated on opposite sides of dams 22, 17 by electrical power lines 10, 11, the penetration being in apertures 20 and 21, respectively, for dam 17, and in apertures 23, 25 for dam 22.
  • FIGS. 5 and 6 The details of alternate mechanical apparatus to define a cell 23 are shown in FIGS. 5 and 6.
  • a single electrical line 99 is shown in FIGS. 5 and 6 to simplify explanation.
  • the cell 23 includes two solid rubber flanges 100, 102.
  • Each flange 100, 102 includes a slit 104, 106, respectively, which is different from slits 18, 19 discussed above.
  • Slits 104, 106 traverse the full length of the flanges 100, 102, respectively, thereby bifurcating each of slits 104, 106 into two approximately equal segments.
  • the cutting of the flanges 100, 102 into two parts is preferable.
  • Each flange 100, 102 further includes a first set of quarter-circular metal plates 108, 110, respectively, facing towards the inner surface of vault 12 and a second set of quarter-circular metal plates 112, 114, respectively, facing towards the earth 15.
  • Each quarter circular plate includes one hole, such as holes 116, 118, 120, 122, for plates 108, 110, 112, 114, respectively, with corresponding holes in the flanges 100, 102.
  • Threaded bolts 124, having heads 126 and threaded portion 128, extend from plates 108 through plates 110, 112, 114.
  • Nuts 130 coaxial with and of the same size as holes 116, 118, 120, 122 are attached, such as, for example, by tack welding, on the face of plates 114 to receive the threading 128. Alternately, plates 114 may be tapped, and the nuts 130 eliminated. Spacers 131 are placed between plates 110, 112 to maintain the interior space of the cell. It should be noted that Marine type fittings should be used for plates 114, bolts 124 and nuts 130 because these will be exposed to water and sometimes corrosive salt water.
  • Each assembly of a flange, two oppositely disposed plates and a slit comprise one of the dams, the assembly including flange 100 corresponding to dam 22 and the assembly including flange 102 corresponding to dam 17.
  • the bolts 124 are torqued up by turning heads 126, placing flanges 100, 102 in axial compression.
  • the torquing also seals slits 104, 106.
  • Foam rubber would not be satisfactory for this purpose because it tends to internally compress.
  • the pressure from the flanges 100, 102 tends to bow the conduit 13 outwardly against concrete 14.
  • conduit 13 is made of PVC, and when the concrete 14 dries around it on initial setting, the concrete tends to shrink from the PVC. The pressure from the flanges 100, 102 therefore tends to restore the contact between conduit 13 and concrete 14 and to shut off water flowing around the exterior of the conduit 13.
  • cell 23 is then filled under positive pressure with a thixotropic, moisture activated, room temperature curable, silicone or RTV rubber, indicated generally by reference numeral 26.
  • Suitable resins for such purposes are General Electric paste-consistency, adhesive sealants product numbers RTV102, RTV103, RTV108, and RTV109 available from General Electric Co., Silicone Products Division, RTV Products Department, Waterford, N.Y., and described in its Product Data Brochure CDS-1527E.
  • General Electric RTV106 and RTV116 which are paste-consistency, adhesive sealants, especially adapted for high temperature applications.
  • Another suitable such sealant is Dow Corning Silicone Rubber Sealant Part No. 732 available from Dow Corning Corporation, Midland, Mich.
  • adhesive sealants involve silicone or RTV rubber which, on exposure to moisture at room temperature, hydrolize and form silanol groups that cure to form resilient silicone rubber seals.
  • these sealants are mixed with synthetic fibers, such as teflon or asbestos, for bridging capability with a mix of fiber lengths, such as one-quarter inch for longer fibers, and short fibers of one-sixty-fourth inch and shorter.
  • the process of filling cell 23 is illustrated in FIG. 3, wherein a needle 27 is fitted to a hose 28 connected to a dispensing apparatus 29 filled with the silicone resin mixed with synthetic fiber to be introduced into cell 23.
  • the dispensing apparatus may be as simple as a collapsible aluminum squeeze tube, a caulking cartridge, or for larger jobs, a dispensing unit connected by an extrusion pump to a bulk container.
  • dam 22 is penetrated with the needle, and the dispenser 29 is activated to extrude the resin through hose 28 and needle 27 into cell 23.
  • the resin flows only under the compressive force applied to it in the cylinder of dispenser 29.
  • the resin is expelled into the cell 23 until it substantially fills the cell.
  • Pressure of filling is continued in order to flow the thixotropic resin out of the gap, as indicated at 30, 31, between the periphery of portions of dams 17, 22 and the inner circumference of conduit 13, as well as out any gaps or voids in apertures 21, 25 of dams 17, 22 unfilled by the body of power line 11 such as when three power lines (not shown) abut.
  • the thixotropic resin flows out of any of apertures 20, 24 in dams 17, 22 unfilled by the body of power line 10.
  • needle 27 is withdrawn.
  • the material is then permitted to dry, filling any voids as discussed above.
  • the curing time for the resin to set in the bridged voids is approximately one-quarter to one hour depending on the amount of water present. It should be noted that where the conduit 13 is dry, water must be inserted to insure curing. This is done either by prewetting the electrical lines 10, 11 and conduit 13 or by mixing the resin with water.
  • needle 27 is reinserted, and more resin under pressure is introduced into cell 23 to substantially fill all remaining space as the second step. This resin remains pressurized within cell 23. With regard to the second insertion of resin, there is no concern for adherence of the resin to the surrounding structures because the cell 23 is now a closed unit.
  • Curing of the resin occurs on exposure to atmospheric moisture or other water as discussed above, and consequently, curing occurs at all surfaces within the cell where the cell was wetted with water and occurs wherever the resin was extruded through gaps, such as gaps 30, 31 (if they still exist after the bolts are torqued) or apertures 21, 25, 20, 24 (if they exist after the bolts are torqued) or where they may exist in other electrical line situations not shown, such as three abutting lines, and exposed to atmospheric or other humidity or water.
  • the cure process begins with formation of a skin on the exposed surface of the sealant and progresses inwardly through the material. At 25° C.
  • the GE RTV products referred to hereinabove will form a surface skin which is tact free to the touch in the range from 15 to 60 minutes depending on the water. Higher temperatures and higher humidity or water content will accelerate the curing process; lower temperatures and lower humidity will slow the cure rate.
  • an electrical line conduit 13 passing through wall 14 from its course through earth 15 to vault 12 is provided with the cellular seal comprising the plurality of dams 17, 22 bonded to the inner circumference of conduit 13 at 32, 33 by the rubber seal and, where necessary, by a cured silicone resin.
  • the resin has cured inwardly into the cell 23 (cure is symbolically indicated as at reference number 26a), and some of the resin remains uncured (symbolically indicated more interiorly within the cell 23 at reference numeral 26b as discussed above).
  • the cured material is flexible, and contains a Shore A hardness of about thirty.
  • the water 40 is completely sealed from admittance into vault 12 through conduit 13 by dam 17 and silicone resin bonds 32, 34, and 36 and the pressure exerted by flanges 100, 102 on the conduit 13 to force it against concrete 14. Similarly, the moisture in the air will cause back-up bonds 33, 35, 37 to form with dam 22 and the interior of the conduit 13 and the exterior of lines 11, 10, respectively. It should be noted that where the rubber properly forms a seal in FIGS. 5 and 6 and no voids exist, the bonds 32, 33, 34, 35, 36 are shown in a highly exagerated form and may not extend beyond the rubber sealing surface of flanges 100, 102 with conduit 13 and lines 10, 11.
  • the elastomeric quality of cell 23, comprising dams 17, 22 and the cured 26a resin and uncured 26b resin, supports and separates electrical lines 10, 11.
  • the elastomeric nature of the cellular seal accommodates power line movement during power surges.
  • the uncured resin 26b provides a thixotropic reservoir which accommodates and cushions the line movement and provides a standby reserve of curable resin ready to polymerize to provide further sealing action upon any subsequent intrusion of water into the cell where such uncurred material is located.
  • the method for producing the seal and the resultant seal of the present invention is embodied in the use of damming means providing a seal against flow of ambient water through a designated confined cell space 23 within a conduit having at least one electrical cable 10, 11, 99 extending through the conduit.
  • a sealant body 26 is confined with the cell space as partially a paste consistency liquid 26b disposed within the body wherein no reactant has reached the sealant and partially a cured flexible solid 26a in the semblance of a rind on the exterior surface of the sealant body and in leakage protrusions from the sealant body into leakage spaces 21, 25, 20, 24, 30, 31 wherein the sealant has been in contact with a water reactant.
  • a solid rubber disc damming means 22, 17 is loosely fitted within the conduit and around the electrical cable and respectively spaced apart to define the ends of the confined cell space 23 wherein the sealant has formed a rind 26a of sealant protruding into spaces between the conduit and the damming means and also between the electrical cable and the damming means.
  • the sealant body is adapted, in the event that relative movement occurs between any of, the conduit, the damming means and the electrical cable sufficient to disrupt a portion of the seal 32, 33, 34, 35 effected by the rind, to leak a measure of the liquid portion of the sealant body into the disrupted portion of the rind sufficient to fill any portion subject to leakage with this measure of sealant contacting the reactant and subsequently curing into a flexible solid.
  • the damming means is adapted to receive additional paste-consistency sealant under pressure into the sealant body to join and replenish the paste-consistency liquid portion 26b of the sealant body.
  • the additional sealant may be injected through a needle 27 penetrating a wall of the damming means 22.
  • Each of the damming means 22, 17, 100, 102 is a solid elastomer and may be adapted to be axially compressed and thereby to be radially expanded into better sealing contact with the conduit means and the electrical cable.
  • the sealant is a thixotropic room temperature composition of paste-consistency which reacts with water to cure into a flexible solid.

Abstract

A method of and apparatus for sealing tubular conduits carrying one or more utility lines provided therein that do not totally displace the void is disclosed. The method and apparatus include spacing a plurality of dams along the axis of the conduit and defining a cell penetrated on opposite sides by the line or lines and thereafter pressuring the cell with a silicone or RTV rubber and exposing the cell to moisture sufficient to cause the resin to cure.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. patent application Ser. No. 567,651, filed Jan. 3, 1984, and now abandoned by George W. Harrison, entitled "Waterproofing a Utility Line Conduit".
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods of sealing a conduit surrounding a utility line passing through a wall, one side of which is exposed to water, and the other side of which demarcates an area to be kept dry; and especially, the invention involves waterproofing electrical power line conduits entering underground vaults or basement walls.
2. Description of the Prior Art
Public utilities commonly run power lines underground through conduits which enter and leave underground vaults, typically of a concrete or masonry construction, that are accessed, for example, through ceiling towers to manholes, or by other service manways. Similarly, telephone lines, television cables and other public or private lines are run underground within the protective shield of a conduit for collection or distribution at underground vaults. The underground vault may be a power station and may contain switching and/or distribution junctions and/or transformers or other equipment which can be shortened or damaged by vault flooding, with potential loss of service to the customers of the utility and life endangering work situations for the utility company's workmen who enter the vault. A similar flooding problem is often presented in underground basement levels of building equipment rooms, where utility lines enter through conduits in the subterranean walls of the building.
In all these and other comparable situations in which an underground run of utility line shielded in a conduit is admitted into an underground vault, a source of water entrance into the vault is through the conduit itself. Water entry into an underground vault through underground conduit can be severe. For example, a power company's underground concrete vault measuring 10'×10'×20' and located in a coastal area in a Western state was consistently flooded with some 15,000 gallons of water within a 48 hour period from water entering the vault essentially through underground electrical power line conduits. Until the development and utilization of the hereinafter described invention to solve this problem of water entry to an underground vault, conventional efforts such as occluding the conduit inlet ports inside the vault walls with caulking materials or expanding plugs fitted around the power line had proven unsuccessful.
Another difficulty with electrical line conduits entering underground vaults is that power surges in the electrical lines cause line movement, and where several lines are carried by one conduit, the occurrence of water in the conduit can increase the risk of possible line to line power arcing and shorting, with consequent electrical failure.
Another method which applicant believes was unsuccessful was to use two oppositely disposed, spaced apart foam rubber flanges acting as dams which were to be fit around the electrical lines inside a conduit and along the axis of the conduit. Spacers were used between the flanges, with bolts, nuts and the spacers mounted on plates which abut the flat sides of the flanges. The nuts were tack welded to the most interior plates abutting the most interior flange. Accordingly, a cell was formed between the two dams, penetrated on opposite sides by the electrical lines and also the bolts running through the spacers. The cell was to be filled with oil or similar fluid and the dams compressed by use of the bolts. This structure is similar to that of FIG. 5 but with foam rubber dams. Applicant learned of this method and apparatus just prior to applicant's invention.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a method of sealing a conduit surrounding a utility line in such a manner that the presence of water itself is utilized to contribute to sealing.
It is an object of this invention to provide a method of preventing entry of water past a wall below ground level through underground conduit carrying a utility line admitted in the wall.
It is an object of this invention to waterproof an underground electrical line conduit such that the electrical line within the conduit is supported in an elastic medium which accommodates line movement during power surges, and which creates a waterproof seal wherever water might be found in the conduit.
In accordance with the invention, these objects are satisfied by fitting, within the electrical line conduit, and about the electrical line or lines inside the conduit, a plurality of dams, spacing the dams apart within the conduit along the axis of the conduit to define a cell that is penetrated on opposed sides by the electrical lines. The walls of the cell which form the dams are of solid rubber and are compressed so that the rubber forms a sealing surface with the conduit and the lines or lines. The cell is then pressurized in a two step procedure with a thixotropic, moisture activated, room temperature curable, dimethylpolysillxane or dialkylpolysillxane which are generally referred to as silicone or room temperature vulcanized ("RTV") rubber. The silicone or RTV rubber reacts with available water within and at the boundaries of the cell to form silanol groups which cure to form a resilient silicon rubber seal. Resin within the cell which does not hydrolize remains unpolymerized to provide a thixotropic reservoir which is yieldable to accommodate line movement under power surges and which is a standby reserve ready to polymerize to provide further sealing action upon any subsequent intrusion of water into the cell at places which have not previously experienced water intrusion.
It is an object of this invention to provide a method of preventing entry of water past a wall below ground level through underground conduit carrying a utility line admitted in the wall.
DESCRIPTION OF THE DRAWINGS
For a further understanding of the nature and objects of the present invention, reference is made to the following diagrams in which like parts are given like reference numerals, and wherein:
FIG. 1 is a perspective cutaway, schematic view of an electrical line conduit passing through a wall;
FIG. 2 is a perspective cutaway view of a dam fitted over the electrical line run within the conduit illustrated in FIG. 1;
FIG. 3 is a sectional view along the lines 3--3 of FIG. 2 illustrating within the conduit a cell undergoing pressurization;
FIG. 4 is cross sectional view similar to FIG. 3 showing the seal resulting from the process illustrated in FIG. 3;
FIG. 5 is a perspective, cutaway view of the preferred embodiment of the apparatus of the cell of the present invention; and
FIG. 6 is a partial sectional view of the preferred embodiment of the apparatus of the cell of the present invention shown in FIG. 5.
DESCRIPTION OF THE INVENTION
Referring to FIG. 1, a plurality of electric power lines 10, 11 enter an underground vault 12. The lines are shielded within a conduit 13 which passes through an underground wall 14 separating the vault 12 from earth 15. Reference 16 indicates moisture being admitted into the vault 12 by water flowing in the lumen of the conduit 13.
Referring to FIG. 2, a dam 17 is illustrated fitted about each of electrical lines 10 and 11. The dam suitably is a rubber disk, preferably solid, having an outer diameter approximating the inner diameter of conduit 13. Foam rubber disks, such as in the prior art, are not preferred. Suitably the outer diameter of dam 17 is not less than about 1/4 of an inch less than the inner diameter of conduit 13. The rubber dam is fitted about electrical conduits 10 and 11 by slicing the dam 17, from a peripheral edge inwardly, as illustrated at 18, the distance of the center line of power line 10 from the inner wall of conduit 13; a similar slice 19 is made for power line 11. At the inner terminus of slice 18, an aperture 20 of diameter approximating the diameter of power line 10 is cut; similarly an aperture 21 for power line 11 is formed into slice 19. Dam 17 is then fitted over electrical power lines 10, 11 by slipping the dam at slice 10 over power line 11 until it seats into aperture 20, and by slipping the dam 17 over power line 11 at slice 19 until the power line seats into aperture 21. Alternately one continuous slice could be made from a peripheral edge of dam 17. Dam 17 is then pushed along line 10, 11 into conduit 13 preferably until lined up with the exterior face 14a of wall 14, as illustrated in FIG. 3. In the same matter, a second dam 22 is fitted within conduit 13 about electrical lines 10, 11 inside the conduit and is spaced from dam 17 along the axis of conduit 13 to define a cell indicated generally by reference numeral 23. Cell 23 is defined by the inner periphery of conduit 13 and by dams 17, 22, and is penetrated on opposite sides of dams 22, 17 by electrical power lines 10, 11, the penetration being in apertures 20 and 21, respectively, for dam 17, and in apertures 23, 25 for dam 22.
The details of alternate mechanical apparatus to define a cell 23 are shown in FIGS. 5 and 6. A single electrical line 99 is shown in FIGS. 5 and 6 to simplify explanation. The cell 23 includes two solid rubber flanges 100, 102. Each flange 100, 102 includes a slit 104, 106, respectively, which is different from slits 18, 19 discussed above. Slits 104, 106 traverse the full length of the flanges 100, 102, respectively, thereby bifurcating each of slits 104, 106 into two approximately equal segments. The cutting of the flanges 100, 102 into two parts is preferable. Each flange 100, 102 further includes a first set of quarter- circular metal plates 108, 110, respectively, facing towards the inner surface of vault 12 and a second set of quarter- circular metal plates 112, 114, respectively, facing towards the earth 15. Each quarter circular plate includes one hole, such as holes 116, 118, 120, 122, for plates 108, 110, 112, 114, respectively, with corresponding holes in the flanges 100, 102. Threaded bolts 124, having heads 126 and threaded portion 128, extend from plates 108 through plates 110, 112, 114. Nuts 130 coaxial with and of the same size as holes 116, 118, 120, 122 are attached, such as, for example, by tack welding, on the face of plates 114 to receive the threading 128. Alternately, plates 114 may be tapped, and the nuts 130 eliminated. Spacers 131 are placed between plates 110, 112 to maintain the interior space of the cell. It should be noted that Marine type fittings should be used for plates 114, bolts 124 and nuts 130 because these will be exposed to water and sometimes corrosive salt water.
Each assembly of a flange, two oppositely disposed plates and a slit comprise one of the dams, the assembly including flange 100 corresponding to dam 22 and the assembly including flange 102 corresponding to dam 17.
After assembling the cell 23, the bolts 124 are torqued up by turning heads 126, placing flanges 100, 102 in axial compression. The outer peripheral surfaces 132, 134 and inner peripheral surfaces 136, 138 of the flanges 100, 102, respectively, radially distort (FIG. 6) under the pressure applied by the plates as a result of the torquing to form sealing surfaces with the inner surface 33 of conduit 13 and the outer surface of the electrical line 99. The torquing also seals slits 104, 106. Foam rubber would not be satisfactory for this purpose because it tends to internally compress. In addition to the sealing effect of the compression, the pressure from the flanges 100, 102 tends to bow the conduit 13 outwardly against concrete 14. Usually the conduit 13 is made of PVC, and when the concrete 14 dries around it on initial setting, the concrete tends to shrink from the PVC. The pressure from the flanges 100, 102 therefore tends to restore the contact between conduit 13 and concrete 14 and to shut off water flowing around the exterior of the conduit 13.
After cell 23 is made up, as discussed in detail above referring to FIGS. 5 and 6, cell 23 is then filled under positive pressure with a thixotropic, moisture activated, room temperature curable, silicone or RTV rubber, indicated generally by reference numeral 26. Suitable resins for such purposes are General Electric paste-consistency, adhesive sealants product numbers RTV102, RTV103, RTV108, and RTV109 available from General Electric Co., Silicone Products Division, RTV Products Department, Waterford, N.Y., and described in its Product Data Brochure CDS-1527E. Also suitable are General Electric RTV106 and RTV116, which are paste-consistency, adhesive sealants, especially adapted for high temperature applications. Another suitable such sealant is Dow Corning Silicone Rubber Sealant Part No. 732 available from Dow Corning Corporation, Midland, Mich.
These paste-consistency, adhesive sealants involve silicone or RTV rubber which, on exposure to moisture at room temperature, hydrolize and form silanol groups that cure to form resilient silicone rubber seals. Preferably, these sealants are mixed with synthetic fibers, such as teflon or asbestos, for bridging capability with a mix of fiber lengths, such as one-quarter inch for longer fibers, and short fibers of one-sixty-fourth inch and shorter.
The process of filling cell 23 is illustrated in FIG. 3, wherein a needle 27 is fitted to a hose 28 connected to a dispensing apparatus 29 filled with the silicone resin mixed with synthetic fiber to be introduced into cell 23. The dispensing apparatus may be as simple as a collapsible aluminum squeeze tube, a caulking cartridge, or for larger jobs, a dispensing unit connected by an extrusion pump to a bulk container.
As the first step of a two step procedure dam 22 is penetrated with the needle, and the dispenser 29 is activated to extrude the resin through hose 28 and needle 27 into cell 23. Being thixotropic, the resin flows only under the compressive force applied to it in the cylinder of dispenser 29. The resin is expelled into the cell 23 until it substantially fills the cell. Pressure of filling is continued in order to flow the thixotropic resin out of the gap, as indicated at 30, 31, between the periphery of portions of dams 17, 22 and the inner circumference of conduit 13, as well as out any gaps or voids in apertures 21, 25 of dams 17, 22 unfilled by the body of power line 11 such as when three power lines (not shown) abut. Similarly, the thixotropic resin flows out of any of apertures 20, 24 in dams 17, 22 unfilled by the body of power line 10. When all such gaps are bridged by resin, needle 27 is withdrawn. Preferably, the material is then permitted to dry, filling any voids as discussed above. The curing time for the resin to set in the bridged voids is approximately one-quarter to one hour depending on the amount of water present. It should be noted that where the conduit 13 is dry, water must be inserted to insure curing. This is done either by prewetting the electrical lines 10, 11 and conduit 13 or by mixing the resin with water. After the first injection of resin has cured, needle 27 is reinserted, and more resin under pressure is introduced into cell 23 to substantially fill all remaining space as the second step. This resin remains pressurized within cell 23. With regard to the second insertion of resin, there is no concern for adherence of the resin to the surrounding structures because the cell 23 is now a closed unit.
Curing of the resin occurs on exposure to atmospheric moisture or other water as discussed above, and consequently, curing occurs at all surfaces within the cell where the cell was wetted with water and occurs wherever the resin was extruded through gaps, such as gaps 30, 31 (if they still exist after the bolts are torqued) or apertures 21, 25, 20, 24 (if they exist after the bolts are torqued) or where they may exist in other electrical line situations not shown, such as three abutting lines, and exposed to atmospheric or other humidity or water. The cure process begins with formation of a skin on the exposed surface of the sealant and progresses inwardly through the material. At 25° C. (77° F.) and 50% relative humidity, the GE RTV products referred to hereinabove will form a surface skin which is tact free to the touch in the range from 15 to 60 minutes depending on the water. Higher temperatures and higher humidity or water content will accelerate the curing process; lower temperatures and lower humidity will slow the cure rate.
Referring to FIG. 4, an electrical line conduit 13 passing through wall 14 from its course through earth 15 to vault 12 is provided with the cellular seal comprising the plurality of dams 17, 22 bonded to the inner circumference of conduit 13 at 32, 33 by the rubber seal and, where necessary, by a cured silicone resin. The resin has cured inwardly into the cell 23 (cure is symbolically indicated as at reference number 26a), and some of the resin remains uncured (symbolically indicated more interiorly within the cell 23 at reference numeral 26b as discussed above). The cured material is flexible, and contains a Shore A hardness of about thirty. The water 40 is completely sealed from admittance into vault 12 through conduit 13 by dam 17 and silicone resin bonds 32, 34, and 36 and the pressure exerted by flanges 100, 102 on the conduit 13 to force it against concrete 14. Similarly, the moisture in the air will cause back-up bonds 33, 35, 37 to form with dam 22 and the interior of the conduit 13 and the exterior of lines 11, 10, respectively. It should be noted that where the rubber properly forms a seal in FIGS. 5 and 6 and no voids exist, the bonds 32, 33, 34, 35, 36 are shown in a highly exagerated form and may not extend beyond the rubber sealing surface of flanges 100, 102 with conduit 13 and lines 10, 11. The elastomeric quality of cell 23, comprising dams 17, 22 and the cured 26a resin and uncured 26b resin, supports and separates electrical lines 10, 11. The elastomeric nature of the cellular seal accommodates power line movement during power surges. The uncured resin 26b provides a thixotropic reservoir which accommodates and cushions the line movement and provides a standby reserve of curable resin ready to polymerize to provide further sealing action upon any subsequent intrusion of water into the cell where such uncurred material is located.
In summary, the method for producing the seal and the resultant seal of the present invention is embodied in the use of damming means providing a seal against flow of ambient water through a designated confined cell space 23 within a conduit having at least one electrical cable 10, 11, 99 extending through the conduit. A sealant body 26 is confined with the cell space as partially a paste consistency liquid 26b disposed within the body wherein no reactant has reached the sealant and partially a cured flexible solid 26a in the semblance of a rind on the exterior surface of the sealant body and in leakage protrusions from the sealant body into leakage spaces 21, 25, 20, 24, 30, 31 wherein the sealant has been in contact with a water reactant. A solid rubber disc damming means 22, 17 is loosely fitted within the conduit and around the electrical cable and respectively spaced apart to define the ends of the confined cell space 23 wherein the sealant has formed a rind 26a of sealant protruding into spaces between the conduit and the damming means and also between the electrical cable and the damming means.
The sealant body is adapted, in the event that relative movement occurs between any of, the conduit, the damming means and the electrical cable sufficient to disrupt a portion of the seal 32, 33, 34, 35 effected by the rind, to leak a measure of the liquid portion of the sealant body into the disrupted portion of the rind sufficient to fill any portion subject to leakage with this measure of sealant contacting the reactant and subsequently curing into a flexible solid.
The damming means is adapted to receive additional paste-consistency sealant under pressure into the sealant body to join and replenish the paste-consistency liquid portion 26b of the sealant body. The additional sealant may be injected through a needle 27 penetrating a wall of the damming means 22. Each of the damming means 22, 17, 100, 102 is a solid elastomer and may be adapted to be axially compressed and thereby to be radially expanded into better sealing contact with the conduit means and the electrical cable. The sealant is a thixotropic room temperature composition of paste-consistency which reacts with water to cure into a flexible solid.
While a single embodiment of the invention has been described herein, many variations thereof may be made without departing from the spirit of the invention as discussed above. Accordingly, it is intended that the scope of the invention be limited only by the claims which follow.

Claims (10)

I claim:
1. A seal against flow of ambient water through a designated confined cell space within a conduit having at least one electrical cable extending through the conduit, comprising in combination:
(a) a sealant body confined within said cell space as
(1) partially a paste-consistency liquid disposed within said body wherein no reactant has reached said sealant, and
(2) partially a cured flexible solid in the semblance of a rind on the exterior surface of said body or in leakage protrusions from said sealant body into leakage spaces wherein said sealant has been in contact with a water reactant;
(b) solid rubber disc damming means loosely fitted within said conduit and around said electrical cable and respectively spaced apart to define the ends of said confined cell space wherein said sealant has formed a rind of sealant protruding into spaces between said conduit and said damming means and also between said electrical cable and said damming means; and
(c) said sealant body being adapted, in the event that relative movement occurs between any of said conduit, said damming means and said electrical cable sufficient to disrupt a portion of the seal effected by said rind, to leak a measure of the liquid portion of said sealant body into the disrupted portion of said rind sufficient to fill any portion subject to leakage with said measure contacting said reactant and subsequently curing into a flexible solid.
2. The seal of claim 1 adapted to receive additional paste-consistency sealant under pressure into said sealant body to join and replenish the paste-consistency liquid portion of said sealant body.
3. The seal of claim 2 wherein said additional paste-consistency sealant is received under pressure into said sealant body through needle means penetrating said damming means.
4. The seal of claim 1 wherein each of said damming means is a solid elastomer and is adapted to be axially compressed and thereby to be radially expanded into better sealing contact with said conduit means and said electric cable.
5. The seal of claim 1 wherein said sealant is a thixotropic room temperature cured composition of paste-consistency which reacts with water to cure into a flexible solid.
6. A method of providing a seal against flow of ambient water through a designated confined cell space within a conduit having at least one electrical cable extending through the conduit, comprising the steps of:
(a) installing solid rubber disc damming means within said conduit in loosely fitted relation within said conduit and around said electrical cable and in spaced apart relation to define the ends of said confined cell space;
(b) injecting a sealant body under pressure into said space to be confined as
(1) partially a paste-consistency liquid within said sealant body wherein no reactant has reached said sealant; and
(2) partially a cured flexible solid in the semblance of a rind on the exterior surface of said sealant body or in leakage protruding from said body where said sealant body comes into contact with a water reactant during and following said injection step;
(c) whereby said sealant forms a flexible solid rind protruding into spaces between said conduit and seal damming means and also between said electrical cable and said damming means; and
(d) said sealant body being adapted, in the event that relative movement occurs between any of, said conduit, said damming means and said electric cable sufficient to disrupt a portion of the seal effected by said rind, to leak a measure of said liquid portion of said sealant body into the disrupted portion of said rind sufficient to fill any portion subject to leakage with said measure contacting said reactant and curing into a flexible solid.
7. The method of claim 6 including a subsequent step of injecting additional paste-consistency sealant under pressure into said sealant body of sealant to join and replenish said paste-consistency portion of said sealant body.
8. The method of claim 6 wherein each of said damming means is a solid elastomer which is axially compressed during installation to radially expand the elastomer into better sealing contact with said conduit means and said electrical cable.
9. The method of claim 6 wherein said sealant is a thixotropic room temperature cured composition which reacts with water to cure into a flexible solid.
10. The method of claim 7 wherein said additional paste-consistency sealant is injected through needle means penetrating said damming means.
US06/600,526 1984-01-03 1984-04-16 Seal for water proofing a utility line conduit and a method of forming the seal Expired - Fee Related US4607469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/600,526 US4607469A (en) 1984-01-03 1984-04-16 Seal for water proofing a utility line conduit and a method of forming the seal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56765184A 1984-01-03 1984-01-03
US06/600,526 US4607469A (en) 1984-01-03 1984-04-16 Seal for water proofing a utility line conduit and a method of forming the seal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US56765184A Continuation-In-Part 1984-01-03 1984-01-03

Publications (1)

Publication Number Publication Date
US4607469A true US4607469A (en) 1986-08-26

Family

ID=27074547

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/600,526 Expired - Fee Related US4607469A (en) 1984-01-03 1984-04-16 Seal for water proofing a utility line conduit and a method of forming the seal

Country Status (1)

Country Link
US (1) US4607469A (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669244A (en) * 1985-03-27 1987-06-02 Szoke Bela B Fire stop
WO1988000135A1 (en) * 1986-07-07 1988-01-14 Loctite Corporation Potted electrical/mechanical devices, and dual cure potting method
US4751031A (en) * 1986-05-05 1988-06-14 Chemische Industrie Filoform B.V. Method and an apparatus for waterproofing and gastightening a cable and/or tube passage in a wall or the like, using a foamable synthetic resin
US4754775A (en) * 1987-12-21 1988-07-05 The Dow Chemical Company Device and method for preventing water from flowing past a closed valve in a pipeline
US4774383A (en) * 1985-09-27 1988-09-27 Dalton Murphy L Jun Water tight seals for electronics package
US4785857A (en) * 1986-03-10 1988-11-22 Chemische Industrie Filoform B.V. Method and an apparatus for fitting a stopper in a pipe, tube, wall passage or the like, and a container consisting of at least two compartments filled with intermixable substances
WO1989000264A1 (en) * 1987-06-30 1989-01-12 Landers Phillip G System for plugging conduits
US4820196A (en) * 1987-10-01 1989-04-11 Unisys Corporation Sealing of contact openings for conformally coated connectors for printed circuit board assemblies
US4830041A (en) * 1988-10-21 1989-05-16 Institute Of Gas Technology Reelable flow stopper for plugging fluid flow within a pipe
US4952342A (en) * 1987-07-02 1990-08-28 Loctite Corproration Dual cure method for making a rotted electrical/mechanical device
US5057348A (en) * 1985-11-26 1991-10-15 Loctite Corporation Potted electrical/mechanical devices, and dual cure potting method
US5170017A (en) * 1991-02-15 1992-12-08 Augat Inc. Connector and method for sealed pass-through of insulated electrical conductors
US5229058A (en) * 1987-12-01 1993-07-20 Raychem Corporation Environmental sealing
US5258572A (en) * 1990-09-27 1993-11-02 Saito Denki Sangyo Co., Ltd. Distributing box for underground cables
US5278357A (en) * 1991-02-14 1994-01-11 Yazaki Corporation Electric wire holding case preventing of oil leak
US5301959A (en) * 1989-10-04 1994-04-12 British Telecommunications Public Limited Company Sealing gland
US5379803A (en) * 1990-09-12 1995-01-10 British Gas Plc Apparatus for the abandonment of a branch main
US5400826A (en) * 1988-11-10 1995-03-28 British Gas Plc Temporarily blocking the bore of a pipe through which a fluid flows with a foamed plus removed by dissolving
US5417019A (en) * 1993-03-11 1995-05-23 Lamson & Sessions Co., Passthrough device with firestop
US5418001A (en) * 1987-12-01 1995-05-23 Raychem Corporation Environmental sealing
US5635678A (en) * 1993-06-08 1997-06-03 Sumitomo Wiring Systems, Ltd. Construction for and method of waterproofing wiring harness
US5697194A (en) * 1996-06-18 1997-12-16 Psi Telecommunications, Inc. Modular seal assembly for a wall opening
US5819497A (en) * 1997-02-20 1998-10-13 Knepper; Richard T. Method and device for repairing fasteners attached to plaster board
DE19716156C1 (en) * 1997-04-18 1998-10-15 Hueselmann Ulrike Wall passage opening for e.g. pipe
WO1998046922A1 (en) * 1997-04-16 1998-10-22 Hauff-Technik Gmbh & Co. Kg Sealing element
US5831217A (en) * 1995-11-16 1998-11-03 The Boeing Company Wire bundle sealing system having individual tubular segments gathered around the wire bundles and containing sealant
US5899233A (en) * 1995-05-22 1999-05-04 Itt Automotive, Inc. Machinable cast-in-place tube enclosure fittings
US5912433A (en) * 1997-01-17 1999-06-15 Minnesota Mining And Manufacturing Company Cable closure injection sealed with low surface energy adhesive
WO2000043707A1 (en) * 1999-01-25 2000-07-27 Landers Phillip G Method of repairing a flanged pipe joint
EP1061205A1 (en) * 1999-06-15 2000-12-20 Uwe Kaim Mortar syringe
US6242700B1 (en) 1999-01-27 2001-06-05 3M Innovative Properties Company End seal assembly for a splice case
US6305133B1 (en) * 1999-08-05 2001-10-23 Kenneth R. Cornwall Self sealing firestop coupling assembly
US6353186B1 (en) * 1998-07-03 2002-03-05 Tyco Electronics Raychem Nv Seal having a sealing member between support members with peripheral channels for receiving elongate articles
US6441310B1 (en) 2001-03-30 2002-08-27 Hubbell Incorporated Moisture activated barrier for electrical assemblies
US6499268B2 (en) * 2000-04-28 2002-12-31 Peter James Reinforcing structures
US6530187B2 (en) * 1998-04-17 2003-03-11 Mirai Industry Co., Ltd. Partition passage and method of installing
US6543780B1 (en) * 1999-11-19 2003-04-08 Hilti Aktiengesellschaft Method of and device for sealing a gap
US20030213210A1 (en) * 2000-05-31 2003-11-20 Masahiro Sugimoto Method of constructing a structure for electric cable introduction in an explosion-proof facility
US20040183261A1 (en) * 2003-03-18 2004-09-23 Cooper Industries Sealing fitting with expanding material
US20050034407A1 (en) * 2003-07-28 2005-02-17 Snyder Darryl L. Support frame for duct
US20050200084A1 (en) * 2002-05-31 2005-09-15 Bell Michael Antoine Joseph C. Seal assembly
US20050218648A1 (en) * 2003-08-01 2005-10-06 Logue George Jr Pipe or conduit collar
US6969799B2 (en) 2003-11-20 2005-11-29 Sgc Technologies, L.L.C. Poke through
US20070084633A1 (en) * 2005-09-21 2007-04-19 Tyco Electronic Corporation Electromagnetic relay with noise reducing sealant
US20070117956A1 (en) * 2005-02-16 2007-05-24 Jack Boyd Bismaleimide resin with high temperature thermal stability
US20070261327A1 (en) * 2003-10-29 2007-11-15 Gilleran William J Air conditioning line flashing panel
WO2008104237A1 (en) * 2007-02-28 2008-09-04 Beele Engineering B.V. System and method for sealing in a conduit a space between an inner wall of the conduit and at least one pipe or cable extending through the conduit
WO2009000778A1 (en) * 2007-06-22 2008-12-31 Beele Engineering B.V. Method and sealing system for sealing an annular space between a rigid conduit and a pipe, tube or duct extending through the conduit and made of a thermally weakenable material
US20090320392A1 (en) * 2006-07-25 2009-12-31 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Wall leadthrough for leading a line through a building wall
EP2161149A1 (en) * 2008-09-03 2010-03-10 Winkler Gesellschaft mit beschränkter Haftung Wall bushing
US20100062628A1 (en) * 2008-08-20 2010-03-11 Utilx Corporation Cable termination connection assembly
US20100059275A1 (en) * 2008-08-20 2010-03-11 Utilx Corporation Cable splice connection assembly
US20100320694A1 (en) * 2009-06-18 2010-12-23 Musco Corporation Apparatus, method, and system for sealing an object or a plurality of objects in an assembly and sealing said assembly around an aperture
US20110192104A1 (en) * 2008-10-21 2011-08-11 Longhenry Charles C Core hole seal assembly and method
EP2314903A3 (en) * 2009-10-23 2012-05-30 Hans Peter Büttig System and method for installing a tube in a wall opening and expanded reaction resin and cuff for the same
WO2014113943A1 (en) * 2013-01-23 2014-07-31 戚郁芬 Cable connection casing
US20150001843A1 (en) * 2013-06-28 2015-01-01 Airbus Helicopters Removable coupling device for coupling together two flexible pipes
US20150162733A1 (en) * 2013-12-05 2015-06-11 Delphi Technologies, Inc. Grommet with spreader mounting feature
US9337647B2 (en) 2013-03-15 2016-05-10 William J. Gilleran Air conditioning flashing hood
KR20170030621A (en) * 2014-07-16 2017-03-17 하우프 테크닉 게엠베하 운트 코. 카게 Compression seal having an elastomer body
US20180034193A1 (en) * 2015-02-11 2018-02-01 Saipem S.A. Method For Connecting Cables Of A Pipeline Unit Section To Be Vertically Joined To A Subsea Pipeline For Transporting Fluids
US10132084B2 (en) 2013-03-15 2018-11-20 Wjg, Llc Single wall duct flashing panel
US20190252870A1 (en) * 2016-10-17 2019-08-15 Huber+Suhner Ag Cable Gland Comprising A Slip On Grommet
JP2019143676A (en) * 2018-02-19 2019-08-29 三菱重工業株式会社 Seal device
CN112963626A (en) * 2021-01-29 2021-06-15 广船国际有限公司 Sealing structure of pipeline and ship
US11303105B2 (en) * 2018-02-27 2022-04-12 Izo Box, Inc. Insulating box and method for electrical outlets, switches and light fixtures
DE102013022326B3 (en) 2012-02-07 2023-04-13 Doyma Gmbh & Co Sealing device with sealing body and sealing compound
EP4175083A1 (en) * 2021-10-28 2023-05-03 Abb Schweiz Ag Wire separator and conduit seal

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2202617A (en) * 1939-02-24 1940-05-28 A C Horn & Company Method of sealing conduits
US3210608A (en) * 1961-01-10 1965-10-05 Arthur I Appleton Explosion-proof panel board
DE2551693A1 (en) * 1975-11-18 1977-06-02 Kaefer Isoliertechnik Fireproof conduit passage coating - has outer asbestos cement layer and single or multiple mineral wool inner layers
US4061344A (en) * 1976-06-23 1977-12-06 General Signal Corporation Fitting for penetration through fire rated barriers
DE2632325A1 (en) * 1976-07-17 1978-01-19 Bettermann Ohg Neuwalzwerk Fire retarding seal for cable feedthrough - has cables surrounded by loose granules that expand when heated
US4086736A (en) * 1976-12-16 1978-05-02 Daniel International Corporation Fire and liquid seals for pipes and conduits and method of forming same
DE2732735A1 (en) * 1977-07-20 1979-01-25 Dieter Dipl Ing Funke Underground service connection for existing house - by attachment of duct through core drilled opening from inside building and work cavity adjacent to external junction point
US4189619A (en) * 1978-01-27 1980-02-19 Watson J Fire protective mastic and fire stop
GB2040107A (en) * 1979-01-18 1980-08-20 Lyckeaborgs Bruk Ab Fire proof cable lead through
US4237667A (en) * 1979-05-02 1980-12-09 Tech-Sil, Inc. Method and apparatus for installing gel material in architectural barrier breaches
US4245445A (en) * 1977-02-01 1981-01-20 Intellectual Trade Cy S.A. Great Duchy Of Luxemburg Method for making a fire-proof passage and passage obtained thereby
US4419535A (en) * 1981-07-31 1983-12-06 Hara Robert J O Multi-cable conduit for floors and walls
US4445304A (en) * 1981-03-19 1984-05-01 Andrew Koda Method and apparatus for supporting a vertical cylinder of wet cement surrounding a vertical pipe passing through a horizontal concrete slab
US4454381A (en) * 1981-08-31 1984-06-12 Aisin Warner Kabushiki Kaisha Method and a device for connecting electric cables used in a hydraulic system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2202617A (en) * 1939-02-24 1940-05-28 A C Horn & Company Method of sealing conduits
US3210608A (en) * 1961-01-10 1965-10-05 Arthur I Appleton Explosion-proof panel board
DE2551693A1 (en) * 1975-11-18 1977-06-02 Kaefer Isoliertechnik Fireproof conduit passage coating - has outer asbestos cement layer and single or multiple mineral wool inner layers
US4061344A (en) * 1976-06-23 1977-12-06 General Signal Corporation Fitting for penetration through fire rated barriers
DE2632325A1 (en) * 1976-07-17 1978-01-19 Bettermann Ohg Neuwalzwerk Fire retarding seal for cable feedthrough - has cables surrounded by loose granules that expand when heated
US4086736A (en) * 1976-12-16 1978-05-02 Daniel International Corporation Fire and liquid seals for pipes and conduits and method of forming same
US4245445A (en) * 1977-02-01 1981-01-20 Intellectual Trade Cy S.A. Great Duchy Of Luxemburg Method for making a fire-proof passage and passage obtained thereby
DE2732735A1 (en) * 1977-07-20 1979-01-25 Dieter Dipl Ing Funke Underground service connection for existing house - by attachment of duct through core drilled opening from inside building and work cavity adjacent to external junction point
US4189619A (en) * 1978-01-27 1980-02-19 Watson J Fire protective mastic and fire stop
GB2040107A (en) * 1979-01-18 1980-08-20 Lyckeaborgs Bruk Ab Fire proof cable lead through
US4237667A (en) * 1979-05-02 1980-12-09 Tech-Sil, Inc. Method and apparatus for installing gel material in architectural barrier breaches
US4445304A (en) * 1981-03-19 1984-05-01 Andrew Koda Method and apparatus for supporting a vertical cylinder of wet cement surrounding a vertical pipe passing through a horizontal concrete slab
US4419535A (en) * 1981-07-31 1983-12-06 Hara Robert J O Multi-cable conduit for floors and walls
US4454381A (en) * 1981-08-31 1984-06-12 Aisin Warner Kabushiki Kaisha Method and a device for connecting electric cables used in a hydraulic system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ishibashi, M.; H. Kobayashi; M. Makiyo, "Development of Fire-Stopping Materials for Wiring System," in Proceedings of the 25th Wire and Cable Symposium, Cherry Hill, N.J., U.S.A., Nov. 16-18, 1976, pp. 333-339.
Ishibashi, M.; H. Kobayashi; M. Makiyo, Development of Fire Stopping Materials for Wiring System, in Proceedings of the 25th Wire and Cable Symposium, Cherry Hill, N.J., U.S.A., Nov. 16 18, 1976, pp. 333 339. *

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669244A (en) * 1985-03-27 1987-06-02 Szoke Bela B Fire stop
US4774383A (en) * 1985-09-27 1988-09-27 Dalton Murphy L Jun Water tight seals for electronics package
US5057348A (en) * 1985-11-26 1991-10-15 Loctite Corporation Potted electrical/mechanical devices, and dual cure potting method
US4785857A (en) * 1986-03-10 1988-11-22 Chemische Industrie Filoform B.V. Method and an apparatus for fitting a stopper in a pipe, tube, wall passage or the like, and a container consisting of at least two compartments filled with intermixable substances
US4751031A (en) * 1986-05-05 1988-06-14 Chemische Industrie Filoform B.V. Method and an apparatus for waterproofing and gastightening a cable and/or tube passage in a wall or the like, using a foamable synthetic resin
WO1988000135A1 (en) * 1986-07-07 1988-01-14 Loctite Corporation Potted electrical/mechanical devices, and dual cure potting method
WO1989000264A1 (en) * 1987-06-30 1989-01-12 Landers Phillip G System for plugging conduits
US4952342A (en) * 1987-07-02 1990-08-28 Loctite Corproration Dual cure method for making a rotted electrical/mechanical device
US4820196A (en) * 1987-10-01 1989-04-11 Unisys Corporation Sealing of contact openings for conformally coated connectors for printed circuit board assemblies
US5418001A (en) * 1987-12-01 1995-05-23 Raychem Corporation Environmental sealing
US5601668A (en) * 1987-12-01 1997-02-11 Raychem Corporation Environmental sealing
US5229058A (en) * 1987-12-01 1993-07-20 Raychem Corporation Environmental sealing
US4754775A (en) * 1987-12-21 1988-07-05 The Dow Chemical Company Device and method for preventing water from flowing past a closed valve in a pipeline
US4830041A (en) * 1988-10-21 1989-05-16 Institute Of Gas Technology Reelable flow stopper for plugging fluid flow within a pipe
US5400826A (en) * 1988-11-10 1995-03-28 British Gas Plc Temporarily blocking the bore of a pipe through which a fluid flows with a foamed plus removed by dissolving
US5301959A (en) * 1989-10-04 1994-04-12 British Telecommunications Public Limited Company Sealing gland
US5379803A (en) * 1990-09-12 1995-01-10 British Gas Plc Apparatus for the abandonment of a branch main
US5258572A (en) * 1990-09-27 1993-11-02 Saito Denki Sangyo Co., Ltd. Distributing box for underground cables
US5278357A (en) * 1991-02-14 1994-01-11 Yazaki Corporation Electric wire holding case preventing of oil leak
US5170017A (en) * 1991-02-15 1992-12-08 Augat Inc. Connector and method for sealed pass-through of insulated electrical conductors
US5417019A (en) * 1993-03-11 1995-05-23 Lamson & Sessions Co., Passthrough device with firestop
US5635678A (en) * 1993-06-08 1997-06-03 Sumitomo Wiring Systems, Ltd. Construction for and method of waterproofing wiring harness
US5899233A (en) * 1995-05-22 1999-05-04 Itt Automotive, Inc. Machinable cast-in-place tube enclosure fittings
US5831217A (en) * 1995-11-16 1998-11-03 The Boeing Company Wire bundle sealing system having individual tubular segments gathered around the wire bundles and containing sealant
US5697194A (en) * 1996-06-18 1997-12-16 Psi Telecommunications, Inc. Modular seal assembly for a wall opening
US6284976B1 (en) 1997-01-17 2001-09-04 3M Innovative Properties Company Cable closure injection sealed with organo borane amine complex
US5912433A (en) * 1997-01-17 1999-06-15 Minnesota Mining And Manufacturing Company Cable closure injection sealed with low surface energy adhesive
US6064006A (en) * 1997-01-17 2000-05-16 3M Innovative Properties Company Cable closure injection sealed with organoborane amine complex
US5819497A (en) * 1997-02-20 1998-10-13 Knepper; Richard T. Method and device for repairing fasteners attached to plaster board
WO1998046922A1 (en) * 1997-04-16 1998-10-22 Hauff-Technik Gmbh & Co. Kg Sealing element
DE19716156C1 (en) * 1997-04-18 1998-10-15 Hueselmann Ulrike Wall passage opening for e.g. pipe
US6530187B2 (en) * 1998-04-17 2003-03-11 Mirai Industry Co., Ltd. Partition passage and method of installing
US6353186B1 (en) * 1998-07-03 2002-03-05 Tyco Electronics Raychem Nv Seal having a sealing member between support members with peripheral channels for receiving elongate articles
WO2000043707A1 (en) * 1999-01-25 2000-07-27 Landers Phillip G Method of repairing a flanged pipe joint
US6217688B1 (en) * 1999-01-25 2001-04-17 Phillip G. Landers Method of repairing a flanged pipe joint
US6242700B1 (en) 1999-01-27 2001-06-05 3M Innovative Properties Company End seal assembly for a splice case
EP1061205A1 (en) * 1999-06-15 2000-12-20 Uwe Kaim Mortar syringe
US6305133B1 (en) * 1999-08-05 2001-10-23 Kenneth R. Cornwall Self sealing firestop coupling assembly
US6543780B1 (en) * 1999-11-19 2003-04-08 Hilti Aktiengesellschaft Method of and device for sealing a gap
US6499268B2 (en) * 2000-04-28 2002-12-31 Peter James Reinforcing structures
US20030213210A1 (en) * 2000-05-31 2003-11-20 Masahiro Sugimoto Method of constructing a structure for electric cable introduction in an explosion-proof facility
US6441310B1 (en) 2001-03-30 2002-08-27 Hubbell Incorporated Moisture activated barrier for electrical assemblies
US20050200084A1 (en) * 2002-05-31 2005-09-15 Bell Michael Antoine Joseph C. Seal assembly
US7677579B2 (en) * 2002-05-31 2010-03-16 Technip France Sa Seal assembly for dividing an annular space in a double-walled pipeline
US7341255B2 (en) * 2003-03-18 2008-03-11 Cooper Industries Sealing fitting with expanding material
US20040183261A1 (en) * 2003-03-18 2004-09-23 Cooper Industries Sealing fitting with expanding material
US20080136120A1 (en) * 2003-03-18 2008-06-12 Cooper Industries, Llc. Sealing fitting with expanding material
US7592545B2 (en) 2003-03-18 2009-09-22 Cooper Industries, Llc Sealing fitting with expanding material
US20080121428A1 (en) * 2003-03-18 2008-05-29 Cooper Industries, Llc. Sealing fitting with expanding material
US20050034407A1 (en) * 2003-07-28 2005-02-17 Snyder Darryl L. Support frame for duct
US20050218648A1 (en) * 2003-08-01 2005-10-06 Logue George Jr Pipe or conduit collar
US20070261327A1 (en) * 2003-10-29 2007-11-15 Gilleran William J Air conditioning line flashing panel
US7640699B2 (en) * 2003-10-29 2010-01-05 Gilleran William J Air conditioning line flashing panel
US6969799B2 (en) 2003-11-20 2005-11-29 Sgc Technologies, L.L.C. Poke through
US20070117956A1 (en) * 2005-02-16 2007-05-24 Jack Boyd Bismaleimide resin with high temperature thermal stability
US20070084633A1 (en) * 2005-09-21 2007-04-19 Tyco Electronic Corporation Electromagnetic relay with noise reducing sealant
US20090320392A1 (en) * 2006-07-25 2009-12-31 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Wall leadthrough for leading a line through a building wall
US8438804B2 (en) * 2006-07-25 2013-05-14 Deutsche Rockwoll Mineralwoll Gmbh & Co. Ohg Wall leadthrough for leading a line through a building wall
US20100164176A1 (en) * 2007-02-28 2010-07-01 Beele Engineering B.V. System and method for sealing in a conduit a space between an inner wall of the conduit and at least one pipe or cable extending through the conduit
WO2008104237A1 (en) * 2007-02-28 2008-09-04 Beele Engineering B.V. System and method for sealing in a conduit a space between an inner wall of the conduit and at least one pipe or cable extending through the conduit
US8360437B2 (en) * 2007-02-28 2013-01-29 Beele Engineering B.V. System and method for sealing in a conduit a space between an inner wall of the conduit and at least one pipe or cable extending through the conduit
WO2009000778A1 (en) * 2007-06-22 2008-12-31 Beele Engineering B.V. Method and sealing system for sealing an annular space between a rigid conduit and a pipe, tube or duct extending through the conduit and made of a thermally weakenable material
US20100062628A1 (en) * 2008-08-20 2010-03-11 Utilx Corporation Cable termination connection assembly
US7959477B2 (en) * 2008-08-20 2011-06-14 Utilx Corporation Cable termination connection assembly
US8344252B2 (en) 2008-08-20 2013-01-01 Utilx Corporation Cable splice connection assembly
US20100059275A1 (en) * 2008-08-20 2010-03-11 Utilx Corporation Cable splice connection assembly
EP2161149A1 (en) * 2008-09-03 2010-03-10 Winkler Gesellschaft mit beschränkter Haftung Wall bushing
US20110192104A1 (en) * 2008-10-21 2011-08-11 Longhenry Charles C Core hole seal assembly and method
US8959873B2 (en) * 2008-10-21 2015-02-24 Longhenry Industries, Inc. Method of sealing a core hole
US8661758B2 (en) * 2008-10-21 2014-03-04 Longhenry Industries, Inc. Core hole seal assembly and method
US20140174024A1 (en) * 2008-10-21 2014-06-26 Charles C. Longhenry Method of Sealing a Core Hole
US20100320694A1 (en) * 2009-06-18 2010-12-23 Musco Corporation Apparatus, method, and system for sealing an object or a plurality of objects in an assembly and sealing said assembly around an aperture
EP2314903A3 (en) * 2009-10-23 2012-05-30 Hans Peter Büttig System and method for installing a tube in a wall opening and expanded reaction resin and cuff for the same
DE102013022326B3 (en) 2012-02-07 2023-04-13 Doyma Gmbh & Co Sealing device with sealing body and sealing compound
WO2014113943A1 (en) * 2013-01-23 2014-07-31 戚郁芬 Cable connection casing
US10132084B2 (en) 2013-03-15 2018-11-20 Wjg, Llc Single wall duct flashing panel
US9337647B2 (en) 2013-03-15 2016-05-10 William J. Gilleran Air conditioning flashing hood
US9772050B2 (en) 2013-03-15 2017-09-26 William J. Gilleran Air conditioning flashing hood
US9488301B2 (en) * 2013-06-28 2016-11-08 Airbus Helicopters Removable coupling device for coupling together two flexible pipes
US20150001843A1 (en) * 2013-06-28 2015-01-01 Airbus Helicopters Removable coupling device for coupling together two flexible pipes
US9379530B2 (en) * 2013-12-05 2016-06-28 Delphi Technologies, Inc. Grommet with spreader mounting feature
US20150162733A1 (en) * 2013-12-05 2015-06-11 Delphi Technologies, Inc. Grommet with spreader mounting feature
KR20170030621A (en) * 2014-07-16 2017-03-17 하우프 테크닉 게엠베하 운트 코. 카게 Compression seal having an elastomer body
JP2017522510A (en) * 2014-07-16 2017-08-10 ハウフ テヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Pressure seal with elastomeric body
US20180034193A1 (en) * 2015-02-11 2018-02-01 Saipem S.A. Method For Connecting Cables Of A Pipeline Unit Section To Be Vertically Joined To A Subsea Pipeline For Transporting Fluids
US10658785B2 (en) * 2015-02-11 2020-05-19 Saipem S.A. Method for connecting cables of a pipeline unit section to be vertically joined to a subsea pipeline for transporting fluids
US20190252870A1 (en) * 2016-10-17 2019-08-15 Huber+Suhner Ag Cable Gland Comprising A Slip On Grommet
US10847962B2 (en) * 2016-10-17 2020-11-24 Huber+Suhner Ag Cable gland comprising a slip on grommet
JP2019143676A (en) * 2018-02-19 2019-08-29 三菱重工業株式会社 Seal device
US11303105B2 (en) * 2018-02-27 2022-04-12 Izo Box, Inc. Insulating box and method for electrical outlets, switches and light fixtures
CN112963626A (en) * 2021-01-29 2021-06-15 广船国际有限公司 Sealing structure of pipeline and ship
EP4175083A1 (en) * 2021-10-28 2023-05-03 Abb Schweiz Ag Wire separator and conduit seal
US20230135895A1 (en) * 2021-10-28 2023-05-04 Abb Schweiz Ag Device and method for separating wires and sealing a conduit

Similar Documents

Publication Publication Date Title
US4607469A (en) Seal for water proofing a utility line conduit and a method of forming the seal
CA1074143A (en) Injection sealable waterstop and method of installing same
EP0050906B1 (en) Sealant compositions and seals which expand upon absorption of water and processes for their use
US4332975A (en) Sealed cable enclosure and cable assembly including same
US4387900A (en) Method and apparatus for providing watertight seal for manhole pipe connection
US5562295A (en) Environmental sealing
JPH0611092A (en) Method of repairing partial damage of pipeline
US7592545B2 (en) Sealing fitting with expanding material
US3895466A (en) Sewer line blow-out plug
CN214579538U (en) Sealing device for gap between pipeline and sleeve
CN110295024A (en) Cable tube sealing agent and its application method
US3163181A (en) Method and apparatus for sealing joints in conduit systems
CA1252531A (en) Forced encapsulation means
CN217028928U (en) Tunnel pipe sheet assembly
JP3052005B2 (en) Packer method and packer equipment
CN113113191A (en) Sealing structure for cable stuffing box and sealing method thereof
US4268047A (en) Underground pipe joint with hydratable cement in polyurethane gasket
CN113629600A (en) Cable repair adapter and cable repair method
US3422211A (en) Apparatus for establishing a fluid-tight bypass
CN211720204U (en) Wire harness sealing assembly
JPS6027255Y2 (en) Watertight connection of container
JPS6252530B2 (en)
JPS6340919B2 (en)
JPS5845621B2 (en) Waterproofing device and method for container flange
JP2844080B2 (en) Sealing material for waterproofing and waterproofing of structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEAM, INC. HOUSTON TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HARRISON, GEORGE W.;REEL/FRAME:004252/0199

Effective date: 19840412

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19980826

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362