US4549436A - Surface-acoustic-wave, digitized angular accelerometer - Google Patents

Surface-acoustic-wave, digitized angular accelerometer Download PDF

Info

Publication number
US4549436A
US4549436A US06/547,289 US54728983A US4549436A US 4549436 A US4549436 A US 4549436A US 54728983 A US54728983 A US 54728983A US 4549436 A US4549436 A US 4549436A
Authority
US
United States
Prior art keywords
strain
strain member
sensing element
frequency
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/547,289
Inventor
Sarkis Barkhoudarian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing North American Inc
Original Assignee
Rockwell International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell International Corp filed Critical Rockwell International Corp
Priority to US06/547,289 priority Critical patent/US4549436A/en
Assigned to ROCKWELL INTERNATIONAL CORPORATION reassignment ROCKWELL INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BARKHOUDARIAN, SARKIS
Application granted granted Critical
Publication of US4549436A publication Critical patent/US4549436A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/0975Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by acoustic surface wave resonators or delay lines

Definitions

  • This invention pertains to the art of measuring angular acceleration and especially to a crossed-beam accelerometer which employs surface acoustic waves for measuring angular acceleration.
  • An object of the invention is to provide an angular accelerometer free from the inherent errors which accompany analog measurements.
  • Another object is to provide a highly sensitive, small, easily manufactured sensor for an angular accelerometer.
  • a further object is to provide an angular-accelerometer sensor which is immunized from the effects of linear accelerations and unwanted angular acceleration.
  • Yet another object is to provide a sensing element which, at least in its preferred embodiment, is free from temperature and hysteresis problems so that yielding or creeping behavior and stress-cycling losses are minimized or eliminated.
  • Still another object is to provide an angular accelerometer possessing a very wide dynamic range.
  • FIG. 1 is an isometric view of an embodiment of a sensing element in accordance with the invention.
  • FIG. 2 is a schematic diagram of a detection circuit for use with the sensing element.
  • FIG. 1 shows a first embodiment of the sensing element 10 of the invention which is employed with a detection means 12 and a display means 14 (see FIG. 2).
  • the angular-acceleration-sensing element 10 comprises a strain member 18 formed from a strain beam 19 to which a pair of spaced interdigitated electrodes 20,20' are attached on the same side.
  • the ends 22,22' of the beam member 18 preferably thicker than the beam 18 itself and are immovably fastened to convenient supports. For example, if the accelerometer is to be used in an airplane, then the ends are affixed to the chassis of the plane or to support members which are ultimately fastened to the plane.
  • a torsion member 24 comprises a central torsion beam member 25 whose longitudinal axis preferably is orthogonal to the longitudinal axis of the strain beam 19.
  • Counter-balanced masses 26,26' are attached to the torsion beam 25, one at each end.
  • the torque exerted on the strain member 18 increases with the mass of the counterbalanced masses (the end masses) 26,26' and with their distance from the plane through the strain member 18.
  • the sensing element 10 becomes more sensitive with increase in mass and distance from the plane of the strain member.
  • the torsion and strain members 18 and 24 are oriented so that the flat sides of each member would rotate into the flat sides of other member if the first member were rotated 90 degrees.
  • the end masses 26,26' can be formed from a material such as a metal, as can the torsion beam 25. However, for ease of fabrication, it is preferable that the whole sensing element 10 be formed from the same material as the strain member 18.
  • the strain member 18 may be formed from a piezoelectric material such as quartz, a piezorestrictive material such as a ceramic such as BaTiO 3 , or a magnetostrictive material which may be a ferromagnetic material such as 45 Permalloy (45 Ni--55 Fe), for example. It is preferred that the material be quartz which is piezoelectric, since Si semiconductor processing techniques can be employed which are well known and widely available.
  • quartz is very stable and minimizes the temperature and hysteresis problems existing in metals because of their plasticity. Specifically, quartz is almost 100 times more stable to temperature variation than steel. Also, quartz has almost zero stress-cycling losses, exhibiting no yielding or creeping which extends the design stress, thereby making smaller accelerometers possible.
  • the direction of the angular acceleration (indicated by arrow 30) of the object to which the sensing element is attached induces a torque or twist in the strain member 18 wich changes the elastic properties of the beam 19.
  • the angular acceleration shown by arrow 30 would produce an angular acceleration vector upwards in the direction of the longitudinal axis of the strain beam 19.
  • This change in elastic properties can be measured by the use of surface acoustic waves in the surface resonance mode.
  • a transmitting interdigitated electrode transducer 20 is formed on one flat surface of the strain beam 19 and a receiving interdigitated electrode transducer 20' is formed on the same flat surface of the strain beam 20' some distance away from the first electrode.
  • Application of voltage across the sending electrode 20 from a high-frequency electrical oscillator 16 causes surface acoustic waves to travel along the flat surface of the beam 19 to the receiving transducer 20' which converts the surface acoustic wave back to an electrical wave.
  • the frequency of the oscillator 16 may be approximately 300 MHz, for example.
  • the frequency of the acoustic wave depends on the spacing of the fingers of the sending transducer 20 and the velocity of the surface acoustic wave is proportional to the acoustic wave frequency.
  • the change in the elastic properties of the medium (the beam) along which the surface acoustic wave travels changes the velocity and frequency of the surface acoustic wave in proportion to the angular acceleration which is providing the stress, i.e., the torque.
  • the frequency output of the receiving transducer 20' is different from the frequency sent by the transmitting transducer 20, and the difference in frequency is a measure of the angular acceleration which is applied to the sensing element.
  • FIG. 2 shows apparatus which may be used to implement the invention.
  • An electrical high-frequency oscillator means 16 applies an electrical signal to the sending transducer 20 of the angular-acceleration-sensing means 10.
  • the sending transducer 20 sends an acoustic signal through the strain member 18 to the receiving transducer 20' which converts the acoustic signal to an electrical signal again.
  • the electrical signal is detected by a difference-frequency detection means 12 comprising a detection circuit 32 which detects the signal and provides an output signal proportional to the difference between its frequency and that of the oscillator means 16.
  • the difference-frequency detection circuit 32 may, for example, be a mixer circuit.
  • the difference-frequency signal is digitized and the frequency is determined (counted) by a digitizing circuit 34.
  • the term "digitizing" herein means that instead of making an amplitude measurement, i.e., an analog measurement, a time domain measurement, such as frequency or period, is made.)
  • the difference-frequency signal count is then displayed by a display means 14.
  • the display means 14 may be calibrated directly in units of angular acceleration, e.g., degrees or radians per second square.
  • the digitizing circuit may be a frequency counter means, such as the Fluke 1920A model frequency counter, manufactured by the John Fluke Mfg. Co. of Mountlake Terrace, WA., 98043.
  • the strain and torsion (axial and transverse) beams 19 and 25 have cross-sectional geometry which is substantially nonreactive to the effects of undesirable accelerations.
  • stiffening members 28, which are triangular in shape, are placed as braces at the intersections of the beams 19 and 25. Other shapes, for example, square, may be employed. Additional attenuation of unwanted cross-coupled acceleration can be achieved by employing damping liquids, limiting stops, stiffening ribs and appropriate orientation of the quartz crystal structure.
  • the axis of the torsion member 24 is shown as being orthogonal to that of the strain member 18. However, the axes do not necessarily have to be orthogonal, although this arrangement is preferred.
  • the sensing element 10 could be made as small as about 1/8 from top to bottom and from side to side.
  • the weight of the end masses might range from about a fraction of a gram to about a gram for a sensing element about 1" long.
  • the estimated parameters for a SAW angular accelerometer of the type described herein are:

Abstract

An angular accelerometer utilizing a sensing element 10 comprising a strain member 18 and a crosswise torsion member 24, both substantially comprising flat beams 18 and 25, respectively. The strain member 18 is affixed at each end to the object whose angular acceleration is to be measured, the angular acceleration vector lying along the axis of the strain member 18. The torsion member 24 is formed with an end mass 26,26' at each end. The strain member 18 is formed from a material such as quartz whose elasticity changes in proportion to the torque it experiences. A high-frequency surface acoustic wave is sent along the strain member and the change in its frequency due to the torque in the strain member 18 is measured.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to the art of measuring angular acceleration and especially to a crossed-beam accelerometer which employs surface acoustic waves for measuring angular acceleration.
2. Description of the Prior Art
Present devices for measuring angular acceleration are generally bulky, have low sensitivity, or have the disadvantages which accompany analog detection. Analog detection is subject to conditions which affect signal amplitude and thus instruments which utilize analog detection are subject to errors resulting from power-supply drift, connector degradation, extraneous pickup by electrical cables, etc. Some sensors have been unreliable because of the special nature of their bearings or other sensitive suspension means which have been employed. Strain-gauge accelerometers generally are relatively bulky (2-3" in diameter) and have poor sensitivity and relatively narrow dynamic range (e.g., 103 to 1).
OBJECTS OF THE INVENTION
An object of the invention is to provide an angular accelerometer free from the inherent errors which accompany analog measurements.
Another object is to provide a highly sensitive, small, easily manufactured sensor for an angular accelerometer.
A further object is to provide an angular-accelerometer sensor which is immunized from the effects of linear accelerations and unwanted angular acceleration.
Yet another object is to provide a sensing element which, at least in its preferred embodiment, is free from temperature and hysteresis problems so that yielding or creeping behavior and stress-cycling losses are minimized or eliminated.
Still another object is to provide an angular accelerometer possessing a very wide dynamic range.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawing.
SUMMARY OF THE INVENTION
The objects and advantages of the invention are achieved by the use of a novel torque-sensing element in a surface acoustic wave circuit where the difference in frequency between the output and input frequencies is digitized, counted and displayed. The digitizing of the difference-frequency signal makes the accelerometer free from the inherent errors of analog measuring devices.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is an isometric view of an embodiment of a sensing element in accordance with the invention.
FIG. 2 is a schematic diagram of a detection circuit for use with the sensing element.
The same elements or parts throughout the figures of the drawing are designated by the same reference characters, while equivalent elements bear a prime designation.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows a first embodiment of the sensing element 10 of the invention which is employed with a detection means 12 and a display means 14 (see FIG. 2).
The angular-acceleration-sensing element 10 comprises a strain member 18 formed from a strain beam 19 to which a pair of spaced interdigitated electrodes 20,20' are attached on the same side. The ends 22,22' of the beam member 18 preferably thicker than the beam 18 itself and are immovably fastened to convenient supports. For example, if the accelerometer is to be used in an airplane, then the ends are affixed to the chassis of the plane or to support members which are ultimately fastened to the plane.
A torsion member 24 comprises a central torsion beam member 25 whose longitudinal axis preferably is orthogonal to the longitudinal axis of the strain beam 19. Counter-balanced masses 26,26' are attached to the torsion beam 25, one at each end. The torque exerted on the strain member 18 increases with the mass of the counterbalanced masses (the end masses) 26,26' and with their distance from the plane through the strain member 18. The sensing element 10 becomes more sensitive with increase in mass and distance from the plane of the strain member. The torsion and strain members 18 and 24 are oriented so that the flat sides of each member would rotate into the flat sides of other member if the first member were rotated 90 degrees.
The end masses 26,26' can be formed from a material such as a metal, as can the torsion beam 25. However, for ease of fabrication, it is preferable that the whole sensing element 10 be formed from the same material as the strain member 18. The strain member 18 may be formed from a piezoelectric material such as quartz, a piezorestrictive material such as a ceramic such as BaTiO3, or a magnetostrictive material which may be a ferromagnetic material such as 45 Permalloy (45 Ni--55 Fe), for example. It is preferred that the material be quartz which is piezoelectric, since Si semiconductor processing techniques can be employed which are well known and widely available. In addition, crystalline material like quartz is very stable and minimizes the temperature and hysteresis problems existing in metals because of their plasticity. Specifically, quartz is almost 100 times more stable to temperature variation than steel. Also, quartz has almost zero stress-cycling losses, exhibiting no yielding or creeping which extends the design stress, thereby making smaller accelerometers possible.
The direction of the angular acceleration (indicated by arrow 30) of the object to which the sensing element is attached induces a torque or twist in the strain member 18 wich changes the elastic properties of the beam 19. (In vector physics, the angular acceleration shown by arrow 30 would produce an angular acceleration vector upwards in the direction of the longitudinal axis of the strain beam 19.) This change in elastic properties can be measured by the use of surface acoustic waves in the surface resonance mode.
In the surface resonance method, a transmitting interdigitated electrode transducer 20 is formed on one flat surface of the strain beam 19 and a receiving interdigitated electrode transducer 20' is formed on the same flat surface of the strain beam 20' some distance away from the first electrode. Application of voltage across the sending electrode 20 from a high-frequency electrical oscillator 16 causes surface acoustic waves to travel along the flat surface of the beam 19 to the receiving transducer 20' which converts the surface acoustic wave back to an electrical wave. The frequency of the oscillator 16 may be approximately 300 MHz, for example. The frequency of the acoustic wave depends on the spacing of the fingers of the sending transducer 20 and the velocity of the surface acoustic wave is proportional to the acoustic wave frequency. The change in the elastic properties of the medium (the beam) along which the surface acoustic wave travels changes the velocity and frequency of the surface acoustic wave in proportion to the angular acceleration which is providing the stress, i.e., the torque. Thus, the frequency output of the receiving transducer 20' is different from the frequency sent by the transmitting transducer 20, and the difference in frequency is a measure of the angular acceleration which is applied to the sensing element.
FIG. 2 shows apparatus which may be used to implement the invention. An electrical high-frequency oscillator means 16 applies an electrical signal to the sending transducer 20 of the angular-acceleration-sensing means 10. The sending transducer 20 sends an acoustic signal through the strain member 18 to the receiving transducer 20' which converts the acoustic signal to an electrical signal again. The electrical signal is detected by a difference-frequency detection means 12 comprising a detection circuit 32 which detects the signal and provides an output signal proportional to the difference between its frequency and that of the oscillator means 16. The difference-frequency detection circuit 32 may, for example, be a mixer circuit. The difference-frequency signal is digitized and the frequency is determined (counted) by a digitizing circuit 34. (The term "digitizing" herein means that instead of making an amplitude measurement, i.e., an analog measurement, a time domain measurement, such as frequency or period, is made.) The difference-frequency signal count is then displayed by a display means 14. The display means 14 may be calibrated directly in units of angular acceleration, e.g., degrees or radians per second square. The digitizing circuit may be a frequency counter means, such as the Fluke 1920A model frequency counter, manufactured by the John Fluke Mfg. Co. of Mountlake Terrace, WA., 98043.
To immunize the device from the effects of linear accelerations and unwanted angular accelerations, the strain and torsion (axial and transverse) beams 19 and 25 have cross-sectional geometry which is substantially nonreactive to the effects of undesirable accelerations. However, to further improve the rigidity of the strain member 18 in the direction of the transverse axis, stiffening members 28, which are triangular in shape, are placed as braces at the intersections of the beams 19 and 25. Other shapes, for example, square, may be employed. Additional attenuation of unwanted cross-coupled acceleration can be achieved by employing damping liquids, limiting stops, stiffening ribs and appropriate orientation of the quartz crystal structure.
The axis of the torsion member 24 is shown as being orthogonal to that of the strain member 18. However, the axes do not necessarily have to be orthogonal, although this arrangement is preferred.
In physical size, the sensing element 10 could be made as small as about 1/8 from top to bottom and from side to side. The weight of the end masses might range from about a fraction of a gram to about a gram for a sensing element about 1" long.
The estimated parameters for a SAW angular accelerometer of the type described herein are:
______________________________________                                    
linearity           0.1%                                                  
dynamic range       10.sup.6 :1                                           
resolution          1 microradian/sec.sup.2                               
power               1 milliwatt                                           
drift               0.01% per year                                        
temperature coefficient                                                   
                    0.005%/°F.                                     
volume              1 cc/axis                                             
frequency response  0-1000 Hz                                             
______________________________________                                    
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (12)

What is claimed and desired to be secured by Letters Patent of the United States is:
1. A sensing element for sensing angular acceleration in terms of the torsional strain it produces comprising:
a longitudinal strain member in the form of a flat beam, the strain beam being formed from a material the elastic properties of which change in proportion to the amount of torque experienced by the material; and
a longitudinal torsion member in the form of a flat beam the longitudinal axis of which crosses the longitudinal axis of the strain member, said torsion beam being formed with an end mass at each end, the beams being in such orientation to each other that the flat sides of each beam would rotate into the flat sides of the other beam if one of said beams were rotated 90 degrees,
said strain member being affixed at each end to a body whose angular acceleration is to be measured,
the strain member being affixed to the body in an orientation such that the angular acceleration vector of the body lies along the axis of the strain member.
2. A sensing element as in claim 1, wherein:
said beams are orthogonal to each other.
3. A sensing element as in claim 1, wherein:
said strain member is formed from a piezoelectric material.
4. A sensing element as in claim 1, wherein:
said strain member is formed from a piezorestrictive material.
5. A sensing element as in claim 1, wherein:
said strain member is formed from a magnetostrictive element.
6. A sensing element as in claim 1, wherein:
said strain member is formed from quartz.
7. A sensing element as in claim 1, wherein:
said strain and torsion members are formed from quartz.
8. A sensing element as in claim 1, wherein:
said end masses are equal in mass.
9. A sending element as in claim 1, further including:
stiffening members extending between the flat sides of the beams and placed at the intersections thereof.
10. A sensing element as in claim 1, further including:
means for sending a surface acoustic wave along at least a portion of the longitudinal extent of said strain member; and
means for receiving said surface acoustic wave.
11. A sensing element as in claim 10, wherein:
said surface acoustic wave is sent along one surface of said strain member.
12. An angular accelerometer comprising:
a longitudinal strain member in the form of a flat beam, the strain beam being formed from a material the elastic properties of which change in proportion to the amount of torque experienced by the material; and
a longitudinal torsion member in the form of a flat beam the longitudinal axis of which crosses the longitudial axis of the strain member, said torsion beam being formed with an end mass at each end, the beams being in such orientation to each other that the flat sides of each beam would rotate into the flat sides of the other beam if one of said beams were rotated 90 degrees,
said strain member being affixed at each end to a body whose angular acceleration is to be measured,
the strain member being affixed to the body in an orientation such that the angular acceleration vector of the body lies along the axis of the strain member;
transmitting transducer means for converting an electrical input signal to an acoustic output signal, said transducer means being located on a flat side of said strain beam;
receiving transducer means for converting an acoustic input signal to an electrical output signal, said transducer means being located on a flat side of said strain beam;
oscillator means for producing a high-frequency electrical signal to said transmitting transducer means;
frequency-difference detection means, coupled to receive the electrical output signal from said receiving transducer means, for producing a signal whose frequency is the difference in frequency between the output signal from the oscillator means and the output signal from the receiving transducer and for counting the frequency of the difference-frequency signal; and
display means, connected to receive the output of said detection means, for indicating said frequency difference.
US06/547,289 1983-10-31 1983-10-31 Surface-acoustic-wave, digitized angular accelerometer Expired - Fee Related US4549436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/547,289 US4549436A (en) 1983-10-31 1983-10-31 Surface-acoustic-wave, digitized angular accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/547,289 US4549436A (en) 1983-10-31 1983-10-31 Surface-acoustic-wave, digitized angular accelerometer

Publications (1)

Publication Number Publication Date
US4549436A true US4549436A (en) 1985-10-29

Family

ID=24184096

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/547,289 Expired - Fee Related US4549436A (en) 1983-10-31 1983-10-31 Surface-acoustic-wave, digitized angular accelerometer

Country Status (1)

Country Link
US (1) US4549436A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121132A1 (en) * 2000-09-08 2002-09-05 Breed David S. Vehicle wireless sensing and communication system
US20050253596A1 (en) * 2004-05-14 2005-11-17 Fujitsu Limited Capacitance difference detecting circuit and MEMS sensor
US20070005202A1 (en) * 1995-06-07 2007-01-04 Automotive Technologies International, Inc. Remote Vehicle Diagnostic Management
US20070119257A1 (en) * 2005-11-11 2007-05-31 Nec Tokin Corporation Vibration detection method and system, battery-less vibration sensor and interrogator therefor
US20070271014A1 (en) * 1995-06-07 2007-11-22 Automotive Technologies International, Inc. Vehicle Diagnostic and Prognostic Methods and Systems
US20080040005A1 (en) * 1995-06-07 2008-02-14 Automotive Technologies International, Inc. Vehicle Component Control Methods and Systems Based on Vehicle Stability
US20080046149A1 (en) * 1995-06-07 2008-02-21 Automotive Technologies International, Inc. Vehicle Component Control Methods and Systems Based on Vehicle Stability
US20080140278A1 (en) * 1995-06-07 2008-06-12 Automotive Technologies International, Inc. Vehicle Software Upgrade Techniques
US20080147265A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Vehicle Diagnostic or Prognostic Message Transmission Systems and Methods
US20080147271A1 (en) * 1995-06-07 2008-06-19 Automotives Technologies International, Inc. Vehicle Component Control Methods and Systems
US20080147280A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Method and apparatus for sensing a rollover
US20080161989A1 (en) * 1995-06-07 2008-07-03 Automotive Technologies International, Inc. Vehicle Diagnostic or Prognostic Message Transmission Systems and Methods
US20100268423A1 (en) * 1995-06-07 2010-10-21 Automotive Technologies International, Inc. Occupant Protection Systems Control Techniques
US8151654B2 (en) 1998-04-01 2012-04-10 Methode Electronics, Inc. Sensor pad for controlling airbag deployment and associated support
US20130325323A1 (en) 1998-10-22 2013-12-05 American Vehicular Sciences Vehicle software upgrade techniques
US20200116752A1 (en) * 2018-10-16 2020-04-16 Ruben Flores Radio Frequency Accelerometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627400A (en) * 1947-02-18 1953-02-03 Sperry Corp Angular velocity responsive apparatus
US2683247A (en) * 1952-08-08 1954-07-06 Goodyear Aircraft Corp Space reference device
US3141100A (en) * 1962-06-21 1964-07-14 Avco Corp Piezoelectric resonance device
US3375712A (en) * 1965-03-19 1968-04-02 North American Rockwell Thrust measurement
US4096740A (en) * 1974-06-17 1978-06-27 Rockwell International Corporation Surface acoustic wave strain detector and gage
US4197478A (en) * 1979-01-25 1980-04-08 Southwest Research Institute Electronically tunable resonant accelerometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627400A (en) * 1947-02-18 1953-02-03 Sperry Corp Angular velocity responsive apparatus
US2683247A (en) * 1952-08-08 1954-07-06 Goodyear Aircraft Corp Space reference device
US3141100A (en) * 1962-06-21 1964-07-14 Avco Corp Piezoelectric resonance device
US3375712A (en) * 1965-03-19 1968-04-02 North American Rockwell Thrust measurement
US4096740A (en) * 1974-06-17 1978-06-27 Rockwell International Corporation Surface acoustic wave strain detector and gage
US4197478A (en) * 1979-01-25 1980-04-08 Southwest Research Institute Electronically tunable resonant accelerometer

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147280A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Method and apparatus for sensing a rollover
US20080140278A1 (en) * 1995-06-07 2008-06-12 Automotive Technologies International, Inc. Vehicle Software Upgrade Techniques
US20080161989A1 (en) * 1995-06-07 2008-07-03 Automotive Technologies International, Inc. Vehicle Diagnostic or Prognostic Message Transmission Systems and Methods
US9443358B2 (en) 1995-06-07 2016-09-13 Automotive Vehicular Sciences LLC Vehicle software upgrade techniques
US20070005202A1 (en) * 1995-06-07 2007-01-04 Automotive Technologies International, Inc. Remote Vehicle Diagnostic Management
US7650210B2 (en) 1995-06-07 2010-01-19 Automotive Technologies International, Inc. Remote vehicle diagnostic management
US20070271014A1 (en) * 1995-06-07 2007-11-22 Automotive Technologies International, Inc. Vehicle Diagnostic and Prognostic Methods and Systems
US20080040005A1 (en) * 1995-06-07 2008-02-14 Automotive Technologies International, Inc. Vehicle Component Control Methods and Systems Based on Vehicle Stability
US20080046149A1 (en) * 1995-06-07 2008-02-21 Automotive Technologies International, Inc. Vehicle Component Control Methods and Systems Based on Vehicle Stability
US8036788B2 (en) 1995-06-07 2011-10-11 Automotive Technologies International, Inc. Vehicle diagnostic or prognostic message transmission systems and methods
US20080147265A1 (en) * 1995-06-07 2008-06-19 Automotive Technologies International, Inc. Vehicle Diagnostic or Prognostic Message Transmission Systems and Methods
US20080147271A1 (en) * 1995-06-07 2008-06-19 Automotives Technologies International, Inc. Vehicle Component Control Methods and Systems
US8157047B2 (en) 1995-06-07 2012-04-17 Automotive Technologies International, Inc. Occupant protection systems control techniques
US8060282B2 (en) 1995-06-07 2011-11-15 Automotive Technologies International, Inc. Vehicle component control methods and systems based on vehicle stability
US8229624B2 (en) 1995-06-07 2012-07-24 American Vehicular Sciences Llc Vehicle diagnostic information generating and transmission systems and methods
US20100268423A1 (en) * 1995-06-07 2010-10-21 Automotive Technologies International, Inc. Occupant Protection Systems Control Techniques
US8019501B2 (en) 1995-06-07 2011-09-13 Automotive Technologies International, Inc. Vehicle diagnostic and prognostic methods and systems
US8151654B2 (en) 1998-04-01 2012-04-10 Methode Electronics, Inc. Sensor pad for controlling airbag deployment and associated support
US20130325323A1 (en) 1998-10-22 2013-12-05 American Vehicular Sciences Vehicle software upgrade techniques
US10240935B2 (en) 1998-10-22 2019-03-26 American Vehicular Sciences Llc Vehicle software upgrade techniques
US6662642B2 (en) * 2000-09-08 2003-12-16 Automotive Technologies International, Inc. Vehicle wireless sensing and communication system
US20020121132A1 (en) * 2000-09-08 2002-09-05 Breed David S. Vehicle wireless sensing and communication system
US20050253596A1 (en) * 2004-05-14 2005-11-17 Fujitsu Limited Capacitance difference detecting circuit and MEMS sensor
US7119550B2 (en) * 2004-05-14 2006-10-10 Fujitsu Limited Capacitance difference detecting circuit and MEMS sensor
US20070119257A1 (en) * 2005-11-11 2007-05-31 Nec Tokin Corporation Vibration detection method and system, battery-less vibration sensor and interrogator therefor
US11187717B2 (en) * 2018-10-16 2021-11-30 Ruben Flores Radio frequency accelerometer
US20200116752A1 (en) * 2018-10-16 2020-04-16 Ruben Flores Radio Frequency Accelerometer

Similar Documents

Publication Publication Date Title
US4549436A (en) Surface-acoustic-wave, digitized angular accelerometer
US3350944A (en) Strain gauge pressure transducer
US3238789A (en) Vibrating bar transducer
US3878477A (en) Acoustic surface wave oscillator force-sensing devices
US5585571A (en) Method and apparatus for measuring strain
EP0083067B1 (en) Digital pressure transducer
US4546658A (en) Piezoelectric force/pressure sensor
US4258565A (en) Force detector
US4644804A (en) Quartz resonating force and pressure transducer
JPH07505472A (en) load cell
JPS59126261A (en) Accelerometer with needle resonator power transducer
US3492858A (en) Microbalance
Lonsdale Dynamic rotary torque measurement using surface acoustic waves
US6448513B1 (en) Electronic weighing apparatus utilizing surface acoustic waves
US4706259A (en) Mounting and isolation system for tuning fork temperature sensor
US4802364A (en) Angular rate sensor
US4255973A (en) Digital pressure transducer for use at high temperatures
US3782184A (en) Torque transducer and method of measuring torque
Kumme Dynamic force measurement in practical applications
Randall et al. A pressure transducer using a metallic triple-beam tuning fork
US6812413B1 (en) Electronic weighing apparatus utilizing surface acoustic waves
US3201998A (en) Space sensing device
JP2003517585A (en) An improved electronic weighing device using surface acoustic waves
Cheshmehdoost et al. Dynamic characteristics of a resonating force transducer
SU1051373A1 (en) Slope transmitter

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL INTERNATIONAL CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BARKHOUDARIAN, SARKIS;REEL/FRAME:004204/0435

Effective date: 19831027

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19931031

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362