US4396971A - LSI Chip package and method - Google Patents

LSI Chip package and method Download PDF

Info

Publication number
US4396971A
US4396971A US05/846,698 US84669877A US4396971A US 4396971 A US4396971 A US 4396971A US 84669877 A US84669877 A US 84669877A US 4396971 A US4396971 A US 4396971A
Authority
US
United States
Prior art keywords
base
chip
major
package
lead pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/846,698
Inventor
Robert J. Beall
John J. Zasio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu IT Holdings Inc
Original Assignee
Amdahl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amdahl Corp filed Critical Amdahl Corp
Priority to US05/846,698 priority Critical patent/US4396971A/en
Application granted granted Critical
Publication of US4396971A publication Critical patent/US4396971A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Definitions

  • the package is for an LSI chip having a plurality of contact pads to which contact is to be made.
  • the package comprises a carrier which is formed to provide a space for receiving the chip and a cover for hermetically enclosing the space within the carrier.
  • the carrier is formed of a base of an insulating material.
  • a cooling stud is mounted on the base opposite the area where the chip is mounted and forms a part of the carrier.
  • Conducting leads are carried by the base and have outer extremities which extend beyond the base in a direction away from the LSI chip and are free of the carrier and have inner extremities which are carried by the base and which are in close proximity to the space for receiving the LSI chip.
  • An external grounding bus is provided on the base to facilitate checking of the carrier.
  • One or more cooling fins can be mounted on the cooling stud to tailor the package to the power dissipation required by the chip.
  • Another object of the invention is to provide a package and method of the above character which facilitates easy checking of the package.
  • Another object of the invention is to provide a package and method of the above character in which the cooling required for the package can be tailored to the power dissipation required for the chip.
  • Another object of the invention is to provide a package and method of the above character which is easy to utilize.
  • Another object of the invention is to provide a package and method of the above character which facilitates efficient heat transfer.
  • Another object of the invention is to provide a package in which the cooling provided can be readily adjusted.
  • Another object of the invention is to provide a package in which the leads are positioned so that they can be reflow soldered.
  • FIGS. 1-19 are isometric and cross-sectional views showing the various steps in the manufacture of a package incorporating the present invention.
  • FIG. 20 is a top plan view with portions broken away showing a package incorporating the present invention.
  • FIG. 21 is a cross-sectional view taken along the line 21--21 of FIG. 20.
  • the package 21 comprising the present invention consists of a carrier 22 which has a space 23 therein adapted to receive an LSI chip 24 of the type described in copending application Ser. No. 270,449, filed July 10, 1972 now U.S. Pat. No. 3,808,475.
  • the LSI chip is provided with a plurality of transistors and resistors which are interconnected by two layers of metallization that are connected to 76 signal input-output (I/O) pads 26, two large ground pads 27, two large voltage pads 28 and four small ground pads 29 to make a total of 84 pads, with 21 pads on each side of the four-sided chip.
  • the four larger bonding pads are 4 ⁇ 14 mils in size, whereas the smaller pads are 4 ⁇ 4 mils with a 2 mil spacing between pads.
  • a cover 31 is provided for sealing the space 23 containing the LSI chip 24.
  • the carrier is formed of a ceramic base 36 which is fabricated from three parts or pieces 37, 38 and 39 of green ceramic of a suitable type such as of 94% alumina.
  • the piece 37 is square as shown in FIG. 1 but, if desired, can have any suitable configuration.
  • One corner 41 is notched or marked for registration purposes.
  • a pair of spaced holes 43 is formed in the green ceramic by suitable means such as a pin.
  • the piece 38 has the same size and configuration as the piece 37 and is also provided with a notched or marked corner 44.
  • Two pairs of spaced holes 46 and 47 are formed in the piece 38 in a suitable manner such as by a pin.
  • the holes 47 are positioned so that they can be placed in registration with the holes 43 provided in the piece 37.
  • An imaginary line extending through the holes 46 extends at right angles to another imaginary line extending through the holes 47.
  • a square opening 48 is formed in the center of the piece 38 and is provided for forming the space 23 for receiving the LSI chip 24.
  • the piece 39 has the same general conformation as pieces 37 and 38 although it is of a smaller size so that it is within the confines of the holes 46 and 47 of the piece 38. It is also provided with a square opening 49 which is of a size which is substantially larger than the opening 48.
  • a metallized paint such as tungsten paint is screened onto the pieces or parts.
  • the tunsten paint is screened onto a die bond area 51 generally in the center of the piece 37 on the top side.
  • This die bond area 51 is generally square as shown in FIG. 2.
  • the tungsten paint also extends over two extensions 52 which extend to meet the holes 46 of piece 38 which are filled with the tungsten paint.
  • the holes 43 are also filled with the tungsten paint.
  • a lead pattern 53 is screened onto the top side of the part 38. As can be seen, four large leads are provided in the lead pattern 53. These larger leads extend over the holes 46 and 47 provided in the part 38 and, in addition, the tungsten paint fills these holes 46 and 47.
  • the top side of the part 39 is also covered with tungsten paint 54 as shown in FIG. 2.
  • the under side of the part 37 is also provided with a pattern of the tungsten paint which is screened on the part to form the rectangular ground bus 56 extending about the under side of the part 37 adjacent the outer perimeter of the same. There also is provided a circular centrally disposed area 57 which is connected by connecting elements 58 to the bus 56.
  • a ceramic slurry 59 is screened onto the parts 37, 38 and 39 which fills in the voids between the leads of the lead pattern 53.
  • the three separate parts 37, 38 and 39 are then laminated into a single unitary structure and placed in a press having first and second parts 61 and 62.
  • the parts 37, 38 and 39 are fired at a suitable temperature as, for example, approximately 1600° C. for approximately one-half hour to provide a unitary structure and in which a hermetic seal is formed between the parts.
  • the tungsten is fired into the ceramic material.
  • the ceramic slurry since it is not organic, is not burned out but fills the voids between the leads and forms a hermetic seal as hereinbefore described.
  • the tungsten paint is utilized in this process because a refractory metal must be provided which is able to withstand the high curing temperature of 1600° C. used for curing the ceramic.
  • a circular preform 64 is formed of a suitable material such as silver and copper, although other materials can be utilized.
  • a cylindrical cooling stud 66 of a suitable size such as 1/2 inch in length and 0.2 inch in diameter is provided.
  • the cooling stud which is formed of a suitable material such as molybdenum plated with nickel, is brazed to the circular area 57 by the use of the preform 64 to form a silver-copper eutectic.
  • a lead preform 67 of a suitable material such as silver or a combination of silver and copper is placed on the outer extremities of the lead pattern 53 provided on the outer perimeter of the base 36 as shown in FIG. 9.
  • This lead preform 67 is brazed to the lead pattern 53 in a conventional manner.
  • a lead frame 68 which has a generally rectangular configuration and which is provided with a plurality of inwardly extending leads 69 which are elongated and generally parallel to each other as shown in FIG. 11, is positioned so that the inner extremities of the leads 69 overlie the lead preform 67 as shown in FIG. 10.
  • the lead frame 68 is formed of a suitable material such as Kovar.
  • the leads 69 and the lead frames 68 are then brazed to the lead preform 67 in a conventional manner at a temperature of 800°-900° C. with a carbon weight 71 holding the leads 69 in place (see FIG. 10).
  • the stud 66 can be brazed to the structure after the lead frame 68 has been brazed to the structure. After the brazing operations have been completed, all of the exposed metal parts of the structure shown in FIG. 10 are electroplated with nickel and thereafter are electroplated with gold.
  • the corners of the lead frame 68 are then clipped off in the vicinity of the broken lines 73 as shown in FIG. 11.
  • the structure shown in FIG. 11 is placed in a lead forming jig or tool (not shown) in which the outer extremity of the lead frame including the outer extremity of the leads 69 are bent upwardly so that the leads assume a "Z" shaped configuration with the intermediate portion being inclined in an outward direction as shown in FIG. 12.
  • every other lead 69 is separated from the lead frame 69 as shown in FIG. 13 and a "go" "no-go" continuity check is made of these particular leads to see if they are all satisfactory. If they are all satisfactory, the carrier is assumed to be ready for use by a device manufacturer.
  • a preform 76 formed of a suitable material such as gold is placed in the recess 77 over the die area 51 provided in the carrier 22 (see FIGS. 11 and 15).
  • a die or chip 24 of the type described in copending application Ser. No. 270,449, filed July 10, 1972, now U.S. Pat. No. 3,808,475 or of any other suitable type can then be positioned within the recess 77.
  • the die or chip 24 is formed of a semiconductor body with the devices in the semiconductor body being formed on one side of the semiconductor body.
  • the other side of the semiconductor body is placed on the gold preform 76.
  • the carrier 22 is heated to a suitable temperature as, for example, 450° C. Since the carrier is heated to approximately 450° C., an insertion of the preform and the die or chip 24 into the recess 77 will cause a silicon-gold eutectic to form at this temperature to bond the back side of the semiconductor body to the preform 76 and to the die bond area 51 carried by the base 36 (see FIG. 16).
  • the die or chip 24 is provided with a plurality of pads 81 adjacent the outer perimeter of the same which are connected to the devices in the die or chip.
  • Leads 82 of a suitable material such as gold wire are thermocompression bonded to the pads 81 and to the inner extremities of the lead pattern 53 as shown particularly in FIG. 17.
  • certain of the pads 81 and certain of the leads in the lead pattern 53 are larger.
  • a plurality of wires 82 as, for example, three, serve to form a connection between such pads and leads. In this way, it can be seen that connections are made from the leads 69 extending to the outside world to the devices carried by the die or chip 24.
  • a preform 86 of a suitable material such as solder is placed on top of the base 36 and has generally the same configuration as the top surface of the part 39 which formed a part of the base.
  • a lid or cover 87 formed of a suitable material such as gold-plated Kovar is placed over the solder preform 86 and then the entire assembly is sealed in a furnace at a suitable temperature as, for example, 400°-500° C. This temperature does not affect the bond formed between the die 24 and the base 36 because the silicon-gold eutectic will not be affected except at a temperature substantially higher than the eutectic temperature of 450° C. After the sealing operation has been completed, tests are made to ascertain whether a good hermetic seal has been obtained.
  • the leads 69 can be sheared to their proper lengths. In the event that the lead frame is left in place and is not separated from the leads prior to this time, the lead frame can be separated. The other extremities of the leads 69 can then be coated with solder so that the entire package 21 is ready for use.
  • FIGS. 20 and 21 The completed device is shown in FIGS. 20 and 21.
  • the package shown in FIGS. 20 and 21 is of a type particularly adapted for use with the LSI chip which is shown and described in copending application Ser. No. 270,449, filed July 10, 1972 now U.S. Pat. No. 3,808,475. It is provided with 84 leads with 21 leads on each side with one of the leads on each side being substantially larger than the other leads. Two of these large leads are identified with the designation V ee which are utilized for supplying the voltage to the package. The other two leads on the other two sides are identified with the designation V cc and are utilized for connecting the device to ground.
  • packages constructed in accordance with the foregoing method are able to readily withstand certain physical and environmental test requirements.
  • the leads 69 are capable of withstanding two cycles of bending such that under 10 times magnification, there is no evidence of breakage, loosening or relative motion between the terminal lead and the device body.
  • a cycle of bending of the lead is from its normal position through a 90° angle away from the carrier and then back to its normal position.
  • the lead brazing was capable of withstanding a lateral pull sufficient to break the Kovar lead.
  • the package was able to withstand an exposure to 150° C. air for 72 hours or 450° C. for 2 minutes and not cause discoloration of any gold plating on the package.
  • the package was capable of withstanding 10 cycles of temperature cycling per mil-std-883 method 1010, condition C.
  • the packages were capable of being sealed hermetically to 5 ⁇ 10 -7 atoms/sec.
  • the package was capable of withstanding exposure to boiling water for 5 minutes without evidence of destructive corrosion.
  • the lead resistance of the large power leads was 75 ⁇ 15 mohms measured from the lower lead bin to the wire bond area and the lead resistance of the small leads was less than 250 mohms.
  • the ground bus 56 about the bottom exterior of the device facilitates checking of the devices in the package with a coaxial probe.
  • the close proximity of the leads to the ground bus makes it possible to use very short conductors on the probe to thereby make measurements of fast circuits.
  • the stud 66 in and of itself provides sufficient and adequate cooling for an LSI chip.
  • the cooling for the individual package can be tailored to meet the power dissipation requirements of the chip mounted therein so that the temperature rise for any one of the chips mounted in the package is limited to a rise from an ambient of approximately 20°-32° C. to a maximum temperature of 80° C. This can be accomplished by the use of a cooling fin assembly 91 of the type shown in FIG. 8.
  • the cooling fin assembly consists of a split cylindrical sleeve 92 which is provided with a slit 93 extending longitudinally of the same.
  • Formed integral with the sleeve 92 are a plurality of circular discs or fins 94 which extend outwardly radially from the sleeve 92 and which are spaced apart and lie in generally parallel planes.
  • three of such fins 94 have been provided but, if desired, a fewer or greater number of such fins can be provided to obtain the desired cooling.
  • the cooling fin assembly 91 can be formed of a suitable material such as copper which has been nickel plated and then gold plated in a conventional manner such as by electroplating.
  • the gold is utilized to make good heat contact with the gold plating on the stud 66. Since the cooling fin assembly is provided with a split, it can be readily removed and inserted on the stud 66 because of the slip fit. By applying the cooling fin assembly 91 to the stud 66, it can be seen that the cooling capabilities of the stud are greatly enhanced because of the heat dissipation capabilities of the fins 94 provided as a part of the cooling fin assembly. By utilizing a cooling fin assembly of the desired number of fins, it can be seen that the cooling capabilities of the stud 66 can be tailored to meet the power dissipation requirements of the chip mounted within the package to limit the temperature rise as hereinbefore described.
  • the LSI chip 24 is mounted on carrier 22 in a region which is immediately opposite the region on which the stud 66 is mounted so that there can be a relatively direct transfer of heat from die to the cooling stud.
  • the leads 69 are brazed onto the base 36 in such a manner that they extend upwardly and outwardly away from the base and up and beyond the cover 31. This is particularly desirable since it permits the ends of the leads 69 to be dipped into a solder bath so that the leads can be reflow soldered and mounted on printed circuit boards and the like when used.
  • the package is of a flat-pack type having high density leads.
  • the package is provided with a ground bus on the perimeter of the package surface making electrical testing of the package very easy by the use of a coaxial type probe in which it is desirable that the two conductors of the coaxial probe contact the package at closely spaced points so that very fast signals can be measured.
  • the package construction is such that it meets all conventional physical and environmental tests which should be met by such packages.
  • the package is also one which can be manufactured relatively economically considering its complexity.

Abstract

Package for an LSI chip having a plurality of contact pads comprising a carrier and a cover. The carrier is formed of a base of an insulating material and has a generally planar area for receiving the chip. A cooling stud is mounted on the base and can be provided with one or more removable cooling fins. The stud is mounted on the base opposite the area for receiving the chip. Spaced leads are carried by the base and have outer extremities which extend beyond the base in a direction away from the chip and are free of the carrier and have inner extremities which are in close proximity to the area for receiving the chip. A grounding bus is carried by the carrier to facilitate electrical checking of the package.

Description

CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation of application Ser. No. 437,164, filed Jan. 28, 1974. Application Ser. No. 437,164 was a continuation-in-part of application Ser. No. 270,448, filed July 10, 1972 both abandoned.
BACKGROUND OF THE INVENTION
Packages have heretofore been provided for LSI chips. However, such packages have been unduly complicated and expensive and difficult to mount. In addition, they have inadequate cooling and limited input-output lead capabilities. There is, therefore, a need for a new and improved LSI chip package.
SUMMARY OF THE INVENTION AND OBJECTS
The package is for an LSI chip having a plurality of contact pads to which contact is to be made. The package comprises a carrier which is formed to provide a space for receiving the chip and a cover for hermetically enclosing the space within the carrier. The carrier is formed of a base of an insulating material. A cooling stud is mounted on the base opposite the area where the chip is mounted and forms a part of the carrier. Conducting leads are carried by the base and have outer extremities which extend beyond the base in a direction away from the LSI chip and are free of the carrier and have inner extremities which are carried by the base and which are in close proximity to the space for receiving the LSI chip. An external grounding bus is provided on the base to facilitate checking of the carrier. One or more cooling fins can be mounted on the cooling stud to tailor the package to the power dissipation required by the chip.
In general, it is an object of the present invention to provide an LSI chip package and method which makes it possible to package an LSI chip having a large number of contact pads.
Another object of the invention is to provide a package and method of the above character which facilitates easy checking of the package.
Another object of the invention is to provide a package and method of the above character in which the cooling required for the package can be tailored to the power dissipation required for the chip.
Another object of the invention is to provide a package and method of the above character which is easy to utilize.
Another object of the invention is to provide a package and method of the above character which facilitates efficient heat transfer.
Another object of the invention is to provide a package in which the cooling provided can be readily adjusted.
Another object of the invention is to provide a package in which the leads are positioned so that they can be reflow soldered.
Additional objects and features of the invention will appear from the following description in which the preferred embodiment is set forth in detail in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
FIGS. 1-19 are isometric and cross-sectional views showing the various steps in the manufacture of a package incorporating the present invention.
FIG. 20 is a top plan view with portions broken away showing a package incorporating the present invention.
FIG. 21 is a cross-sectional view taken along the line 21--21 of FIG. 20.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The package 21 comprising the present invention consists of a carrier 22 which has a space 23 therein adapted to receive an LSI chip 24 of the type described in copending application Ser. No. 270,449, filed July 10, 1972 now U.S. Pat. No. 3,808,475. As described therein, the LSI chip is provided with a plurality of transistors and resistors which are interconnected by two layers of metallization that are connected to 76 signal input-output (I/O) pads 26, two large ground pads 27, two large voltage pads 28 and four small ground pads 29 to make a total of 84 pads, with 21 pads on each side of the four-sided chip. The four larger bonding pads are 4×14 mils in size, whereas the smaller pads are 4×4 mils with a 2 mil spacing between pads. A cover 31 is provided for sealing the space 23 containing the LSI chip 24.
The steps for fabricating the carrier 22 are shown in FIGS. 1-19. As shown in FIG. 1, the carrier is formed of a ceramic base 36 which is fabricated from three parts or pieces 37, 38 and 39 of green ceramic of a suitable type such as of 94% alumina. The piece 37 is square as shown in FIG. 1 but, if desired, can have any suitable configuration. One corner 41 is notched or marked for registration purposes. A pair of spaced holes 43 is formed in the green ceramic by suitable means such as a pin. The piece 38 has the same size and configuration as the piece 37 and is also provided with a notched or marked corner 44. Two pairs of spaced holes 46 and 47 are formed in the piece 38 in a suitable manner such as by a pin. The holes 47 are positioned so that they can be placed in registration with the holes 43 provided in the piece 37. An imaginary line extending through the holes 46 extends at right angles to another imaginary line extending through the holes 47. A square opening 48 is formed in the center of the piece 38 and is provided for forming the space 23 for receiving the LSI chip 24. The piece 39 has the same general conformation as pieces 37 and 38 although it is of a smaller size so that it is within the confines of the holes 46 and 47 of the piece 38. It is also provided with a square opening 49 which is of a size which is substantially larger than the opening 48.
After the pieces 37, 38 and 39 have been formed, a metallized paint such as tungsten paint is screened onto the pieces or parts. Thus, as shown in FIG. 2, the tunsten paint is screened onto a die bond area 51 generally in the center of the piece 37 on the top side. This die bond area 51 is generally square as shown in FIG. 2. The tungsten paint also extends over two extensions 52 which extend to meet the holes 46 of piece 38 which are filled with the tungsten paint. The holes 43 are also filled with the tungsten paint.
A lead pattern 53 is screened onto the top side of the part 38. As can be seen, four large leads are provided in the lead pattern 53. These larger leads extend over the holes 46 and 47 provided in the part 38 and, in addition, the tungsten paint fills these holes 46 and 47. The top side of the part 39 is also covered with tungsten paint 54 as shown in FIG. 2. The under side of the part 37 is also provided with a pattern of the tungsten paint which is screened on the part to form the rectangular ground bus 56 extending about the under side of the part 37 adjacent the outer perimeter of the same. There also is provided a circular centrally disposed area 57 which is connected by connecting elements 58 to the bus 56.
After all the screening of the tungsten paint has been completed, a ceramic slurry 59 is screened onto the parts 37, 38 and 39 which fills in the voids between the leads of the lead pattern 53. The three separate parts 37, 38 and 39 are then laminated into a single unitary structure and placed in a press having first and second parts 61 and 62. During the time that pressure is being applied to the parts 61 and 62 to laminate the parts or pieces 37, 38 and 39, the parts 37, 38 and 39 are fired at a suitable temperature as, for example, approximately 1600° C. for approximately one-half hour to provide a unitary structure and in which a hermetic seal is formed between the parts. During the firing at the high temperature, the tungsten is fired into the ceramic material. The ceramic slurry, since it is not organic, is not burned out but fills the voids between the leads and forms a hermetic seal as hereinbefore described. The tungsten paint is utilized in this process because a refractory metal must be provided which is able to withstand the high curing temperature of 1600° C. used for curing the ceramic.
All of the exposed tungsten is next plated with nickel as shown in FIG. 6 so that all tungsten areas have a layer of nickel thereon as shown at 63 in FIG. 6. A circular preform 64 is formed of a suitable material such as silver and copper, although other materials can be utilized. A cylindrical cooling stud 66 of a suitable size such as 1/2 inch in length and 0.2 inch in diameter is provided. The cooling stud, which is formed of a suitable material such as molybdenum plated with nickel, is brazed to the circular area 57 by the use of the preform 64 to form a silver-copper eutectic.
A lead preform 67 of a suitable material such as silver or a combination of silver and copper is placed on the outer extremities of the lead pattern 53 provided on the outer perimeter of the base 36 as shown in FIG. 9. This lead preform 67 is brazed to the lead pattern 53 in a conventional manner. Thereafter, a lead frame 68, which has a generally rectangular configuration and which is provided with a plurality of inwardly extending leads 69 which are elongated and generally parallel to each other as shown in FIG. 11, is positioned so that the inner extremities of the leads 69 overlie the lead preform 67 as shown in FIG. 10. The lead frame 68 is formed of a suitable material such as Kovar. The leads 69 and the lead frames 68 are then brazed to the lead preform 67 in a conventional manner at a temperature of 800°-900° C. with a carbon weight 71 holding the leads 69 in place (see FIG. 10).
Alternatively, if desired, the stud 66 can be brazed to the structure after the lead frame 68 has been brazed to the structure. After the brazing operations have been completed, all of the exposed metal parts of the structure shown in FIG. 10 are electroplated with nickel and thereafter are electroplated with gold.
The corners of the lead frame 68 are then clipped off in the vicinity of the broken lines 73 as shown in FIG. 11. After the corners have been clipped, the structure shown in FIG. 11 is placed in a lead forming jig or tool (not shown) in which the outer extremity of the lead frame including the outer extremity of the leads 69 are bent upwardly so that the leads assume a "Z" shaped configuration with the intermediate portion being inclined in an outward direction as shown in FIG. 12. As soon as the leads have been formed as shown in FIG. 12, every other lead 69 is separated from the lead frame 69 as shown in FIG. 13 and a "go" "no-go" continuity check is made of these particular leads to see if they are all satisfactory. If they are all satisfactory, the carrier is assumed to be ready for use by a device manufacturer.
Now let it be assumed that it is desired to place a chip in the carrier 22. First, a preform 76 formed of a suitable material such as gold is placed in the recess 77 over the die area 51 provided in the carrier 22 (see FIGS. 11 and 15). A die or chip 24 of the type described in copending application Ser. No. 270,449, filed July 10, 1972, now U.S. Pat. No. 3,808,475 or of any other suitable type can then be positioned within the recess 77. As described in said copending application Ser. No. 270,449, filed July 10, 1972, now U.S. Pat. No. 3,808,475 the die or chip 24 is formed of a semiconductor body with the devices in the semiconductor body being formed on one side of the semiconductor body. The other side of the semiconductor body is placed on the gold preform 76. The carrier 22 is heated to a suitable temperature as, for example, 450° C. Since the carrier is heated to approximately 450° C., an insertion of the preform and the die or chip 24 into the recess 77 will cause a silicon-gold eutectic to form at this temperature to bond the back side of the semiconductor body to the preform 76 and to the die bond area 51 carried by the base 36 (see FIG. 16).
As described in said copending application Ser. No. 270,449, filed July 10, 1972, now U.S. Pat. No. 3,808,475 the die or chip 24 is provided with a plurality of pads 81 adjacent the outer perimeter of the same which are connected to the devices in the die or chip. Leads 82 of a suitable material such as gold wire are thermocompression bonded to the pads 81 and to the inner extremities of the lead pattern 53 as shown particularly in FIG. 17. As can be seen from FIG. 17, certain of the pads 81 and certain of the leads in the lead pattern 53 are larger. A plurality of wires 82 as, for example, three, serve to form a connection between such pads and leads. In this way, it can be seen that connections are made from the leads 69 extending to the outside world to the devices carried by the die or chip 24.
After the wire bonding has been completed, a preform 86 of a suitable material such as solder is placed on top of the base 36 and has generally the same configuration as the top surface of the part 39 which formed a part of the base. A lid or cover 87 formed of a suitable material such as gold-plated Kovar is placed over the solder preform 86 and then the entire assembly is sealed in a furnace at a suitable temperature as, for example, 400°-500° C. This temperature does not affect the bond formed between the die 24 and the base 36 because the silicon-gold eutectic will not be affected except at a temperature substantially higher than the eutectic temperature of 450° C. After the sealing operation has been completed, tests are made to ascertain whether a good hermetic seal has been obtained. The leads 69 can be sheared to their proper lengths. In the event that the lead frame is left in place and is not separated from the leads prior to this time, the lead frame can be separated. The other extremities of the leads 69 can then be coated with solder so that the entire package 21 is ready for use.
The completed device is shown in FIGS. 20 and 21. The package shown in FIGS. 20 and 21 is of a type particularly adapted for use with the LSI chip which is shown and described in copending application Ser. No. 270,449, filed July 10, 1972 now U.S. Pat. No. 3,808,475. It is provided with 84 leads with 21 leads on each side with one of the leads on each side being substantially larger than the other leads. Two of these large leads are identified with the designation Vee which are utilized for supplying the voltage to the package. The other two leads on the other two sides are identified with the designation Vcc and are utilized for connecting the device to ground.
From FIG. 21, it can be seen that during the formation of the base that the material which was forced into the holes 42, 43, 46 and 47 serves to form electrical connections.
It has been found that packages constructed in accordance with the foregoing method are able to readily withstand certain physical and environmental test requirements. For example, the leads 69 are capable of withstanding two cycles of bending such that under 10 times magnification, there is no evidence of breakage, loosening or relative motion between the terminal lead and the device body. A cycle of bending of the lead is from its normal position through a 90° angle away from the carrier and then back to its normal position. The lead brazing was capable of withstanding a lateral pull sufficient to break the Kovar lead.
With respect to high temperature aging, the package was able to withstand an exposure to 150° C. air for 72 hours or 450° C. for 2 minutes and not cause discoloration of any gold plating on the package.
With respect to temperature cycling, the package was capable of withstanding 10 cycles of temperature cycling per mil-std-883 method 1010, condition C.
The packages were capable of being sealed hermetically to 5×10-7 atoms/sec. The package was capable of withstanding exposure to boiling water for 5 minutes without evidence of destructive corrosion.
The lead resistance of the large power leads was 75±15 mohms measured from the lower lead bin to the wire bond area and the lead resistance of the small leads was less than 250 mohms.
The ground bus 56 about the bottom exterior of the device facilitates checking of the devices in the package with a coaxial probe. The close proximity of the leads to the ground bus makes it possible to use very short conductors on the probe to thereby make measurements of fast circuits.
In many applications of the package, it has been found that the stud 66 in and of itself provides sufficient and adequate cooling for an LSI chip. However, in the event that chips of different types are mounted in the package and the chips have different power dissipation requirements, the cooling for the individual package can be tailored to meet the power dissipation requirements of the chip mounted therein so that the temperature rise for any one of the chips mounted in the package is limited to a rise from an ambient of approximately 20°-32° C. to a maximum temperature of 80° C. This can be accomplished by the use of a cooling fin assembly 91 of the type shown in FIG. 8. As shown therein, the cooling fin assembly consists of a split cylindrical sleeve 92 which is provided with a slit 93 extending longitudinally of the same. Formed integral with the sleeve 92 are a plurality of circular discs or fins 94 which extend outwardly radially from the sleeve 92 and which are spaced apart and lie in generally parallel planes. As can be seen from FIG. 8, three of such fins 94 have been provided but, if desired, a fewer or greater number of such fins can be provided to obtain the desired cooling. The cooling fin assembly 91 can be formed of a suitable material such as copper which has been nickel plated and then gold plated in a conventional manner such as by electroplating. The gold is utilized to make good heat contact with the gold plating on the stud 66. Since the cooling fin assembly is provided with a split, it can be readily removed and inserted on the stud 66 because of the slip fit. By applying the cooling fin assembly 91 to the stud 66, it can be seen that the cooling capabilities of the stud are greatly enhanced because of the heat dissipation capabilities of the fins 94 provided as a part of the cooling fin assembly. By utilizing a cooling fin assembly of the desired number of fins, it can be seen that the cooling capabilities of the stud 66 can be tailored to meet the power dissipation requirements of the chip mounted within the package to limit the temperature rise as hereinbefore described.
From the construction shown, it can be seen that the LSI chip 24 is mounted on carrier 22 in a region which is immediately opposite the region on which the stud 66 is mounted so that there can be a relatively direct transfer of heat from die to the cooling stud. The leads 69 are brazed onto the base 36 in such a manner that they extend upwardly and outwardly away from the base and up and beyond the cover 31. This is particularly desirable since it permits the ends of the leads 69 to be dipped into a solder bath so that the leads can be reflow soldered and mounted on printed circuit boards and the like when used.
It is apparent from the foregoing that there has been provided a package which is particularly adaptable for packaging LSI chips and which makes it possible to tailor the cooling characteristics of the package so that it corresponds with the power dissipation requirements of the chip mounted within the package. The package is of a flat-pack type having high density leads. The package is provided with a ground bus on the perimeter of the package surface making electrical testing of the package very easy by the use of a coaxial type probe in which it is desirable that the two conductors of the coaxial probe contact the package at closely spaced points so that very fast signals can be measured. The package construction is such that it meets all conventional physical and environmental tests which should be met by such packages. The package is also one which can be manufactured relatively economically considering its complexity.

Claims (18)

We claim:
1. In an aircooled package for an LSI chip having a plurality of contact pads around its outer perimeter, a carrier having a base formed of an insulating material, said carrier having a relatively planar surface for receiving the chip, said carrier comprising a unitary ceramic body which is free of glass seals, a cooling stud secured to the base on the side of said base generally opposite the planar surface provided for said chip for exposure to the atmosphere for cooling by air, a conductive lead pattern formed on the carrier having portions adapted to be connected to the chip, and a plurality of relatively rigid conductive leads mounted on said carrier and in contact with said lead pattern, said conductive leads extending outwardly from said base and having contact areas lying in a plane generally parallel to the planar surface and facing in a direction away from the base opposite the direction in which the cooling stud faces from the base.
2. A package as in claim 1 wherein said base is provided with a space overlying said planar surface for receiving said chip, together with cover means secured to said base and hermetically enclosing said space.
3. A package as in claim 2 wherein said leads extend outwardly away from said base and extend upwardly beyond said cover means.
4. A package as in claim 1 wherein said lead pattern extends inwardly into a region in close proximity to said planar surface.
5. A package as in claim 4 wherein said leads are brazed to said pattern.
6. A package as in claim 1 together with a grounding bus provided on the side of said base to which the cooling stud is secured and near the outer perimeter of the base.
7. A package as in claim 1 together with a cooling fin assembly mounted on said cooling stud.
8. A package as in claim 7 wherein said cooling fin assembly is readily removable.
9. A package as in claim 8 wherein said cooling fin assembly includes a plurality of spaced generally circular fins and means for securing said fins to said cooling stud.
10. A package as in claim 9 wherein said means for securing said fins to said cooling stud includes a split sleeve.
11. A package as in claim 1 wherein said leads include at least one large lead and a plurality of small leads on each side of the package.
12. In a package for use with a chip of the type having oppositely facing parallel first and second major chip surfaces and a plurality of spaced apart contact pads disposed adjacent the outer perimeter on said first major chip surface, said package having a base with oppositely facing parallel first and second major base surfaces, wall means defining a recess extending downwardly through said first major base surface for receiving the chip, a chip carrying surface in said recess parallel to the first major base surface and inset from the first major base surface, means securing the chip to said chip carrying surface so that said second chip surface is in contact with said chip carrying surface and said first chip surface is in close proximity to said first major base surface, a lead pattern formed on said first major base surface extending into close proximity to said recess whereby said lead pattern and said pads on a chip in said recess each have exposed surfaces facing in the same direction into a region extending from said chip carrying surface and said first major base surface outwardly in a direction away from said base thereby permitting access through said region to connect leads between said exposed surfaces of said pads and said lead pattern, and a cooling stud secured to said second major base surface generally opposite said chip carrying surface and extending away from said second major base surface outwardly in a direction away from said base for exposure to the atmosphere for cooling by air.
13. A package as in claim 12 wherein said base is formed exclusively of a ceramic which is essentially all alumina and said package is free of glass seals.
14. A package as in claim 13 wherein said lead pattern extends on said first major base surface to all four sides of said base, and including a plurality of relatively rigid conductive leads mounted on said first major base surface near the outer perimeter of said base in contact with said lead pattern, said conductive leads extending outwardly from all four sides of said rectangular base and having contact areas lying in a plane generally parallel to said first major base surface, said contact areas facing in a direction away from the base and opposite the direction in which the cooling stud extends from said base.
15. A package as in claim 14 including a raised part carried on said first major base surface surrounding said recess and being spaced inwardly from the other perimeter of said base, and wherein said lead pattern extends below said raised part.
16. A package as in claim 15 together with cover means attached to said raised part and overlying said recess for enclosing said chip and said leads between said exposed surfaces of said pads and said lead pattern.
17. In a package for use with an LSI chip of the type having oppositely facing parallel first and second major chip surfaces and a plurality of spaced apart contact pads disposed adjacent the outer perimeter on said first major chip surface, said package including a one-piece carrier formed exclusively of a ceramic which is essentially all alumina, said carrier being free of glass seals and having a base with oppositely facing parallel first and second major base surfaces, having wall means defining a recess extending downwardly through said first major base surface for receiving the chip, a chip carrying surface in said recess parallel to the first major base surface and inset from the first major base surface, means securing the chip to said chip carrying surface so that the second chip surface is in contact with the chip carrying surface and the first chip surface is in close proximity to the first major base surface, a raised part carried on said first major base surface surrounding said recess and being spaced inwardly from the outer perimeter of the base, a metallic cooling stud secured to said second major base surface generally opposite said chip carrying surface and extending away from said second major base surface outwardly in a direction away from said base for exposure to the atmosphere for cooling by air, a lead pattern formed on said first major base surface extending below said raised part and into close proximity to said recess whereby said lead pattern and said pads on a chip in said recess each have exposed surfaces facing in the same direction into a region extending from said chip carrying surface and said first chip surface outwardly in a direction away from said carrier thereby permitting access through said region to connect leads between said exposed surfaces of said pads and said lead pattern, said lead pattern extending on said first major base surface to all four sides of said base, and a plurality of relatively rigid conductive leads mounted on said first major base surface near the outer perimeter of said base in contact with said lead pattern, said conductive leads extending outwardly from all four sides of said rectangular base and having contact areas lying in a plane generally parallel to said first major base surface, said contact areas facing in a direction away from the base and opposite the direction in which the cooling stud extends from said base.
18. In a package for use with an LST chip of the type having oppositely facing parallel first and second major chip surfaces and a plurality of spaced apart contact pads disposed adjacent the outer perimeter on said first major chip surface, said package including a one-piece carrier formed exclusively of a ceramic which is essentially all alumina, said carrier being free of glass seals and having a base with oppositely facing parallel first and second major base surfaces, said base having wall means defining a recess extending downwardly through said first major base surface for receiving the chip, a chip carrying surface in said recess parallel to the first major base surface and inset from the first major base surface, means securing the chip to said chip carrying surface so that the second chip surface is in contact with the chip carrying surface and the first chip surface is in close proximity to the first major base surface, a raised part carried on said first major base surface surrounding said recess and being spaced inwardly from the outer perimeter of the base, a metallic cooling stud secured to said second major base surface generally opposite said chip carrying surface and extending away from said second major base surface outwardly in a direction away from said base for exposure to the atmosphere for cooling by air, a lead pattern formed on said first major base surface extending below said raised part and into close proximity to said recess whereby said lead pattern and said pads on a chip in said recess each have exposed surfaces facing in the same direction into a region extending from said chip carrying surface and said first chip surface outwardly in a direction away from said carrier thereby permitting access through said region to connect leads between said exposed surfaces of said pads and said lead pattern, said lead pattern extending on said first major base surface to all four sides of said base, a grounding bus pattern bonded to and formed on said second major base surface adjacent the outer perimeter of said base, conductive means extending through said base connecting said grounding bus pattern to said lead pattern, cover means secured to said raised part and hermetically enclosing said recess, and a plurality of relatively rigid conductive leads mounted on said first major base surface near the outer perimeter of said base in contact with said lead pattern, said conductive leads extending outwardly from all four sides of said rectangular base beyond the perimeter of said base and extending from said first major base surface beyond said cover means and having contact areas lying in a plane generally parallel to said first major base surface, said contact areas facing in a direction away from the base and opposite the direction in which the cooling stud extends from said base, and a removable cooling fin assembly mounted by a slip fit on said cooling stud.
US05/846,698 1972-07-10 1977-10-31 LSI Chip package and method Expired - Lifetime US4396971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/846,698 US4396971A (en) 1972-07-10 1977-10-31 LSI Chip package and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27044872A 1972-07-10 1972-07-10
US05/846,698 US4396971A (en) 1972-07-10 1977-10-31 LSI Chip package and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05437164 Continuation 1974-01-28

Publications (1)

Publication Number Publication Date
US4396971A true US4396971A (en) 1983-08-02

Family

ID=26954306

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/846,698 Expired - Lifetime US4396971A (en) 1972-07-10 1977-10-31 LSI Chip package and method

Country Status (1)

Country Link
US (1) US4396971A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618739A (en) * 1985-05-20 1986-10-21 General Electric Company Plastic chip carrier package
US4700273A (en) * 1986-06-03 1987-10-13 Kaufman Lance R Circuit assembly with semiconductor expansion matched thermal path
EP0265367A1 (en) * 1986-10-20 1988-04-27 United Technologies Corporation Variable width ic bond pad arrangement
US4750092A (en) * 1985-11-20 1988-06-07 Kollmorgen Technologies Corporation Interconnection package suitable for electronic devices and methods for producing same
US4771018A (en) * 1986-06-12 1988-09-13 Intel Corporation Process of attaching a die to a substrate using gold/silicon seed
US4810671A (en) * 1986-06-12 1989-03-07 Intel Corporation Process for bonding die to substrate using a gold/silicon seed
DE3930858A1 (en) * 1988-09-20 1990-03-22 Peter H Maier Modular electronic power circuit - with power components supported by metallised ceramics layer and enclosed by overlying insulation layer
US5008734A (en) * 1989-12-20 1991-04-16 National Semiconductor Corporation Stadium-stepped package for an integrated circuit with air dielectric
US5159750A (en) * 1989-12-20 1992-11-03 National Semiconductor Corporation Method of connecting an IC component with another electrical component
US5325268A (en) * 1993-01-28 1994-06-28 National Semiconductor Corporation Interconnector for a multi-chip module or package

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277957A (en) * 1964-04-03 1966-10-11 Westinghouse Electric Corp Heat transfer apparatus for electronic component
US3405323A (en) * 1967-03-20 1968-10-08 Ibm Apparatus for cooling electrical components
US3495023A (en) * 1968-06-14 1970-02-10 Nat Beryllia Corp Flat pack having a beryllia base and an alumina ring
US3601522A (en) * 1970-06-18 1971-08-24 American Lava Corp Composite ceramic package breakaway notch
US3617817A (en) * 1968-12-25 1971-11-02 Hitachi Ltd Laminated ceramic structure for containing a semiconductor element
US3634600A (en) * 1969-07-22 1972-01-11 Ceramic Metal Systems Inc Ceramic package
US3651434A (en) * 1969-04-30 1972-03-21 Microwave Semiconductor Corp Microwave package for holding a microwave device, particularly for strip transmission line use, with reduced input-output coupling
US3748544A (en) * 1972-02-14 1973-07-24 Plessey Inc Laminated ceramic high-frequency semiconductor package

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277957A (en) * 1964-04-03 1966-10-11 Westinghouse Electric Corp Heat transfer apparatus for electronic component
US3405323A (en) * 1967-03-20 1968-10-08 Ibm Apparatus for cooling electrical components
US3495023A (en) * 1968-06-14 1970-02-10 Nat Beryllia Corp Flat pack having a beryllia base and an alumina ring
US3617817A (en) * 1968-12-25 1971-11-02 Hitachi Ltd Laminated ceramic structure for containing a semiconductor element
US3651434A (en) * 1969-04-30 1972-03-21 Microwave Semiconductor Corp Microwave package for holding a microwave device, particularly for strip transmission line use, with reduced input-output coupling
US3634600A (en) * 1969-07-22 1972-01-11 Ceramic Metal Systems Inc Ceramic package
US3601522A (en) * 1970-06-18 1971-08-24 American Lava Corp Composite ceramic package breakaway notch
US3748544A (en) * 1972-02-14 1973-07-24 Plessey Inc Laminated ceramic high-frequency semiconductor package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Carroll et al., "Single Chip Carrie Package" IBM Tech. Disc. Bull., vol. 12, No. 4, Sep. 1969, p. 538. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618739A (en) * 1985-05-20 1986-10-21 General Electric Company Plastic chip carrier package
US4750092A (en) * 1985-11-20 1988-06-07 Kollmorgen Technologies Corporation Interconnection package suitable for electronic devices and methods for producing same
US4700273A (en) * 1986-06-03 1987-10-13 Kaufman Lance R Circuit assembly with semiconductor expansion matched thermal path
US4771018A (en) * 1986-06-12 1988-09-13 Intel Corporation Process of attaching a die to a substrate using gold/silicon seed
US4810671A (en) * 1986-06-12 1989-03-07 Intel Corporation Process for bonding die to substrate using a gold/silicon seed
EP0265367A1 (en) * 1986-10-20 1988-04-27 United Technologies Corporation Variable width ic bond pad arrangement
DE3930858A1 (en) * 1988-09-20 1990-03-22 Peter H Maier Modular electronic power circuit - with power components supported by metallised ceramics layer and enclosed by overlying insulation layer
DE3930858C2 (en) * 1988-09-20 2002-01-03 Peter H Maier module Design
US5008734A (en) * 1989-12-20 1991-04-16 National Semiconductor Corporation Stadium-stepped package for an integrated circuit with air dielectric
US5159750A (en) * 1989-12-20 1992-11-03 National Semiconductor Corporation Method of connecting an IC component with another electrical component
US5325268A (en) * 1993-01-28 1994-06-28 National Semiconductor Corporation Interconnector for a multi-chip module or package

Similar Documents

Publication Publication Date Title
US3872583A (en) LSI chip package and method
US4115837A (en) LSI Chip package and method
US5006922A (en) Packaged semiconductor device having a low cost ceramic PGA package
US5381039A (en) Hermetic semiconductor device having jumper leads
US4791075A (en) Process for making a hermetic low cost pin grid array package
US5942795A (en) Leaded substrate carrier for integrated circuit device and leaded substrate carrier device assembly
US5904499A (en) Package for power semiconductor chips
US6188127B1 (en) Semiconductor packing stack module and method of producing the same
US4783697A (en) Leadless chip carrier for RF power transistors or the like
US5789811A (en) Surface mount peripheral leaded and ball grid array package
JP2914242B2 (en) Multi-chip module and manufacturing method thereof
EP0617465A1 (en) A semiconductor device and package
JPH06224246A (en) High multiterminal package for semiconductor element
US4396971A (en) LSI Chip package and method
US5406120A (en) Hermetically sealed semiconductor ceramic package
KR100711552B1 (en) Power semiconductor mounting package containing ball grid array
KR900007301B1 (en) Semiconductor package
US4067041A (en) Semiconductor device package and method of making same
US3303265A (en) Miniature semiconductor enclosure
EP0517967A1 (en) High current hermetic package
JPH0752759B2 (en) Package
JPH10189815A (en) Mounting structure for semiconductor element mounting substrate
JPS5914894B2 (en) Ceramic package
JPH1032300A (en) Lead frame, semiconductor device and manufacture thereof
GB2056772A (en) Integrated circuit package and module

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE