US4123517A - Toothpaste compositions - Google Patents

Toothpaste compositions Download PDF

Info

Publication number
US4123517A
US4123517A US05/645,743 US64574375A US4123517A US 4123517 A US4123517 A US 4123517A US 64574375 A US64574375 A US 64574375A US 4123517 A US4123517 A US 4123517A
Authority
US
United States
Prior art keywords
toothpaste
weight
phosphate ester
anionic phosphate
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/645,743
Inventor
Eric Baines
Kenneth Harvey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Application granted granted Critical
Publication of US4123517A publication Critical patent/US4123517A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • A61K8/556Derivatives containing from 2 to 10 oxyalkylene groups

Definitions

  • This invention relates to a toothpaste composition.
  • a toothpaste composition which is compatible with an unlined aluminium container such as a toothpaste tube.
  • Hydrated alumina such as alpha alumina trihydrate (e.g. Gibbsite) is a desirable polishing agent for dental surfaces and has been incorporated into toothpaste compositions.
  • the alkalinity of hydrated alumina is such that when a toothpaste containing it is incorporated into an unlined aluminium container such as a toothpaste tube, gas formation, causing container swelling, often occurs as does etching of the aluminium surface.
  • a toothpaste composition which contains hydrated alumina as polishing agent and a particular anionic foaming surface active agent which permits the use of the toothpaste composition in an unlined aluminium container without undue incompatibility.
  • this invention relates to a toothpaste composition
  • a toothpaste composition comprising a dentally acceptable oral vehicle and dispersed therein about 20 - 75% by weight of a polishing material including hydrate of alumina in amount of at least 10% by weight of the toothpaste, and about 0.05 - 5% by weight of an anionic phosphate ester surface active agent comprising a mixture of monoester of the formula ##STR1## and DIESTER OF THE FORMULA ##STR2## wherein R is an alkyl group of 10-20 carbon atoms, n is an integer from 1-6 and M is selected from the group consisting of hydrogen, alkali metal and ammonium, said toothpaste having a pH of up to about 9.5.
  • this invention relates to a packaged toothpaste composition
  • a packaged toothpaste composition comprising an unlined aluminium container and contained therein in contact with the aluminium surface of said container the above described toothpaste composition.
  • the hydrated alumina employed is an alpha alumina trihydrate.
  • a conventional way of manufacturing this material is by the Bayer process. In that process the alpha alumina trihydrate is precipitated from a solution of sodium aluminate. See Encyclopedia of Chemical Technology, Kirk-Othmer, 2nd. Edition, Vol. 1, pages 937-941, and Vol. 2, pages 41-45 and 50-51.
  • the trihydrate compound is precipitated in the form of granules or agglomerates which are too large for general use as a dentifrice polishing material, e.g. about 40 to 100 microns diameter. Therefore the granules or agglomerates, after drying (sometimes after water-washing and drying) are ground to a suitable particle size, e.g. to an average particle diameter in the range of about 2 to 20 microns, such as about 5 to 10 microns in diameter.
  • the washed unground granules usually show an alkaline reaction when slurried in water.
  • the pH of a 10% or 20% by weight of trihydrate slurry at room temperature may be in the range of about 7.5, 8.5, 9 or 9.5.
  • the pH can be measured with an Orion model 801 Digital pH/mv meter which is fitted with an EIL model 1150 combination pH and reference electrode.
  • the instrument is first calibrated at room temperature by placing the electrode into 50 ml of pH 7 buffer solution in a 100 ml beaker, and adjusting the calibration control until the instrument reading corresponds to a buffer pH.
  • the electrode is then removed, washed with deionized water, and placed into 125 gms of a pre-prepared 20% slurry of the trihydrate sample in deionized water, in a 250 ml beaker, and its pH reading taken.
  • the anionic phosphate esters are mixtures of mono and di-esters of the formulas hereinabove set forth. They are available from MoDo Kemi Aktiebolaget, formerly Berol Aktiebolaget, of Sweden, under the name Berol and may include an anionic tri-ester moiety too, as well as some non-ionic portion. They may be used in acid or partially or fully neutralised forms. Berol 729 has alkyl chain lengths of 16-18 carbon atoms and contains series of 4 ethylene oxide units.
  • Berol 525 which contains alkyl groups of 10-18 carbon atoms and series of 5 ethylene oxide units
  • Berol 513 which contains alkyl groups of 16-18 carbon atoms.
  • Berol anionic phosphate esters are available as Berol 521, Berol 724 and Berol 733.
  • the weight ratio of mono-ester to di-ester may vary, typically from about 1:10 to 10:1.
  • the acid forms of the anionic phosphate ester surface active agents are neutralised or partially neutralised, alkali metal, preferably sodium, or ammonium cations are present.
  • the surface active agent is employed in the oral preparation in amount of about 0.05-5% by weight, preferably about 0.5- 3% and most preferably about 0.5-2%.
  • the phosphate esters serve to improve dentifrice consistency and body.
  • the toothpaste may comprise an additional dentally acceptable water-insoluble polishing material, such as calcined alumina, dehydrated silica, crystalline silica, having particles of sizes up to about 5 microns, a mean particle size of up to 1.1 microns and a surface area of up to 50,000 cm 2 /gm, water-insoluble sodium metaphosphate (preferably substantially free of water-solubles content), tricalcium phosphate, dihydrated dicalcium phosphate, anhydrous dicalcium phosphate, calcium pyrophosphate, magnesium orthophosphate, trimagnesium phosphate, calcium carbonate, aluminium silicate, zirconium silicate, bentonite and mixtures thereof. At least 10% of the toothpaste is hydrated alumina.
  • an additional dentally acceptable water-insoluble polishing material such as calcined alumina, dehydrated silica, crystalline silica, having particles of sizes up to about 5 microns, a mean particle size of up to 1.1 microns and a surface area of up to
  • the polishing material is generally present in amounts of about 20-75% by weight of a toothpaste containing it, about 30-55% being preferable.
  • Preferably about 20-55% of the toothpaste is hydrated alumina.
  • the liquid vehicle may comprise water, typically in amount of about 10-90% by weight of the preparation.
  • the liquid vehicle may additionally or alternatively comprise humectants such as glycerine, sorbitol solution propylene glycol.
  • humectants such as glycerine, sorbitol solution propylene glycol.
  • a mixture of water and glycerine and/or sorbitol solution is particularly advantageous.
  • Preferably about 20-40% by weight of humectant and 10 to about 45% by weight of water is present.
  • the solid portion of the vehicle of a paste or gel composition is a gelling agent or binder such as hydroxyethyl cellulose and hydroxypropyl cellulose. These gelling agents are particularly preferred since they do not provide ions to the composition. Other gelling agents which may be used include Irish moss, gum tragacanth, sodium carboxymethyl cellulose, polyvinyl pyrrolidone, starch and water-soluble hydrophilic colloidal carboxyvinyl polymers such as those sold under the name Carbopol 934 and 940.
  • the toothpaste is placed in an extrudable tube of unlined aluminium for easy application to a toothbrush.
  • the toothpastes may include an organic surface active agent in addition to the anionic phosphate ester surface active agent.
  • additional agent may be anionic, nonionic, cationic or ampholytic in nature, and it is preferred to employ as the surface-active agent a detersive material which imparts to the dentifrice detersive and foaming properties.
  • Suitable types of such detergents are water-soluble salts of higher (i.e.
  • fatty acid monoglyceride monosulphates such as the sodium salt of the monosulphated monoglyceride of hydrogenated coconut oil fatty acids, high alkyl sulphates, such as sodium lauryl sulphate, alkyl aryl sulphonates, such as sodium dodecyl benzene sulphonate, olefin sulphonates, such as sodium olefin sulphonate in which the olefin group contains 12- 21 carbon atoms, higher alkyl sulphoacetates, higher fatty acid esters of 1,2-dihydroxy propane sulphonates, and the substantially saturated higher aliphatic acyl amides of lower (i.e.
  • aliphatic amino carboxylic acid compounds such as those having 12- 16 carbons in the fatty acid, alkyl or acyl radicals.
  • amides are N-lauroyl sarcosine, and the sodium, potassium and ethanolamine salts of N-lauroyl, N-myristoyl or N-palmitoyl sarcosine, which should be substantially free from soap or similar higher fatty acid material which tends to substantially reduce the effect of these compounds.
  • the use of these sarcosine compounds in dentifrices is particularly advantageous since these materials exhibit a prolonged and marked effect in the inhibition of acid formation in the oral cavity due to carbohydrates breakdown in addition to exerting some reduction in the solubility of tooth enamel in acid solutions.
  • Nonionic agents such as condensates of sorbitan monostearate with approximately 60 moles of ethylene oxide, condensates of ethylene oxide with propylene oxide condensates of propylene glycol ("Pluronics"-PLURONIC is a Trade Mark) and amphoteric agents such as quaternised imidazole derivatives, which are availabe under the trade name "Miranol” such as Miranol C2M.
  • Cationic surface active germicides and antibacterial compounds such as diisobutylphenoxyethoxyethyl dimethyl benzyl ammonium chloride, benzyl dimethyl stearyl ammonium chloride, tertiary amines having one fatty alkyl group (of from 12- 18 carbon atoms) and two (poly) oxyethylene groups attached to the nitrogen (typically containing a total of from 20 to 50 ethanoxy groups per molecule) and salts thereof with acids, and compounds of the structure ##STR3## wherein R is a fatty alkyl group typically containing from 12 to 18 carbon atoms, and x, y and z total 3 or higher, as well as salts thereof with mineral or organic acids, may also be used. It is preferred that the total amount of surface active agent not exceed about 5% by weight of the oral composition. At least about 0.05% of the oral composition should be composed of the anionic phosphate ester surface active agent.
  • a fluorine-providing compound is present in the oral preparation.
  • These compounds may be slightly soluble in water or may be fully water-soluble. They are characterised by their ability to release fluoride ions in water and by substantial freedom from reaction with other compounds of the oral preparation.
  • inorganic fluoride salts such as suitable alkali metal, alkaline earth metal, and heavy metal salts, for example, sodium fluoride, potassium fluoride, ammonium fluoride, a copper fluoride such as cuprous fluoride, zinc fluoride, a tin fluoride such as stannic fluoride, or stannous chlorofluoride, barium fluoride, sodium fluorosilicate, ammonium fluorosilicate, sodium fluoro-zirconate, sodium monofluorophosphate, aluminium mono- and di-fluorophosphate, and fluorinated sodium calcium pyrophosphate.
  • Alkali metal and tin fluorides such as sodium and stannous fluorides and particularly sodium monofluorophosphate are preferred.
  • the amount of the fluorine-providing compound is dependent to some extent upon the type of compound, its solubility, and the type of oral preparation, but it must be a non-toxic amount. It is considered that an amount of such compound which releases a maximum of 1% by weight, based on the weight of the preparation, is satisfactory. Any suitable minimum amount of such compound may be used, but it is preferable to employ sufficient compound to release from 0.005% to 1%, most preferably about 0.1%, by weight of fluoride ion. Typically, in the cases of alkali metal fluoride and stannous fluoride, this component is present in an amount up to 2% by weight, based on the weight of the preparation, and preferably in the range of from 0.05% to 1%. In the case of sodium monofluorophosphate the compound may be present in an amount up to 7.6% by weight, more typically 0.76%.
  • Antibacterial agents may also be present, typically in an amount of 0.01- 5% by weight.
  • Typical antibacterial agents include
  • flavouring or sweetening materials may also be employed.
  • suitable flavouring constituents are flavouring oils, e.g. oils of spearmint, peppermint, wintergreen, sassafras, clove, sage, eucalyptus, marjoram, cinnamon, lemon and orange, and methylsalicylate.
  • suitable sweetening agents include sucrose, lactose, maltose, sorbitol, sodium cyclamate, perillartine, and saccharin.
  • flavour and sweetening agent may together comprise from 0.01% to 5% or more of the preparation.
  • the toothpaste typically has a pH of about 4 - 10, preferably about 5 - 9.
  • a pH of about 4 - 10, preferably about 5 - 9.
  • the toothpastes are typically prepared by dispersing polishing material in the dental vehicle and adding the phosphate ester and other components thereto.
  • the following toothpastes are prepared by mixing gelling agent and sweetener with humectant, thereafter adding polishing agent, whitener, water and surface-active agent, and finally flavour.
  • the toothpastes are deaerated and placed in unlined aluminium tubes.
  • the toothpastes remain satisfactorily compatible with the unlined aluminium tubes which contain them upon storage for 6 months at room temperature, at accelerated aging conditions of 43° C. for 3 months.
  • tube compatibility occurs when the above toothpaste formulation containing the various phosphate esters includes 4.723 parts of 1,6-di-(p-chlorophenyl biguanido)hexane digluconate (20% soln) in one set of cases or 0.76 parts of sodium monofluorophosphate in another set of cases, with the formula amount of water being correspondingly reduced.
  • the toothpaste remains compatible with the aluminium tube upon accelerated aging for 3 months at 43° C. as well as upon aging at room temperature for 3 months.

Abstract

Toothpaste composition having desirable compatibility with an unlimited aluminum container, which toothpaste contains a polishing material comprising hydrate of alumina and an anionic phosphate mono- or di-ester.

Description

This invention relates to a toothpaste composition. In particular it relates to a toothpaste composition which is compatible with an unlined aluminium container such as a toothpaste tube.
Hydrated alumina such as alpha alumina trihydrate (e.g. Gibbsite) is a desirable polishing agent for dental surfaces and has been incorporated into toothpaste compositions. The alkalinity of hydrated alumina is such that when a toothpaste containing it is incorporated into an unlined aluminium container such as a toothpaste tube, gas formation, causing container swelling, often occurs as does etching of the aluminium surface.
It is an advantage of this invention that a toothpaste composition is provided which contains hydrated alumina as polishing agent and a particular anionic foaming surface active agent which permits the use of the toothpaste composition in an unlined aluminium container without undue incompatibility.
In accordance with certain of its aspects this invention relates to a toothpaste composition comprising a dentally acceptable oral vehicle and dispersed therein about 20 - 75% by weight of a polishing material including hydrate of alumina in amount of at least 10% by weight of the toothpaste, and about 0.05 - 5% by weight of an anionic phosphate ester surface active agent comprising a mixture of monoester of the formula ##STR1## and DIESTER OF THE FORMULA ##STR2## wherein R is an alkyl group of 10-20 carbon atoms, n is an integer from 1-6 and M is selected from the group consisting of hydrogen, alkali metal and ammonium, said toothpaste having a pH of up to about 9.5.
In accordance with certain of its additional aspects, this invention relates to a packaged toothpaste composition comprising an unlined aluminium container and contained therein in contact with the aluminium surface of said container the above described toothpaste composition.
The hydrated alumina employed is an alpha alumina trihydrate. A conventional way of manufacturing this material is by the Bayer process. In that process the alpha alumina trihydrate is precipitated from a solution of sodium aluminate. See Encyclopedia of Chemical Technology, Kirk-Othmer, 2nd. Edition, Vol. 1, pages 937-941, and Vol. 2, pages 41-45 and 50-51. The trihydrate compound is precipitated in the form of granules or agglomerates which are too large for general use as a dentifrice polishing material, e.g. about 40 to 100 microns diameter. Therefore the granules or agglomerates, after drying (sometimes after water-washing and drying) are ground to a suitable particle size, e.g. to an average particle diameter in the range of about 2 to 20 microns, such as about 5 to 10 microns in diameter.
The washed unground granules usually show an alkaline reaction when slurried in water. For instance, depending on the degree of washing before drying, the pH of a 10% or 20% by weight of trihydrate slurry at room temperature may be in the range of about 7.5, 8.5, 9 or 9.5.
The pH can be measured with an Orion model 801 Digital pH/mv meter which is fitted with an EIL model 1150 combination pH and reference electrode. The instrument is first calibrated at room temperature by placing the electrode into 50 ml of pH 7 buffer solution in a 100 ml beaker, and adjusting the calibration control until the instrument reading corresponds to a buffer pH. The electrode is then removed, washed with deionized water, and placed into 125 gms of a pre-prepared 20% slurry of the trihydrate sample in deionized water, in a 250 ml beaker, and its pH reading taken.
On grinding the alkalinity thus measured increases and the pH (measured as above) of the ground, unwashed material is generally above about 8. For instance the pH on grinding may change as follows: 7.5 (before grinding) to 8.8 (after grinding); 8.8 (before) to 9.2 (after). The bulletin of one manufacturer gives the pH of a 10% slurry, in water, of the ground material as 8.8 - 10.6. When such ground trihydrate is included in a dentifrice packaged in unlined aluminium tubes, one often observes swelling of the tubes or other evidence of gas formation resulting from attack on the aluminium (e.g. forming hydrogen gas) on extended storage.
The anionic phosphate esters are mixtures of mono and di-esters of the formulas hereinabove set forth. They are available from MoDo Kemi Aktiebolaget, formerly Berol Aktiebolaget, of Sweden, under the name Berol and may include an anionic tri-ester moiety too, as well as some non-ionic portion. They may be used in acid or partially or fully neutralised forms. Berol 729 has alkyl chain lengths of 16-18 carbon atoms and contains series of 4 ethylene oxide units.
Further anionic phosphate esters which may be used in acid or neutralised forms are Berol 525 which contains alkyl groups of 10-18 carbon atoms and series of 5 ethylene oxide units and Berol 513 which contains alkyl groups of 16-18 carbon atoms. Further Berol anionic phosphate esters are available as Berol 521, Berol 724 and Berol 733. The weight ratio of mono-ester to di-ester may vary, typically from about 1:10 to 10:1.
When the acid forms of the anionic phosphate ester surface active agents are neutralised or partially neutralised, alkali metal, preferably sodium, or ammonium cations are present. The surface active agent is employed in the oral preparation in amount of about 0.05-5% by weight, preferably about 0.5- 3% and most preferably about 0.5-2%. The phosphate esters serve to improve dentifrice consistency and body.
The toothpaste may comprise an additional dentally acceptable water-insoluble polishing material, such as calcined alumina, dehydrated silica, crystalline silica, having particles of sizes up to about 5 microns, a mean particle size of up to 1.1 microns and a surface area of up to 50,000 cm2 /gm, water-insoluble sodium metaphosphate (preferably substantially free of water-solubles content), tricalcium phosphate, dihydrated dicalcium phosphate, anhydrous dicalcium phosphate, calcium pyrophosphate, magnesium orthophosphate, trimagnesium phosphate, calcium carbonate, aluminium silicate, zirconium silicate, bentonite and mixtures thereof. At least 10% of the toothpaste is hydrated alumina.
The polishing material is generally present in amounts of about 20-75% by weight of a toothpaste containing it, about 30-55% being preferable. Preferably about 20-55% of the toothpaste is hydrated alumina.
In toothpaste preparations, the liquid vehicle may comprise water, typically in amount of about 10-90% by weight of the preparation. The liquid vehicle may additionally or alternatively comprise humectants such as glycerine, sorbitol solution propylene glycol. A mixture of water and glycerine and/or sorbitol solution is particularly advantageous. Preferably about 20-40% by weight of humectant and 10 to about 45% by weight of water is present.
The solid portion of the vehicle of a paste or gel composition is a gelling agent or binder such as hydroxyethyl cellulose and hydroxypropyl cellulose. These gelling agents are particularly preferred since they do not provide ions to the composition. Other gelling agents which may be used include Irish moss, gum tragacanth, sodium carboxymethyl cellulose, polyvinyl pyrrolidone, starch and water-soluble hydrophilic colloidal carboxyvinyl polymers such as those sold under the name Carbopol 934 and 940.
The toothpaste is placed in an extrudable tube of unlined aluminium for easy application to a toothbrush.
The toothpastes may include an organic surface active agent in addition to the anionic phosphate ester surface active agent. Such additional agent may be anionic, nonionic, cationic or ampholytic in nature, and it is preferred to employ as the surface-active agent a detersive material which imparts to the dentifrice detersive and foaming properties. Suitable types of such detergents are water-soluble salts of higher (i.e. having at least 12 carbon atoms) fatty acid monoglyceride monosulphates, such as the sodium salt of the monosulphated monoglyceride of hydrogenated coconut oil fatty acids, high alkyl sulphates, such as sodium lauryl sulphate, alkyl aryl sulphonates, such as sodium dodecyl benzene sulphonate, olefin sulphonates, such as sodium olefin sulphonate in which the olefin group contains 12- 21 carbon atoms, higher alkyl sulphoacetates, higher fatty acid esters of 1,2-dihydroxy propane sulphonates, and the substantially saturated higher aliphatic acyl amides of lower (i.e. having not more than 4 carbon atoms) aliphatic amino carboxylic acid compounds, such as those having 12- 16 carbons in the fatty acid, alkyl or acyl radicals. Examples of the last mentioned amides are N-lauroyl sarcosine, and the sodium, potassium and ethanolamine salts of N-lauroyl, N-myristoyl or N-palmitoyl sarcosine, which should be substantially free from soap or similar higher fatty acid material which tends to substantially reduce the effect of these compounds. The use of these sarcosine compounds in dentifrices is particularly advantageous since these materials exhibit a prolonged and marked effect in the inhibition of acid formation in the oral cavity due to carbohydrates breakdown in addition to exerting some reduction in the solubility of tooth enamel in acid solutions.
Other particularly suitable surface-active materials include nonionic agents such as condensates of sorbitan monostearate with approximately 60 moles of ethylene oxide, condensates of ethylene oxide with propylene oxide condensates of propylene glycol ("Pluronics"-PLURONIC is a Trade Mark) and amphoteric agents such as quaternised imidazole derivatives, which are availabe under the trade name "Miranol" such as Miranol C2M. Cationic surface active germicides and antibacterial compounds such as diisobutylphenoxyethoxyethyl dimethyl benzyl ammonium chloride, benzyl dimethyl stearyl ammonium chloride, tertiary amines having one fatty alkyl group (of from 12- 18 carbon atoms) and two (poly) oxyethylene groups attached to the nitrogen (typically containing a total of from 20 to 50 ethanoxy groups per molecule) and salts thereof with acids, and compounds of the structure ##STR3## wherein R is a fatty alkyl group typically containing from 12 to 18 carbon atoms, and x, y and z total 3 or higher, as well as salts thereof with mineral or organic acids, may also be used. It is preferred that the total amount of surface active agent not exceed about 5% by weight of the oral composition. At least about 0.05% of the oral composition should be composed of the anionic phosphate ester surface active agent.
In certain forms of this invention a fluorine-providing compound is present in the oral preparation. These compounds may be slightly soluble in water or may be fully water-soluble. They are characterised by their ability to release fluoride ions in water and by substantial freedom from reaction with other compounds of the oral preparation. Among these materials are inorganic fluoride salts, such as suitable alkali metal, alkaline earth metal, and heavy metal salts, for example, sodium fluoride, potassium fluoride, ammonium fluoride, a copper fluoride such as cuprous fluoride, zinc fluoride, a tin fluoride such as stannic fluoride, or stannous chlorofluoride, barium fluoride, sodium fluorosilicate, ammonium fluorosilicate, sodium fluoro-zirconate, sodium monofluorophosphate, aluminium mono- and di-fluorophosphate, and fluorinated sodium calcium pyrophosphate. Alkali metal and tin fluorides, such as sodium and stannous fluorides and particularly sodium monofluorophosphate are preferred.
The amount of the fluorine-providing compound is dependent to some extent upon the type of compound, its solubility, and the type of oral preparation, but it must be a non-toxic amount. It is considered that an amount of such compound which releases a maximum of 1% by weight, based on the weight of the preparation, is satisfactory. Any suitable minimum amount of such compound may be used, but it is preferable to employ sufficient compound to release from 0.005% to 1%, most preferably about 0.1%, by weight of fluoride ion. Typically, in the cases of alkali metal fluoride and stannous fluoride, this component is present in an amount up to 2% by weight, based on the weight of the preparation, and preferably in the range of from 0.05% to 1%. In the case of sodium monofluorophosphate the compound may be present in an amount up to 7.6% by weight, more typically 0.76%.
Antibacterial agents may also be present, typically in an amount of 0.01- 5% by weight. Typical antibacterial agents include
N1 -(4-chlorobenzyl)-N5 -(2,4-dichlorobenzyl)biguanide;
p-chlorophenyl biguanide;
4-chlorobenzhydryl biguanide;
4-chlorobenzhydrylguanylurea;
N-3-lauroxypropyl-N5 -p-chlorobenzylbiguanide;
1,6-di-p-chlorophenylbiguanidohexane; (chlorohexidine);
1,6-bis(2-ethylhexylbiguanido)hexane;
1-(lauryldimethylammonium)-8-(p-chlorobenzylidimethylammonium) octane dichloride;
5,6-dichloro-2-guanidinobenzimidazole;
N1 -p-chlorophenyl-N5 -laurylbiguanide;
5-amino-1,3-bis(2-ethylhexyl)-5-methylhexahydro pyrimidine; and their non-toxic acid addition salts.
Various other materials may be incorporated in the oral preparations of this invention. Examples are colouring or whitening agents, preservatives, silicones, chlorophyll compounds, and ammoniated material such as urea, diammonium phosphate, and mixtures thereof. These adjuvants, where present, are incorporated in the preparations in amounts which do not substantially adversely affect the properties and characteristics desired.
Any suitable flavouring or sweetening materials may also be employed. Examples of suitable flavouring constituents are flavouring oils, e.g. oils of spearmint, peppermint, wintergreen, sassafras, clove, sage, eucalyptus, marjoram, cinnamon, lemon and orange, and methylsalicylate. Suitable sweetening agents include sucrose, lactose, maltose, sorbitol, sodium cyclamate, perillartine, and saccharin. Suitably, flavour and sweetening agent may together comprise from 0.01% to 5% or more of the preparation.
The toothpaste typically has a pH of about 4 - 10, preferably about 5 - 9. When reference is made to the pH herein, it is intended that the pH determination be made directly on the toothpaste.
The toothpastes are typically prepared by dispersing polishing material in the dental vehicle and adding the phosphate ester and other components thereto.
The following specific examples are further illustrative of the nature of the present invention although it is understood that the invention is not limited thereto. All amounts are by weight unless otherwise indicated.
EXAMPLE 1
The following toothpastes are prepared by mixing gelling agent and sweetener with humectant, thereafter adding polishing agent, whitener, water and surface-active agent, and finally flavour. The toothpastes are deaerated and placed in unlined aluminium tubes.
______________________________________                                    
                     Parts by weight                                      
______________________________________                                    
Glycerine              20.00                                              
Hydroxyethyl Cellulose 1.30                                               
Sodium Saccharine      0.20                                               
Titanium Dioxide       0.50                                               
Water                  24.00                                              
Alpha Alumina Trihydrate                                                  
                       51.50                                              
(British Aluminium AF 260)                                                
Phosphate Ester (as indicated below)                                      
                       1.50                                               
Flavour                1.00                                               
______________________________________                                    
The following phosphate esters are employed, resulting in toothpastes having the pH valves indicated:
______________________________________                                    
Phosphate Ester     Toothpaste pH                                         
______________________________________                                    
Berol 513 (acid form)                                                     
                    6.3                                                   
Berol 525 (acid form)                                                     
                    5.4                                                   
Berol 521 (acid form)                                                     
                    9.5                                                   
Berol 729 (acid form)                                                     
                    3.7                                                   
Berol 729 (fully neutralised)                                             
                    9.1                                                   
______________________________________                                    
The toothpastes remain satisfactorily compatible with the unlined aluminium tubes which contain them upon storage for 6 months at room temperature, at accelerated aging conditions of 43° C. for 3 months.
Similar desirable tube compatibility occurs when the Berol phosphate esters are used in their fully neutralised or partially neutralised forms in place of the acid forms.
Likewise desirable tube compatibility occurs when the above toothpaste formulation containing the various phosphate esters includes 4.723 parts of 1,6-di-(p-chlorophenyl biguanido)hexane digluconate (20% soln) in one set of cases or 0.76 parts of sodium monofluorophosphate in another set of cases, with the formula amount of water being correspondingly reduced.
EXAMPLE 2
The following toothpaste is prepared, deaerated and placed in unlined aluminium tubes:
______________________________________                                    
                     Parts by weight                                      
______________________________________                                    
Glycerine              20.202                                             
Sodium Carboxymethyl Cellulose                                            
                       1.10                                               
Water                  27.16                                              
Sodium Saccharine      0.20                                               
Alpha Alumina Trihydrate                                                  
                       52.00                                              
(British Aluminium AF 260)                                                
Titanium Dioxide       0.5                                                
Sodium N-Lauroyl Sarcosinate                                              
                       1.538                                              
Berol 513 (Partially neutralised form)                                    
                       0.50                                               
Flavour                0.80                                               
Toothpaste pH 7.2                                                         
______________________________________                                    
The toothpaste remains compatible with the aluminium tube upon accelerated aging for 3 months at 43° C. as well as upon aging at room temperature for 3 months.
The foregoing examples are given by way of illustration and variations may be made without departing from the spirit of the invention.

Claims (7)

What we claim is:
1. A toothpaste comprising a dentally acceptable oral vehicle and dispersed therein about 20-75% by weight of a polishing material including ground alpha-alumina trihydrate having an average particle diameter in a range of about 2 to 20 microns wherein the pH of a 10-20% by weight of a slurry of the alpha alumina trihydrate prior to grinding is in the range of about 7.5-9.5 and the pH of such a slurry after said grinding is higher than before grinding and is above 8, said alpha alumina trihydrate being present in amount of at least 10% by weight of the toothpaste, and about 0.5-3% by weight of an anionic phosphate ester surface active agent comprising a mixture of mono ester of the formula ##STR4## wherein R is an alkyl group of 10 - 20 carbon atoms, n is an integer from 1 - 6 and M is selected from the group consisting of hydrogen, alkali metal and ammonium, said toothpaste having a pH toothpaste of about 5 - 9, said anionic phosphate ester surface active agent being effective to provide consistency and body to said toothpaste and render said toothpaste compatible with an unlined aluminum container.
2. The toothpaste claimed in claim 1 wherein said anionic phosphate ester contains 16-18 carbon atoms.
3. The toothpaste claimed in claim 2 wherein R in said anionic phosphate ester contains a series of four ethylene oxide units.
4. The toothpaste claimed in claim 1 wherein said anionic phosphate ester contains 10 - 18 carbon atoms and R in said anionic phosphate ester contains a series of five ethylene oxide units.
5. The toothpaste claimed in claim 1 wherein the ratio of mono-ester to di-ester in said anionic phosphate ester varies from about 1:10 to 10:1 by weight.
6. The toothpaste claimed in claim 1 wherein said anionic phosphate ester is present in amount of about 0.5-2% by weight.
7. A packaged toothpaste wherein the toothpaste of claim 1 is in an unlined aluminium container and in contact with the aluminium surface of said container.
US05/645,743 1975-01-15 1975-12-31 Toothpaste compositions Expired - Lifetime US4123517A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB179875A GB1475252A (en) 1975-01-15 1975-01-15 Toothpaste composition
GB1798/75 1975-01-15

Publications (1)

Publication Number Publication Date
US4123517A true US4123517A (en) 1978-10-31

Family

ID=9728203

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/645,743 Expired - Lifetime US4123517A (en) 1975-01-15 1975-12-31 Toothpaste compositions

Country Status (15)

Country Link
US (1) US4123517A (en)
AU (1) AU507230B2 (en)
BE (1) BE837515A (en)
CA (1) CA1077398A (en)
CH (1) CH620360A5 (en)
DE (1) DE2600709C2 (en)
DK (2) DK14576A (en)
ES (1) ES444256A1 (en)
FR (1) FR2357242A1 (en)
GB (1) GB1475252A (en)
IT (1) IT1052936B (en)
MX (1) MX143070A (en)
PH (1) PH11907A (en)
SE (1) SE418054B (en)
ZA (1) ZA758013B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212856A (en) * 1977-12-07 1980-07-15 Lever Brothers Company Toothpaste
US4238476A (en) * 1978-05-19 1980-12-09 Colgate Palmolive Company Dentifrices
US4248860A (en) * 1978-11-01 1981-02-03 Lever Brothers Company Dentifrices and their preparation
US4264580A (en) * 1979-04-23 1981-04-28 Barberio Giacinto G Dental cream composition
US4301143A (en) * 1979-12-17 1981-11-17 Colgate-Palmolive Company Dental cream composition
US4350680A (en) * 1980-09-24 1982-09-21 Colgate-Palmolive Company Dentifrice
US4431630A (en) * 1981-05-08 1984-02-14 Colgate-Palmolive Company Dentifrice composition
US4448766A (en) * 1982-04-29 1984-05-15 Colgate-Palmolive Company Dentifrice composition
US4455294A (en) * 1982-11-17 1984-06-19 Colgate-Palmolive Company Stable dentifrice containing acidic siliceous polishing agent
US4455293A (en) * 1981-11-19 1984-06-19 Colgate-Palmolive Company Stable dentifrice containing neutral siliceous polishing agent
US4459283A (en) * 1980-08-19 1984-07-10 Kenneth Harvey Stable dentifrice
US4490353A (en) * 1983-07-13 1984-12-25 Colgate-Palmolive Company Antiplaque dentifrice with improved fluoride stability
US4526778A (en) * 1981-11-19 1985-07-02 Colgate-Palmolive Company Stable dentifrice containing neutral siliceouse polishing agent
US4528182A (en) * 1983-07-13 1985-07-09 Colgate-Palmolive Company Stable antiplaque dentifrice with improved foaming
US4576816A (en) * 1979-10-27 1986-03-18 Lion Corporation Dentifrice composition
US4581228A (en) * 1980-11-20 1986-04-08 Lion Corporation Toothpaste composition and plastic containers containing the same
US5019373A (en) * 1988-12-01 1991-05-28 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Oral composition
US5032383A (en) * 1988-02-12 1991-07-16 Alcan International Limited Alumina hydrate-containing toothpaste
US5039514A (en) * 1988-02-12 1991-08-13 Alcan International Limited Alumina hydrate-containing toothpaste
WO2008157197A1 (en) 2007-06-12 2008-12-24 Rhodia Inc. Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US20100297197A1 (en) * 2009-05-21 2010-11-25 Bruce Alan Golden Non-fluoride containing dietary supplement toothpaste and methods of using the same
US9889089B2 (en) 2016-04-04 2018-02-13 Golden Products Llc Dietary supplement non-fluoride toothpaste and methods of making and using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599689A (en) * 1978-05-25 1981-10-07 Colgate Palmolive Co Dental cream composition
US4988498A (en) * 1989-07-27 1991-01-29 Unilever Patent Holdings B.V. Oral compositions

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034967A (en) * 1955-08-08 1962-05-15 Colgate Palmolive Co Fluoride dentifrice with insoluble alkali metal metaphosphate and aluminum compound polishing material
US3060098A (en) * 1957-11-18 1962-10-23 Lever Brothers Ltd Dentifrice
US3227618A (en) * 1964-03-09 1966-01-04 Colgate Palmolive Co Dentifrice composition containing sodium monofluorophosphate
US3227617A (en) * 1955-04-25 1966-01-04 Colgate Palmolive Co Fluoride dentifrice composition
US3662060A (en) * 1968-10-29 1972-05-09 Lever Brothers Ltd Toothpastes comprising stabilized milled alpha-alumina trihydrate
US3670076A (en) * 1970-03-31 1972-06-13 Indiana University Foundation Dental prophylaxis composition comprising alumina of particular particle size
US3678155A (en) * 1968-10-29 1972-07-18 Lever Brothers Ltd Toothpastes
US3822345A (en) * 1971-03-19 1974-07-02 Colgate Palmolive Co Dentifrice composition
US3937805A (en) * 1971-11-10 1976-02-10 Colgate-Palmolive Company Method of making dentifrice compositions containing insolubilized salts of 1,6-di-(p-chlorophenyl biguanido) hexane
US3956478A (en) * 1968-12-20 1976-05-11 Colgate-Palmolive Company Dentifrice composition
US3957968A (en) * 1973-08-20 1976-05-18 Colgate-Palmolive Company Dentifrices containing flat flakes of alpha-alumina

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227617A (en) * 1955-04-25 1966-01-04 Colgate Palmolive Co Fluoride dentifrice composition
US3034967A (en) * 1955-08-08 1962-05-15 Colgate Palmolive Co Fluoride dentifrice with insoluble alkali metal metaphosphate and aluminum compound polishing material
US3060098A (en) * 1957-11-18 1962-10-23 Lever Brothers Ltd Dentifrice
US3227618A (en) * 1964-03-09 1966-01-04 Colgate Palmolive Co Dentifrice composition containing sodium monofluorophosphate
US3662060A (en) * 1968-10-29 1972-05-09 Lever Brothers Ltd Toothpastes comprising stabilized milled alpha-alumina trihydrate
US3678155A (en) * 1968-10-29 1972-07-18 Lever Brothers Ltd Toothpastes
US3956478A (en) * 1968-12-20 1976-05-11 Colgate-Palmolive Company Dentifrice composition
US3670076A (en) * 1970-03-31 1972-06-13 Indiana University Foundation Dental prophylaxis composition comprising alumina of particular particle size
US3822345A (en) * 1971-03-19 1974-07-02 Colgate Palmolive Co Dentifrice composition
US3937805A (en) * 1971-11-10 1976-02-10 Colgate-Palmolive Company Method of making dentifrice compositions containing insolubilized salts of 1,6-di-(p-chlorophenyl biguanido) hexane
US3957968A (en) * 1973-08-20 1976-05-18 Colgate-Palmolive Company Dentifrices containing flat flakes of alpha-alumina

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212856A (en) * 1977-12-07 1980-07-15 Lever Brothers Company Toothpaste
US4238476A (en) * 1978-05-19 1980-12-09 Colgate Palmolive Company Dentifrices
US4248860A (en) * 1978-11-01 1981-02-03 Lever Brothers Company Dentifrices and their preparation
US4264580A (en) * 1979-04-23 1981-04-28 Barberio Giacinto G Dental cream composition
US4576816A (en) * 1979-10-27 1986-03-18 Lion Corporation Dentifrice composition
US4301143A (en) * 1979-12-17 1981-11-17 Colgate-Palmolive Company Dental cream composition
US4459283A (en) * 1980-08-19 1984-07-10 Kenneth Harvey Stable dentifrice
US4350680A (en) * 1980-09-24 1982-09-21 Colgate-Palmolive Company Dentifrice
US4581228A (en) * 1980-11-20 1986-04-08 Lion Corporation Toothpaste composition and plastic containers containing the same
US4431630A (en) * 1981-05-08 1984-02-14 Colgate-Palmolive Company Dentifrice composition
US4526778A (en) * 1981-11-19 1985-07-02 Colgate-Palmolive Company Stable dentifrice containing neutral siliceouse polishing agent
US4455293A (en) * 1981-11-19 1984-06-19 Colgate-Palmolive Company Stable dentifrice containing neutral siliceous polishing agent
US4448766A (en) * 1982-04-29 1984-05-15 Colgate-Palmolive Company Dentifrice composition
US4455294A (en) * 1982-11-17 1984-06-19 Colgate-Palmolive Company Stable dentifrice containing acidic siliceous polishing agent
US4490353A (en) * 1983-07-13 1984-12-25 Colgate-Palmolive Company Antiplaque dentifrice with improved fluoride stability
US4528182A (en) * 1983-07-13 1985-07-09 Colgate-Palmolive Company Stable antiplaque dentifrice with improved foaming
US5032383A (en) * 1988-02-12 1991-07-16 Alcan International Limited Alumina hydrate-containing toothpaste
US5039514A (en) * 1988-02-12 1991-08-13 Alcan International Limited Alumina hydrate-containing toothpaste
US5019373A (en) * 1988-12-01 1991-05-28 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Oral composition
WO2008157197A1 (en) 2007-06-12 2008-12-24 Rhodia Inc. Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
EP2164455A4 (en) * 2007-06-12 2015-08-26 Solvay Usa Inc Mono-, di- and polyol alkoxylate phosphate esters in oral care formulations and methods for using same
US20100297197A1 (en) * 2009-05-21 2010-11-25 Bruce Alan Golden Non-fluoride containing dietary supplement toothpaste and methods of using the same
US9066889B2 (en) 2009-05-21 2015-06-30 Golden Products Llc Non-fluoride containing dietary supplement toothpaste and methods of using the same
US9662294B2 (en) 2009-05-21 2017-05-30 Golden Products Llc Non-fluoride containing dietary supplement toothpaste and methods of using the same
US9889089B2 (en) 2016-04-04 2018-02-13 Golden Products Llc Dietary supplement non-fluoride toothpaste and methods of making and using same
US11103447B2 (en) 2016-04-04 2021-08-31 Golden Products Llc Dietary supplement non-fluoride toothpaste and methods of making and using the same

Also Published As

Publication number Publication date
SE418054B (en) 1981-05-04
CH620360A5 (en) 1980-11-28
DK306287D0 (en) 1987-06-16
SE7514749L (en) 1976-07-16
DK14576A (en) 1976-07-16
GB1475252A (en) 1977-06-01
DE2600709A1 (en) 1976-07-22
ZA758013B (en) 1977-08-31
FR2357242A1 (en) 1978-02-03
AU1004176A (en) 1977-07-14
DK306287A (en) 1987-06-16
CA1077398A (en) 1980-05-13
PH11907A (en) 1978-09-08
IT1052936B (en) 1981-08-31
FR2357242B1 (en) 1982-02-05
DE2600709C2 (en) 1990-06-21
MX143070A (en) 1981-03-10
ES444256A1 (en) 1977-05-01
BE837515A (en) 1976-05-03
AU507230B2 (en) 1980-02-07

Similar Documents

Publication Publication Date Title
US4123517A (en) Toothpaste compositions
US4263276A (en) Dentifrices
AU744931B2 (en) Improved dental abrasive
EP0344701B1 (en) Oral compositions
US4141969A (en) Dentifrices containing amorphous silica
US4130636A (en) Dentifrice
EP0363748B1 (en) Oral compositions
US5145666A (en) Methods of reducing plaque and gingivitis with reduced staining
US4314990A (en) Toothpaste compositions
US3927201A (en) Dentifrices
US3932606A (en) Dentifrice
US3842168A (en) Method of preparing stable dentifrice
US4174387A (en) Reduction of abrasiveness in dentifrices
US4046872A (en) Dental cream
CA1261759A (en) Gel dentifrice of desirable consistency
US4118471A (en) Stable dentifrice
JPS6234008B2 (en)
US4455293A (en) Stable dentifrice containing neutral siliceous polishing agent
US4412983A (en) Dentifrices containing amorphous silica
CA1147265A (en) Toothpaste
CA1146868A (en) Sorbitol and polyvinyl pyrrolidone in toothpaste
US4562065A (en) Astringent dentifrice
US4459283A (en) Stable dentifrice
US6174515B1 (en) Toothpaste composition
US4562063A (en) Astringent gel dentifrice