US4028024A - Manufacture of filled capsules or the like - Google Patents

Manufacture of filled capsules or the like Download PDF

Info

Publication number
US4028024A
US4028024A US05/728,140 US72814076A US4028024A US 4028024 A US4028024 A US 4028024A US 72814076 A US72814076 A US 72814076A US 4028024 A US4028024 A US 4028024A
Authority
US
United States
Prior art keywords
opening
body part
unit
substance
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/728,140
Inventor
Stephen T. Moreland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US05/728,140 priority Critical patent/US4028024A/en
Application granted granted Critical
Publication of US4028024A publication Critical patent/US4028024A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/304Extrusion nozzles or dies specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B1/00Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B1/02Machines characterised by the incorporation of means for making the containers or receptacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2205/00General identification or selection means
    • A61J2205/20Colour codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/804Capsule making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S53/00Package making
    • Y10S53/90Capsules

Definitions

  • the present procedure for the encapsulation of medicament in a gelatin shell is to use two sheets or ribbons of gelatin between which discrete amounts of medicament are deposited. The sheets of gelatin are then cohered about each unit of medicament to define a capsule. For identification purposes, it is common that the two sheets of gelatin are of different colors so that the resulting capsule is two-toned in those colors. This procedure of using gelatin sheets has a number of disadvantages.
  • this conventional process necessitates the use of gelatin having a relatively high water content, for example, about forty percent. After the capsules are formed this water must be removed by drying. The drying process is slow, requiring from thirty-six to ninety-six hours depending on the thickness of the gelatin shell, the humidity conditions, etc. There are substantial costs in this drying, such as the cost of factory space (which is substantial), the direct costs, etc. Efforts to accelerate the drying have proven futile because the resulting capsules are likely to be deformed.
  • the requirement that the gelatin have a relatively high water content has an additional disadvantage. This is that the medicament may tend to absorb water from the gelatin. This can have a deleterious effect on the medicament, the dosage, etc.
  • the present invention pertains to a machine for extruding a rod or column of edible substance or medicament having an annular shell of dough or gelatin and then pinching off that column into individual capsules consisting of the edible substance or medicament encased in the dough or gelatin from the annular shell of the column.
  • the annular shell of the column can be half one color and half a second color, whereby the resulting capsule is two-toned for identification purposes. If desired, additional colors can be produced.
  • the present invention substantially overcomes the disadvantages discussed above with respect to the conventional process for forming capsules. There is practically no waste which results in a significant monetary saving.
  • gelatin When gelatin is used for the shell its water content as extruded can be relatively low, e.g. in the neighborhood of three to ten percent. This greatly reduces the problem of water removal after the capsules are formed and before they are packaged.
  • a principal object of the present invention is to provide a machine which is suitable for commercial use in the manufacture of capsules comprising a medicament encased in gelatin.
  • the machine includes a number of features which permit the manufacturer to produce capsules to his individual requirements and/or desires.
  • FIG. 1 is a front elevational view of an embodiment of the invention, with portions broken away;
  • FIG. 2 is a section as viewed at line 2--2 of FIG. 1;
  • FIG. 3 is a partial rear elevational view, with a portion broken away to show a section as seen at line 3--3 of FIG. 2;
  • FIG. 4 is an enlarged partial front view, as seen in FIG. 1, with portions broken away;
  • FIG. 5 is a further enlarged partial section of the extruder head as viewed in FIG. 4;
  • FIG. 6 is a partial section as seen at lines 6--6 of FIG. 5;
  • FIG. 7 is a partial section as viewed at line 7--7 of FIG. 5;
  • FIG. 8 is an enlarged developed view of the periphery of one of the capsule forming wheels showing the action of the wheels in forming the tube into capsules;
  • FIG. 9 is a partial section as seen at line 9--9 of FIG. 4.
  • supply means 10-12 for supplying streams of a gelatin substance and medicament substance under pressure.
  • gelatin material and “medicament substance” are used herein to signify that they incorporate all or principal quantities of gelatin and medicament respectively.
  • Supply means 10 and 12 force gelatin material under pressure through conduits 13 and 14, respectively, to an extruder head, generally 15.
  • Supply means 11 forces the medicament substance through a conduit 16 to the extruder head. From the extruder head these issue as a rod consisting of a continuous core 17 of medicament substance encased in a tubular shell 18 of gelatin material.
  • the shell 18 will have one color on one side and the other color on the other side.
  • This rod is divided into individual capsules 19 by a capsule molding means comprising two molding wheels, generally 20 and 21.
  • Each wheel has a plurality of half-capsule-cavities 22 therein.
  • Each cavity 22 has a rim 23 extending about both sides and both ends of the cavity.
  • the rims 23 of these half-capsule-cavities meet at a pinch-point, which is on a line extending between the axes of wheels 20 and 21, to thereby pinch the rod to form the individual capsules.
  • the peripheries of the wheels both move downwardly at the pinch-point.
  • the cooling means is in the form of a conveyor extending transversely to the path of the capsules falling by gravity from the molding means. After the capsules are cooled they go to a dryer, generally 27, for removal of water from the gelatin substance. This dryer could be in the form of a tumbling dryer through which an air stream is passed.
  • Supply means 10 is representative of the three supply means. It includes a positive displacement pump in the form of a worm 29 in a casing 30. A thermostatically controlled heater 31 about the casing maintains the proper temperature for keeping the gelatin substance at the proper fluid consistency.
  • the worm is driven by a variable speed motor 32.
  • the motor may be electric or hydraulic. Since naptha will be present, at least at times, an electric motor should be explosion-proof.
  • the output shaft 33 of the motor is coupled to the shaft of an input worm 34 of a gear box 35. In turn the worm drives a worm wheel 36 mounted on an output shaft 37. A coupling 38 connects shaft 37 with worm 29.
  • the gelatin substance flows by gravity from a feed hopper 41 through an opening 42 into the interior of casing 30.
  • the gelatin substance in feed hopper 41 is maintained at the proper fluidic temperature by a heater 43.
  • the gelatin substance for the feed hopper 41 comes from a supply hopper 44.
  • Feed hopper 41 is comparatively small and supply hopper 44 is comparatively large.
  • Supply hopper 44 is not fixedly mounted but is movable, as by means of an overhead track, etc. Thus, when it is desired to change the color of the gelatin substance being furnished by supply means 10, there is only relatively little gelatin substance in feed hopper 41 which must then be cleaned out.
  • the previous supply hopper 44 is moved away and a new supply hopper 44 containing gelatin substance of the substituted color is positioned in its stead. Upon making a color change, there is no necessity for cleaning out a large container such as is represented by supply hopper 44.
  • the two hoppers include an automatic control for maintaining the quantity of gelatin substance in feed hopper 41 between predetermined maximum and minimum limits.
  • this includes a float 46 in the feed hopper 41.
  • This float is mounted on one end of an arm 47.
  • This arm extends through and is secured to a pivot pin 48 journaled in a support 49 attached to feed hopper 41.
  • the arm has a counter-weight 50 adjustably mounted thereon.
  • the other end of the arm is positioned to engage actuators 51 and 52 of a switch 53.
  • switch 53 is connected (as by means of a plug-in connection) to a motor operated valve 55 in the discharge line 56 of supply hopper 44.
  • switch 53 may be electrical, fluid, etc.
  • arm 47 pivots clockwise sufficiently to move switch actuator 51 and open valve 55.
  • the arm 47 pivots counterclockwise sufficiently to engage switch actuator 52 and close valve 55.
  • the extruder head 15 is a three-part unit. It comprises a main body part 59 secured to the machine frame. In this main body part are electric heaters 60 to maintain the required fluidic temperature.
  • the main body part has a vertically positioned cylindrical opening into which extends the nose 61 of a head part 62. The head part is held in place by cap screws 63. The upper portion 64 of nose 61 closes the top of the opening in the main body part.
  • the lower end of nose 61 is smaller than the opening in the main body part and has two diametrically opposed partitions 65. Thus, it divides the opening into two chambers 66 and 67. Chamber 66 communicates with conduit 13 and chamber 67 communicates with conduit 14. Below the partition 65 there is an annular opening 68 of truncated conical configuration between the lower or distal end of nose 61 and the top of the third body part 69.
  • the third body part is threaded into the main body part as seen at 70.
  • the width or thickness of the truncated conical opening 68 can be adjusted and thereby adjust the thickness of the gelatin shell 18.
  • the exterior of the third body part 69 has a plurality of spaced teeth 71 thereabout. A spring retainer 72 secured to main body part 59 fits between these teeth. By moving the retainer outward, the third body part 69 can be rotated.
  • An O-ring 73 maintains a seal between the main body part and the third body part.
  • the upper portion of head part 62 has a relatively large diameter opening 76 and the lower portion has a smaller opening within which is received an annular tube 77.
  • the upper end of the tube has an annular enlargement 78 which seats on a shoulder 79 at the juncture of the two openings.
  • the bottom of tube 77 extends below the distal end of nose 61.
  • the third body part 69 has an opening 80 which is the same diameter as that of the exterior of tube 77.
  • the tube is of stainless steel and has a wall thickness of 0.015 to 0.020 inches (0.381 to 0.508 m.m.).
  • the gelatin substance issuing from annular opening 68 initially forms a cylindrical shell about tube 77.
  • this shell will have an internal diameter greater than the external diameter of the rod of medicament substance issuing from the bottom of the internal opening 81 in the tube, the difference being the wall thickness of the tube. While this difference in size may not be maintained completely, there will be a size difference between the gelatin shell and the medicament core which facilitates the forming of the rod 17, 18 into capsules, since at the time of capsule formation there must be provision to permit the gelatin to be closed over the ends of the medicament.
  • partitions 65 would be arranged to divide the opening into three chambers rather than the two 66, 67.
  • a third gelatin supply means identical to 10, 12 would communicate with the third chamber and each of the three would hold gelatin of a different color. Obviously, the described apparatus can thus be used to produce capsules of the number and variety of colors desired.
  • the molding wheels 20, 21 are driven by a common motor 85.
  • a drive shaft 86 is connected by a coupling to the output shaft of the motor. This drive shaft extends through gear boxes 87 and 88.
  • the molding wheel 21 extends from a shaft in gear box 87 while molding wheel 20 extends from a shaft in gear box 88.
  • Gear box 87 is fixedly mounted on the frame of the machine.
  • Gear box 88 is on ways 89 so that it may be moved toward and away from gear box 87.
  • the shaft 90 of an adjusting wheel 91 is threaded through the machine frame.
  • a spring 92 is in compression between a cap 93 rotatably mounted on the end of shaft 90 and a socket 94 on gear box 88. This arrangement permits the spring pressure to be applied against gear box 88 so as to control the contact pressure between the molding wheels 20 and 21.
  • Bearing 95 for shaft 86 is movable in gear box 88 to permit the described gear box movement.
  • FIG. 9 illustrates the structure within gear box 88.
  • a shaft 97 rotatably mounted in bearings 98.
  • the end play of the shaft is strictly limited. Adjacent its outer end the shaft has a flange 99 about which is a seal 100.
  • the wheel 20 is secured to the shaft by a pin 101 extending into the flange and cap screws 102 which extend through a cover plate 103 and are threaded into the end of the shaft.
  • a worm wheel 105 is mounted on the inner end of shaft 97 and engages a worm 106 formed on shaft 86.
  • a conically tapered cap 107 is secured to the end of shaft 97 by a bolt 108. It is also held against rotation with respect to the shaft by a pin 109.
  • the adjacent end of the hub of worm wheel 105 has a corresponding conical taper 110.
  • gear box 87 The structure within gear box 87 is for all practical purposes identical with that just described with respect to gear box 88. However, the worm wheel (not shown) in gear box 87 and in engagement with worm 112 on shaft 86 is keyed to the shaft that supports wheel 21 rather than being adjustably mounted thereon as just described with respect to shaft 97 and worm wheel 105.
  • the molding wheels 20, 21 have a plurality of radial bores each of which intersects the center of the bottom of each half-capsule-cavity 22 respectively.
  • a knock-out pin 115 Within each bore is a knock-out pin 115.
  • each pin At its inner end each pin has a head 116 which forms a stop controlling the positioning of the pin.
  • a sleeve 117 within the wheel holds the knock-out pins in place. The sleeve is held within the wheel by a retainer ring 118.
  • the knock-out pins operate primarily by the pull of gravity, although they are not completely free of centrifugal force.
  • the pin When the pin is at the top of the wheel it is in the position illustrated in FIG. 9.
  • the pin When the pin approaches, or is at, the bottom of the wheel it is pulled down by gravity so that it extends out into the respective half-capsule-cavity 22.
  • the action of the pin as that cavity approaches the bottom of the wheel will push the capsule out of the cavity.
  • the cavities may be coated with mineral oil.
  • a conduit 120 which connects to a source of mineral oil 121.
  • the conduit has nozzles 122 and 123 over wheels 20 and 21, respectively, to permit a drop of mineral oil to be deposited in each cavity. When mineral oil is used, it will be necessary to subsequently wash it from the finished capsules.
  • a relief cup into the surface of the wheel which relief defines the rim 23 surrounding each half-capsule-cavity or pocket 22.
  • this relief forms grooves 125 extending annularly about the periphery of the wheel.
  • the remainder of the wheel surface is uncut leaving a pair of rims 126 about the periphery of the wheel. Since the rims 126 have the same radius as rims 23 surrounding the pockets 22 the latter are protected so as to prevent damage to them when pressure is supplied through the use of hand wheel 91 and spring 92.
  • the wheels 20, 21 rotate at a common angular speed. However, they are not exactly the same diameter. Thus, for example, wheel 20 is six inches (15.24 centimeters) in diameter and wheel 21 is six and three-sixteenths inches (15.72 centimeters) in diameter. Thus, the linear speed of the periphery of the wheels is not identical. This results in a shearing action between rims 23 of the two wheels when the wheels are at the pinchpoint. This shearing action aids in severing the gelatin sheath between the adjacent ends of the capsules being formed.
  • the width of the half-capsule-cavities 22 is slightly greater than the width of the exterior of the gelatin sheath 18 of the descending rod. This permits the capsule to grow in width so that it assumes a somewhat oval shape as distinguished from the cylindrical configuration of the original rod. This is done, along with the increasing of the size of the sheath 18 (as previously described), so as to enable the gelatin coating to be molded over the ends of the medicament core.
  • the cooling means 26 includes a conveyor comprised of a foramenous belt 130.
  • the belt is trained for movement along a path defined by pulleys 131.
  • One of the pulleys is driven by a suitable power means 135 so that the upper run of the belt moves to the left in FIG. 1.
  • Below this upper run of the belt is an air chamber 132 which receives cooling air from a duct 133.
  • the top of the air chamber is perforated with discharge holes 134 so that the cooling air flows out through the foramenous belt 130 to cool the capsules 19 as they are moving along the upper run of the belt.
  • the formulation of the gelatin substance deposited in the feed hoppers 41 will be varied by individual manufacturers, I contemplate using a formulation such that fifty pounds (22.68 kg.) of glycerin and five to ten pounds (2.27 to 4.54 kg.) of water are added to one hundred pounds (45.36 kg.) of pure gelatin. It is important that the water and glycerin are cold when they are added to the gelatin in order to prevent the gelatin from balling. Any of the various conventional coloring materials may be incorporated as desired.
  • the medicament substance deposited in the feed hopper of supply means 11 will be in a carrier.
  • a fluid paste is more adaptable to the described process of molding capsules than is an unthickened liquid. Suitable food thickeners such as gelatin or starch can be employed to achieve the fluid paste consistency.
  • the present invention can be employed to form capsules or sticks consisting of materials other than a medicament with a gelatin coating.
  • the hopper of extruder 11 may be filled with an extrudable edible substance.
  • This might be a candy in a liquid or paste form (which is included within the term "food” as used herein). It could be a liver pate, a processed cheese of a flowable (extrudable) consistency, fruit or vegetable base substances of such consistency or a combination of such materials.
  • An ingestable material for use as a sheath as an alternative to the gelatin would be one of well known, wide variety of dough.
  • Such dough would be put into the hoppers of extruders 10 and 12 processed as above described except that instead of using a cooling air stream such as is employed when the sheath is gelatin, other means of conventionally hardening a dough after the capsule or stick was formed would be employed.
  • a current of heated air could be substituted for the refrigerated air entering plenum 132 through opening 133 to cook and/or dry the dough.
  • Another alternative would be to pass the discharge conveyor 130 through a tunnel oven to perform the cooking and/or drying of the dough.
  • the butter, lard, sugar and salt are put in a power driven dough mixer. With the mixer operating, the boiling water would be added. When the solids had dissolved and the water had cooled to lukewarm, the dissolved yeast and 375 pounds of flour are added and the mixing continued until a uniform mix was obtained. As an alternative, only 16 gallons of boiling water would be employed with the butter, lard, sugar and salt dissolved as above described. After the solution had cooled to lukewarm, 15 gallons of warm milk and the dissolved yeast are added, followed by the 375 pounds of sifted bread flour.

Abstract

From an extruder head a descending column of edible substance or medicament encased in a casing forming material of gelatin or dough is extruded. The casing forming material may be a single color or different colors on opposite sides. This column is pinched off by a pair of rotating wheels each having half cavities therein to form capsules or sticks of encased edible substance or medicament. The casing material is then hardened.

Description

RELATED APPLICATION
This application is a continuation-in-part of my pending application Ser. No. 519,435, filed Oct. 31, 1974, now abandoned entitled Manufacture Of Filled Gelatin Capsules.
BACKGROUND AND SUMMARY OF THE INVENTION
The present procedure for the encapsulation of medicament in a gelatin shell is to use two sheets or ribbons of gelatin between which discrete amounts of medicament are deposited. The sheets of gelatin are then cohered about each unit of medicament to define a capsule. For identification purposes, it is common that the two sheets of gelatin are of different colors so that the resulting capsule is two-toned in those colors. This procedure of using gelatin sheets has a number of disadvantages.
First and foremost, there is a substantial amount of wasted gelatin. While those parts of the gelatin sheets, remaining after the portions used to actually form the capsules have been removed, can be salvaged, it is not reusable as all or a part of a product to be ingested. There is danger that these remaining parts may have been contaminated by the medicament and thus ingested by a person not needing the medicament or for whom the medicament might be dangerous. Furthermore, when it is salvaged the colors are mixed. The result is that the gelatin can be sold only for use in a product, e.g. glue, which is not to be ingested. Such other gelatin products are normally made of a much lower quality gelatin and thus gelatin sold for that use has a substantially lower price tag. To sum it up, while the salvaged gelatin can be sold, there is a substantial loss in value of the salvaged gelatin. The amount of gelatin subject to the value loss is in the range of about ten to thirty percent.
Secondly, this conventional process necessitates the use of gelatin having a relatively high water content, for example, about forty percent. After the capsules are formed this water must be removed by drying. The drying process is slow, requiring from thirty-six to ninety-six hours depending on the thickness of the gelatin shell, the humidity conditions, etc. There are substantial costs in this drying, such as the cost of factory space (which is substantial), the direct costs, etc. Efforts to accelerate the drying have proven futile because the resulting capsules are likely to be deformed.
With some medicaments, the requirement that the gelatin have a relatively high water content has an additional disadvantage. This is that the medicament may tend to absorb water from the gelatin. This can have a deleterious effect on the medicament, the dosage, etc.
The present invention pertains to a machine for extruding a rod or column of edible substance or medicament having an annular shell of dough or gelatin and then pinching off that column into individual capsules consisting of the edible substance or medicament encased in the dough or gelatin from the annular shell of the column. The annular shell of the column can be half one color and half a second color, whereby the resulting capsule is two-toned for identification purposes. If desired, additional colors can be produced.
The present invention substantially overcomes the disadvantages discussed above with respect to the conventional process for forming capsules. There is practically no waste which results in a significant monetary saving. When gelatin is used for the shell its water content as extruded can be relatively low, e.g. in the neighborhood of three to ten percent. This greatly reduces the problem of water removal after the capsules are formed and before they are packaged.
I am aware that it has previously been suggested that capsules could be formed by extruding a tube of gelatin into which is injected amounts of a medicament, with the tube being pinched off to form capsules (e.g. U.S. Pat. No. 2,449,139). However, to the best of my knowledge no capsules have been commercially manufactured by any such process and the process discussed initially herein is the one being used commercially at the present time. A principal object of the present invention is to provide a machine which is suitable for commercial use in the manufacture of capsules comprising a medicament encased in gelatin. The machine includes a number of features which permit the manufacturer to produce capsules to his individual requirements and/or desires.
Further objects and advantages will become apparent from the following description and the drawings herein.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front elevational view of an embodiment of the invention, with portions broken away;
FIG. 2 is a section as viewed at line 2--2 of FIG. 1;
FIG. 3 is a partial rear elevational view, with a portion broken away to show a section as seen at line 3--3 of FIG. 2;
FIG. 4 is an enlarged partial front view, as seen in FIG. 1, with portions broken away;
FIG. 5 is a further enlarged partial section of the extruder head as viewed in FIG. 4;
FIG. 6 is a partial section as seen at lines 6--6 of FIG. 5;
FIG. 7 is a partial section as viewed at line 7--7 of FIG. 5;
FIG. 8 is an enlarged developed view of the periphery of one of the capsule forming wheels showing the action of the wheels in forming the tube into capsules; and
FIG. 9 is a partial section as seen at line 9--9 of FIG. 4.
DESCRIPTION OF SPECIFIC EMBODIMENT
The following disclosure is offered for public dissemination in return for the grant of a patent. Although it is detailed to ensure adequacy and aid understanding, this is not intended to prejudice that purpose of a patent which is to cover each new inventive concept therein no matter how others may later disguise it by variations in form or additions or further improvements.
GENERAL ORGANIZATION
In the illustrated embodiment there are three supply means, generally 10-12, for supplying streams of a gelatin substance and medicament substance under pressure. The terms "gelatin material" and "medicament substance" are used herein to signify that they incorporate all or principal quantities of gelatin and medicament respectively. Supply means 10 and 12 force gelatin material under pressure through conduits 13 and 14, respectively, to an extruder head, generally 15. Supply means 11 forces the medicament substance through a conduit 16 to the extruder head. From the extruder head these issue as a rod consisting of a continuous core 17 of medicament substance encased in a tubular shell 18 of gelatin material. When gelatin material of different colors are put in supply means 10 and 12, respectively, the shell 18 will have one color on one side and the other color on the other side. This rod is divided into individual capsules 19 by a capsule molding means comprising two molding wheels, generally 20 and 21. Each wheel has a plurality of half-capsule-cavities 22 therein. Each cavity 22 has a rim 23 extending about both sides and both ends of the cavity. The rims 23 of these half-capsule-cavities meet at a pinch-point, which is on a line extending between the axes of wheels 20 and 21, to thereby pinch the rod to form the individual capsules. The peripheries of the wheels both move downwardly at the pinch-point.
From the molding means the capsules are cooled to promptly set up the gelatin. The cooling means, generally 26, is in the form of a conveyor extending transversely to the path of the capsules falling by gravity from the molding means. After the capsules are cooled they go to a dryer, generally 27, for removal of water from the gelatin substance. This dryer could be in the form of a tumbling dryer through which an air stream is passed.
GELATIN AND MEDICAMENT SUPPLY MEANS
Supply means 10, best seen in FIGS. 2 and 3, is representative of the three supply means. It includes a positive displacement pump in the form of a worm 29 in a casing 30. A thermostatically controlled heater 31 about the casing maintains the proper temperature for keeping the gelatin substance at the proper fluid consistency. The worm is driven by a variable speed motor 32. The motor may be electric or hydraulic. Since naptha will be present, at least at times, an electric motor should be explosion-proof. The output shaft 33 of the motor is coupled to the shaft of an input worm 34 of a gear box 35. In turn the worm drives a worm wheel 36 mounted on an output shaft 37. A coupling 38 connects shaft 37 with worm 29.
The gelatin substance flows by gravity from a feed hopper 41 through an opening 42 into the interior of casing 30. The gelatin substance in feed hopper 41 is maintained at the proper fluidic temperature by a heater 43. In turn, the gelatin substance for the feed hopper 41 comes from a supply hopper 44. Feed hopper 41 is comparatively small and supply hopper 44 is comparatively large. Supply hopper 44 is not fixedly mounted but is movable, as by means of an overhead track, etc. Thus, when it is desired to change the color of the gelatin substance being furnished by supply means 10, there is only relatively little gelatin substance in feed hopper 41 which must then be cleaned out. The previous supply hopper 44 is moved away and a new supply hopper 44 containing gelatin substance of the substituted color is positioned in its stead. Upon making a color change, there is no necessity for cleaning out a large container such as is represented by supply hopper 44.
The two hoppers include an automatic control for maintaining the quantity of gelatin substance in feed hopper 41 between predetermined maximum and minimum limits. In the illustrated embodiment this includes a float 46 in the feed hopper 41. This float is mounted on one end of an arm 47. This arm extends through and is secured to a pivot pin 48 journaled in a support 49 attached to feed hopper 41. The arm has a counter-weight 50 adjustably mounted thereon. The other end of the arm is positioned to engage actuators 51 and 52 of a switch 53. As indicated by dashed line 54, switch 53 is connected (as by means of a plug-in connection) to a motor operated valve 55 in the discharge line 56 of supply hopper 44. Depending upon the type of valve motor operation, switch 53 may be electrical, fluid, etc. As the level of gelatin in feed hopper 41 reaches the desired minimum, arm 47 pivots clockwise sufficiently to move switch actuator 51 and open valve 55. When the feed hopper 41 has been filled to the desired maximum extent, the arm 47 pivots counterclockwise sufficiently to engage switch actuator 52 and close valve 55.
EXTRUDER HEAD
Referring particularly to FIGS. 4 and 5, the extruder head 15 is a three-part unit. It comprises a main body part 59 secured to the machine frame. In this main body part are electric heaters 60 to maintain the required fluidic temperature. The main body part has a vertically positioned cylindrical opening into which extends the nose 61 of a head part 62. The head part is held in place by cap screws 63. The upper portion 64 of nose 61 closes the top of the opening in the main body part.
The lower end of nose 61 is smaller than the opening in the main body part and has two diametrically opposed partitions 65. Thus, it divides the opening into two chambers 66 and 67. Chamber 66 communicates with conduit 13 and chamber 67 communicates with conduit 14. Below the partition 65 there is an annular opening 68 of truncated conical configuration between the lower or distal end of nose 61 and the top of the third body part 69. The third body part is threaded into the main body part as seen at 70. Thus, the width or thickness of the truncated conical opening 68 can be adjusted and thereby adjust the thickness of the gelatin shell 18. To maintain the desired adjustment, the exterior of the third body part 69 has a plurality of spaced teeth 71 thereabout. A spring retainer 72 secured to main body part 59 fits between these teeth. By moving the retainer outward, the third body part 69 can be rotated. An O-ring 73 maintains a seal between the main body part and the third body part.
The upper portion of head part 62 has a relatively large diameter opening 76 and the lower portion has a smaller opening within which is received an annular tube 77. The upper end of the tube has an annular enlargement 78 which seats on a shoulder 79 at the juncture of the two openings. The bottom of tube 77 extends below the distal end of nose 61. The third body part 69 has an opening 80 which is the same diameter as that of the exterior of tube 77. The tube is of stainless steel and has a wall thickness of 0.015 to 0.020 inches (0.381 to 0.508 m.m.). The gelatin substance issuing from annular opening 68 initially forms a cylindrical shell about tube 77. At the bottom of the tube this shell will have an internal diameter greater than the external diameter of the rod of medicament substance issuing from the bottom of the internal opening 81 in the tube, the difference being the wall thickness of the tube. While this difference in size may not be maintained completely, there will be a size difference between the gelatin shell and the medicament core which facilitates the forming of the rod 17, 18 into capsules, since at the time of capsule formation there must be provision to permit the gelatin to be closed over the ends of the medicament.
If tri-colored capsules were desired, partitions 65 would be arranged to divide the opening into three chambers rather than the two 66, 67. A third gelatin supply means identical to 10, 12 would communicate with the third chamber and each of the three would hold gelatin of a different color. Obviously, the described apparatus can thus be used to produce capsules of the number and variety of colors desired.
CAPSULE MOLDING MEANS
The molding wheels 20, 21 are driven by a common motor 85. A drive shaft 86 is connected by a coupling to the output shaft of the motor. This drive shaft extends through gear boxes 87 and 88. The molding wheel 21 extends from a shaft in gear box 87 while molding wheel 20 extends from a shaft in gear box 88. Gear box 87 is fixedly mounted on the frame of the machine. Gear box 88 is on ways 89 so that it may be moved toward and away from gear box 87. The shaft 90 of an adjusting wheel 91 is threaded through the machine frame. A spring 92 is in compression between a cap 93 rotatably mounted on the end of shaft 90 and a socket 94 on gear box 88. This arrangement permits the spring pressure to be applied against gear box 88 so as to control the contact pressure between the molding wheels 20 and 21. Bearing 95 for shaft 86 is movable in gear box 88 to permit the described gear box movement.
FIG. 9 illustrates the structure within gear box 88. There is a shaft 97 rotatably mounted in bearings 98. The end play of the shaft is strictly limited. Adjacent its outer end the shaft has a flange 99 about which is a seal 100. The wheel 20 is secured to the shaft by a pin 101 extending into the flange and cap screws 102 which extend through a cover plate 103 and are threaded into the end of the shaft.
A worm wheel 105 is mounted on the inner end of shaft 97 and engages a worm 106 formed on shaft 86. A conically tapered cap 107 is secured to the end of shaft 97 by a bolt 108. It is also held against rotation with respect to the shaft by a pin 109. The adjacent end of the hub of worm wheel 105 has a corresponding conical taper 110. When bolt 108 is tightened the frictional engagement between the conical surfaces of cap 107 and the worm wheel 105 causes the rotation of the wheel to produce a corresponding rotation of shaft 97. However, by loosening bolt 108 the worm wheel 105 can be rotated on shaft 97 to a different position with respect to the shaft. When bolt 108 is again retightened, the wheel and shaft are locked in the new alignment. This permits the alignment of wheel 20 with respect to the angular alignment of wheel 21. A cover plate 111 may be removed from the gear box to permit this adjustment to be made.
The structure within gear box 87 is for all practical purposes identical with that just described with respect to gear box 88. However, the worm wheel (not shown) in gear box 87 and in engagement with worm 112 on shaft 86 is keyed to the shaft that supports wheel 21 rather than being adjustably mounted thereon as just described with respect to shaft 97 and worm wheel 105.
The molding wheels 20, 21 have a plurality of radial bores each of which intersects the center of the bottom of each half-capsule-cavity 22 respectively. Within each bore is a knock-out pin 115. At its inner end each pin has a head 116 which forms a stop controlling the positioning of the pin. A sleeve 117 within the wheel holds the knock-out pins in place. The sleeve is held within the wheel by a retainer ring 118.
The knock-out pins operate primarily by the pull of gravity, although they are not completely free of centrifugal force. When the pin is at the top of the wheel it is in the position illustrated in FIG. 9. When the pin approaches, or is at, the bottom of the wheel it is pulled down by gravity so that it extends out into the respective half-capsule-cavity 22. Thus, if a capsule 19 has improperly stuck in the cavity the action of the pin as that cavity approaches the bottom of the wheel will push the capsule out of the cavity.
As a further aid to preventing the capsules from sticking in the cavities 22, the cavities may be coated with mineral oil. To this end there is a conduit 120 which connects to a source of mineral oil 121. The conduit has nozzles 122 and 123 over wheels 20 and 21, respectively, to permit a drop of mineral oil to be deposited in each cavity. When mineral oil is used, it will be necessary to subsequently wash it from the finished capsules.
At the periphery of the wheels 20, 21 there is a relief cup into the surface of the wheel which relief defines the rim 23 surrounding each half-capsule-cavity or pocket 22. In addition, this relief forms grooves 125 extending annularly about the periphery of the wheel. The remainder of the wheel surface is uncut leaving a pair of rims 126 about the periphery of the wheel. Since the rims 126 have the same radius as rims 23 surrounding the pockets 22 the latter are protected so as to prevent damage to them when pressure is supplied through the use of hand wheel 91 and spring 92.
The wheels 20, 21 rotate at a common angular speed. However, they are not exactly the same diameter. Thus, for example, wheel 20 is six inches (15.24 centimeters) in diameter and wheel 21 is six and three-sixteenths inches (15.72 centimeters) in diameter. Thus, the linear speed of the periphery of the wheels is not identical. This results in a shearing action between rims 23 of the two wheels when the wheels are at the pinchpoint. This shearing action aids in severing the gelatin sheath between the adjacent ends of the capsules being formed.
Referring to FIG. 8, it will be seen that the width of the half-capsule-cavities 22 is slightly greater than the width of the exterior of the gelatin sheath 18 of the descending rod. This permits the capsule to grow in width so that it assumes a somewhat oval shape as distinguished from the cylindrical configuration of the original rod. This is done, along with the increasing of the size of the sheath 18 (as previously described), so as to enable the gelatin coating to be molded over the ends of the medicament core.
CAPSULE COOLING MEANS
The cooling means 26 includes a conveyor comprised of a foramenous belt 130. The belt is trained for movement along a path defined by pulleys 131. One of the pulleys is driven by a suitable power means 135 so that the upper run of the belt moves to the left in FIG. 1. Below this upper run of the belt is an air chamber 132 which receives cooling air from a duct 133. The top of the air chamber is perforated with discharge holes 134 so that the cooling air flows out through the foramenous belt 130 to cool the capsules 19 as they are moving along the upper run of the belt.
MISCELLANEOUS
While the formulation of the gelatin substance deposited in the feed hoppers 41 will be varied by individual manufacturers, I contemplate using a formulation such that fifty pounds (22.68 kg.) of glycerin and five to ten pounds (2.27 to 4.54 kg.) of water are added to one hundred pounds (45.36 kg.) of pure gelatin. It is important that the water and glycerin are cold when they are added to the gelatin in order to prevent the gelatin from balling. Any of the various conventional coloring materials may be incorporated as desired.
In most instances, the medicament substance deposited in the feed hopper of supply means 11 will be in a carrier. I prefer an oil based thick paste as a carrier not only for reasons of economy but also so that the oil serves as a water barrier to prevent migration of the water in the gelatin into the medicament. Often, it will be possible to include more active medicament in a paste than in a liquid thereby reducing the size of the resulting capsule required. A fluid paste is more adaptable to the described process of molding capsules than is an unthickened liquid. Suitable food thickeners such as gelatin or starch can be employed to achieve the fluid paste consistency.
The present invention can be employed to form capsules or sticks consisting of materials other than a medicament with a gelatin coating. For example, the hopper of extruder 11 may be filled with an extrudable edible substance. This might be a candy in a liquid or paste form (which is included within the term "food" as used herein). It could be a liver pate, a processed cheese of a flowable (extrudable) consistency, fruit or vegetable base substances of such consistency or a combination of such materials. An ingestable material for use as a sheath as an alternative to the gelatin would be one of well known, wide variety of dough. Such dough would be put into the hoppers of extruders 10 and 12 processed as above described except that instead of using a cooling air stream such as is employed when the sheath is gelatin, other means of conventionally hardening a dough after the capsule or stick was formed would be employed. For example, a current of heated air could be substituted for the refrigerated air entering plenum 132 through opening 133 to cook and/or dry the dough. Another alternative would be to pass the discharge conveyor 130 through a tunnel oven to perform the cooking and/or drying of the dough.
A specific example of a suitable dough formulation would be as follows:
31 gallons (260 pounds) boiling water
8 pounds butter
8 pounds of lard or shortening
15 pounds of sugar
12 pounds of salt
125 commercial yeast cakes, or equivalent, dissolved in
2 gallons of lukewarm water
375 pounds sifted bread flour
The butter, lard, sugar and salt are put in a power driven dough mixer. With the mixer operating, the boiling water would be added. When the solids had dissolved and the water had cooled to lukewarm, the dissolved yeast and 375 pounds of flour are added and the mixing continued until a uniform mix was obtained. As an alternative, only 16 gallons of boiling water would be employed with the butter, lard, sugar and salt dissolved as above described. After the solution had cooled to lukewarm, 15 gallons of warm milk and the dissolved yeast are added, followed by the 375 pounds of sifted bread flour.

Claims (26)

I claim:
1. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder means being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends, each endless device being a wheel rotating about an axis and having a periphery with the half-unit-cavities therein, the peripheries of said wheels meeting at a pinch-point on a line between said axes, each wheel including means associated with each half-unit-cavity for pushing the unit away therefrom after the wheel moves away from the pinch-point, the periphery of each wheel defining a rim surrounding the exterior of each pocket and extending radially outwardly from the portion of the wheel periphery to the outside of the rim, the rims of the wheels being in registry at the pinch-point, said molding means including means mounting one of the wheels for movement toward and away from the other wheel to adjust the pressure between the rims at the pinch-point; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for cooling the material, said cooling means comprising a foramenous conveyor and means operatively associated with said conveyor for directing cooling air through said conveyor.
2. An apparatus as set forth in claim 1, wherein the periphery of one wheel is larger than the periphery of the other wheel, said molding means including power means rotating said wheels at a common angular speed whereby the periphery of one wheel slips with respect to the periphery of the other wheel at the pinch-point.
3. An apparatus as set forth in claim 2, wherein said extruder means includes an annular tube within said body above said opening and axially aligned with said passageway, said tube having an upper end and a lower end with the upper end communicating with said first means to receive said substance for discharge at the lower end, said body defining an annular opening about said tube adjacent the lower end of the tube, said annular opening communicating with said second means.
4. An apparatus as set forth in claim 3, wherein said second means includes a first conduit through which said material of one color is supplied and a second conduit through which said material of a second color is supplied, said body defining two chambers above said annular opening, said two chambers each having an upper end and a lower end, the lower end of the chambers communicating with said annular opening, the upper end of the chambers communicating with said conduits respectively, each of said chambers extending approximately half-way about the axis of the tube, whereby said coating is about half one color material and about half material of the second color.
5. An apparatus as set forth in claim 4,
wherein the material is gelatin and the second means includes two pumps, each having an intake and a discharge opening, said conduits communicating with said discharge openings respectively, each pump having a relatively small feed hopper communicating with its intake opening, and heater means controlling the temperature of the gelatin material in the feed hopper and pump; and
including a plurality of supply hoppers, each for holding a gelatin material of a particular color, said supply hoppers being large compared to said feed hoppers, whereby when a particular side of the coating is to be of a particular color the supply hopper holding the gelatin material of that particular color may be used to fill the feed hopper of the respective pump, and when the color of that coating side is to be changed there is only a relatively small amount of gelatin material in that feed hopper to be cleaned out along with the gelatin material downstream therefrom.
6. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder means being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening, said extruder means including an annular tube within said body above said opening and axially aligned with said passageway, said tube having an upper end and a lower end with the upper end communicating with said first means to receive said substance for discharge at the lower end, said body defining an annular opening about said tube adjacent the lower end of the tube, said annular opening communicating with said second means;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for hardening the material.
7. An apparatus as set forth in claim 6, wherein said annular opening is of truncated conical configuration, said body including a first member above said opening and a second member below said opening, one of said members being movable axially with respect to the other of said members for varying the thickness of said truncated conical opening.
8. An apparatus as set forth in claim 7, wherein said first member has a first opening approximately the same diameter as the exterior of the tube and a second opening above said first opening and of a larger diameter, said first member forming a shoulder at the juncture of the first and second openings, said tube having an external enlargement at the upper end thereof, said tube being positioned in the first opening with said enlargement resting on said shoulder, the lower end of the tube extending below the lower end of the first member.
9. An apparatus as set forth in claim 8, wherein said passageway has a diameter approximately equal to the external diameter of the tube.
10. An apparatus as set forth in claim 8, wherein said second means includes a first conduit through which said material of one color is supplied and a second conduit through which said material of a second color is supplied, said body defining two chambers above said annular opening, said two chambers each having an upper end and a lower end, the lower end of the chambers communicating with said annular opening, the upper end of the chambers communicating with said conduits respectively, each of said chambers extending approximately half-way about the axis of the tube, whereby said coating is about half one color material and about half material of the second color.
11. An apparatus as set forth in claim 6, wherein said first member has a first opening approximately the same diameter as the exterior of the tube and a second opening above said first opening and of a larger diameter, said first member forming a shoulder at the juncture of the first and second openings, said tube having an external enlargement at the upper end thereof, said tube being positioned in the first opening with said enalargement resting on said shoulder, the lower end of the tube extending below the lower end of the first member.
12. An apparatus as set forth in claim 11, wherein said passageway has a diameter approximately equal to the external diameter of the tube.
13. An apparatus as set forth in claim 6, wherein said second means includes a first conduit through which said material of one color is supplied and a second conduit through which said material of a second color is supplied, said body defining two chambers above said annular opening, said two chambers each having an upper end and a lower end, the lower end of the chambers communicating with said annular opening, the upper end of the chambers communicating with said conduits respectively, each of said chambers extending approximately half-way about the axis of the tube, whereby said coating is about half one color material and about half material of the second color.
14. An apparatus as set forth in claim 13,
wherein the second means includes two continuous pumps, each having an intake and a discharge opening, said conduits communicating with said discharge openings respectively, each pump having a relatively small feed hopper communicating with its intake opening; and
including a plurality of supply hoppers, each for holding said material of a particular color, said supply hoppers being large compared to said feed hoppers, whereby when a particular side of the coating is to be of a particular color the supply hopper holding the material of that particular color may be used to fill the feed hopper of the respective extruder, and when the color of that coating side is to be changed there is only a relatively small amount of material in that feed hopper to be cleaned out along with the material downstream therefrom.
15. An apparatus as set forth in claim 14,
wherein each supply hopper includes an automatic valve means, and each feed hopper includes sensing means for determining when the feed hopper is relatively full and when it is relatively empty of material, and
including means connecting the sensing means to the automatic valve means for opening the valve means when the feed hopper is relatively empty and closing the valve means when the feed hopper is relatively full.
16. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder means being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends, each endless device being a wheel rotating about an axis and having a periphery with the half-unit-cavities therein, the peripheries of said wheels meeting at a pinch-point on a line between said axes, each wheel including means associated with each half-unit-cavity for pushing the capsule away therefrom after the wheel moves away from the pinch-point, the periphery of each wheel defining a rim surrounding the exterior of each pocket and extending radially outwardly from the portion of the wheel periphery to the outside of the rim, the rims of the wheels being in registry at the pinch-point, said molding means including means mounting one of the wheels for movement toward and away from the other wheel to adjust the pressure between the rims at the pinch-point; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for hardening the material.
17. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder means being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends, each endless device being a wheel rotating about an axis and having a periphery with the half-unit-cavities therein, the peripheries of said wheels meeting at a pinch-point on a line between said axes, the periphery of one wheel being larger than the periphery of the other wheel, said molding means including power means rotating said wheels at a common angular speed whereby the periphery of one wheel slips with respect to the periphery of the other wheel at the pinch-point; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for hardening the material.
18. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder mens being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening, said body including a main body part having a first opening coaxial with said passageway and relatively large in diameter as compared to the size of the passageway, and a transverse opening intersecting said first opening, said transverse opening communicating with said second means to receive the material, a second body part extending into said first opening and closing the top of the first opening, said second body part having a nose of a diameter smaller than the first opening, said nose extending downwardly from the transverse opening, said second body part having an opening axially through said nose and communicating with said first means to receive said substance, and a third body part extending into the bottom of said first opening, said passageway being on the third body part, said third body part being adjustable up and down whereby its spacing to the second body part may be varied;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for hardening the material.
19. An apparatus as set forth in claim 18, wherein said second means includes a first conduit through which said material of one color is supplied and a second conduit through which said material of a second color is supplied, said main body part having a second transverse opening opposite the first mentioned transverse opening and intersecting said first opening, said transverse opening communicating with said conduits respectively, said body including two diametrically opposed partitions in said first opening and between the main body part and the second body part, said partitions extending from the closed top of the first opening to a point adjacent the distal end of the nose.
20. An apparatus for making units comprising an ingestable substance with a coating of ingestable material, said apparatus comprising:
first means forming a source of said substance in fluid form under pressure;
second means adjacent said first means forming a source of said material in fluid form under pressure;
extruder means comprising a body having a vertical passageway open at the bottom, said extruder means being connected to said first and second means for extruding a rod comprising a continuous core of said substance with a continuous coating of said material along a vertically downward path from said bottom opening;
unit molding means subsequent said extruder means for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends, each endless device being a wheel rotating about an axis and having a periphery with the half-unit-cavities therein, the peripheries of said wheels meeting at a pinch-point on a line between said axes, each wheel including means associated with each half-unit-cavity for pushing the unit away therefrom after the wheel moves away from the pinch-point comprising:
each wheel having radial bores intersecting the bottom of each cavity respectively,
a pin positioned in each bore respectively and movable in the bore radially of the wheel, and
each pin including means to restrict the radial movement of the pin to between a radial position at which the pin protrudes into the cavity and a radial position at which it does not protrude into the cavity; and
means positioned below said molding means for receiving the individual units descending by gravity from the molding means and for hardening the material.
21. In an apparatus for making units comprising an ingestable substance in an ingestable coating material wherein forming means produces a rod of said material having a core of said substance which rod is moved along a path in a descending direction, the improvement comprising:
unit molding means subsequent said forming mens for forming said rod into individual units and comprising two endless devices each positioned at a respective side of said path below said opening, each device having a surface with a sequence of half-unit-cavities therein which move past said path in a downward direction in timed relationship such that the half-unit-cavities of the two devices meet at said path to define a whole-unit-cavity, each half-unit-cavity comprising walls defining a pocket having sides and ends, the half-unit-cavities of one device moving at a different linear speed during that meeting than the half-unit-cavities of the other device whereby during that meeting there is a slip between the part of the devices surrounding the two half-unit-cavities.
22. In an apparatus as set forth in claim 21, wherein said forming means comprises:
first fluid supply means for said substance;
second fluid supply means for said material adjacent said first fluid supply means;
extruder means comprising a body having a vertical passageway open at the bottom with said rod exiting from said bottom opening to move along said path, said body including a main body part having a first opening coaxial with said passageway and relatively large in diameter as compared to the size of the passageway, and a transverse opening intersecting said first opening, said transverse opening communicating with said second supply means to receive the material, a second body part extending into said first opening and closing the top of the first opening, said second body part having a nose of a diameter smaller than the first opening, said nose extending downwardly below the transverse opening, said second body part having an opening axially through said nose and communicating with said first supply means to receive said substance, and a third body part extending into the bottom of said first opening, said passageway being on the third body part, said third body part being adjustable up and down whereby its spacing to the second body part may be varied to thereby vary the quantity of material entering the first opening below said second body part.
23. In an apparatus as set forth in claim 22, wherein said forming means includes:
an annular tube within said opening in said second body part, said tube having an upper end and a lower end with the upper end receiving said substance for discharge at the lower end, the lower end of the tube extending into said first opening below said second body part, said first member having a second opening above said first opening and of a larger diameter, said first member forming a shoulder at the juncture of the first and second openings, said tube having an external enlargement at the upper end thereof, said tube being positioned in the first opening with said enlargement resting on said shoulder.
24. In an apparatus for making units comprising an ingestable substance in an ingestable coating material wherein forming means produces a rod of said material having a core of said substance which rod is moved along a path in a descending direction, the improvement wherein said forming means comprises:
first fluid supply means for said substance;
second fluid supply means for said material adjacent said first fluid supply means;
extruder means comprising a body having a vertical passageway open at the bottom with said rod exiting from said bottom opening to move along said path, said body including a main body part having a first opening coaxial with said passageway and relatively large in diameter as compared to the size of the passageway, and a transverse opening intersecting said first opening, said transverse opening communicating with said second supply means to receive the material, a second body part extending into said first opening and closing the top of the first opening, said second body part having a nose of a diameter smaller than the first opening, said nose extending downwardly below the transverse opening, said second body part having an opening axially through said nose and communicating with said first supply means to receive said substance, a third body part extending into the bottom of said first opening, said passageway being on the third body part, said third body part being adjustable up and down to establish a position whereby its spacing to the second body part may be varied to thereby vary the quantity of material entering the first opening below said second body part, and retaining means engaging said third body part for normally maintaining the established position of the third body part with respect to the second body part.
25. In an apparatus for making units comprising an ingestable substance in an ingestable coating material wherein forming means produces a rod of said material having a core of said substance which rod is moved along a path in a descending direction, the improvement wherein said forming means comprises:
first fluid supply means for said substance;
second fluid supply means for said material adjacent said first fluid supply means;
extruder means comprising a body having a vertical passageway open at the bottom with said rod exiting from said bottom opening to move along said path, said body including a main body part having a first opening coaxial with said passageway and relatively large in diameter as compared to the size of the passageway, and a transverse opening intersecting said first opening, said transverse opening communicating with said second supply means to receive the material, a second body part extending into said first opening and closing the top of the first opening, said second body part having a nose of a diameter smaller than the first opening, said nose extending downwardly below the transverse opening, said second body part having an opening axially through said nose and communicating with said first supply means to receive said substance, and a third body part extending into the bottom of said first opening, said passageway being on the third body part, said third body part being adjustable up and down whereby its spacing to the second body part may be varied to thereby vary the quantity of material entering the first opening below said second body part, said forming means including:
an annular tube within said opening in said second body part, said tube having an upper end and a lower end with the upper end receiving said substance for discharge at the lower end, the lower end of the tube extending into said first opening below said second body part, said first member having a second opening above said first opening and of a larger diameter, said first member forming a shoulder at the juncture of the first and second openings, said tube having an external enlargement at the upper end thereof, said tube being positioned in the first opening with said enlargement resting on said shoulder.
US05/728,140 1974-10-31 1976-09-30 Manufacture of filled capsules or the like Expired - Lifetime US4028024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/728,140 US4028024A (en) 1974-10-31 1976-09-30 Manufacture of filled capsules or the like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51943574A 1974-10-31 1974-10-31
US05/728,140 US4028024A (en) 1974-10-31 1976-09-30 Manufacture of filled capsules or the like

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US51943574A Continuation-In-Part 1974-10-31 1974-10-31

Publications (1)

Publication Number Publication Date
US4028024A true US4028024A (en) 1977-06-07

Family

ID=27059840

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/728,140 Expired - Lifetime US4028024A (en) 1974-10-31 1976-09-30 Manufacture of filled capsules or the like

Country Status (1)

Country Link
US (1) US4028024A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090600A2 (en) * 1982-03-26 1983-10-05 Warner-Lambert Company Method for molding capsules
US4481157A (en) * 1982-04-27 1984-11-06 Morishita Jintan Co., Ltd. Method and apparatus for production of microcapsules
US4486163A (en) * 1981-07-29 1984-12-04 Convent Knabber-Geback Gmbh & Co. Kg Nozzle for extruding a laminated food product
EP0130748A2 (en) * 1983-06-24 1985-01-09 NABISCO BRANDS, Inc. Method and apparatus for severing a coextrusion for making an enrobed food piece
US4536146A (en) * 1984-11-16 1985-08-20 Hernandez Luis A Croquette machine
US4630533A (en) * 1984-09-07 1986-12-23 Convent Knabber-Geback Gmbh & Co. Cooking extruder
US4636158A (en) * 1985-11-14 1987-01-13 Huang Der S Apparatus for making bun
US4643904A (en) * 1985-06-25 1987-02-17 The Procter & Gamble Company Method of increasing the visibility of discrete morsels contained within a baked food product
US4647468A (en) * 1984-05-18 1987-03-03 Nabisco Brands, Inc. Apparatus for forming filled edible products without waste
US4697505A (en) * 1985-06-25 1987-10-06 The Procter & Gamble Company Apparatus for increasing the visibility of discrete morsels contained within a baked food product
US4698004A (en) * 1986-03-05 1987-10-06 Nabisco Brands, Inc. Nozzle for extrusion
US4715803A (en) * 1985-04-17 1987-12-29 Nabisco Brands, Inc. Triple co-extruder
EP0257560A1 (en) * 1986-08-21 1988-03-02 E.I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
US4748031A (en) * 1985-04-17 1988-05-31 Nabisco Brands, Inc. Method of triple co-extruding bakeable products
US4832960A (en) * 1986-03-06 1989-05-23 Maillefer Sa Device for feeding an extrusion head for plastic material
US4854842A (en) * 1987-02-25 1989-08-08 Masao Kobayashi Production apparatus to form the solid state food material completely wrapped and sealed with the clayish state food material into globular shape
US4880585A (en) * 1986-04-11 1989-11-14 Basf Aktiengesellschaft Continuous method of tableting
US4888192A (en) * 1986-03-05 1989-12-19 Nabisco Brands, Inc. Method for extrusion of baked goods
EP0369445A2 (en) * 1988-11-17 1990-05-23 D.M. Graham Laboratories, Inc. Solid encapsulated medicament and process and apparatus for preparing same
US5146758A (en) * 1991-03-04 1992-09-15 Herman Norman L Process of producing soft elastic gelatin capsules
US5230207A (en) * 1991-03-28 1993-07-27 Rolf Hartzell Equipment for manufacturing of subcutaneous capsules
US5422160A (en) * 1989-01-26 1995-06-06 R. P. Scherer Corporation Softgel capsule with a patterned outer shell surface
US5458415A (en) * 1993-03-29 1995-10-17 B. F. E. Limited Apparatus for making bread
US5459983A (en) * 1989-09-20 1995-10-24 Banner Gelatin Products Corp. Tablet enrobing apparatus
US5660859A (en) * 1994-12-29 1997-08-26 Mcneil-Ppc, Inc. Gelling agent for polyethylene glycol
US5686128A (en) * 1995-08-31 1997-11-11 Nabisco Technology Company Apparatus and method for triple co-extruding a snack product
US5735105A (en) * 1992-12-16 1998-04-07 R. P. Scherer Corporation Encapsulation apparatus and process
US5916590A (en) * 1994-12-29 1999-06-29 Mcneil-Ppc, Inc. Soft gelatin pharmaceutical dosage form
US5919481A (en) * 1996-06-28 1999-07-06 Ncneil-Ppc, Inc. Fill material for soft gelatin pharmaceutical dosage form
WO2000015173A1 (en) * 1998-09-14 2000-03-23 Voss Gunter M Method for producing gelatin capsules
US6322811B1 (en) 1998-02-06 2001-11-27 Union Carbide Chemicals & Plastics Technology Corporation Alkylene oxide polymer compositions
US20030049341A1 (en) * 2001-09-07 2003-03-13 Warner Richard Jarvis Pillow cutting extruder machine
US20030085487A1 (en) * 2001-11-02 2003-05-08 Keith Tanner Apparatus and method for manufacturing encapsulated products
US20030205288A1 (en) * 2002-04-22 2003-11-06 Sus Gerald A. Automated device and method for packaging food
US20030206990A1 (en) * 1999-11-23 2003-11-06 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Process for the manufacture of shaped articles
US20030215563A1 (en) * 2002-05-15 2003-11-20 Mcneil-Ppc, Inc. Process for enrobing a core
US20040011006A1 (en) * 2002-04-22 2004-01-22 Sus Gerald A. Food dispensing device and method
US6745546B2 (en) 2001-11-02 2004-06-08 R.P. Scherer Technologies, Inc. Encapsulation machine with valved injection wedge
US20050035475A1 (en) * 2001-04-20 2005-02-17 Procaps Sa Multicolor gelatin ribbons and manufacture of soft gelatin products
US6869633B2 (en) 2002-04-22 2005-03-22 Restaurant Technology, Inc. Automated food frying device and method
US20050147706A1 (en) * 2000-04-06 2005-07-07 Unilever Home & Personal Care Usa, Division Of Conopco., Inc. Process and apparatus for the production of a detergent bar
US6960157B2 (en) 2002-04-22 2005-11-01 Restaurant Technology, Inc. Automated system and method for handling food containers
US20060051458A1 (en) * 2004-09-03 2006-03-09 Fornaguera Joan F Tubular hopper confectionery depositing apparatus and method
US20060051476A1 (en) * 2004-09-03 2006-03-09 Fornaguera Joan F Tubular hopper with synchronized tray and method
US20060107845A1 (en) * 2004-11-25 2006-05-25 Lars Aasted Apparatus for depositing edible mass
US20060141001A1 (en) * 2004-11-19 2006-06-29 Finkelmeier Steven D Pharmaceutical product
US20060234948A1 (en) * 2005-04-04 2006-10-19 Empie Mark W Lignan-containing compositions
US7169450B2 (en) 2002-05-15 2007-01-30 Mcneil-Ppc, Inc. Enrobed core
US20070087100A1 (en) * 2005-10-07 2007-04-19 Fornaguera Joan F Apparatus and method for making multiple component confectionery product
US20070122516A1 (en) * 2005-11-29 2007-05-31 Tiangang Qian Apparatus for preparing fresh ravioli, dumpling and pastries with filling in kitchen
US20070193225A1 (en) * 2005-11-18 2007-08-23 Thomas Bailey Machine and method for pharmaceutical and pharmaceutical-like product assembly
US20070199282A1 (en) * 2003-08-05 2007-08-30 Yoshitugi Hashiba Packaging device, measuring and packaging device, and method of manufacturing packaged article
US20070242559A1 (en) * 2005-04-18 2007-10-18 Larsen Herbert A Automated production processes and associated systems, including automated bread making processes
US7303776B2 (en) 2002-04-22 2007-12-04 Restaurant Technology, Inc. Automated food processing system and method
US20080057154A1 (en) * 2006-09-01 2008-03-06 Dandy Sakiz Ve Sekerleme Sanayi A.S. Apparatus and Method for Making Chewing Gum Pieces
US7356980B2 (en) 2002-04-22 2008-04-15 Restaurant Technology, Inc. Automated method for packaging food
US20080166461A1 (en) * 2002-04-22 2008-07-10 Sus Gerald A Automated food processing system and method
US7441388B2 (en) 2002-04-22 2008-10-28 Restaurant Technology, Inc. Automated device for packaging food
US20090149507A1 (en) * 2004-11-19 2009-06-11 Kirsh Richard L Method for customized dispensing of variable dose drug combination products for individualizing of therapies
US20120114804A1 (en) * 2004-07-28 2012-05-10 Mars, Incorporated Apparatus and process for preparing confectionery having an inclusion therein using forming rolls and a forming pin
US20120294975A1 (en) * 2011-05-18 2012-11-22 Chang Sung Softgel System Ltd. Apparatus for manufacturing vegetable gelatin capsule
US8371092B1 (en) * 2008-09-05 2013-02-12 Viropharma Incorporated Apparatus and methods for reducing capsule elongation
US20140175695A1 (en) * 2011-08-25 2014-06-26 Gala Industries, Inc. Melt processing plant
WO2014139803A1 (en) * 2013-03-15 2014-09-18 AbbVie Deutschland GmbH & Co. KG Process and apparatus for metering a plasticized formulation
WO2016070994A1 (en) * 2014-11-05 2016-05-12 Maag Automatik Gmbh Squeezing-roll granulator, granulating system comprising same, and use of the squeezing-roll granulator
KR102041534B1 (en) * 2019-05-27 2019-11-06 (주)알피바이오 Wedge Segment for producing medical capsule and apparatus for producing medical capsule having different diameters of the rollers
US11026432B2 (en) 2015-08-18 2021-06-08 Wilkinson Research And Development, Llc Automated bread-making system
US11450171B2 (en) 2018-03-01 2022-09-20 Wilkinson Research And Development, Llc Kiosk for storing and distributing baked product and associated systems and methods
US11825852B2 (en) * 2017-02-21 2023-11-28 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.P.A. Machine for making filled pasta
US11937607B2 (en) * 2017-02-21 2024-03-26 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.P.A. Machine for making filled pasta

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US277707A (en) * 1883-05-15 Pencils
US2387747A (en) * 1944-03-04 1945-10-30 Benjamin C Cowley Machine for and a method of making filled capsules
US2449139A (en) * 1944-07-08 1948-09-14 John Kennedy Power Apparatus for manufacturing and filling capsules
US2714861A (en) * 1954-01-11 1955-08-09 Castronuovo John Manicotti producing machine
US2874417A (en) * 1954-06-28 1959-02-24 Elektrokemisk As Method of forming thermoplastic briquettes
US3328843A (en) * 1965-06-03 1967-07-04 United States Steel Corp Speed-control system for briquetting rolls
US3366717A (en) * 1964-05-18 1968-01-30 United States Steel Corp Method and apparatus for controlling hot-briquetting operation
US3547682A (en) * 1968-03-15 1970-12-15 Hercules Inc Composite polyolefin extrusion coating of substrates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US277707A (en) * 1883-05-15 Pencils
US2387747A (en) * 1944-03-04 1945-10-30 Benjamin C Cowley Machine for and a method of making filled capsules
US2449139A (en) * 1944-07-08 1948-09-14 John Kennedy Power Apparatus for manufacturing and filling capsules
US2714861A (en) * 1954-01-11 1955-08-09 Castronuovo John Manicotti producing machine
US2874417A (en) * 1954-06-28 1959-02-24 Elektrokemisk As Method of forming thermoplastic briquettes
US3366717A (en) * 1964-05-18 1968-01-30 United States Steel Corp Method and apparatus for controlling hot-briquetting operation
US3328843A (en) * 1965-06-03 1967-07-04 United States Steel Corp Speed-control system for briquetting rolls
US3547682A (en) * 1968-03-15 1970-12-15 Hercules Inc Composite polyolefin extrusion coating of substrates

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486163A (en) * 1981-07-29 1984-12-04 Convent Knabber-Geback Gmbh & Co. Kg Nozzle for extruding a laminated food product
EP0090600A3 (en) * 1982-03-26 1984-05-09 Warner-Lambert Company Apparatus and method for molding capsules
EP0090600A2 (en) * 1982-03-26 1983-10-05 Warner-Lambert Company Method for molding capsules
US4481157A (en) * 1982-04-27 1984-11-06 Morishita Jintan Co., Ltd. Method and apparatus for production of microcapsules
EP0130748A2 (en) * 1983-06-24 1985-01-09 NABISCO BRANDS, Inc. Method and apparatus for severing a coextrusion for making an enrobed food piece
EP0130748A3 (en) * 1983-06-24 1986-07-16 Nabisco Brands Inc. Method and apparatus for severing a coextrusion for making an enrobed food piece
AU583475B2 (en) * 1983-06-24 1989-05-04 Nabisco Brands Incorporated Method and apparatus for severing a coextrusion for making an enrobed food piece
US4647468A (en) * 1984-05-18 1987-03-03 Nabisco Brands, Inc. Apparatus for forming filled edible products without waste
US4630533A (en) * 1984-09-07 1986-12-23 Convent Knabber-Geback Gmbh & Co. Cooking extruder
US4536146A (en) * 1984-11-16 1985-08-20 Hernandez Luis A Croquette machine
US4715803A (en) * 1985-04-17 1987-12-29 Nabisco Brands, Inc. Triple co-extruder
US4748031A (en) * 1985-04-17 1988-05-31 Nabisco Brands, Inc. Method of triple co-extruding bakeable products
US4643904A (en) * 1985-06-25 1987-02-17 The Procter & Gamble Company Method of increasing the visibility of discrete morsels contained within a baked food product
US4697505A (en) * 1985-06-25 1987-10-06 The Procter & Gamble Company Apparatus for increasing the visibility of discrete morsels contained within a baked food product
US4636158A (en) * 1985-11-14 1987-01-13 Huang Der S Apparatus for making bun
US4698004A (en) * 1986-03-05 1987-10-06 Nabisco Brands, Inc. Nozzle for extrusion
US4888192A (en) * 1986-03-05 1989-12-19 Nabisco Brands, Inc. Method for extrusion of baked goods
US4832960A (en) * 1986-03-06 1989-05-23 Maillefer Sa Device for feeding an extrusion head for plastic material
USRE34711E (en) * 1986-03-06 1994-08-30 Nokia-Maillefer Sa Device for feeding an extrusion head for plastic material
US4880585A (en) * 1986-04-11 1989-11-14 Basf Aktiengesellschaft Continuous method of tableting
EP0257560A1 (en) * 1986-08-21 1988-03-02 E.I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
US4854842A (en) * 1987-02-25 1989-08-08 Masao Kobayashi Production apparatus to form the solid state food material completely wrapped and sealed with the clayish state food material into globular shape
US4936074A (en) * 1988-11-17 1990-06-26 D. M. Graham Laboratories, Inc. Process for preparing solid encapsulated medicament
US5085033A (en) * 1988-11-17 1992-02-04 D. M. Graham Laboratories, Inc. Process for preparing a solid encapsulated medicament
AU632770B2 (en) * 1988-11-17 1993-01-14 D.M. Graham Laboratories, Inc. Solid encapsulated medicament and process and apparatus for preparing same
EP0369445A3 (en) * 1988-11-17 1991-06-05 D.M. Graham Laboratories, Inc. Solid encapsulated medicament and process and apparatus for preparing same
EP0369445A2 (en) * 1988-11-17 1990-05-23 D.M. Graham Laboratories, Inc. Solid encapsulated medicament and process and apparatus for preparing same
US5422160A (en) * 1989-01-26 1995-06-06 R. P. Scherer Corporation Softgel capsule with a patterned outer shell surface
US5459983A (en) * 1989-09-20 1995-10-24 Banner Gelatin Products Corp. Tablet enrobing apparatus
US5146758A (en) * 1991-03-04 1992-09-15 Herman Norman L Process of producing soft elastic gelatin capsules
US5347794A (en) * 1991-03-28 1994-09-20 Leiras Oy Equipment for manufacturing of subcutaneous capsules
US5348062A (en) * 1991-03-28 1994-09-20 Leiras Oy Equipment for manufacturing of subcutaneous capsules
US5230207A (en) * 1991-03-28 1993-07-27 Rolf Hartzell Equipment for manufacturing of subcutaneous capsules
US5735105A (en) * 1992-12-16 1998-04-07 R. P. Scherer Corporation Encapsulation apparatus and process
US5458415A (en) * 1993-03-29 1995-10-17 B. F. E. Limited Apparatus for making bread
US5593712A (en) * 1993-03-29 1997-01-14 B.F.E. Limited Process for making bread
US5840337A (en) * 1994-12-29 1998-11-24 Mcneil-Ppc, Inc. Gelling agent for polyethylene gylcol
US5660859A (en) * 1994-12-29 1997-08-26 Mcneil-Ppc, Inc. Gelling agent for polyethylene glycol
US5916590A (en) * 1994-12-29 1999-06-29 Mcneil-Ppc, Inc. Soft gelatin pharmaceutical dosage form
US5686128A (en) * 1995-08-31 1997-11-11 Nabisco Technology Company Apparatus and method for triple co-extruding a snack product
US5919481A (en) * 1996-06-28 1999-07-06 Ncneil-Ppc, Inc. Fill material for soft gelatin pharmaceutical dosage form
US6322811B1 (en) 1998-02-06 2001-11-27 Union Carbide Chemicals & Plastics Technology Corporation Alkylene oxide polymer compositions
WO2000015173A1 (en) * 1998-09-14 2000-03-23 Voss Gunter M Method for producing gelatin capsules
US20030206990A1 (en) * 1999-11-23 2003-11-06 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Process for the manufacture of shaped articles
US20100068322A1 (en) * 2000-04-06 2010-03-18 Conopco, Inc., D/B/A Unilever Process and apparatus for the production of a detergent bar
US20050147706A1 (en) * 2000-04-06 2005-07-07 Unilever Home & Personal Care Usa, Division Of Conopco., Inc. Process and apparatus for the production of a detergent bar
US7632441B2 (en) 2000-04-06 2009-12-15 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Process and apparatus for the production of a detergent bar
US8162646B2 (en) 2000-04-06 2012-04-24 Conopco, Inc. Apparatus for the production of a detergent bar
US20050035475A1 (en) * 2001-04-20 2005-02-17 Procaps Sa Multicolor gelatin ribbons and manufacture of soft gelatin products
US8210839B2 (en) * 2001-04-20 2012-07-03 Procaps Sa Multicolor gelatin ribbons and manufacture of soft gelatin products
US20030049341A1 (en) * 2001-09-07 2003-03-13 Warner Richard Jarvis Pillow cutting extruder machine
US6612825B2 (en) * 2001-09-07 2003-09-02 American Extrusion International Corp. Pillow cutting extruder machine
EP1458613A1 (en) * 2001-11-02 2004-09-22 R.P. Scherer Technologies, Inc. Encapsulation machine with valved injection wedge
US20040187448A1 (en) * 2001-11-02 2004-09-30 Keith Tanner Encapsulation machine with valved injection wedge
US6745546B2 (en) 2001-11-02 2004-06-08 R.P. Scherer Technologies, Inc. Encapsulation machine with valved injection wedge
US6990791B2 (en) 2001-11-02 2006-01-31 R.P. Scherer Technologies, Inc. Encapsulation machine with valved injection wedge
US20030085487A1 (en) * 2001-11-02 2003-05-08 Keith Tanner Apparatus and method for manufacturing encapsulated products
US6884060B2 (en) 2001-11-02 2005-04-26 R.P. Scherer Technologies, Inc. Apparatus for manufacturing encapsulated products
EP1458613A4 (en) * 2001-11-02 2008-12-10 Scherer Technologies Inc R P Encapsulation machine with valved injection wedge
US6869633B2 (en) 2002-04-22 2005-03-22 Restaurant Technology, Inc. Automated food frying device and method
US7891289B2 (en) 2002-04-22 2011-02-22 Restaurant Technology, Inc. Automated food frying device and method
US20030205288A1 (en) * 2002-04-22 2003-11-06 Sus Gerald A. Automated device and method for packaging food
US7441388B2 (en) 2002-04-22 2008-10-28 Restaurant Technology, Inc. Automated device for packaging food
US20080193617A1 (en) * 2002-04-22 2008-08-14 Sus Gerald A Automated food processing system and method
US6871676B2 (en) 2002-04-22 2005-03-29 Restaurant Technology, Inc. Automated device and method for packaging food
US20080166461A1 (en) * 2002-04-22 2008-07-10 Sus Gerald A Automated food processing system and method
US20040011006A1 (en) * 2002-04-22 2004-01-22 Sus Gerald A. Food dispensing device and method
US7356980B2 (en) 2002-04-22 2008-04-15 Restaurant Technology, Inc. Automated method for packaging food
US8034390B2 (en) 2002-04-22 2011-10-11 Restaurant Technology, Inc. Automated food processing system and method
US7981455B2 (en) 2002-04-22 2011-07-19 Restaurant Technology, Inc. Automated food processing system and method
US20080061072A1 (en) * 2002-04-22 2008-03-13 Sus Gerald A Frozen food dispensing device and method
US7703636B2 (en) 2002-04-22 2010-04-27 Restaurant Technology, Inc. Frozen food dispensing device and method
US6960157B2 (en) 2002-04-22 2005-11-01 Restaurant Technology, Inc. Automated system and method for handling food containers
US7303776B2 (en) 2002-04-22 2007-12-04 Restaurant Technology, Inc. Automated food processing system and method
US7337594B2 (en) 2002-04-22 2008-03-04 Restaurant Technology, Inc. Food dispensing device and method
US7955652B2 (en) 2002-05-15 2011-06-07 Mcneil-Ppc, Inc. Enrobed core
US20080069880A1 (en) * 2002-05-15 2008-03-20 Bunick Frank J Enrobed core
US7169450B2 (en) 2002-05-15 2007-01-30 Mcneil-Ppc, Inc. Enrobed core
US6946156B2 (en) 2002-05-15 2005-09-20 Mcneil-Ppc, Inc. Process for enrobing a core
US20030215563A1 (en) * 2002-05-15 2003-11-20 Mcneil-Ppc, Inc. Process for enrobing a core
US20070199282A1 (en) * 2003-08-05 2007-08-30 Yoshitugi Hashiba Packaging device, measuring and packaging device, and method of manufacturing packaged article
US20120114804A1 (en) * 2004-07-28 2012-05-10 Mars, Incorporated Apparatus and process for preparing confectionery having an inclusion therein using forming rolls and a forming pin
US9078456B2 (en) * 2004-07-28 2015-07-14 Mars, Incorporated Confectionery having a void formed by a forming pin
US9420805B2 (en) 2004-07-28 2016-08-23 Mars, Incorporated Confectionery having a formed hollow section
US20060051476A1 (en) * 2004-09-03 2006-03-09 Fornaguera Joan F Tubular hopper with synchronized tray and method
US20060051475A1 (en) * 2004-09-03 2006-03-09 Fornaguera Joan F Confectionery depositing apparatus and product and method of producing same
US20060051458A1 (en) * 2004-09-03 2006-03-09 Fornaguera Joan F Tubular hopper confectionery depositing apparatus and method
US20080220119A1 (en) * 2004-09-03 2008-09-11 Wm. Wrigley Jr. Company Confectionery depositing apparatus and product and method of producing same
US8383579B2 (en) 2004-11-19 2013-02-26 GlaxoSmithKline, LLC Method for customized dispensing of variable dose drug combination products for individualizing of therapies
US20090155315A1 (en) * 2004-11-19 2009-06-18 Smithkline Beecham Corporation A Corporation Pharmaceutical product
US20090149507A1 (en) * 2004-11-19 2009-06-11 Kirsh Richard L Method for customized dispensing of variable dose drug combination products for individualizing of therapies
US8858960B2 (en) 2004-11-19 2014-10-14 GlaxoSmithKline, LLC Method of producing a pharmaceutical product
US8022032B2 (en) 2004-11-19 2011-09-20 Smithkline Beecham Corporation Method for customized dispensing of variable dose drug combination products for individualizing of therapies
US20060141001A1 (en) * 2004-11-19 2006-06-29 Finkelmeier Steven D Pharmaceutical product
US20060107845A1 (en) * 2004-11-25 2006-05-25 Lars Aasted Apparatus for depositing edible mass
US20060234948A1 (en) * 2005-04-04 2006-10-19 Empie Mark W Lignan-containing compositions
US20070242559A1 (en) * 2005-04-18 2007-10-18 Larsen Herbert A Automated production processes and associated systems, including automated bread making processes
US8091471B2 (en) * 2005-04-18 2012-01-10 Larsen Herbert A F Automated production processes and associated systems, including automated bread making processes
US20070087100A1 (en) * 2005-10-07 2007-04-19 Fornaguera Joan F Apparatus and method for making multiple component confectionery product
US7771334B2 (en) * 2005-11-18 2010-08-10 Thomas Bailey Machine and method for pharmaceutical and pharmaceutical-like product assembly
US20070193225A1 (en) * 2005-11-18 2007-08-23 Thomas Bailey Machine and method for pharmaceutical and pharmaceutical-like product assembly
US20070122516A1 (en) * 2005-11-29 2007-05-31 Tiangang Qian Apparatus for preparing fresh ravioli, dumpling and pastries with filling in kitchen
US20080057154A1 (en) * 2006-09-01 2008-03-06 Dandy Sakiz Ve Sekerleme Sanayi A.S. Apparatus and Method for Making Chewing Gum Pieces
US8371092B1 (en) * 2008-09-05 2013-02-12 Viropharma Incorporated Apparatus and methods for reducing capsule elongation
US20120294975A1 (en) * 2011-05-18 2012-11-22 Chang Sung Softgel System Ltd. Apparatus for manufacturing vegetable gelatin capsule
US8696338B2 (en) * 2011-05-18 2014-04-15 Chang Sung Softgel System Ltd. Apparatus for manufacturing vegetable gelatin capsule
US20140175695A1 (en) * 2011-08-25 2014-06-26 Gala Industries, Inc. Melt processing plant
US9873220B2 (en) * 2011-08-25 2018-01-23 Gala Industries, Inc. Melt processing plant
WO2014139803A1 (en) * 2013-03-15 2014-09-18 AbbVie Deutschland GmbH & Co. KG Process and apparatus for metering a plasticized formulation
CN107107007A (en) * 2014-11-05 2017-08-29 马格奥托马蒂克公司 The purposes of the granulating system and the compression roller comminutor of compression roller comminutor including the compression roller comminutor
KR20170080667A (en) * 2014-11-05 2017-07-10 마그 아우토매틱 게엠베하 Squeezing-roll granulator, granulating system comprising same, and use of the squeezing-roll granulator
WO2016070994A1 (en) * 2014-11-05 2016-05-12 Maag Automatik Gmbh Squeezing-roll granulator, granulating system comprising same, and use of the squeezing-roll granulator
CN107107007B (en) * 2014-11-05 2020-11-06 马格奥托马蒂克公司 Squeeze roll granulator, granulation system comprising such a squeeze roll granulator and use of such a squeeze roll granulator
US11925915B2 (en) 2014-11-05 2024-03-12 Maag Automatik Gmbh Squeezing-roll granulator, granulating system comprising same, and use of the squeezing-roll granulator
US11026432B2 (en) 2015-08-18 2021-06-08 Wilkinson Research And Development, Llc Automated bread-making system
US11825852B2 (en) * 2017-02-21 2023-11-28 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.P.A. Machine for making filled pasta
US11937607B2 (en) * 2017-02-21 2024-03-26 Azionaria Costruzioni Macchine Automatiche A.C.M.A. S.P.A. Machine for making filled pasta
US11450171B2 (en) 2018-03-01 2022-09-20 Wilkinson Research And Development, Llc Kiosk for storing and distributing baked product and associated systems and methods
KR102041534B1 (en) * 2019-05-27 2019-11-06 (주)알피바이오 Wedge Segment for producing medical capsule and apparatus for producing medical capsule having different diameters of the rollers

Similar Documents

Publication Publication Date Title
US4028024A (en) Manufacture of filled capsules or the like
US6623266B2 (en) Apparatus for making a center-filled gum lollipop with hard candy shell
US2915023A (en) Method and apparatus for mixing icings, cake batters and the like
US5229164A (en) Process for producing individually dosed administration forms
US6758056B1 (en) Apparatus and process for molding frozen ice confectionery compositions into articles
US6528102B1 (en) Fruit snacks with varied center filling
US4251201A (en) Extrusion apparatus
KR930009396B1 (en) Production apparatus to form the solid state food material completely wrapped and sealed in a clayish state food material
CN106414244B (en) Total amount apparatus and method for
US20150174008A1 (en) Apparatus and process for encapsulating microparticles with liquid in soft gel capsules
JPS63119653A (en) Production of formed confectionery and apparatus therefor
WO2012017325A2 (en) Apparatus and process for encapsulating microparticles with liquid in soft gel capsules
US2552027A (en) Casting gelatin tablets
US2600569A (en) Method for making marshmallow
US5645872A (en) Apparatus for processing food into tubular shape
US3843819A (en) Edible capsules
CA1049466A (en) Manufacture of filled gelatin capsules
EP0317899B1 (en) Production of gelatin jelly confections
JPH0778018B2 (en) Method for producing a dosage unit dosage form
US4744997A (en) Method for producing gum candy
US6206968B1 (en) Apparatus for coating products
US3018715A (en) Food machinery
CH672574A5 (en)
US3190210A (en) Extruder head for food stuff
US3659519A (en) Apparatus for depositing aerated food products