US3983801A - High speed printer - Google Patents

High speed printer Download PDF

Info

Publication number
US3983801A
US3983801A US05/558,248 US55824875A US3983801A US 3983801 A US3983801 A US 3983801A US 55824875 A US55824875 A US 55824875A US 3983801 A US3983801 A US 3983801A
Authority
US
United States
Prior art keywords
ink
mist
ink mist
high speed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/558,248
Inventor
Akinori Watanabe
Katsuhide Tanoshima
Matsusaburo Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Application granted granted Critical
Publication of US3983801A publication Critical patent/US3983801A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/215Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material by passing a medium, e.g. consisting of an air or particle stream, through an ink mist
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S101/00Printing
    • Y10S101/37Printing employing electrostatic force

Definitions

  • Elevated operating speed of central processor units of electronic computers has demanded corresponding speed-up of high speed printing machines which output unit of such computer and various systems have been developed to meet such demand.
  • a typical example of such known systems is the one in which ink is supplied to the nozzle under extremely low pressure so that ink is bulged out half-spherically from the nozzle end, then ink is drawn out in the form of droplets by providing an electric field between said nozzle and an accelerating electrode placed several millimeters ahead of the nozzle.
  • the ink droplets are directed toward the surface of the printing paper by providing a strong electric field between the nozzle and the platen and further electrostatically deflected in both primary and secondary directions (right and left directions) to thereby print letters, signs, etc., on the surface of the paper.
  • the device of the present invention pertains to the last-mentioned system, and so this system is first described in detail for facilitating better understanding of the present invention.
  • reference numeral 101 denotes a paper on which printing is to be made (hereinafter referred to as printing paper), 102 a platen incorporated with a cathode 103, 104 a wire-shaped anode, and 105 an aperture board disposed in front of said anode 104 and consisting of a selecting electrode 105mist a common electrode 105b and an insulator 105c adapted to insulate said both electrodes from each other.
  • This aperture board is provided in its surface with a plurality of apertures 105d arranged along the length of the board as shown in FIG. 2.
  • Numeral 106 is an ink mist tank in which ink solution 107 is agitated by a plurality of vibrators 108 provided at the tank bottom so as to produce a mist of ink, 109 a main pump for feeding air both into the printing section and into said mist tank 106, and 110 a separator whereby the ink mist 112 recovered from the printing section 111 is separated into ink and air.
  • ions are produced from the anode 104 and moved in the direction of the printing paper 101 by the action of an electric field formed between said anode 104 and cathode 103.
  • said ions pass through the apertures 105d in the aperture board 105, but their passage is either promoted or retarded as they receive the action of the electric field formed between the selecting electrode 105a and the common electrode 105b.
  • Ion movement is promoted when the ions pass through the apertures 105d which correspond to the dots to be printed, and when these ions reach the ink mist 112 in the printing section 111, they are loaded with ink particles and further migrate toward the cathode 103 while carrying such ink particles therewith and then are adsorbed on the surface of the printing paper 101 to effect printing by way of dots.
  • letters, figures, etc., in the form of dots are printed on the printing paper, with the above-described operation being programmed as main scanning and feed of the printing paper as auxiliary scanning.
  • the present invention features the facts that at least one ink mist passage is provided at a location closely adjacent to the surface of ink solution, and that an air feed port is positioned such that the air is driven into said ink mist passage after passing the ink mist source or the vicinity thereof.
  • the first object of the present invention is to provide a mechanism for supplying a large amount of ink mist produced in a mist tank to the printing section.
  • the second object of the present invention is to provide a mechanism whereby the ink particles are hardly diffused and also no small convection is formed in the mist tank.
  • FIG. 1 is an illustrative arrangement plan of a high speed printer
  • FIG. 2 is a partial plan view of an aperture board
  • FIG. 3 is a sectional perspective view of a mist tank
  • FIG. 4 is a vertical sectional view of the mist tank
  • FIG. 5 is a perspective view showing the ink mist passages
  • FIG. 6 is a perspective view showing another example of ink mist passages
  • FIG. 7 is a perspective view of a mist tank and a reservoir tank in another embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of said mist tank
  • FIG. 9 is a plan view of a mist generator in said mist tank.
  • FIG. 10 is a longitudinal sectional view of said mist tank.
  • an aperture board 105 is provided between an anode 104 formed from a wire-shaped electrode and cathode 103 incorporated in a platen 102.
  • Said aperture board 105 has a selecting electrode 105a on the anode side and common electrode 105b on the cathode side, with an insulating member 105c being interposed therebetween.
  • Said board is also provided with a plurality of apertures 105d arranged in two lines in staggered relation along the length of the board, and an ion controlling electrode is formed for each of said apertures.
  • the selecting electrode 105a is connected to a drive circuit not shown so that it is selectively driven to a positive or negative potential depending on the potential of the common electrode 105b which is always retained at a given potential.
  • mist tank 106 Formed at the top of the mist tank 106 are the passages 113 arranged in correspondence to the respective vibrators 108 provided at the bottom of the mist tank 106 containing an ink solution 107 therein, with an end of each of said passages 113 being positioned close to the surface of said ink solution 107.
  • an air inlet 114 At the upper side portion of said mist tank 106 is also provided an air inlet 114 for introducing air into the mist tank 106. The air thus introduced into the mist tank tends to blow out upwardly through said respective passages 113. During this action, such air guides the ink mist 112 produced by the vibrators 108 into said passages 113 and carries the ink mist therewith upwardly.
  • Said passages 113 may be either formed individually from pipes 115 as shown in FIGS. 3 and 4 or may be formed collectively in a block 116 or from partition plates 117 as shown in FIGS. 5 and 6. Also, such passages 113 may not necessarily be provided at the positions corresponding to the respective vibrators 108.
  • FIG. 7 shows a mist tank according to another embodiment of the present invention.
  • the mist tank 106 which is circular in sectional shape, is composed of two separatable upper and lower portions, with the lower portion constituting a mist generator 118 designed to produce ink mist from ink solution stored therein while the upper portion constitutes a mist distributor 119 designed to cover said mist generator 118 and to supply the produced ink mist to the printing section 111.
  • Said mist generator 118 as best shown in FIG. 9 is provided at its bottom with a plurality of circularly arranged vibrators 108 and is also formed in its peripheral side with an air inlet port 114 through which air is introduced for carrying therewith the ink mist 112 to the printing section 111.
  • Said mist distributor 119 is shaped like a dome and provided at its top with a passage 120 for delivering the ink mist 112 to the printing section 111.
  • This mist distributor comprises a mist distributing portion 119a, an ink mist collecting portion 119b and a flange 119c disposed between said distributing portion 119a and collecting portion 119b.
  • Said flange 119c of the mist distributor 119 is placed on the top end of the mist generator 118 to constitute the mist tank 106 as shown in FIGS. 7 and 10.
  • FIG. 10 shows the mist tank 106 in vertical section. It willl be seen that the mist collecting portion 119b of the mist distributor 119 runs out into the inside of the mist generator 118, and an air passing space is formed between the opposing faces of said collecting portion 119b and mist generator 118. The air entering said space is carried into the mist generator 118 through the air inlet port 114 and flows in the direction of arrows in the figure. The inlet opening of the collecting portion 119b of the mist distributor is placed in opposition to the surface of the ink solution 108 stored in the mist generator 118.
  • the ink mist generated from the ink solution by agitating of the vibrators 108 in the same way as described before is driven upwardly by the air and forcibly transferred into the mist passage 120.
  • the ink mist is effectively and entirely carried into the printing section 111 without creating any small convection.
  • the ink mist carried up while riding on the air stream as described above enters the reservoir tank 121 and then is discharged out to the printing section 111 from an opening 122 directed toward the space between the aperture board 105 and the platen 102 (hence the printing paper 101).
  • an ink mist and air collecting port 123 is provided in opposition to said opening 122, said collecting port 123 being connected to a separator 110 by way of a conduit 124 and thence further to the pump 109 through a cooler or other means.
  • each selecting electrode 105a is energized to effect control of migration of the cations for all of the apertures 105d, and the cations which have passed said apertures 105d enter the ink mist 112 and are deposited with fine ink particles.
  • These ink particle-carrying cations continue their migration in the direction of the cathode 103 until they are adsorbed on the surface of the printing paper 101 to thereby effect printing by way of dots.
  • Such printing is accomplished all at once in the direction of width of the printing paper 101.
  • the letters consisting of plural dot patterns are printed all together in lines with the above-said operation being programmed as main scanning and feed of the printing paper 101 as auxiliary scanning.
  • the ink mist 112 produced by the vibrators 108 in the mist tank 106 and supplied in between the printing paper 101 and aperture board 105 passes through the passages 113 (and 120) along with air, then guided into the reservoir tank 121 and discharged out from the opening 122 with uniform density.
  • a part of the thus discharged ink mist is used for effecting printing in the form of dots as described above, while the remainder is collected in the collecting port 123 together with air stream, and the mixture of such ink mist and air is guided into the separator 110 where the ink particles and air are separated from each other, with the thus separated air being transferred into a cooler to be cooled therein and then further carried into the main pump 109 for reuse as fresh air in the mist tank 106 and in the printing section 111.
  • the air introduced into the mist tank can be regulated so that it rises up through said passages after passing the ink mist source of the neighborhood thereof, so that such air can prevent the ink mist produced by the vibrators from forming small convections, and hence the ink particles are bonded to each other and carried into the printing section along with the air before they are again liquefied.
  • each of said passages is positioned close to the surface of the ink solution, it is possible to increase the air flow rate at or in the vicinity of the ink mist source, so that the produced ink mist can be immediately dragged into the air stream and guided into said passages. Consequently, it becomes possible to increase the ink mist supply as compared with the conventional systems and to consistently maintain the clear and uniform printing operation.

Abstract

A high speed printer for printing desired letters, figures, signs, etc., on a paper by depositing ink particles on the paper after properly controlling ink droplets or selectively controlling corpuscles, characterized in that at least one ink mist passage is provided at a location closely adjacent to the surface of ink solution. An air feed port also is provided for introducing air into said ink mist passage after the air passes the ink mist source or its vicinity so that the produced ink mist will flow into said ink mist passage without forming any small convection.

Description

BACKGROUND OF THE INVENTION
Elevated operating speed of central processor units of electronic computers has demanded corresponding speed-up of high speed printing machines which output unit of such computer and various systems have been developed to meet such demand.
A typical example of such known systems is the one in which ink is supplied to the nozzle under extremely low pressure so that ink is bulged out half-spherically from the nozzle end, then ink is drawn out in the form of droplets by providing an electric field between said nozzle and an accelerating electrode placed several millimeters ahead of the nozzle. The ink droplets are directed toward the surface of the printing paper by providing a strong electric field between the nozzle and the platen and further electrostatically deflected in both primary and secondary directions (right and left directions) to thereby print letters, signs, etc., on the surface of the paper.
There is also known a popularly employed system in which ions produced between the electrodes applied with a high voltage are passed through an ink mist so that they are deposited with ink particles, and then these ink particle-carrying ions are selectively adsorbed on the surface of the printing paper to thereby effect printing.
The device of the present invention pertains to the last-mentioned system, and so this system is first described in detail for facilitating better understanding of the present invention.
Referring to FIG. 1, reference numeral 101 denotes a paper on which printing is to be made (hereinafter referred to as printing paper), 102 a platen incorporated with a cathode 103, 104 a wire-shaped anode, and 105 an aperture board disposed in front of said anode 104 and consisting of a selecting electrode 105mist a common electrode 105b and an insulator 105c adapted to insulate said both electrodes from each other. This aperture board is provided in its surface with a plurality of apertures 105d arranged along the length of the board as shown in FIG. 2. Numeral 106 is an ink mist tank in which ink solution 107 is agitated by a plurality of vibrators 108 provided at the tank bottom so as to produce a mist of ink, 109 a main pump for feeding air both into the printing section and into said mist tank 106, and 110 a separator whereby the ink mist 112 recovered from the printing section 111 is separated into ink and air.
According to this system, ions are produced from the anode 104 and moved in the direction of the printing paper 101 by the action of an electric field formed between said anode 104 and cathode 103. In moving toward the printing paper, said ions pass through the apertures 105d in the aperture board 105, but their passage is either promoted or retarded as they receive the action of the electric field formed between the selecting electrode 105a and the common electrode 105b. Ion movement is promoted when the ions pass through the apertures 105d which correspond to the dots to be printed, and when these ions reach the ink mist 112 in the printing section 111, they are loaded with ink particles and further migrate toward the cathode 103 while carrying such ink particles therewith and then are adsorbed on the surface of the printing paper 101 to effect printing by way of dots. In this way, letters, figures, etc., in the form of dots are printed on the printing paper, with the above-described operation being programmed as main scanning and feed of the printing paper as auxiliary scanning.
In such type of high speed printing apparatus, it is often experienced that the letters, etc., are printed too lightly. This is mostly due to shortage or deficiency of ink mist supplied to the printing section 111 from the mist tank 106. That is, as there exists a certain distance between the mist source and the mist delivery port, the ink particles tend to be diffused by the air supplied for carrying the ink mist in the mist tank 106 to the printing section 111, and also many small convections are formed in the mist tank, and these factors to reduce the amount of ink mist which is actually carried into the printing section by said air.
SUMMARY OF THE INVENTION
The present invention features the facts that at least one ink mist passage is provided at a location closely adjacent to the surface of ink solution, and that an air feed port is positioned such that the air is driven into said ink mist passage after passing the ink mist source or the vicinity thereof.
OBJECTS OF THE INVENTION
The first object of the present invention is to provide a mechanism for supplying a large amount of ink mist produced in a mist tank to the printing section.
The second object of the present invention is to provide a mechanism whereby the ink particles are hardly diffused and also no small convection is formed in the mist tank.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an illustrative arrangement plan of a high speed printer;
FIG. 2 is a partial plan view of an aperture board;
FIG. 3 is a sectional perspective view of a mist tank;
FIG. 4 is a vertical sectional view of the mist tank;
FIG. 5 is a perspective view showing the ink mist passages;
FIG. 6 is a perspective view showing another example of ink mist passages;
FIG. 7 is a perspective view of a mist tank and a reservoir tank in another embodiment of the present invention;
FIG. 8 is an exploded perspective view of said mist tank;
FIG. 9 is a plan view of a mist generator in said mist tank; and
FIG. 10 is a longitudinal sectional view of said mist tank.
DETAILED DESCRIPTION OF THE INVENTION
As described above, an aperture board 105 is provided between an anode 104 formed from a wire-shaped electrode and cathode 103 incorporated in a platen 102. Said aperture board 105 has a selecting electrode 105a on the anode side and common electrode 105b on the cathode side, with an insulating member 105c being interposed therebetween. Said board is also provided with a plurality of apertures 105d arranged in two lines in staggered relation along the length of the board, and an ion controlling electrode is formed for each of said apertures. The selecting electrode 105a is connected to a drive circuit not shown so that it is selectively driven to a positive or negative potential depending on the potential of the common electrode 105b which is always retained at a given potential.
Now the mechanism for supplying ink mist 112 to the printing section 111 between said aperture board 105 and platen 102 is described. Formed at the top of the mist tank 106 are the passages 113 arranged in correspondence to the respective vibrators 108 provided at the bottom of the mist tank 106 containing an ink solution 107 therein, with an end of each of said passages 113 being positioned close to the surface of said ink solution 107. At the upper side portion of said mist tank 106 is also provided an air inlet 114 for introducing air into the mist tank 106. The air thus introduced into the mist tank tends to blow out upwardly through said respective passages 113. During this action, such air guides the ink mist 112 produced by the vibrators 108 into said passages 113 and carries the ink mist therewith upwardly.
Said passages 113 may be either formed individually from pipes 115 as shown in FIGS. 3 and 4 or may be formed collectively in a block 116 or from partition plates 117 as shown in FIGS. 5 and 6. Also, such passages 113 may not necessarily be provided at the positions corresponding to the respective vibrators 108.
FIG. 7 shows a mist tank according to another embodiment of the present invention. In this case, the mist tank 106, which is circular in sectional shape, is composed of two separatable upper and lower portions, with the lower portion constituting a mist generator 118 designed to produce ink mist from ink solution stored therein while the upper portion constitutes a mist distributor 119 designed to cover said mist generator 118 and to supply the produced ink mist to the printing section 111. Said mist generator 118, as best shown in FIG. 9 is provided at its bottom with a plurality of circularly arranged vibrators 108 and is also formed in its peripheral side with an air inlet port 114 through which air is introduced for carrying therewith the ink mist 112 to the printing section 111. Said mist distributor 119 is shaped like a dome and provided at its top with a passage 120 for delivering the ink mist 112 to the printing section 111. This mist distributor comprises a mist distributing portion 119a, an ink mist collecting portion 119b and a flange 119c disposed between said distributing portion 119a and collecting portion 119b. Said flange 119c of the mist distributor 119 is placed on the top end of the mist generator 118 to constitute the mist tank 106 as shown in FIGS. 7 and 10.
FIG. 10 shows the mist tank 106 in vertical section. It willl be seen that the mist collecting portion 119b of the mist distributor 119 runs out into the inside of the mist generator 118, and an air passing space is formed between the opposing faces of said collecting portion 119b and mist generator 118. The air entering said space is carried into the mist generator 118 through the air inlet port 114 and flows in the direction of arrows in the figure. The inlet opening of the collecting portion 119b of the mist distributor is placed in opposition to the surface of the ink solution 108 stored in the mist generator 118. Therefore, the ink mist generated from the ink solution by agitating of the vibrators 108 in the same way as described before is driven upwardly by the air and forcibly transferred into the mist passage 120. Thus, the ink mist is effectively and entirely carried into the printing section 111 without creating any small convection. In this way, the ink mist carried up while riding on the air stream as described above enters the reservoir tank 121 and then is discharged out to the printing section 111 from an opening 122 directed toward the space between the aperture board 105 and the platen 102 (hence the printing paper 101). On both upper and lower sides of the ink mist in the printing section 111 are formed air streams flowing in the same direction as the ink mist flow so as to prevent the printing paper 101 and aperture board 105 from being stained by the ink mist. It is to be also noted that an ink mist and air collecting port 123 is provided in opposition to said opening 122, said collecting port 123 being connected to a separator 110 by way of a conduit 124 and thence further to the pump 109 through a cooler or other means.
Now the operation of the present device having the above-described arrangement is described. In order to obtain desired printing patterns, each selecting electrode 105a is energized to effect control of migration of the cations for all of the apertures 105d, and the cations which have passed said apertures 105d enter the ink mist 112 and are deposited with fine ink particles. These ink particle-carrying cations continue their migration in the direction of the cathode 103 until they are adsorbed on the surface of the printing paper 101 to thereby effect printing by way of dots. Such printing is accomplished all at once in the direction of width of the printing paper 101. In this way, the letters consisting of plural dot patterns are printed all together in lines with the above-said operation being programmed as main scanning and feed of the printing paper 101 as auxiliary scanning.
As described above, the ink mist 112 produced by the vibrators 108 in the mist tank 106 and supplied in between the printing paper 101 and aperture board 105 passes through the passages 113 (and 120) along with air, then guided into the reservoir tank 121 and discharged out from the opening 122 with uniform density. A part of the thus discharged ink mist is used for effecting printing in the form of dots as described above, while the remainder is collected in the collecting port 123 together with air stream, and the mixture of such ink mist and air is guided into the separator 110 where the ink particles and air are separated from each other, with the thus separated air being transferred into a cooler to be cooled therein and then further carried into the main pump 109 for reuse as fresh air in the mist tank 106 and in the printing section 111.
As viewed above, according to the high speed printing apparatus of the present invention, as passages are provided in the top of the mist tank, the air introduced into the mist tank can be regulated so that it rises up through said passages after passing the ink mist source of the neighborhood thereof, so that such air can prevent the ink mist produced by the vibrators from forming small convections, and hence the ink particles are bonded to each other and carried into the printing section along with the air before they are again liquefied. Also, since one end of each of said passages is positioned close to the surface of the ink solution, it is possible to increase the air flow rate at or in the vicinity of the ink mist source, so that the produced ink mist can be immediately dragged into the air stream and guided into said passages. Consequently, it becomes possible to increase the ink mist supply as compared with the conventional systems and to consistently maintain the clear and uniform printing operation.

Claims (6)

What is claimed is:
1. A high speed printer for printing symbols comprising a printing paper on which said symbols are printed, ink being deposited on said paper by charging ink drops and selectively electrically controlling said ink drops, said ink drops being formed from an ink mist, said ink mist being supplied to the vicinity of said printing paper under control of an air flow stream through an ink mist passage, an ink reservoir containing said ink and a plurality of vibrators for vibrating said ink to form an ink mist above the top of the surface of the ink and a source of air flow for carrying said ink mist to the vicinity of said printing paper through said ink mist passage, characterized in that said ink mist passage is formed of a surface having one end thereof in close proximate relation to said surface of the ink and an air feed port is provided to carry said air to the vicinity of said surface of the ink to carry the ink mist directly into said ink mist passage.
2. A high speed printer as set forth in claim 1, wherein said ink mist passage comprises a plurality of parallel separated chambers, with one end each of said chambers being in close proximate relation to said ink surface.
3. A high speed printer as set forth in claim 2, comprising a plurality of vibrators, with respective ones of said vibrators being located below respective ones of said chambers.
4. A high speed printer as set forth in claim 1, wherein said ink mist passage comprises a plurality of vertically oriented channels, said channels being formed of a plurality of vertically extending parallel baffle members defining said separate channels said ink mist being carried through said plurality of channels.
5. A high speed printer as set forth in claim 1, wherein said ink mist passage comprises a vertically oriented block containing a plurality of separate chambers arrayed vertically in matrix form with the bottom of the block being in close proximate relation to said ink surface.
6. A high speed printer as set forth in claim 1, wherein said ink reservoir comprises a dome-shaped mist distributor provided with a passage at its top and a flange around a pertinent peripheral part thereof, and a mist generator provided with a plurality of said vibrators at its bottom and an air inlet pipe at an upper peripheral part thereof, both said mist distributor and said mist generator being combined together by placing the flange of said mist distributor on the top end of said mist generator, with the bottom end of said mist distributor being positioned close to the surface of the ink.
US05/558,248 1974-04-18 1975-03-14 High speed printer Expired - Lifetime US3983801A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP49042766A JPS50137435A (en) 1974-04-18 1974-04-18
JA49-42766 1974-04-18

Publications (1)

Publication Number Publication Date
US3983801A true US3983801A (en) 1976-10-05

Family

ID=12645090

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/558,248 Expired - Lifetime US3983801A (en) 1974-04-18 1975-03-14 High speed printer

Country Status (5)

Country Link
US (1) US3983801A (en)
JP (1) JPS50137435A (en)
DE (1) DE2516865A1 (en)
FR (1) FR2267884B1 (en)
GB (1) GB1492836A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103612A (en) * 1976-03-25 1978-08-01 Oki Electric Industry Co., Ltd. Ink mist type high speed printer
US4154195A (en) * 1977-05-02 1979-05-15 Siemens Aktiengesellschaft Printing device utilizing solvent dissolved toner applied to a recording carrier
US4172418A (en) * 1978-05-01 1979-10-30 Freeman Transfer Printing Company, Inc. Electrostatic printing apparatus and method
US4307407A (en) * 1980-06-30 1981-12-22 The Mead Corporation Ink jet printer with inclined rows of jet drop streams
US4348684A (en) * 1977-12-12 1982-09-07 Compagnie Internationale Pour L'informatique Cii-Honeywell Bull (Societe Anonyme) Device for removing excess pigment from the surface of the image carrier of a non-impact printing machine
US4402000A (en) * 1979-03-22 1983-08-30 Minnesota Mining And Manufacturing Company Electrographic recording method and apparatus with control of toner quantity at recording region
US5526029A (en) * 1992-11-16 1996-06-11 Array Printers Ab Method and apparatus for improving transcription quality in electrographical printers
US5752142A (en) * 1993-10-13 1998-05-12 Watermark Imaging Ltd. Method and apparatus for developing electrostatic images
US6364462B1 (en) * 1998-02-13 2002-04-02 Sharp Kabushiki Kaisha Image recording method and image recording apparatus permitting good picture quality to be provided
US6491364B2 (en) 2001-04-27 2002-12-10 Hewlett-Packard Company Inkjet printing with air movement system to improve dot shape
US6561620B2 (en) 2001-04-27 2003-05-13 Hewlett-Packard Development Company, L.P. Carriage skirt for inkjet printer
US6719398B1 (en) 2000-05-15 2004-04-13 Hewlett-Packard Development Company, L.P. Inkjet printing with air movement system
US6755505B2 (en) 2001-06-04 2004-06-29 Hewlett-Packard Development Company, L.P. Carriage dam for inkjet printer
US6886905B2 (en) 2000-05-15 2005-05-03 Hewlett-Packard Development Company, L.P. Inkjet printing with air movement system
US20060238561A1 (en) * 2005-04-26 2006-10-26 Hewlett-Packard Development Company, Lp Printing system and method
US20100328374A1 (en) * 2009-06-30 2010-12-30 Yonglin Xie Flow through drop dispenser
US20120098891A1 (en) * 2010-10-26 2012-04-26 Yonglin Xie Dispensing liquid using curved vent dispenser
US9315037B2 (en) 2012-10-30 2016-04-19 Hewlett-Packard Development Company, L.P. Ink aerosol filtration
US20170217206A1 (en) * 2014-07-30 2017-08-03 Hewlett-Packard Development Company, L.P. ION Writing Unit with Air Flow
US20170217207A1 (en) * 2014-07-30 2017-08-03 Hewlett-Packard Development Company, L.P ION Writing Unit With Rate Control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274559A (en) * 1989-04-18 1990-11-08 Komori Corp Head of image printer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB719239A (en) * 1952-02-18 1954-12-01 Harris Seybold Co Improvements in or relating to a planographic printing press and a process of printing
US3152858A (en) * 1960-09-26 1964-10-13 Sperry Rand Corp Fluid actuated recording device
US3179042A (en) * 1962-06-28 1965-04-20 Sperry Rand Corp Sudden steam printer
US3211088A (en) * 1962-05-04 1965-10-12 Sperry Rand Corp Exponential horn printer
US3545374A (en) * 1968-04-26 1970-12-08 Massachusetts Inst Technology High-speed printer employing a gas discharge matrix
US3582954A (en) * 1969-02-24 1971-06-01 Stephen F Skala Printing by selective ink ejection from capillaries
US3750564A (en) * 1971-02-05 1973-08-07 Olympia Werke Ag Electrostatic capillary apparatus for producing an imprint
US3779166A (en) * 1970-12-28 1973-12-18 Electroprint Inc Electrostatic printing system and method using ions and toner particles
US3834301A (en) * 1971-11-17 1974-09-10 Battelle Memorial Institute Process and device for non-impact printing with liquid ink

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB719239A (en) * 1952-02-18 1954-12-01 Harris Seybold Co Improvements in or relating to a planographic printing press and a process of printing
US3152858A (en) * 1960-09-26 1964-10-13 Sperry Rand Corp Fluid actuated recording device
US3211088A (en) * 1962-05-04 1965-10-12 Sperry Rand Corp Exponential horn printer
US3179042A (en) * 1962-06-28 1965-04-20 Sperry Rand Corp Sudden steam printer
US3545374A (en) * 1968-04-26 1970-12-08 Massachusetts Inst Technology High-speed printer employing a gas discharge matrix
US3582954A (en) * 1969-02-24 1971-06-01 Stephen F Skala Printing by selective ink ejection from capillaries
US3779166A (en) * 1970-12-28 1973-12-18 Electroprint Inc Electrostatic printing system and method using ions and toner particles
US3750564A (en) * 1971-02-05 1973-08-07 Olympia Werke Ag Electrostatic capillary apparatus for producing an imprint
US3834301A (en) * 1971-11-17 1974-09-10 Battelle Memorial Institute Process and device for non-impact printing with liquid ink

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
McCurry et al., "Mist Ink Printers, " IBM Tech. Discl. Bull., vol. 15, No. 8, p. 2389, Jan. 1973. *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103612A (en) * 1976-03-25 1978-08-01 Oki Electric Industry Co., Ltd. Ink mist type high speed printer
US4154195A (en) * 1977-05-02 1979-05-15 Siemens Aktiengesellschaft Printing device utilizing solvent dissolved toner applied to a recording carrier
US4348684A (en) * 1977-12-12 1982-09-07 Compagnie Internationale Pour L'informatique Cii-Honeywell Bull (Societe Anonyme) Device for removing excess pigment from the surface of the image carrier of a non-impact printing machine
US4172418A (en) * 1978-05-01 1979-10-30 Freeman Transfer Printing Company, Inc. Electrostatic printing apparatus and method
US4402000A (en) * 1979-03-22 1983-08-30 Minnesota Mining And Manufacturing Company Electrographic recording method and apparatus with control of toner quantity at recording region
US4307407A (en) * 1980-06-30 1981-12-22 The Mead Corporation Ink jet printer with inclined rows of jet drop streams
US5526029A (en) * 1992-11-16 1996-06-11 Array Printers Ab Method and apparatus for improving transcription quality in electrographical printers
US5752142A (en) * 1993-10-13 1998-05-12 Watermark Imaging Ltd. Method and apparatus for developing electrostatic images
US6364462B1 (en) * 1998-02-13 2002-04-02 Sharp Kabushiki Kaisha Image recording method and image recording apparatus permitting good picture quality to be provided
US6719398B1 (en) 2000-05-15 2004-04-13 Hewlett-Packard Development Company, L.P. Inkjet printing with air movement system
US6997538B1 (en) 2000-05-15 2006-02-14 Hewlett-Packard Development Company, L.P. Inkjet printing with air current disruption
US6886905B2 (en) 2000-05-15 2005-05-03 Hewlett-Packard Development Company, L.P. Inkjet printing with air movement system
US6491364B2 (en) 2001-04-27 2002-12-10 Hewlett-Packard Company Inkjet printing with air movement system to improve dot shape
US6561620B2 (en) 2001-04-27 2003-05-13 Hewlett-Packard Development Company, L.P. Carriage skirt for inkjet printer
US6755505B2 (en) 2001-06-04 2004-06-29 Hewlett-Packard Development Company, L.P. Carriage dam for inkjet printer
US20060238561A1 (en) * 2005-04-26 2006-10-26 Hewlett-Packard Development Company, Lp Printing system and method
US7431421B2 (en) 2005-04-26 2008-10-07 Hewlett-Packard Development Company, L.P. Printing system and method
US20100328374A1 (en) * 2009-06-30 2010-12-30 Yonglin Xie Flow through drop dispenser
US8118408B2 (en) * 2009-06-30 2012-02-21 Eastman Kodak Company Flow through dispenser having different cross-sectional areas
US20120098891A1 (en) * 2010-10-26 2012-04-26 Yonglin Xie Dispensing liquid using curved vent dispenser
US8303091B2 (en) * 2010-10-26 2012-11-06 Eastman Kodak Company Dispensing liquid using curved vent dispenser
US9315037B2 (en) 2012-10-30 2016-04-19 Hewlett-Packard Development Company, L.P. Ink aerosol filtration
US20170217206A1 (en) * 2014-07-30 2017-08-03 Hewlett-Packard Development Company, L.P. ION Writing Unit with Air Flow
US20170217207A1 (en) * 2014-07-30 2017-08-03 Hewlett-Packard Development Company, L.P ION Writing Unit With Rate Control
US9889677B2 (en) * 2014-07-30 2018-02-13 Hewlett-Packard Development Company, L.P. Ion writing unit with rate control
US10155396B2 (en) * 2014-07-30 2018-12-18 Hewlett-Packard Development Company, L.P. Ion writing unit with air flow

Also Published As

Publication number Publication date
DE2516865A1 (en) 1975-10-30
FR2267884B1 (en) 1977-04-15
GB1492836A (en) 1977-11-23
JPS50137435A (en) 1975-10-31
FR2267884A1 (en) 1975-11-14

Similar Documents

Publication Publication Date Title
US3983801A (en) High speed printer
US3967549A (en) Ink supply system for an ink mist printer
US3656171A (en) Apparatus and method for sorting particles and jet prop recording
EP0124311B1 (en) Thermal ink jet printers
GB2127748A (en) Removing bubbles from ink jet printer ink supply
US4340895A (en) Degassing ink supply apparatus for ink jet printer
EP0235271A1 (en) Print head for continuous ink jet printer.
US5105205A (en) Continuous ink jet catcher device having improved flow control construction
US4376284A (en) Ink jet print head
US4050377A (en) High speed printer with heated aperture board
US4117778A (en) High speed printer with arc preventing fluorocarbon gas
JP2020527492A (en) Fluid discharge device with built-in transverse flow path
US10449775B2 (en) Liquid ejecting head and filter unit
EP0449876B1 (en) Continuous ink jet printer
US4268836A (en) Ink jet printer having improved catcher
JP2016155302A (en) Ink-jet recording apparatus
US4965610A (en) Ink-jet recording method
JP2020528844A (en) Fluid injection die with built-in cross-channel
US4307407A (en) Ink jet printer with inclined rows of jet drop streams
US3962969A (en) Ink mist type high speed printer
US4024811A (en) High speed printing apparatus
CA2193156A1 (en) Two row flat face charging for high resolution printing
US4544930A (en) Ink jet printer with secondary, cyclically varying deflection field
US3943847A (en) High speed printing apparatus
JPS6169466A (en) High-speed printer