US3930173A - Ultrasonic transducers - Google Patents

Ultrasonic transducers Download PDF

Info

Publication number
US3930173A
US3930173A US412767A US41276773A US3930173A US 3930173 A US3930173 A US 3930173A US 412767 A US412767 A US 412767A US 41276773 A US41276773 A US 41276773A US 3930173 A US3930173 A US 3930173A
Authority
US
United States
Prior art keywords
transducer
transformer
housing
outer shell
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US412767A
Inventor
Anton Banko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surgical Design Corp
Original Assignee
Surgical Design Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surgical Design Corp filed Critical Surgical Design Corp
Priority to US412767A priority Critical patent/US3930173A/en
Application granted granted Critical
Publication of US3930173A publication Critical patent/US3930173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/08Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with magnetostriction

Definitions

  • the outer shell is attached without the necessity of a resilient [56] Reknnm Cited support.
  • he transducer is also constituted to accept a housing and form a sealing relationship therewith to UNITED STATES PATENTS fluid, in some embodiments a portion of the sealing 2,83LI32 4/l958 Jackson 310/26 means being located on the outer shell, and in other 2,89l,l78 6/l959 Elmore lilo/Z6 embodiments on another portion of the transformer.
  • 2,89l,l80 6/1959 Elmore 310/26 2,990,616 7/1961 Balamuth et al 310/26 48 Claims, 15 Drawing Figures t B 111L411.
  • FIG l2 FIG. l3
  • Ultrasonic transducers are well known devices for converting electrical energy into vibrational motion at ultrasonic frequencies, broadly considered to be in the range from I khz to I khz. Many of these transducers use a stack of magnetostructive elements for producing the desired energy conversion.
  • the transducers of the invention are of the magnetostructive type and include a stack of elements of magnetostructive material, a workpiece or tool, and an acoustic transformer between the stack and the workpiece for transmitting energy from the stack to the workpiece.
  • the transformers are of a type which include an outer shell which is attached near or at a node point of an internal part of the transformer.
  • the shell serves as a support by which the transducer can be held and/or a housing attached.
  • the shell forms a part of the resonating structure and its characteristics can be changed to alter the resonant frequency of the transducer. It is preferred that the outer shell have a portion of relatively heavy mass which will serve as a vibration damper.
  • the outer shell is attached to the other part of the trans former without the use of a resilient support. This means that the entire instrument can be sterilized, such as by autoclaving, without any risk of damaging it.
  • the transducers are constructed in a manner such that a housing can be provided in which a fluid can be circulated to cool the stack members.
  • the structures are such that the housings can be fastened to the outer shell or another part of the transducer transformer. In many cases, this can be done without the need of any resilient sealing members.
  • a screw thread is used as the fastening means. This prevents the insert (stack, transformer and workpiece) from being pulled axially out of the housing.
  • novel transducer structures are disclosed which can support high stress loads and which have a large stroke of motion of the workpiece.
  • a further object is to provide ultrasonic transducers which are made entirely of metal material.
  • Another object is to provide novel ultrasonic transducers having arrangements for attaching a fluid containing a housing thereto without the need of a sealing element.
  • Yet another object is to provide novel ultrasonic transducer structures which are constructed with a flange member adjacent to an outer shell, the flange serving as one sealing surface for a fluid containing housing.
  • FIGS. IA and 18 when taken together, show partially in cross-section a one embodiment of a transducer in accordance with the invention in cross-section;
  • FIG. 2 is a diagram showing the longitudinal motion of the vibrational energy of the transducer of FIG. I;
  • FIG. 3 is a front view of the transducer of FIG. 1;
  • FIG. 4 is a cross-sectional view of the transducer of FIG. 1 taken along the lines 4-4 of FIG. 1;
  • FIG. 5 is a fragmentary view of a front portion of a transducer, taken in cross-section, of another embodiment of the invention.
  • FIG. 6 is a cross-sectional view of the front portion of yet another embodiment of transducer
  • FIG. 7 is a diagram showing the longitudinal component of motion of the vibrational energy of the trans ducer of FIG. 6;
  • FIG. 8 is a view in crosssection of the front portion of still another transducer
  • FIG. 9 is a view partially in cross-section of a further embodiment of a housing for a transducer.
  • FIGS. 10-14 are views partly in cross-section of portions of still further embodiments of transducers.
  • FIGS. 1A, 1B and 2-4 depict one embodiment of the invention and the general operational aspects thereof.
  • the insert or transducer T includes a stack of laminations 10 of a suitable magnetostrictive material, for example, nickel or a nickel alloy. The left end of the stack laminations are shown brazed or welded together at 11.
  • An acoustical impedance transformer 14 has one end connected, such as by brazing, to the other end of the stack at 18.
  • a workpiece or tool 12 is connected to be part of the transformer 14. This connection also can be made by brazing or made as part of the central section of the transformer.
  • the acoustical impedance transformer I4 is shown as having a central section formed by pieces 14a, 14b and 140. It also includes the tool 12 and the inner and outer shells 30a and 30b of a resonant elastic support member 30. Each of these sections is in a general tubular shape, except for the tool, and the cross-sectional area of the central portions 14a, 14b and 144: decreases between the end 18 of the stack 10 and the work tool 12. Thus, the mass of respective sections decrease toward the tool.
  • the central section of the transformer including the tool 12 can be made of one solid piece of material which has been suitably machined and bent to form the tool shape or of separate pieces of material joined together.
  • the tool 12 can be of any suitable shape which will operate with the transducer.
  • a fluid flow passage 23 is formed through the entire length of the central portion of transformer 14.
  • the main function of the acoustical impedance transformer I4 is transporting energy from the stack of magnetostrictive material 10 to the work tool 12.
  • the transformeer 14 is designed to have its resonant frequency (when attached to the tool 12) substantially equal to the resonant frequency of the stack 10 so that the junction 18 between the two is at or close to the loop (end) of the longitudinal component of vibration of the stack. At this point the stress produced by the component of longitudinal vibration is lower and the losses of energy due to the reflection of standing waves is negligible.
  • the acoustical transformer 14 also serves the function of increasing or decreasing the stroke of vibration of the tool 12 in a desired manner when the stack is vibrating with a given stroke of motion.
  • FIG. I the distribution of the longitudinal motion of mass particles in a given cross-section is shown directly below in FIG. 2.
  • the end of the stack which is connected to the transformer section 14a at point 18 imposes a longitudinal component of vibration upon the section 14a of a magnitude corresponding to the amplitude A
  • This is a loop of the longitudinal component of motion whose amplitude changes in a cosine function from the end 11 toward the end 18.
  • the amplitude of motion decreases from A at point 18 as it progresses toward thejunction of the two transformer sections 14a and 14b.
  • Junction 15 is substantially one-quarter wavelength or 90, at the resonant frequency of the transformer, from the loop 18. lt is, therefore, close to the nodal point where the amplitude of longitudinal vibration is zero. From loop point 18, the amplitude of longitudinal vibration of a transformer section 14a at any point X is given as A A cos x and decreases to zero at node point 15.
  • the amplitude of the longitudinal motion begins to increase at a faster rate in transformer section 14b than the increase on the other side of the node for a corresponding distance of the transformer section 14a.
  • the reason that the rate of increase is greater is because of the smaller mass per unit acoustical length of the transformer section 141) than for section 14a.
  • Transformer 14 is a resonant vibrator having four loops of longitudinal vibration, at points 18 and 21, 32 and 39 and two nodes at points 15 and 36.
  • its acoustical length is M2 l80 1r radians. Masses on each side of the nodes 15 and 36 are moving longitudinally in opposite directions.
  • the node is a region of substantially no longitudinal motion. Therefore, points can be found on both sides of the node where the kinetic energies are in substantial equilibrium.
  • the masses on each side of the nodes are different.
  • a desired magnification factor M can be obtained for the transducer. in a simple vibrator, considering a mass and velocity m, and v on the left side of a node and a mass and velocity m and v on the right side at any point where an equilibrium holds the following will apply:
  • a greater stroke of motion is obtained at the end of the acoustical transformer with the smallest cross-section since it has the smallest mass. This explains the more rapid increase in the amplitude of motion due to the longitudinal component of vibration from node 15 to point 17, where section 14b joins section 14a, and the still more rapid increase where the mass oftransformer section 14: is even smaller from point 17 to 21. There is also a magnification from point 21 to the free end 22 (tip) of the tool 12 since the latter has a smaller mass per unit length than the transformer section 14c. If the tool tip 12 were substantially straight, then in FIG. 2, A, would represent the amplitude of the component of longitudinal vibration at the output end point 22 of the transformer.
  • the actual stroke length at 22 is equal to 2A, since the end of the transformer vibrates longitudinally in both directions for a distance A, about the point shown.
  • the curved workpiece 22 shown in FIG. 1 also exhibits flexural motion, i.e. motion transverse to the longitudinal axis of the insert.
  • the resonant frequency of similarly designed inserts made on a production basis and operating under different load conditions will differ. Variations are also encountered in the acoustical length and the position of the node point for the same reasons. This length should be 360 for the entire vibrator structure from the end of the stack to the end of the working tip, regardless of the actual physical length of the transducer and the influence of the load. Both these factors combine to create a working frequency for the transducer which can be different from the designed resonant frequency at which maximum efficiency will be obtained.
  • the present invention provides a transducer having an elastic support for the outer shell in which the support can be attached to the central tubular section within a fairly wide region at an around the node point.
  • the elastic support controls the flow of energy. Its mass becomes, to some extent, an integral part of the vibrat ing structure. If the support is attached at the output side of the node, it can serve as a dampener of vibrations at the output end of the support. If it is attached at the input side to the node it can serve as an amplifier.
  • the mass of the support makes it an energy accumulator and the vibrating energy will be converted into heat.
  • the majority of the heat is produced on the inner shell section 300 of the support. Some of this is transported to the outer shell section 30b and to the surrounding medium, such as water, if used.
  • the support is constructed in such a manner that it permits the transducer to be held by the outer shell portion 30b with little vibration being transmitted thereto.
  • the amount of ultrasonic vibratory energy transmitted to the outer support shell 30b depends on many factors, one of which is the ability of the shell to absorb or transmit the energy.
  • the front portion 38 of the outer shell section 30b is designed to function as an energy damper by being ofa relatively large mass.
  • the large mass section 38 dissipates a large portion of the energy wh"h passes through the nodal region of outer section 3c). It also has a low amplitude of motion and transmits son'teof the vibrational energy to the surrounding-medium, air or fluid, in which the transducer is used.
  • the resonant support 30 is part of the entire vibrating structure and it effects the performance and behavior of the transducer as a whole.
  • the resonant support 30, and particularly the outer section 30! provides a means by which a cover or housing can be'fastened to the transducer. Further, it
  • an outer shell is provided with a type of fastening means which can form a water tight seal without the use of 'an O-ring or other similar sealing memher.
  • the transducer can be tuncd", within limits, to a desired resonant frequency and outputstroke of niotion after it has been manufactured.
  • an elastic support 30a is used to attach the outer shell 30b to the transducer.
  • This region around the node has a given amplitudebf vibration on each side of the actual node'l Thearnplitude of this vibration can be small and will be substantially zero at the node. This small, or,
  • the elastic support 30a is relatively thin to reduce the transmission of energy to the outer shell 30b.
  • the outershell is attached to the end 32 of theelastic support 300 which is remote from the end 31.
  • Section 30! extends over and is coaxial with the elastic support 30a and projects toward the nodal region of the cute shell.
  • the elastic support 30a has a relatively small wall thickness-as has the elastic support 300: folrestricted transmission 'of ultrasonic energy toward the nodal region of the outer shell 30b.
  • portion 37 which also serves to reducethe quantity .of-. energy transmitted through the support.
  • portion 38 a of heavier mass than any other portion of sections 304 or 3012, terminates the shell at its free end 39.
  • Portion 38 serves as a vibration damper as previously explained.
  • point of attachment 3 is a loop for the elastic support 30a, the amplitude of the longitudinal compo
  • the elastic support section 3114 together with the shell. including piece 38 of heavy mass, are acoustical sections whichtogether are close to M2 long. Whatever motion is imposed on the. outer shell at point 32, its
  • a throughpassage 23 is formed throughout the entire length of the transformer 14. This pas sage opens at the end 21' of section Me so that fluid will be directed by a groove onto the inner surface of the tool 12.
  • Another passage 24 is formed through the wall of the transformer so that there will be fluid communication between' the housing chamber 66 and the passage 23.
  • housing 40 is threaded at end 42 to mate with the thread-35bit the support 30.
  • the iriner surface of flange 36 tapers inwardly to mate with an outward taper on the end 43 of the housing. When fastened tightly, the end 43 of the housing butts against the wall of the'flange 36 to form a fluid-tight seal against the fluid in the housing.
  • the two opposite tapers on the flange and housing prevent flowing of the housing material.
  • the housing 40 can be made of plastic or any otherv similar suitable electrically non-conductive material.
  • the portion of the housing immediately to the left of the threads 42 can be shaped as desired to provide a suitable grip for the fingers of the operator using the transducer.
  • This gripping section can extend for any desired length consistent with the total overall length of the transducer and is shown as terminating the small tapered section 44.
  • To the left of section 44 the housing is formed with a widened section 46.
  • groove 48 is cut in section 46 to accept and hold an-O-ring 50 to prevent penetration of moisture to the energizing coil 58.
  • the wall thickness of the housing- is then reduced to provide an area between a pair of upstanding ring bosses 54, 56 on which is wound the coil 58.
  • the coil 58 is in closepro'ximity to the stack elements to to supply the necessary energizing force to the stack so that it will exhibit a magnetostrictive effect.
  • a circuit for supplying the current is disclosed in the copending application of Gabriel Berry entitled “Generator For Producing Ultrasonic Energy,” Ser. No. lS2,947 filed June 14, 197i, which is assigned to the assignee of the subject invention.
  • the housing 40 termina'tes in a threaded section 59 (FIG; 1B) which has a groove 60 which accepts and holds anotherO ring 62 which holds the leads supplying current to the coil 58 in place.
  • End section 59 has a passage 64 formed through it which communicates with the chamber 66 of housing 40.
  • a cover 70 which also can be of plastic or any other suitable material, fits over the end of housing 40 and that portion on which the coil 58 is locatedQA tight engaging fit is made between the inner surface of the cover 70 and the O-rings 50 on one end and the thread and O-ring 62 on the other so that the covei' will not slide or unscrew off.
  • the end of the cover 70 has an internal thread 74.
  • An end cap 76 which is also of an insulating material, is pressedagainst the housing 40 when the cover'is screwed-on.
  • a pair of leads 69 for supplying current to thecoil 58 pass through end cap 76 as well as a conduit 80 for supplying water or other similar cooling fluid to the-housing chamber 66.
  • conduit 80 fits into the passage 64 at the end of the housing 40.
  • the cooling fluid coming in conduit 80 into the chamber 66 completely surrounds the stack and its laminations. This fluid passes from chamber 66 into the opening 24' in the transformer (FIG, IA) and through the passage 23 to exit onto the tool 12. It should be noted that the fluid in chamber 66 never comes into contact with the current carrying coil 58. This is a decided advantage from the point of view of safety since the possibility of any short circuits occurring between the electrical current and the water.
  • the housing 40 is attached to the transducer in the area and 36) of the node of the outer shell 30b. This reduces or substantially eliminates the vibration which is transmitted to the housing 40. This is also advantageous since it makes it easier for the operator to use the transducer.
  • the transducer of FIGS. 1-4 has several advantages. It is simple in construction while still being efficient in the transmission and utilization of energy. No complicated tubes or other arrangements are necessary for directing fluid onto the tool. Further, no resilient support members are used, such as O-rings, as in the case with other prior art transducers. In addition, the threaded engagement between the housing 40 and the transducer insert (stack, transformer and tool) prevents separation of the two which might more easily take place if a sliding or press-fit were used between the two.
  • the transducer of FIG. 1 also operates the curved tool tip 12 to have a flexural component of motion at its end 22. This is in addition to the longitudinal component of the vibrational energy which was discussed previously.
  • the amplitude of the longitudinal vibration component decreases from point 21 substantially to zero at the tip end 22 rather than increases as in the case of a straight tip.
  • the curved tip 12 of FIG. IA has a maitimum amplitude of flexural vibration at its end 22 as it moves back and forth transverse to the insert longitudinal axis on each. side thereof.
  • the flexural component also has a mode point located at the mode point 15 previously described for the longitudinal component.
  • This node point for the flexural vibration is, however, more than one wavelength away as measured in terms of the standing wave of the flexural component of motion.
  • the flexural component isproduced due to the curved portion "of the tool tipwhich lies off center of the longitudinal axis of .-the other portions of the transformer, that is, the tip provides an asymmetric mass to the compressional waves in the structure which produce the longitudinal motion.
  • the structure acts to convert compressional energy, normally producing longitudinal motion, to flex ural motion at the tool tip 22.
  • FIG. 5 shows another embodiment of transducer which is similar ,to that shown in FIG. 1.
  • the main difference here being that the portion of the internal section of the acoustical transformer between the node point I5 at which the connection of the elastic support 30a is made, and the, end .21 of the internal section of the transformer, is formed by a conical tapering section 69 instead of using the two tubular sections 14a and 14c as in FIG. I.
  • This arrangement operates satisfactorily.
  • the magnification factor obtained by the use of a transformer with a conical section is not as great as with allcylindrical sections.
  • the construction of housing 40 can be the same.
  • FIG. 6 shows another embodiment of the invention which in many respects is similar to that of FIG. I.
  • the support I30 is made slightly different in that the portion 132 which joins the elastic support a and the outer shell section 13% is relatively thick.
  • This thickened portion 132 is also formed with a groove 139 in which is located a resilient O-ring 141.
  • Outer section- 13012 is also formed with a thickened annular rib 135 which serves as both a damper for the resonant support and a stop for the end of a housing 140.
  • the end section 138 is tubular and of relatively large mass to also serve as a damper.
  • the housing 140 is somewhat different from that of FIG. 1 in that it is held to the insert by a press-fit over the O-ring 141.
  • the O-ring provides the seal for the fluid in chamber 66.
  • the construction of the transducer of FIG. 6 is similar to that of FIG. 1. It should again be noted that the outer shellis connected to the central portion of the transducer in a manner to reduce the vibrations present on the outer shell. Also, noresilient mountings are needed.
  • FIG. 7 shows the pattern of the longitudinal component of the vibrational motion for the stack and central region of the transducer.
  • the operation of this transducer is similar to that of FIG. 1. That is, if the tool tip is substantially straight the amplitude of the longitudinal motion increases between the start of the tip and its end 22. If the tool tip is curved, the amplitude of the longitudinal motion decreases and, instead, the amplitude of the flexural component of motion increased to maximum at the end of the tip.
  • FIG. 8 shows another embodiment of the invention which is similar to that of FIG. 6.
  • the O-ring for holding the housing is located on the housing itself instead of on the resonator support.
  • a groove 15] is formed on the inner wall adjacent the end of the housing and an O-ring 152 is located therein. This provides a seal for the fluid within the chamber 66 of the housing.
  • the elastic support 130a and portion of the outer shell 1306 have substantially the same wall thickness and the thickened section 132 of FIG. 6 is eliminated.
  • the operation of the transducer of FIG. 8 is similar to that of FIG. 6.
  • Stroke length is limited by the strength of the material formlng the acoustical transformer and the tool itself.
  • the stess produced by the longitudinal component of motion is given by the following formula:
  • the stress in a given cross-section of a chosen shape is directly proportional to the density of the metal used.
  • titanium is a suitable metal which can support a high stress. Titanium also has another advantage in that it is inert. This renders it particularly useful for some applications such as, for example, where the instrument is to be sterilized. However, titanium has disadvantages in that it cannot be 9 readily brazed either to itself or to other metals as in the case of the more common materials, such as stainless steel, which are normally used for acoustical impedance transformers and tools.
  • transducers which can be made of titanium and which also are constructed in a way such that these transducers can be manufactured fairly easily.
  • a support member is also used for the same purposes mentioned previously.
  • a transducer is shown having the usual stack of laminations 10.
  • a stud 170 is fastened, such as by welding or other suitable technique.
  • the stud 170 which can be of Monel, has a threaded bolt I72 on the end thereof.
  • the acoustical impedance transformer 214 which is preferably made of titanium, has a threaded blind bore [82 formed in its end of the first internal section 214a adjacent the stack so that the transformer can be connected to the stack by the bolt [72 and energy transmitted to the transformer. This eliminates the need to weld the transformer to the stack.
  • the transformer 214 is substantially one-half wavelength long between its input end point [73 adjacent the stack and its output end [74.
  • the stack is also one half wavelength long so that the total length of the transducer is one wavelength.
  • the tool is preferably formed of the same piece of material which forms the transformer 214 For example, after the end of the piece of material forming the transformer is made to size, the tool end is bent to the curved shape shown.
  • the node of the internal section of transformer 214 is at point 183.
  • the transformer section 2141 is of generally cylindrical shape and is substantially one-quarter wavelength long.
  • the tapered section is substantially a quarter wavelength long.
  • points 173 andll4 are loops of the longitudinal vibration of tool 176.
  • Themagnification factor between the output end 18 of the stack and point I74 is determined by the mass of the transformer sections on each side of the node point 183. Since the mass to the right of the node point is smaller and gradually decreases, a positive magnification factor is obtained.
  • the transducer of FIG. is also provided with an outer shell support 190 for the same reasons as previously described.
  • the support is also made of titanium and is attached to the transformer 215 at the node point I83.
  • the support 190 can be made of a separate piece and attached to the transformer by suitable techniques such as, for example, welding.
  • the first portion 191 of the support adjacent the transformer node I83 is made relatively thin to reduce the amount of energy transmitted to the remainder of the support.
  • the outer wall of portion l9l is threaded at 193 to accept the mating screw threads 42 of housing 40.
  • a flange 194 is formed on the support adjacent the threads I93.
  • the wall of the flange tapers inwardly to form a tight fit with the outwardly tapering end 430 of the housing to provide a fluid tight seal for the fluid in 10 the housing chamber 66.
  • From the flange 9l4 the flange terminates in a cylindrical section 197 of heavier mass than the first section 191. Section [97 serves as a dampener for the vibrations.
  • the support 190 forms part of the vibrating structure. It is substantially one quarter wavelength long. its left end is connected to the node 183 of the central section of the transformer and its right end is of a loop. Further, the thinned wall section 191 chokes energy transmission. Because of these factors, the support member vibrates very little. Also, the housing 40 is attached to the support by thread 193 adjacent the node 183 so it also receives relatively little energy.
  • FIG. 11 shows another form of transducer which is similar to that of HQ 10.
  • the main difference is that the threads 202 which mate with threads 42 on housing 40 are located on the first internal section 214a of the acoustical transformer instead of on the resonant support member, as in FIG. 10.
  • the threads 202 are in the general location of the node of the transformer. There fore, there is very little energy transmitted to the housing 40.
  • the wall of the heavier mass dampening portion of the resonant support 209 is thinned out at 210, to the right of the transformer node, to reduce the quantity of energy transmitted to the portion 209.
  • FIG. 12 shows still another embodiment of trans ducer which can be made of titanium and which is in some respects similar to that of FIG. II. This is the preferred embodiment of transducer.
  • the threads 202 to hold housing 40 are located on the outer wall of the first internal transformer section 2142 to the left of the node point.
  • the end 43b of the housing 40 forms a fluid-tight seal against a flange 219 which is the beginning of the outer shell'of support 230.
  • the connection of the support 230 to the transformer section 2144 is at or in the region of the node point of the internal transformer section and is made by the flange 219 and a thin wall section 232.
  • Wall section 232 is generally perpendicular to the flange 219 and its reduced thickness reduces the amount of energy transmitted to the main portion 234 of the resonant support.
  • the outer shell is a portion of the transd r... structure and determines its resonant frequency.
  • the thick wall portion 234 of the outer shell serves as a damper, as in the supports of the embodiments previously described.
  • the inner wall of portion 234 of the resonant support lies generally parallel to and is concentric with the conical outer surface of the second internal section 2l4b of the transformer. Because of the heavy mass of portion 234 and also because of its concentricity with transformer section 214b, the vibrations are damped and also there is good shielding of any vibrations radiated from the conical transformer section.
  • the front end of thesupport 230 is stepped down at 236 to a generally tubular shape.
  • the shape of the front end member 236 is used to "tune" the resonant frequency of the transducer.
  • the generally concave shape of the center section 234 is also advantageous since it provides a gripping surface for the thumb and finger of the user of the transducer. The shape can also be useful in tuning the transducer.
  • FIG. I3 shows still a further embodiment of transducer which is also suited to be manufactured from a high stress metal, such as titanium.
  • the first internal section 2140 of the transformer is formed with a flange 250 at the node point.
  • a resilient O-ring 252 is backed up against the flange.
  • the outer shell support 1 1 260 is in this case formed by front and rear pieces 261 and 262.
  • Front piece 261 has a tubular from section of heavy mass adjacent the tool which is used as a damper.
  • the rear portion of piece 261 is formed eith a flange 264 having screw threads 265 on a reduced diameter shoulder 266 behind the flange.
  • the rear piece 262 extends toward the rear of the transducer.
  • a generally L-shaped ring flange 267 is formed on the front end of piece 262.
  • Screw threads 268 are formed on the front end of flange 267 to mate with the threads 265 of the first outer shell piece 261.
  • the point ofjoining the two pieces of the support is at the flange 250, which is a node.
  • the front piece 261 serves as a damper.
  • the outer shell support 260 is held to the transformer by the resilient O-ring 252. This is the only embodiment of the invention where such an arrangement is used.
  • the rear piece 262 of the support serves as a damper and for the purpose of dissipating heat. Screw threads 271 are formed on the outer surface of the piece 262 in order to accept and hold the end of the housing 40.
  • the fluidtight seal to chamber 66 is made by the O-ring 252.
  • FIG. 14 shows still a further embodiment of the invention which is in some respects similar to that of FIG. 13.
  • the O-ring 252 is eliminated and the threaded portions 265 and 268 of the respective pieces 261 and 162 are sized so that shoulders of the two pieces will engage the flange member 250, located at the node point of the internal section of the transformer. This is essentially a press-type fit for the resonator structure.
  • a fluid-flow passage 23 is shown extending the entire length of the transformer so that fluid can be directed onto the tool.
  • An opening 24 is also shown in the transformer to provide communication between the fluid in the housing chamber 66 and passage 23. It should be understood that in some cases, the transducers can be used without a fluid. In other cases, a fluid can be used only for the purpose of cooling the stack of laminations.
  • FIG. 9 shows a housing arrangement for the latter purpose. This housing can be used with any of the transducers previously described or with any other compatible type of transducer.
  • housing 340 has internal threads 342 at one end to mate with the threads on the transducer and form a fluid-tight seal up against the flange 36.
  • a pair of spacers 346, 348 are formed on the barrel of the housing to locate the current carrying coil 58.
  • the other end of housing 340 is thinned down and is threaded at 350 and fits within a cap 354 which also has threads 356 to receive the threads 350.
  • a tubular sleeve 360 fits within the housing 340 and is of a size to define an annular space 362 which forms a outflow passage for the fluid.
  • the interior portion of sleeve 360 defines a chamber 366 which surrounds the stack 10.
  • the left end of sleeve 360 is formed with a cylindrical section 370 which fits within a correspondingly shaped bore 372 in the cap 354.
  • An O-ring 374 located in a ring depression on the section 370 provides a fluid seal between the sleeve 360 and cap 354.
  • the cover sleeve is internally threaded at 380 to mate with threads 382 on the left end of cap 354.
  • a hollow end cap 385 has a teduced diameter section which is located within the rear opening 384 of the cover sleeve 70. End cap 385 is held against the left end of cap 354 as the cover sleeve is threaded onto the cap 354.
  • the current carrying leads 59 for the coil 58 pass through the opening in the end cap.
  • a fluid inlet conduit 390 passes through a bore in the cylindrical section 370 of sleeve 360 to supply fluid to chamber 366.
  • the fluid exits from chamber 366 through passage 367 on the other end of inner sleeve 360.
  • the fluid which has been heated by the stack, flows back out through the annular passage 362 into a bore 357 through cap 354 in which is located an outlet conduit 359.
  • the housing structure of FIG. 9 provides both an inlet and an outlet for the fluid.
  • the current-carrying coil is not in contact with the cooling fluid.
  • the transducer insert can be readily separated from the housing. There is no physical electrical connection between the insert and the housing. Further, in the case of FIG. 6, no additional tubes are needed to supply fluid from the chamber to the workpiece.
  • An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising:
  • a vibrating structure for producing motion includan acoustic impedance transformer of metallic material which is substantially one half wavelength long "at said predetermined frequency directly connected at one end thereof to one end of said magnetostrictive means, said transformer including a working tool at the other end for producing motion,
  • a transducer as in claim 2 wherein the means for attaching the shell to the transformer comprises a further wall section of reduced thickness as compared to said first wall section located between the transformer and the first wall section to reduce the quantity of vibrational energy transmitted to said first wall section from said transformer.
  • a transducer as in claim 1 further comprising a flange member and first fastening means formed on said outer shell, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to 13 said outer shell with the end portion of said housing directly engaging against the flange member of said outer shell.
  • a transducer as in claim 4 wherein said housing means forms a chamber surrounding at least a portion of said magnetostrictive means, means for supplying fluid to said chamber, the end portion of the housing and the flange forming a fluid-tight seal.
  • a transducer as in claim 51 wherein the transformer portion between the magnetostrictive means and said outer shell has a flange and a first fastening means formed thereon, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to said outer shell with the end portion of said housing against the flange member of said outer shell.
  • a transducer as in claim I wherein the working tool is located at the end of said transformer remote from said magnetostrictive means, a fluid flow passage formed through said transformer having a first opening adjacent the tool and a second opening, a housing forming a fluid containing chamber surrounding at least a portion of said magnetostrictive means, said chamber being in communication with said second Opening of said passage, and means for supplying fluid to the chamber of said housing.
  • a transducer as in claim 10 further comprising current carrying means located on the outside of said housing and outside of said chamber and in proximity to said magnetostrictive means.
  • a transducer as in claim 2 wherein said means for attaching said outer shell to said transformer comprises an elastic member of metallic material between said transformer and said first wall section.
  • a transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means located on said elastic member, said housing having an end portion fitting over said resilient means to provide a fluid seal for the fluid in the housing chamber.
  • a transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means on said housing member, said resilient means fitting over said elastic member to provide a fluid seal for the fluid in the housing chamber.
  • a transducer as in claim 2 wherein the internal portion of the transducer which is surrounded by said first wall section of relatively heavier mass is tapered, the interior of said first wall section also being tapered to be generally concentric with said internal portion.
  • An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising, magnetostrictive means for converting electrical energy into vibrational energy, an acoustic impedance transformer of metallic material attached to one end of said magnetostrictive means, said transformer including a first portion adjacent said magnetostrictive means, a workpiece, and a second portion joining said workpiece and said first portion, said transformer transferring the vibrational energy of said magnetostrictive means to said workpiece, an outer shell of metallic material having a length equal substantially to an odd multiple of a quarter wavelength of the predetermined frequency surrounding at least a part of said second portion of said transformer, and means of metallic material for attaching said shell to said transformer at a position substantially in the region of the node of said first and second transformer portions to transfer vibrational energy to said shell so that said shell becomes a part of the transducer to affect a characteristic of the vibrational energy at the workpiece.
  • a transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, and means for attaching. said outer shell means to said flange.
  • a transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, housing means, and means for attaching said housing to said transducer with one end thereof directly engaging said flange.
  • a transducer as in claim 32 wherein said attaching means comprises mating threads on said transformer and said housing.
  • a transducer as in claim 36 wherein said lastnamed means further includes threaded means for holding said first and second portions together.
  • a transducer as in claim 37 wherein said lastnamed means further includes threaded means for holding said first and second portions together.
  • An ultrasonic transducer comprising magnetostrictive means of metallic material for converting electrical energy into vibrational energy of a predetermined frequency including a component which travels longitudinally of the magnetostrictive means, an acoustic impedance transformer of metallic material having one end attached to one end of said magnetostrictive means and a free end for performing work, said transformer means including a portion which in conjunction with other portions of the transformer produces a component of vibrational energy at the tip of said free end which moves substantially transverse to the longitudinal axis of the transducer, and an outer shell of metallic material substantially an odd number of quarter wavelengths long at said predetermined frequency connected to said transformer spaced from and surround ing a portion of said transformer in metallic material to metallic material contact in the vicinity of a node point of the vibrational energy produced therein for receiving the vibrational energy and controlling at least one 16 characteristic of the vibrational energy produced at the tip of said free end of said transformer.
  • An ultrasonic transducer comprising magnetostrictive means for converting electrical energy into vibrational energy having a component which travels longitudinally of the axis of the magnetostrictive means and the transducer, an acoustic impedance transformer having a first portion attached to one end of said mag netostrictive means and a second portion with one end attached to said first portion of said transformer and having a tool tip with mass which lies off-center of the longitudinal axis of the transformer and a free end, said transformer producing motion at the free end of the toop tip having components both along and substantially transverse to the longitudinal axis of the transducer, and means for supplying fluid to the moving tool tip, said last-named means including at least a portion of the acoustic impedance transformer having a fluid supply passage formed therethrough, said passage opening into the inner face of the tool tip and including a depression on the inner face in which the fluid is adapted to flow.
  • a handpiece for producing vibrational energy comprising,
  • impedance transformer means having one end attached to said converting means and a second free end having a workpiece, a flange member attached to and radially extending from said acoustic impedance transformer means,
  • tubular housing means surrouriding at least said converting means while leaving a space between the inner surface of said housing means and said converting means, said housing means including means closing one end thereof,

Abstract

Ultrasonic transducers which are constructed to have an outer shell surrounding a portion of the acoustic transformer of the transducer to serve as a vibration damper and also as part of the transducer structure. The shell is attached at a region near the node of the transformer to control the quantity of energy transmitted thereto. In many of the embodiments, the outer shell is attached without the necessity of a resilient support. The transducer is also constituted to accept a housing and form a sealing relationship therewith to fluid, in some embodiments a portion of the sealing means being located on the outer shell, and in other embodiments on another portion of the transformer.

Description

United States Patent Banko k Dec. 30, 1975 ULTRASONIC TRANSDUCERS 3,343,018 9/l967 Balamuth et 310/26 Inventor: Anton Bank, Brooklyn NIY 3,368,280 2/l968 Friedman et 310/26 X Assigneei surglcllpesign Corporation g Primary ExaminerDonovan F. Duggan Island Attorney, Agent, or FirmDarby & Darby [22] Filed: Nov. 5, 1973 2: Appl. No.: 412,767 [573 ABSTRACT clued Application Dan Ultraspnic III'ZIlIlSdUCeI'S Jt/hich are tconstrtucaed to haze an on er s e surroun mg a por tOll o e acous IC [63] Continuation of 53380 June I971 transformer of the transducer to serve as a vibration damper and also as part of the transducer structure. 310/26 The shell is attached at a region near the node of the transformer to control the quantity of energy transmit- [58] Field of Search...... 3 l0/26. 8.l. 32/58. Bight), ted therfla In many of the embodiments the outer shell is attached without the necessity of a resilient [56] Reknnm Cited support. he transducer is also constituted to accept a housing and form a sealing relationship therewith to UNITED STATES PATENTS fluid, in some embodiments a portion of the sealing 2,83LI32 4/l958 Jackson 310/26 means being located on the outer shell, and in other 2,89l,l78 6/l959 Elmore lilo/Z6 embodiments on another portion of the transformer. 2,89l,l80 6/1959 Elmore 310/26 2,990,616 7/1961 Balamuth et al 310/26 48 Claims, 15 Drawing Figures t B 111L411.
U.S. Patent Dec. 30, 1975 Sheet 2 of4 3,930,173
FIG. 4
FIG l2 FIG. l3
US. Patent Dec. 30, 1975 Sheet 3 014 3,930,173
v 2 moZmmS .w 0m. m2 8 g J 5. 3 1.1 F n 2 me now. 9 mm 9 ULTI ASONIC TRANSDUCERS RELATED APPLICATION:
This application is a continuation of my prior copending application Ser. No. 153,380, filed June I5, 1971.
Ultrasonic transducers are well known devices for converting electrical energy into vibrational motion at ultrasonic frequencies, broadly considered to be in the range from I khz to I khz. Many of these transducers use a stack of magnetostructive elements for producing the desired energy conversion.
The present invention relates to improvements in ultrasonic transducers. More specifically, the transducers of the invention are of the magnetostructive type and include a stack of elements of magnetostructive material, a workpiece or tool, and an acoustic transformer between the stack and the workpiece for transmitting energy from the stack to the workpiece. The transformers are of a type which include an outer shell which is attached near or at a node point of an internal part of the transformer. The shell serves as a support by which the transducer can be held and/or a housing attached. The shell forms a part of the resonating structure and its characteristics can be changed to alter the resonant frequency of the transducer. It is preferred that the outer shell have a portion of relatively heavy mass which will serve as a vibration damper.
In the preferred embodiments of the invention, the outer shell is attached to the other part of the trans former without the use of a resilient support. This means that the entire instrument can be sterilized, such as by autoclaving, without any risk of damaging it.
Also, in accordance with preferred embodiments of the invention, the transducers are constructed in a manner such that a housing can be provided in which a fluid can be circulated to cool the stack members. The structures are such that the housings can be fastened to the outer shell or another part of the transducer transformer. In many cases, this can be done without the need of any resilient sealing members. In some of the embodiments, a screw thread is used as the fastening means. This prevents the insert (stack, transformer and workpiece) from being pulled axially out of the housing.
Also in accordance with the invention, novel transducer structures are disclosed which can support high stress loads and which have a large stroke of motion of the workpiece.
It is therefore an object of the invention to provide novel ultrasonic transducer structures having an outer shell which is used as a support member.
A further object is to provide ultrasonic transducers which are made entirely of metal material.
Another object is to provide novel ultrasonic transducers having arrangements for attaching a fluid containing a housing thereto without the need of a sealing element.
Yet another object is to provide novel ultrasonic transducer structures which are constructed with a flange member adjacent to an outer shell, the flange serving as one sealing surface for a fluid containing housing.
Other objects and advantages of the present invention will become more apparent upon reference to the following specification and annexed drawings, in which,
FIGS. IA and 18 when taken together, show partially in cross-section a one embodiment of a transducer in accordance with the invention in cross-section;
FIG. 2 is a diagram showing the longitudinal motion of the vibrational energy of the transducer of FIG. I;
FIG. 3 is a front view of the transducer of FIG. 1;
FIG. 4 is a cross-sectional view of the transducer of FIG. 1 taken along the lines 4-4 of FIG. 1;
FIG. 5 is a fragmentary view of a front portion of a transducer, taken in cross-section, of another embodiment of the invention;
FIG. 6 is a cross-sectional view of the front portion of yet another embodiment of transducer;
FIG. 7 is a diagram showing the longitudinal component of motion of the vibrational energy of the trans ducer of FIG. 6;
FIG. 8 is a view in crosssection of the front portion of still another transducer;
FIG. 9 is a view partially in cross-section of a further embodiment of a housing for a transducer; and
FIGS. 10-14 are views partly in cross-section of portions of still further embodiments of transducers.
FIGS. 1A, 1B and 2-4 depict one embodiment of the invention and the general operational aspects thereof. The insert or transducer T includes a stack of laminations 10 of a suitable magnetostrictive material, for example, nickel or a nickel alloy. The left end of the stack laminations are shown brazed or welded together at 11. An acoustical impedance transformer 14 has one end connected, such as by brazing, to the other end of the stack at 18. A workpiece or tool 12 is connected to be part of the transformer 14. This connection also can be made by brazing or made as part of the central section of the transformer.
The acoustical impedance transformer I4 is shown as having a central section formed by pieces 14a, 14b and 140. It also includes the tool 12 and the inner and outer shells 30a and 30b of a resonant elastic support member 30. Each of these sections is in a general tubular shape, except for the tool, and the cross-sectional area of the central portions 14a, 14b and 144: decreases between the end 18 of the stack 10 and the work tool 12. Thus, the mass of respective sections decrease toward the tool. The central section of the transformer including the tool 12 can be made of one solid piece of material which has been suitably machined and bent to form the tool shape or of separate pieces of material joined together. The tool 12 can be of any suitable shape which will operate with the transducer. A fluid flow passage 23 is formed through the entire length of the central portion of transformer 14.
The main function of the acoustical impedance transformer I4 is transporting energy from the stack of magnetostrictive material 10 to the work tool 12. The transformeer 14 is designed to have its resonant frequency (when attached to the tool 12) substantially equal to the resonant frequency of the stack 10 so that the junction 18 between the two is at or close to the loop (end) of the longitudinal component of vibration of the stack. At this point the stress produced by the component of longitudinal vibration is lower and the losses of energy due to the reflection of standing waves is negligible.
The acoustical transformer 14 also serves the function of increasing or decreasing the stroke of vibration of the tool 12 in a desired manner when the stack is vibrating with a given stroke of motion. For the particular transformer construction shown in FIG. I, the distribution of the longitudinal motion of mass particles in a given cross-section is shown directly below in FIG. 2. The end of the stack which is connected to the transformer section 14a at point 18 imposes a longitudinal component of vibration upon the section 14a of a magnitude corresponding to the amplitude A This is a loop of the longitudinal component of motion whose amplitude changes in a cosine function from the end 11 toward the end 18. The amplitude of motion decreases from A at point 18 as it progresses toward thejunction of the two transformer sections 14a and 14b. Junction 15 is substantially one-quarter wavelength or 90, at the resonant frequency of the transformer, from the loop 18. lt is, therefore, close to the nodal point where the amplitude of longitudinal vibration is zero. From loop point 18, the amplitude of longitudinal vibration of a transformer section 14a at any point X is given as A A cos x and decreases to zero at node point 15.
The maximum velocity (v of mass particles at the loop point 18 is given by the following formula:
v,, (m4, 2111.4, (I) where f is the resonant frequency of the transducer. The maximum acceleration l of mass particles at the same loop point 18 is given by the following formula:
PM, [IN/ (07A,, (2)
From the node point 15, toward the tool, the amplitude of the longitudinal motion begins to increase at a faster rate in transformer section 14b than the increase on the other side of the node for a corresponding distance of the transformer section 14a. The reason that the rate of increase is greater is because of the smaller mass per unit acoustical length of the transformer section 141) than for section 14a.
Transformer 14 is a resonant vibrator having four loops of longitudinal vibration, at points 18 and 21, 32 and 39 and two nodes at points 15 and 36. its acoustical length is M2 l80 1r radians. Masses on each side of the nodes 15 and 36 are moving longitudinally in opposite directions. The node is a region of substantially no longitudinal motion. Therefore, points can be found on both sides of the node where the kinetic energies are in substantial equilibrium.
As explained previously, the masses on each side of the nodes are different. By suitably selecting the masses on each side of the nodes 15 and 36, a desired magnification factor M can be obtained for the transducer. in a simple vibrator, considering a mass and velocity m, and v on the left side of a node and a mass and velocity m and v on the right side at any point where an equilibrium holds the following will apply:
A greater stroke of motion is obtained at the end of the acoustical transformer with the smallest cross-section since it has the smallest mass. This explains the more rapid increase in the amplitude of motion due to the longitudinal component of vibration from node 15 to point 17, where section 14b joins section 14a, and the still more rapid increase where the mass oftransformer section 14: is even smaller from point 17 to 21. There is also a magnification from point 21 to the free end 22 (tip) of the tool 12 since the latter has a smaller mass per unit length than the transformer section 14c. If the tool tip 12 were substantially straight, then in FIG. 2, A, would represent the amplitude of the component of longitudinal vibration at the output end point 22 of the transformer. The actual stroke length at 22 is equal to 2A, since the end of the transformer vibrates longitudinally in both directions for a distance A, about the point shown. As explained below, the curved workpiece 22 shown in FIG. 1 also exhibits flexural motion, i.e. motion transverse to the longitudinal axis of the insert.
Due to variances in the physical tolerances of the parts of the insert encountered during manufacturing, as well as a changing load which is encountered at the working end of the tool 12, the resonant frequency of similarly designed inserts made on a production basis and operating under different load conditions will differ. Variations are also encountered in the acoustical length and the position of the node point for the same reasons. This length should be 360 for the entire vibrator structure from the end of the stack to the end of the working tip, regardless of the actual physical length of the transducer and the influence of the load. Both these factors combine to create a working frequency for the transducer which can be different from the designed resonant frequency at which maximum efficiency will be obtained.
Since, because of manufacturing tolerances and different working conditions, it is not possible to design a transducer structure which will always oscillate at a particular frequency and the position of the node point cannot be accurately predicted. Also, as pointed out above, the node position changes with changing load. The present invention provides a transducer having an elastic support for the outer shell in which the support can be attached to the central tubular section within a fairly wide region at an around the node point. The elastic support controls the flow of energy. Its mass becomes, to some extent, an integral part of the vibrat ing structure. If the support is attached at the output side of the node, it can serve as a dampener of vibrations at the output end of the support. If it is attached at the input side to the node it can serve as an amplifier. If it is attached directly at the node it will not adversely affect the operations of the transducer. lt should be understood, however, that the mass of the support makes it an energy accumulator and the vibrating energy will be converted into heat. In the embodiment shown in FIG. 1, the majority of the heat is produced on the inner shell section 300 of the support. Some of this is transported to the outer shell section 30b and to the surrounding medium, such as water, if used.
The support is constructed in such a manner that it permits the transducer to be held by the outer shell portion 30b with little vibration being transmitted thereto. The amount of ultrasonic vibratory energy transmitted to the outer support shell 30b depends on many factors, one of which is the ability of the shell to absorb or transmit the energy. In the embodiment of FIG. 1, the front portion 38 of the outer shell section 30b is designed to function as an energy damper by being ofa relatively large mass. The large mass section 38 dissipates a large portion of the energy wh"h passes through the nodal region of outer section 3c). It also has a low amplitude of motion and transmits son'teof the vibrational energy to the surrounding-medium, air or fluid, in which the transducer is used. The resonant support 30 is part of the entire vibrating structure and it effects the performance and behavior of the transducer as a whole.
The resonant support 30, and particularly the outer section 30!), provides a means by which a cover or housing can be'fastened to the transducer. Further, it
shields'the central section 14a, 14b, Me of the internal section which is capable of radiating high energyloads. This is also desirable.
In severalof'the embodiments of the invention to be described, an outer shell is provided with a type of fastening means which can form a water tight seal without the use of 'an O-ring or other similar sealing memher. This greatly simplifies-the transducer construction where his to be used with a cooling fluid. Further, as previously described, by suitably shaping the outer shell or modifying the mass of one or more of its sections, the transducer can be tuncd", within limits, to a desired resonant frequency and outputstroke of niotion after it has been manufactured.
As seen in "H6. 1, an elastic support 30a is used to attach the outer shell 30b to the transducer. Elastic support iillh'isiattached at its end 31 to the central section 'th'e transforn'rer at node point 15 or in the region the'rearo'ti'nd. This region around the node has a given amplitudebf vibration on each side of the actual node'l Thearnplitude of this vibration can be small and will be substantially zero at the node. This small, or,
zero, amplitude vibration is transmitted to the outer shell 30. The elastic support 30a is relatively thin to reduce the transmission of energy to the outer shell 30b.
The outershell is attached to the end 32 of theelastic support 300 which is remote from the end 31. Section 30!; extends over and is coaxial with the elastic support 30a and projects toward the nodal region of the cute shell. I
The first portion of outer shell 30b which is attached &
to the elastic support 30a, has a relatively small wall thickness-as has the elastic support 300: folrestricted transmission 'of ultrasonic energy toward the nodal region of the outer shell 30b. g
In the proximity of its nodal region, the wall of=the outer shell is formed with a screw thread 35 and a flange 36 which is to be used for attaching a housing 40. Beyond the flange there is a thinned down wall".
portion 37 which also serves to reducethe quantity .of-. energy transmitted through the support. The portion 38 a of heavier mass than any other portion of sections 304 or 3012, terminates the shell at its free end 39. Portion 38 serves as a vibration damper as previously explained.
While point of attachment 3] is a loop for the elastic support 30a, the amplitude of the longitudinal compo;
nent of vibration is reduced going to the left toward the junction 32 of sections 30d and 30b. Since elastic support section 30a and the thin walled portion of section 30!: which is substantially coaxial with elastic support 300 have substantially 21 AM acoustical length and relatively thin cross-section, they present a high resistance to the transmission of ultrasonic energy.
The elastic support section 3114 together with the shell. including piece 38 of heavy mass, are acoustical sections whichtogether are close to M2 long. Whatever motion is imposed on the. outer shell at point 32, its
amplitude decreases towardthe node point where the flange 36 islocated. Finally, because of the large mass of the portion 38 beyond the flange, there is relatively and retaining the tubular housing 40 through which 9 there is fluid-flow communication in a chamber 66. As seen in HO. 1, a throughpassage 23 is formed throughout the entire length of the transformer 14. This pas sage opens at the end 21' of section Me so that fluid will be directed by a groove onto the inner surface of the tool 12. Another passage 24 is formed through the wall of the transformer so that there will be fluid communication between' the housing chamber 66 and the passage 23.
The inner end of housing 40 is threaded at end 42 to mate with the thread-35bit the support 30. The iriner surface of flange 36 tapers inwardly to mate with an outward taper on the end 43 of the housing. When fastened tightly, the end 43 of the housing butts against the wall of the'flange 36 to form a fluid-tight seal against the fluid in the housing. The two opposite tapers on the flange and housing prevent flowing of the housing material.
The housing 40 can be made of plastic or any otherv similar suitable electrically non-conductive material. The portion of the housing immediately to the left of the threads 42 can be shaped as desired to provide a suitable grip for the fingers of the operator using the transducer. This gripping section can extend for any desired length consistent with the total overall length of the transducer and is shown as terminating the small tapered section 44. To the left of section 44 the housing is formed with a widened section 46. groove 48 is cut in section 46 to accept and hold an-O-ring 50 to prevent penetration of moisture to the energizing coil 58. The wall thickness of the housing-is then reduced to provide an area between a pair of upstanding ring bosses 54, 56 on which is wound the coil 58. The coil 58 is in closepro'ximity to the stack elements to to supply the necessary energizing force to the stack so that it will exhibit a magnetostrictive effect. A circuit for supplying the current is disclosed in the copending application of Gabriel Popescu entitled "Generator For Producing Ultrasonic Energy," Ser. No. lS2,947 filed June 14, 197i, which is assigned to the assignee of the subject invention.
The housing 40termina'tes in a threaded section 59 (FIG; 1B) which has a groove 60 which accepts and holds anotherO ring 62 which holds the leads supplying current to the coil 58 in place. End section 59 has a passage 64 formed through it which communicates with the chamber 66 of housing 40.
A cover 70, which also can be of plastic or any other suitable material, fits over the end of housing 40 and that portion on which the coil 58 is locatedQA tight engaging fit is made between the inner surface of the cover 70 and the O-rings 50 on one end and the thread and O-ring 62 on the other so that the covei' will not slide or unscrew off. The end of the cover 70 has an internal thread 74. An end cap 76, which is also of an insulating material, is pressedagainst the housing 40 when the cover'is screwed-on. A pair of leads 69 for supplying current to thecoil 58 pass through end cap 76 as well as a conduit 80 for supplying water or other similar cooling fluid to the-housing chamber 66. The
end of the conduit 80 fits into the passage 64 at the end of the housing 40. The portions of the leads 69 and conduit' 80 outside of housing 40.are normally contained within acommon-sleeve (not shown) or other suitable member.
The cooling fluid coming in conduit 80 into the chamber 66 completely surrounds the stack and its laminations. This fluid passes from chamber 66 into the opening 24' in the transformer (FIG, IA) and through the passage 23 to exit onto the tool 12. It should be noted that the fluid in chamber 66 never comes into contact with the current carrying coil 58. This is a decided advantage from the point of view of safety since the possibility of any short circuits occurring between the electrical current and the water.
As should also be noted, the housing 40 is attached to the transducer in the area and 36) of the node of the outer shell 30b. This reduces or substantially eliminates the vibration which is transmitted to the housing 40. This is also advantageous since it makes it easier for the operator to use the transducer.
The transducer of FIGS. 1-4 has several advantages. It is simple in construction while still being efficient in the transmission and utilization of energy. No complicated tubes or other arrangements are necessary for directing fluid onto the tool. Further, no resilient support members are used, such as O-rings, as in the case with other prior art transducers. In addition, the threaded engagement between the housing 40 and the transducer insert (stack, transformer and tool) prevents separation of the two which might more easily take place if a sliding or press-fit were used between the two.
It should be understood that the transducer of FIG. 1 also operates the curved tool tip 12 to have a flexural component of motion at its end 22. This is in addition to the longitudinal component of the vibrational energy which was discussed previously. In the case of the curved tip, the amplitude of the longitudinal vibration component decreases from point 21 substantially to zero at the tip end 22 rather than increases as in the case of a straight tip. The curved tip 12 of FIG. IA has a maitimum amplitude of flexural vibration at its end 22 as it moves back and forth transverse to the insert longitudinal axis on each. side thereof. The flexural component also has a mode point located at the mode point 15 previously described for the longitudinal component. This node point for the flexural vibration is, however, more than one wavelength away as measured in terms of the standing wave of the flexural component of motion. The flexural component isproduced due to the curved portion "of the tool tipwhich lies off center of the longitudinal axis of .-the other portions of the transformer, that is, the tip provides an asymmetric mass to the compressional waves in the structure which produce the longitudinal motion. When a curved tip is used, the structure acts to convert compressional energy, normally producing longitudinal motion, to flex ural motion at the tool tip 22.
FIG. 5 shows another embodiment of transducer which is similar ,to that shown in FIG. 1. The main difference here being that the portion of the internal section of the acoustical transformer between the node point I5 at which the connection of the elastic support 30a is made, and the, end .21 of the internal section of the transformer, is formed by a conical tapering section 69 instead of using the two tubular sections 14a and 14c as in FIG. I. This arrangement operates satisfactorily. However, the magnification factor obtained by the use of a transformer with a conical section is not as great as with allcylindrical sections. As in the case of FIG. 1, the construction of housing 40 can be the same.
FIG. 6 shows another embodiment of the invention which in many respects is similar to that of FIG. I. Here, the support I30 is made slightly different in that the portion 132 which joins the elastic support a and the outer shell section 13% is relatively thick. This thickened portion 132 is also formed with a groove 139 in which is located a resilient O-ring 141. Outer section- 13012 is also formed with a thickened annular rib 135 which serves as both a damper for the resonant support and a stop for the end of a housing 140. The end section 138 is tubular and of relatively large mass to also serve as a damper. The housing 140 is somewhat different from that of FIG. 1 in that it is held to the insert by a press-fit over the O-ring 141. The O-ring provides the seal for the fluid in chamber 66.
With the foregoing exceptions, the construction of the transducer of FIG. 6 is similar to that of FIG. 1. It should again be noted that the outer shellis connected to the central portion of the transducer in a manner to reduce the vibrations present on the outer shell. Also, noresilient mountings are needed.
FIG. 7 shows the pattern of the longitudinal component of the vibrational motion for the stack and central region of the transducer. The operation of this transducer is similar to that of FIG. 1. That is, if the tool tip is substantially straight the amplitude of the longitudinal motion increases between the start of the tip and its end 22. If the tool tip is curved, the amplitude of the longitudinal motion decreases and, instead, the amplitude of the flexural component of motion increased to maximum at the end of the tip.
FIG. 8 shows another embodiment of the invention which is similar to that of FIG. 6. Here, however, the O-ring for holding the housing is located on the housing itself instead of on the resonator support. A groove 15] is formed on the inner wall adjacent the end of the housing and an O-ring 152 is located therein. This provides a seal for the fluid within the chamber 66 of the housing. The elastic support 130a and portion of the outer shell 1306 have substantially the same wall thickness and the thickened section 132 of FIG. 6 is eliminated. The operation of the transducer of FIG. 8 is similar to that of FIG. 6.
In some applications it is desired to have an increased stroke length for the tool of the transducer. Stroke length is limited by the strength of the material formlng the acoustical transformer and the tool itself. The stess produced by the longitudinal component of motion is given by the following formula:
where:
f the resonant frequency of the transducer p the density of the transducer material C the velocity of sound For a given frequency and stroke length, the stress in a given cross-section of a chosen shape is directly proportional to the density of the metal used.
It has been found that titanium is a suitable metal which can support a high stress. Titanium also has another advantage in that it is inert. This renders it particularly useful for some applications such as, for example, where the instrument is to be sterilized. However, titanium has disadvantages in that it cannot be 9 readily brazed either to itself or to other metals as in the case of the more common materials, such as stainless steel, which are normally used for acoustical impedance transformers and tools.
In accordance with the invention, various forms of transducers are disclosed which can be made of titanium and which also are constructed in a way such that these transducers can be manufactured fairly easily. As in the case of the transducers previously described, a support member is also used for the same purposes mentioned previously.
in FIG. 10, a transducer is shown having the usual stack of laminations 10. To the end 18 of the stack adjacent the acoustical impedance transformer, a stud 170 is fastened, such as by welding or other suitable technique. The stud 170, which can be of Monel, has a threaded bolt I72 on the end thereof.
The acoustical impedance transformer 214, which is preferably made of titanium, has a threaded blind bore [82 formed in its end of the first internal section 214a adjacent the stack so that the transformer can be connected to the stack by the bolt [72 and energy transmitted to the transformer. This eliminates the need to weld the transformer to the stack. The transformer 214 is substantially one-half wavelength long between its input end point [73 adjacent the stack and its output end [74. The stack is also one half wavelength long so that the total length of the transducer is one wavelength. The tool is preferably formed of the same piece of material which forms the transformer 214 For example, after the end of the piece of material forming the transformer is made to size, the tool end is bent to the curved shape shown.
The node of the internal section of transformer 214 is at point 183. Between the input end 173 and the node point I83, the transformer section 2141 is of generally cylindrical shape and is substantially one-quarter wavelength long. There is a conical taper in the internal section 2l4b between the node point ['83 and the output end 174. The tapered section is substantially a quarter wavelength long. As in the case of the transducers previously described, points 173 andll4 are loops of the longitudinal vibration of tool 176. Themagnification factor between the output end 18 of the stack and point I74 is determined by the mass of the transformer sections on each side of the node point 183. Since the mass to the right of the node point is smaller and gradually decreases, a positive magnification factor is obtained.
As previously described, it is difficult to manufacture transducers on a basis such that a precise resonant frequency and node can always be obtained. Therefore, the transducer of FIG. is also provided with an outer shell support 190 for the same reasons as previously described. The support is also made of titanium and is attached to the transformer 215 at the node point I83. The support 190 can be made of a separate piece and attached to the transformer by suitable techniques such as, for example, welding. The first portion 191 of the support adjacent the transformer node I83 is made relatively thin to reduce the amount of energy transmitted to the remainder of the support. The outer wall of portion l9l is threaded at 193 to accept the mating screw threads 42 of housing 40.
A flange 194 is formed on the support adjacent the threads I93. The wall of the flange tapers inwardly to form a tight fit with the outwardly tapering end 430 of the housing to provide a fluid tight seal for the fluid in 10 the housing chamber 66. From the flange 9l4 the flange terminates in a cylindrical section 197 of heavier mass than the first section 191. Section [97 serves as a dampener for the vibrations.
The support 190 forms part of the vibrating structure. It is substantially one quarter wavelength long. its left end is connected to the node 183 of the central section of the transformer and its right end is of a loop. Further, the thinned wall section 191 chokes energy transmission. Because of these factors, the support member vibrates very little. Also, the housing 40 is attached to the support by thread 193 adjacent the node 183 so it also receives relatively little energy.
FIG. 11 shows another form of transducer which is similar to that of HQ 10. The main difference is that the threads 202 which mate with threads 42 on housing 40 are located on the first internal section 214a of the acoustical transformer instead of on the resonant support member, as in FIG. 10. The threads 202 are in the general location of the node of the transformer. There fore, there is very little energy transmitted to the housing 40. The wall of the heavier mass dampening portion of the resonant support 209 is thinned out at 210, to the right of the transformer node, to reduce the quantity of energy transmitted to the portion 209.
FIG. 12 shows still another embodiment of trans ducer which can be made of titanium and which is in some respects similar to that of FIG. II. This is the preferred embodiment of transducer. Here, the threads 202 to hold housing 40 are located on the outer wall of the first internal transformer section 2142 to the left of the node point. The end 43b of the housing 40 forms a fluid-tight seal against a flange 219 which is the beginning of the outer shell'of support 230. The connection of the support 230 to the transformer section 2144 is at or in the region of the node point of the internal transformer section and is made by the flange 219 and a thin wall section 232. Wall section 232 is generally perpendicular to the flange 219 and its reduced thickness reduces the amount of energy transmitted to the main portion 234 of the resonant support.
The outer shell is a portion of the transd r... structure and determines its resonant frequency. The thick wall portion 234 of the outer shell serves as a damper, as in the supports of the embodiments previously described. However, unlike the support of the other embodiments, the inner wall of portion 234 of the resonant support lies generally parallel to and is concentric with the conical outer surface of the second internal section 2l4b of the transformer. Because of the heavy mass of portion 234 and also because of its concentricity with transformer section 214b, the vibrations are damped and also there is good shielding of any vibrations radiated from the conical transformer section.
The front end of thesupport 230 is stepped down at 236 to a generally tubular shape. The shape of the front end member 236 is used to "tune" the resonant frequency of the transducer. The generally concave shape of the center section 234 is also advantageous since it provides a gripping surface for the thumb and finger of the user of the transducer. The shape can also be useful in tuning the transducer.
FIG. I3 shows still a further embodiment of transducer which is also suited to be manufactured from a high stress metal, such as titanium. Here, the first internal section 2140 of the transformer is formed with a flange 250 at the node point. A resilient O-ring 252 is backed up against the flange. The outer shell support 1 1 260 is in this case formed by front and rear pieces 261 and 262. Front piece 261 has a tubular from section of heavy mass adjacent the tool which is used as a damper. The rear portion of piece 261 is formed eith a flange 264 having screw threads 265 on a reduced diameter shoulder 266 behind the flange.
The rear piece 262 extends toward the rear of the transducer. A generally L-shaped ring flange 267 is formed on the front end of piece 262. Screw threads 268 are formed on the front end of flange 267 to mate with the threads 265 of the first outer shell piece 261.
These two pieces 261 and 262 are fastened together to form the complete support structure. The shoulder 266 of front piece 261 engages the transformer flange 250. The shoulder of the ring flange 267 of the rear piece 262 engages the O-ring 252 which in turn engages the transformer flange 250. The two pieces are tightened together by the mating threads 265 and 268.
The point ofjoining the two pieces of the support is at the flange 250, which is a node. The front piece 261 serves as a damper. As should be apparent, the outer shell support 260 is held to the transformer by the resilient O-ring 252. This is the only embodiment of the invention where such an arrangement is used. The rear piece 262 of the support serves as a damper and for the purpose of dissipating heat. Screw threads 271 are formed on the outer surface of the piece 262 in order to accept and hold the end of the housing 40. The fluidtight seal to chamber 66 is made by the O-ring 252.
FIG. 14 shows still a further embodiment of the invention which is in some respects similar to that of FIG. 13. Here, the O-ring 252 is eliminated and the threaded portions 265 and 268 of the respective pieces 261 and 162 are sized so that shoulders of the two pieces will engage the flange member 250, located at the node point of the internal section of the transformer. This is essentially a press-type fit for the resonator structure.
In each of the embodiments of FIGS. 1-8 and -14, a fluid-flow passage 23 is shown extending the entire length of the transformer so that fluid can be directed onto the tool. An opening 24 is also shown in the transformer to provide communication between the fluid in the housing chamber 66 and passage 23. It should be understood that in some cases, the transducers can be used without a fluid. In other cases, a fluid can be used only for the purpose of cooling the stack of laminations.
FIG. 9 shows a housing arrangement for the latter purpose. This housing can be used with any of the transducers previously described or with any other compatible type of transducer.
In FIG. 9, housing 340 has internal threads 342 at one end to mate with the threads on the transducer and form a fluid-tight seal up against the flange 36. A pair of spacers 346, 348 are formed on the barrel of the housing to locate the current carrying coil 58. The other end of housing 340 is thinned down and is threaded at 350 and fits within a cap 354 which also has threads 356 to receive the threads 350.
A tubular sleeve 360 fits within the housing 340 and is of a size to define an annular space 362 which forms a outflow passage for the fluid. The interior portion of sleeve 360 defines a chamber 366 which surrounds the stack 10. The left end of sleeve 360 is formed with a cylindrical section 370 which fits within a correspondingly shaped bore 372 in the cap 354. An O-ring 374 located in a ring depression on the section 370 provides a fluid seal between the sleeve 360 and cap 354.
The cover sleeve is internally threaded at 380 to mate with threads 382 on the left end of cap 354. A hollow end cap 385 has a teduced diameter section which is located within the rear opening 384 of the cover sleeve 70. End cap 385 is held against the left end of cap 354 as the cover sleeve is threaded onto the cap 354. The current carrying leads 59 for the coil 58 pass through the opening in the end cap.
A fluid inlet conduit 390 passes through a bore in the cylindrical section 370 of sleeve 360 to supply fluid to chamber 366. The fluid exits from chamber 366 through passage 367 on the other end of inner sleeve 360. The fluid, which has been heated by the stack, flows back out through the annular passage 362 into a bore 357 through cap 354 in which is located an outlet conduit 359.
As seen, the housing structure of FIG. 9 provides both an inlet and an outlet for the fluid. As in the case of the housing of FIG. 6, the current-carrying coil is not in contact with the cooling fluid. In both of the housing structures of FIGS. 6 and 9, the transducer insert can be readily separated from the housing. There is no physical electrical connection between the insert and the housing. Further, in the case of FIG. 6, no additional tubes are needed to supply fluid from the chamber to the workpiece.
What is claimed is:
1. An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising:
a. magnetostrictive means for converting electrical energy into vibrational energy,
b. a vibrating structure for producing motion includan acoustic impedance transformer of metallic material which is substantially one half wavelength long "at said predetermined frequency directly connected at one end thereof to one end of said magnetostrictive means, said transformer including a working tool at the other end for producing motion,
an outer shell of metallic material of a length substantially one quarter wavelength at said predetermined frequency which is spaced from and surrounds a portion of said transformer,
and means directly connecting said shell to said transformer in metal to metal contact so that energy can be transferred from the transformer to said shell, said shell thereby forming a part of the vibrating structure and affecting the characteristics of the vibrational energy of said structure.
2. A transducer as in claim I wherein said outer shell includes a first wall section of relatively heavy mass to dampen the energy present in said shell.
3. A transducer as in claim 2 wherein the means for attaching the shell to the transformer comprises a further wall section of reduced thickness as compared to said first wall section located between the transformer and the first wall section to reduce the quantity of vibrational energy transmitted to said first wall section from said transformer.
4. A transducer as in claim 1 further comprising a flange member and first fastening means formed on said outer shell, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to 13 said outer shell with the end portion of said housing directly engaging against the flange member of said outer shell.
5. A transducer as in claim 4 wherein said housing means forms a chamber surrounding at least a portion of said magnetostrictive means, means for supplying fluid to said chamber, the end portion of the housing and the flange forming a fluid-tight seal.
6. A transducer as in claim 5 wherein said first and second fastening means comprise screw threads.
7. A transducer as in claim 51 wherein the transformer portion between the magnetostrictive means and said outer shell has a flange and a first fastening means formed thereon, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to said outer shell with the end portion of said housing against the flange member of said outer shell.
8. A transducer as in claim 7 wherein said housing means forms a chamber surrounding at least a portion of said magnetostrictive means, means for supplying fluid to said chamber, the end portion of the housing and the flange forming a fluid-tight seal.
9. A transducer as in claim 8 wherein said first and second fastening means comprise screw threads.
10. A transducer as in claim I wherein the working tool is located at the end of said transformer remote from said magnetostrictive means, a fluid flow passage formed through said transformer having a first opening adjacent the tool and a second opening, a housing forming a fluid containing chamber surrounding at least a portion of said magnetostrictive means, said chamber being in communication with said second Opening of said passage, and means for supplying fluid to the chamber of said housing.
ll. A transducer as in claim 10 further comprising current carrying means located on the outside of said housing and outside of said chamber and in proximity to said magnetostrictive means.
I2. A transducer as in claim 2 wherein said means for attaching said outer shell to said transformer comprises an elastic member of metallic material between said transformer and said first wall section.
13. A transducer as in claim 2 wherein said first wall section of relatively heavy mass is attached to said transformer by an elastic member of metallic material having a first portion and a second portion which are spaced apart and concentric and are connected together between the first wall section and the transformer.
14. A transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means located on said elastic member, said housing having an end portion fitting over said resilient means to provide a fluid seal for the fluid in the housing chamber.
15. A transducer as in claim 14 wherein said resilient means is located at the junction of said first and second portions of said elastic member.
16. A transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means on said housing member, said resilient means fitting over said elastic member to provide a fluid seal for the fluid in the housing chamber.
17. A transducer as'in claim I wherein said outer shell is tubularand has a longitudinal axis which is concentric with the longitudinal axis of the portion of the transformer which'it surrounds.
18. A transducer as in claim 2 wherein said first wall section of heavier mass is tubular and has a longitudinal axis which is concentric with the longitudinal axis of the portion of the transformer which it-surrounds.
19. A transducer as in claim 2 wherein the portion of the transducer which is surrounded by said first wall section of relatively heavier mass is tapered, the interior of said first wall section being generally cylindrical.
20. A transducer as in claim 2 wherein the internal portion of the transducer which is surrounded by said first wall section of relatively heavier mass is tapered, the interior of said first wall section also being tapered to be generally concentric with said internal portion.
21. An ultrasonic transducer as set forth in claim I wherein said transformer working tool has a tip portion whose center of mass lies off-center of the longitudinal axis of the transformer.
22. An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising, magnetostrictive means for converting electrical energy into vibrational energy, an acoustic impedance transformer of metallic material attached to one end of said magnetostrictive means, said transformer including a first portion adjacent said magnetostrictive means, a workpiece, and a second portion joining said workpiece and said first portion, said transformer transferring the vibrational energy of said magnetostrictive means to said workpiece, an outer shell of metallic material having a length equal substantially to an odd multiple of a quarter wavelength of the predetermined frequency surrounding at least a part of said second portion of said transformer, and means of metallic material for attaching said shell to said transformer at a position substantially in the region of the node of said first and second transformer portions to transfer vibrational energy to said shell so that said shell becomes a part of the transducer to affect a characteristic of the vibrational energy at the workpiece.
23. A transducer as in claim 2l wherein said outer shell extends only in a direction toward the workpiece end of said transformer.
24. A transducer as in claim 21 wherein said outer shell has a first section which extends in a first direction toward the workpiece end of the transformer and a second section which extends in the opposite direction toward the magnetostrictive means.
25. A transducer as in claim 21 wherein said outer shell has a first wall section of relatively heavy mass which serves as an energy damper which surrounds at least a part of said second portion of said transformer.
26. A transducer as in claim 25 wherein a second wall section of lighter mass than said first wall section is located between said first wall portion and the point of attachmentof the outer shell to the remainder of the transformer to reduce the amount of energy transmitted to said first wall portion.
27. A transducer as in claim 25 wherein the outer surface of said first wall section is formed with a depression.
28. A transducer as in claim 26 wherein the outer surface of said first wall section is formed with a depression.
29. A transducer as in claim '25 wherein the free end of said first wall section is of reduced thickness as compared to remainder of said first wall section.
30. A transducer as in claim 26 wherein the free end of said first wall section is of reduced thickness as compared to remainder of said first wall section.
31. A transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, and means for attaching. said outer shell means to said flange.
32. A transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, housing means, and means for attaching said housing to said transducer with one end thereof directly engaging said flange.
33. A transducer as in claim 32 wherein said attaching means comprises mating threads on said transformer and said housing.
34. A transducer as in claim 31 wherein said attaching means comprises means for making an engaging fit with said flange.
35. A transducer as in claim 31 wherein said attaching means comprises threaded means.
36. A transducer as in claim wherein said outer shell comprises a first portion which extends in a first direction toward the workpiece end of the transformer and a second portion which extends in the opposite direction toward the magnetostrictive means, said attaching means including means for holding said first and second portions together and to said flange.
37. A transducer as in claim 36 wherein said lastnamed means includes a resilient support of nonmetallic material between said transformer and said first and second portions.
38. A transducer as in claim 36 wherein said lastnamed means further includes threaded means for holding said first and second portions together.
39. A transducer as in claim 37 wherein said lastnamed means further includes threaded means for holding said first and second portions together.
40. A transducer as in claim 22 wherein said outer shell is substantially one quarter. wavelength long at said predetermined frequency of vibrational energy.
41. An ultrasonic transducer comprising magnetostrictive means of metallic material for converting electrical energy into vibrational energy of a predetermined frequency including a component which travels longitudinally of the magnetostrictive means, an acoustic impedance transformer of metallic material having one end attached to one end of said magnetostrictive means and a free end for performing work, said transformer means including a portion which in conjunction with other portions of the transformer produces a component of vibrational energy at the tip of said free end which moves substantially transverse to the longitudinal axis of the transducer, and an outer shell of metallic material substantially an odd number of quarter wavelengths long at said predetermined frequency connected to said transformer spaced from and surround ing a portion of said transformer in metallic material to metallic material contact in the vicinity of a node point of the vibrational energy produced therein for receiving the vibrational energy and controlling at least one 16 characteristic of the vibrational energy produced at the tip of said free end of said transformer.
42. A transducer as in claim 41 wherein said outer shell is substantially one quarter wavelength long at said predetermined frequency of vibrational energy.
43. An ultrasonic transformer as in claim 41 wherein said portion of said transformer for producing the component of thd vibrational wave energy which moves substantially transverse to the longitudinal axis of the transducer, includes a mass lying off center of the longitudinal axis of the transformer.
44. An ultrasonic transducer comprising magnetostrictive means for converting electrical energy into vibrational energy having a component which travels longitudinally of the axis of the magnetostrictive means and the transducer, an acoustic impedance transformer having a first portion attached to one end of said mag netostrictive means and a second portion with one end attached to said first portion of said transformer and having a tool tip with mass which lies off-center of the longitudinal axis of the transformer and a free end, said transformer producing motion at the free end of the toop tip having components both along and substantially transverse to the longitudinal axis of the transducer, and means for supplying fluid to the moving tool tip, said last-named means including at least a portion of the acoustic impedance transformer having a fluid supply passage formed therethrough, said passage opening into the inner face of the tool tip and including a depression on the inner face in which the fluid is adapted to flow.
45. A transducer as in claim 44 wherein said tool tip is curved.
46. A transducer as in claim 44 wherein said tool tip includes a curved portion and the depression on the inner face of said tool tip extends for at least a part of said curved portion.
47. A transducer as in claim 46 wherein said tool tip terminates in an end tapering to a point, the depression on the inner face of the tool tip terminating short of the free end of the tool tip.
48. A handpiece for producing vibrational energy comprising,
means for converting electrical energy into vibrational energy,
impedance transformer means having one end attached to said converting means and a second free end having a workpiece, a flange member attached to and radially extending from said acoustic impedance transformer means,
tubular housing means surrouriding at least said converting means while leaving a space between the inner surface of said housing means and said converting means, said housing means including means closing one end thereof,
means for supplying fluid to the interior of said housing through said closed end, and
mating fastening means on said housing means and said transformer means to hold said housing means to said transformer means with the other end of said housing means directly engaging said flange member and forming a fluid tight seal with said flange member.
1* I t t t

Claims (48)

1. An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising: a. magnetostrictive means for converting electrical energy into vibrational energy, b. a vibrating structure for producing motion including; an acoustic impedance transformer of metallic material which is substantially one half wavelength long at said predetermined frequency directly connected at one end thereof to one end of said magnetostrictive means, said transformer including a working tool at the other end for producing motion, an outer shell of metallic material of a length substantially one quarter wavelength at said predetermined frequency which is spaced from and surrounds a portion of said transformer, and means directly connecting said shell to said transformer in metal to metal contact so that energy can be transferred from the transformer to said shell, said shell thereby forming a part of the vibrating structure and affecting the characteristics of the vibrational energy of said structure.
2. A transducer as in claim 1 wherein said outer shell includes a first wall section of relatively heavy mass to dampen the energy present in said shell.
3. A transducer as in claim 2 wherein the means for attaching the shell to the transformer comprises a further wall section of reduced thickness as compared to said first wall section located between the transformer and the first wall section to reduce the quantity of vibrational energy transmitted to said first wall section from said transformer.
4. A transducer as in claim 1 further comprising a flange member and first fastening means formed on said outer shell, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to said outer shell with the end portion of said housing directly engaging against the flange member of said outer shell.
5. A transducer as in claim 4 wherein said housing means forms a chamber surrounding at least a portion of said magnetostrictive means, means for supplying fluid to said chamber, the end portion of the housing and the flange forming a fluid-tight seal.
6. A transducer as in claim 5 wherein said first and second fastening means comprise screw threads.
7. A transducer as in claim 51 wherein the transformer portion between the magnetostrictive means and said outer shell has a flange and a first fastening means formed thereon, housing means surrounding a portion of said magnetostrictive means and having second fastening means formed on a portion thereof, said first and second fastening means mating to fasten the housing to said outer shell with the end portion of said housing against the flange member of said outer shell.
8. A transducer as in claim 7 wherein said housing means forms a chamber surrounding at least a portion of said magnetostrictive means, means for supplying fluid to said chamber, the end portion of the housing and the flange forming a fluid-tight seal.
9. A transducer as in claim 8 wherein said first and second fastening means comprise screw threads.
10. A transducer as in claim 1 wherein the working tool is located at the end of said transformer remote from said magnetostrictive means, a fluid flow passage formed through said transformer having a first opening adjacent the tool and a second opening, a housing forming a fluid containing chamber surrounding at least a portion of said magnetostrictive means, said chamber being in communication with said second opening of said passage, and means for supplying fluid to the chamber of said housing.
11. A transducer as in claim 10 further comprising current carrying means located on the outside of said housing and outside of said chamber and in proximity to said magnetostrictive means.
12. A transducer as in claim 2 wherein said means for attaching said outer shell to said transformer comprises an elastic member of metallic material between said transformer and said first wall section.
13. A transducer as in claim 2 wherein said first wall section of relatively heavy mass is attached to said transformer by an elastic member of metallic material having a first portion and a second portion which are spaced apart and concentric and are connected together between the first wall section and the transformer.
14. A transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means located on said elastic member, said housing having an end portion fitting over said resilient means to provide a fluid seal for the fluid in the housing chamber.
15. A transducer as in claim 14 wherein said resilient means is located at the junction of said first and second portions of said elastic member.
16. A transducer as in claim 13 further comprising a housing defining a fluid chamber for surrounding at least a portion of said magnetostrictive means, resilient non-metallic means on said housing member, said resilient means fitting over said elastic member to provide a fluid seal for the fluid in the housing chamber.
17. A transducer as in claim 1 wherein said outer shell is tubular and has a longitudinal axis which is concentric with the longitudinal axis of the portion of the transformer which it surrounds.
18. A transducer as in claim 2 wherein said first wall section of heavier mass is tubular and has a longitudinal axis which is concentric with the longitudinal axis of the portion of the transformer which it surrounds.
19. A transducer as in claim 2 wherein the portion of the transducer which is surrounded by said first wall section of relatively heavier mass is tapered, the interior of said first wall section being generally cylindrical.
20. A transducer as in claim 2 wherein the internal portion of the transducer which is surrounded by said first wall section of relatively heavier mass is tapered, the interior of said first wall section also being tapered to be generally concentric with said internal portion.
21. An ultrasonic transducer as set forth in claim 1 wherein said transformer working tool has a tip portion whose center of mass lies off-center of the longitudinal axis of the transformer.
22. An ultrasonic energy transducer for producing vibrational wave energy at a substantially predetermined frequency comprising, magnetostrictive means for converting electrical energy into vibrational energy, an acoustic impedance transformer of metallic material attached to one end of said magnetostrictive means, said transformer including a first portion adjacent said magnetostrictive means, a workpiece, and a second portion joining said workpiece and said first portion, said transformer transferring the vibrational energy of said magnetostrictive means to said workpiece, an outer shell of metallic material having a length equal substantially to an odd multiple of a quarter wavelength of the predetermined frequency surrounding at least a part of said second portion of said transformer, and means of metallic material for attaching said shell to said transformer at a position substantially in the region of the node of said first and second transformer portions to transfer vibrational energy to said shell so that said shell becomes a part of the transducer to affect a characteristic of the vibrational energy at the workpiece.
23. A transducer as in claim 21 wherein said outer shell extends only in a direction toward the workpiece end of said transformer.
24. A transducer as in claim 21 wherein said outer shell has a first section which extends in a first direction toward the workpiece end of the transformer and a second section which extends in the opposite direction toward the magnetostrictive means.
25. A transducer as in claim 21 wherein said outer shell has a first wall section of relatively heavy mass which serves as an energy damper which surrounds at least a part of said second portion of said transformer.
26. A transducer as in claim 25 wherein a second wall section of lighter mass than said first wall section is located between said first wall portion and the point of attachment of the outer shell to the remainder of the transformer to reduce the amount of energy transmitted to said first wall portion.
27. A transducer as in claim 25 wherein the outer surface of said first wall section is formed with a depression.
28. A transducer as in claim 26 wherein the outer surface of said first wall section is formed with a depression.
29. A transducer as in claim 25 wherein the free end of said first wall section is of reduced thickness as compared to remainder of said first wall section.
30. A transducer as in claim 26 wherein the free end of said first wall section is of reduced thickness as compared to remainder of said first wall section.
31. A transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, and means for attaching said outer shell means to said flange.
32. A transducer as in claim 22 further comprising a flange formed on said transformer substantially in the region of said node, housing means, and means for attaching said housing to said transducer with one end thereof directly engaging said flange.
33. A transducer as in claim 32 wherein said attaching means comprises mating threads on said transformer and said housing.
34. A transducer as in claim 31 wherein said attaching means comprises means for making an engaging fit with said flange.
35. A transducer as in claim 31 wherein said attaching means comprises threaded means.
36. A transducer as in claim 30 wherein said outer shell comprises a first portion which extends in a firSt direction toward the workpiece end of the transformer and a second portion which extends in the opposite direction toward the magnetostrictive means, said attaching means including means for holding said first and second portions together and to said flange.
37. A transducer as in claim 36 wherein said last-named means includes a resilient support of nonmetallic material between said transformer and said first and second portions.
38. A transducer as in claim 36 wherein said last-named means further includes threaded means for holding said first and second portions together.
39. A transducer as in claim 37 wherein said last-named means further includes threaded means for holding said first and second portions together.
40. A transducer as in claim 22 wherein said outer shell is substantially one quarter wavelength long at said predetermined frequency of vibrational energy.
41. An ultrasonic transducer comprising magnetostrictive means of metallic material for converting electrical energy into vibrational energy of a predetermined frequency including a component which travels longitudinally of the magnetostrictive means, an acoustic impedance transformer of metallic material having one end attached to one end of said magnetostrictive means and a free end for performing work, said transformer means including a portion which in conjunction with other portions of the transformer produces a component of vibrational energy at the tip of said free end which moves substantially transverse to the longitudinal axis of the transducer, and an outer shell of metallic material substantially an odd number of quarter wavelengths long at said predetermined frequency connected to said transformer spaced from and surrounding a portion of said transformer in metallic material to metallic material contact in the vicinity of a node point of the vibrational energy produced therein for receiving the vibrational energy and controlling at least one characteristic of the vibrational energy produced at the tip of said free end of said transformer.
42. A transducer as in claim 41 wherein said outer shell is substantially one quarter wavelength long at said predetermined frequency of vibrational energy.
43. An ultrasonic transformer as in claim 41 wherein said portion of said transformer for producing the component of thd vibrational wave energy which moves substantially transverse to the longitudinal axis of the transducer, includes a mass lying off center of the longitudinal axis of the transformer.
44. An ultrasonic transducer comprising magnetostrictive means for converting electrical energy into vibrational energy having a component which travels longitudinally of the axis of the magnetostrictive means and the transducer, an acoustic impedance transformer having a first portion attached to one end of said magnetostrictive means and a second portion with one end attached to said first portion of said transformer and having a tool tip with mass which lies off-center of the longitudinal axis of the transformer and a free end, said transformer producing motion at the free end of the toop tip having components both along and substantially transverse to the longitudinal axis of the transducer, and means for supplying fluid to the moving tool tip, said last-named means including at least a portion of the acoustic impedance transformer having a fluid supply passage formed therethrough, said passage opening into the inner face of the tool tip and including a depression on the inner face in which the fluid is adapted to flow.
45. A transducer as in claim 44 wherein said tool tip is curved.
46. A transducer as in claim 44 wherein said tool tip includes a curved portion and the depression on the inner face of said tool tip extends for at least a part of said curved portion.
47. A transducer as in claim 46 wherein said tool tip terminates in an end tapering to a point, the depression on the inner face of the tool tip terminating short of the free enD of the tool tip.
48. A handpiece for producing vibrational energy comprising, means for converting electrical energy into vibrational energy, impedance transformer means having one end attached to said converting means and a second free end having a workpiece, a flange member attached to and radially extending from said acoustic impedance transformer means, tubular housing means surrounding at least said converting means while leaving a space between the inner surface of said housing means and said converting means, said housing means including means closing one end thereof, means for supplying fluid to the interior of said housing through said closed end, and mating fastening means on said housing means and said transformer means to hold said housing means to said transformer means with the other end of said housing means directly engaging said flange member and forming a fluid tight seal with said flange member.
US412767A 1971-06-15 1973-11-05 Ultrasonic transducers Expired - Lifetime US3930173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US412767A US3930173A (en) 1971-06-15 1973-11-05 Ultrasonic transducers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15338071A 1971-06-15 1971-06-15
US412767A US3930173A (en) 1971-06-15 1973-11-05 Ultrasonic transducers

Publications (1)

Publication Number Publication Date
US3930173A true US3930173A (en) 1975-12-30

Family

ID=26850487

Family Applications (1)

Application Number Title Priority Date Filing Date
US412767A Expired - Lifetime US3930173A (en) 1971-06-15 1973-11-05 Ultrasonic transducers

Country Status (1)

Country Link
US (1) US3930173A (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016436A (en) * 1975-12-10 1977-04-05 Branson Ultrasonics Corporation Sonic or ultrasonic processing apparatus
US4110908A (en) * 1976-06-03 1978-09-05 Litton Industrial Products, Inc. Ultrasonic dental scaler
FR2426448A1 (en) * 1978-05-22 1979-12-21 Litton Industrial Products Ultrasonic dental scaler including vibrator - which comprises magnetostrictive transducer within energising coil, and has acoustic impedance transformer
USRE30536E (en) * 1978-05-01 1981-03-03 Cavitron Corporation Ultrasonic device and method
US4260380A (en) * 1979-04-02 1981-04-07 Syntex (U.S.A.) Inc. Vibratory device with fluid transport means
US4283174A (en) * 1979-11-05 1981-08-11 Sertich Anthony T Dental scaler having scaling tip particularly suitable for circular or ellipsoidal patterns of vibration
US4283175A (en) * 1979-11-05 1981-08-11 Syntex (U.S.A.) Inc. Dental scaler having scaling tip with rounded edge work surfaces particularly suitable for circular or ellipsoidal patterns of vibration
US4370131A (en) * 1977-06-24 1983-01-25 Surgical Design Ultrasonic transducer tips
US4406284A (en) * 1981-03-20 1983-09-27 Surgical Design Corp. Ultrasonic handpiece design
EP0125784A1 (en) * 1983-04-15 1984-11-21 Dentsply Research and Development Corporation Ultrasonic endodontic dental apparatus
US4496321A (en) * 1981-08-24 1985-01-29 Masaru Kumabe Vibration method for cutting teeth
US4578033A (en) * 1983-08-08 1986-03-25 Kaltenbach & Voight Gmbh & Co. Tartar-removing dental handpiece
US4589847A (en) * 1983-08-08 1986-05-20 Kaltenbach & Voight Gmbh & Co. Tartar-removing dental handpiece
US4731019A (en) * 1984-06-04 1988-03-15 Howard Martin Diamond coated scaler dental instrument for ultrasonic operation
DE3739009A1 (en) * 1987-02-26 1988-09-08 Siemens Ag DENTAL DEVICE WITH MEANS FOR SUPPLYING HF AND LF ENERGY TO A DENTAL HANDPIECE
US4840563A (en) * 1987-02-26 1989-06-20 Siemens Aktiengesellschaft Dental equipment having means for delivering RF and LF energy to a dental handpiece
WO1989009572A1 (en) * 1988-04-08 1989-10-19 Bernard Weissman Reciprocating dental tool
WO1990000885A1 (en) * 1988-07-18 1990-02-08 Bernard Weissman Inherently nonrotating reciprocating dental tool
US5125837A (en) * 1988-01-06 1992-06-30 Dentsply Management Corp. Apparatus and method for therapeutic lavage and scaling of teeth
US5127833A (en) * 1990-01-26 1992-07-07 Kline Joseph M Dental scalers and curettes having improved cutting blade and shank configurations
US5169313A (en) * 1990-01-26 1992-12-08 Kline Joseph M Dental scales and curettes having improved cutting blade and shank configurations
US5419703A (en) * 1988-02-18 1995-05-30 Dentsply Research & Development Corp. Method of subgingival scaling and lavage
US5531597A (en) * 1994-06-30 1996-07-02 Dentsply Research & Development Corp. Transducer activated tool tip
US5567153A (en) * 1994-08-25 1996-10-22 Dentsply Research & Development Corp. Transducer activated tool tip
US5577911A (en) * 1986-02-04 1996-11-26 Garfinkel; Leonard M. Ultrasonically driven curette for periodontal curettage
US5725570A (en) * 1992-03-31 1998-03-10 Boston Scientific Corporation Tubular medical endoprostheses
US5725495A (en) * 1995-06-02 1998-03-10 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5749727A (en) * 1994-06-30 1998-05-12 Dentsply Research & Development Corp. Transducer activated subgingival tool tip
US5776155A (en) * 1996-12-23 1998-07-07 Ethicon Endo-Surgery, Inc. Methods and devices for attaching and detaching transmission components
US5775901A (en) * 1996-03-07 1998-07-07 Hu-Friedy Mfg. Co., Ltd. Insert for ultrasonic scaler
US5810859A (en) * 1997-02-28 1998-09-22 Ethicon Endo-Surgery, Inc. Apparatus for applying torque to an ultrasonic transmission component
WO1998052274A2 (en) * 1997-05-13 1998-11-19 Etrema Products, Inc. High power ultrasonic motor
US5915965A (en) * 1994-01-28 1999-06-29 Amdent Ab Dental device and the working tool to be exchanged
US5957943A (en) * 1997-03-05 1999-09-28 Ethicon Endo-Surgery, Inc. Method and devices for increasing ultrasonic effects
US5968060A (en) * 1997-02-28 1999-10-19 Ethicon Endo-Surgery, Inc. Ultrasonic interlock and method of using the same
US5980251A (en) * 1997-08-05 1999-11-09 Coltene/Whaledent, Inc. Laminated magnetostrictive transducer
US5989274A (en) * 1996-10-17 1999-11-23 Ethicon Endo-Surgery, Inc. Methods and devices for improving blood flow to a heart of a patient
US5989275A (en) * 1997-02-28 1999-11-23 Ethicon Endo-Surgery, Inc. Damping ultrasonic transmission components
WO1999060943A2 (en) * 1998-05-28 1999-12-02 Ultrasonic Services, Inc. Trimodular ultrasonic dental device
US6024750A (en) * 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6030212A (en) * 1996-09-27 2000-02-29 Dentsply Research & Development Corp. Stacking reservoir and scaler system
US6036667A (en) * 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6051010A (en) * 1996-12-23 2000-04-18 Ethicon Endo-Surgery, Inc. Methods and devices for joining transmission components
USD429526S (en) * 1998-11-12 2000-08-15 Coltene/Whaledent, Inc. Handle for an ultrasonic insert tool
US6277084B1 (en) 1992-03-31 2001-08-21 Boston Scientific Corporation Ultrasonic medical device
US6312256B1 (en) * 1998-01-13 2001-11-06 Satelec Sa Dental ultrasound instrument for treating periodontal pockets
US20020072035A1 (en) * 1999-06-04 2002-06-13 Dentsply International Inc. Microendodontics ultrasonic surgical dental tool having water port and method of making same
US6527802B1 (en) 1993-01-19 2003-03-04 Scimed Life Systems, Inc. Clad composite stent
US20030097879A1 (en) * 2001-11-28 2003-05-29 Van Klooster Jeroen Martin Flowmeter
US6624539B1 (en) 1997-05-13 2003-09-23 Edge Technologies, Inc. High power ultrasonic transducers
US6716028B2 (en) 2000-08-04 2004-04-06 Hu-Friedy Mfg. Co., Inc. Ultrasonic swivel insert
US20040191906A1 (en) * 2001-08-01 2004-09-30 Asher Holzer Method for selective enhancement of cell growth
US6811399B2 (en) 2001-07-27 2004-11-02 Hu-Friedy Mfg. Co., Inc. Torque lock for ultrasonic swivelable inserts and method
US20040234924A1 (en) * 2002-11-15 2004-11-25 Teresa Hickok Waterguide design and method and tube assembly for use therewith
US20040265776A1 (en) * 2003-03-13 2004-12-30 Tipton David W. Ultrasonic insert with internal flow channel
US6869439B2 (en) 1996-09-19 2005-03-22 United States Surgical Corporation Ultrasonic dissector
US20050143769A1 (en) * 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
US7101392B2 (en) 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
US20060270935A1 (en) * 2005-03-31 2006-11-30 Perioimaging, Inc. Ultrasonic periodontal device and method of using
US20080035627A1 (en) * 2005-08-19 2008-02-14 Uit L.L.C. Oscillating system and tool for ultrasonic impact treatment
US20080097501A1 (en) * 2006-06-22 2008-04-24 Tyco Healthcare Group Lp Ultrasonic probe deflection sensor
US20100016728A1 (en) * 2008-07-15 2010-01-21 Dietz Timothy G Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
US20100165793A1 (en) * 2006-09-27 2010-07-01 Willi Haug Ultrasonic vibration transducer for ultrasonic drilling
US20100167235A1 (en) * 2006-09-25 2010-07-01 Piezosurgery S.R.L. Handpiece with surgical tool to perform holes in bone tissues
US20130071812A1 (en) * 2011-09-21 2013-03-21 Westdale Holdings Llc Ultrasonic tool
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
CN103586192A (en) * 2013-11-08 2014-02-19 华中科技大学 Double-stimulation ultrasonic elliptical vibration processing device
WO2016036965A3 (en) * 2014-09-05 2016-08-25 Edison Welding Institute, Inc. Devices for isolating acoustic vibrations in metalworking systems
US9669471B2 (en) 2010-03-11 2017-06-06 Cumberland & Western Resources, Llc Devices for isolating acoustic vibrations in metalworking systems
US9788925B2 (en) 2009-08-19 2017-10-17 Vicky L Moran Transducer activated tool with water conduit
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US11058449B2 (en) 2015-08-12 2021-07-13 Reach Surgical, Inc. Curved ultrasonic surgical blade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831132A (en) * 1954-06-28 1958-04-15 Forest W Jackson Magnetostrictive reciprocating motor
US2891180A (en) * 1957-08-19 1959-06-16 Aeroprojects Inc Support for vibratory devices
US2891178A (en) * 1957-08-19 1959-06-16 Aeroprojects Inc Support for vibratory devices
US2990616A (en) * 1955-03-08 1961-07-04 Cavitron Corp Ultrasonic cutting tool
US3343018A (en) * 1962-02-15 1967-09-19 Cavitron Ultrasonics Inc Magnetostrictive vibratory tool
US3368280A (en) * 1966-03-23 1968-02-13 C & B Inc Dental tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831132A (en) * 1954-06-28 1958-04-15 Forest W Jackson Magnetostrictive reciprocating motor
US2990616A (en) * 1955-03-08 1961-07-04 Cavitron Corp Ultrasonic cutting tool
US2891180A (en) * 1957-08-19 1959-06-16 Aeroprojects Inc Support for vibratory devices
US2891178A (en) * 1957-08-19 1959-06-16 Aeroprojects Inc Support for vibratory devices
US3343018A (en) * 1962-02-15 1967-09-19 Cavitron Ultrasonics Inc Magnetostrictive vibratory tool
US3368280A (en) * 1966-03-23 1968-02-13 C & B Inc Dental tool

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016436A (en) * 1975-12-10 1977-04-05 Branson Ultrasonics Corporation Sonic or ultrasonic processing apparatus
US4110908A (en) * 1976-06-03 1978-09-05 Litton Industrial Products, Inc. Ultrasonic dental scaler
US4370131A (en) * 1977-06-24 1983-01-25 Surgical Design Ultrasonic transducer tips
USRE30536E (en) * 1978-05-01 1981-03-03 Cavitron Corporation Ultrasonic device and method
FR2426448A1 (en) * 1978-05-22 1979-12-21 Litton Industrial Products Ultrasonic dental scaler including vibrator - which comprises magnetostrictive transducer within energising coil, and has acoustic impedance transformer
US4260380A (en) * 1979-04-02 1981-04-07 Syntex (U.S.A.) Inc. Vibratory device with fluid transport means
US4283175A (en) * 1979-11-05 1981-08-11 Syntex (U.S.A.) Inc. Dental scaler having scaling tip with rounded edge work surfaces particularly suitable for circular or ellipsoidal patterns of vibration
US4283174A (en) * 1979-11-05 1981-08-11 Sertich Anthony T Dental scaler having scaling tip particularly suitable for circular or ellipsoidal patterns of vibration
US4406284A (en) * 1981-03-20 1983-09-27 Surgical Design Corp. Ultrasonic handpiece design
US4496321A (en) * 1981-08-24 1985-01-29 Masaru Kumabe Vibration method for cutting teeth
EP0125784A1 (en) * 1983-04-15 1984-11-21 Dentsply Research and Development Corporation Ultrasonic endodontic dental apparatus
US4492574A (en) * 1983-04-15 1985-01-08 Cavitron, Inc. Ultrasonic endodontic dental apparatus
US4578033A (en) * 1983-08-08 1986-03-25 Kaltenbach & Voight Gmbh & Co. Tartar-removing dental handpiece
US4589847A (en) * 1983-08-08 1986-05-20 Kaltenbach & Voight Gmbh & Co. Tartar-removing dental handpiece
US4731019A (en) * 1984-06-04 1988-03-15 Howard Martin Diamond coated scaler dental instrument for ultrasonic operation
US5577911A (en) * 1986-02-04 1996-11-26 Garfinkel; Leonard M. Ultrasonically driven curette for periodontal curettage
US4840563A (en) * 1987-02-26 1989-06-20 Siemens Aktiengesellschaft Dental equipment having means for delivering RF and LF energy to a dental handpiece
DE3739009A1 (en) * 1987-02-26 1988-09-08 Siemens Ag DENTAL DEVICE WITH MEANS FOR SUPPLYING HF AND LF ENERGY TO A DENTAL HANDPIECE
US5125837A (en) * 1988-01-06 1992-06-30 Dentsply Management Corp. Apparatus and method for therapeutic lavage and scaling of teeth
US5419703A (en) * 1988-02-18 1995-05-30 Dentsply Research & Development Corp. Method of subgingival scaling and lavage
WO1989009572A1 (en) * 1988-04-08 1989-10-19 Bernard Weissman Reciprocating dental tool
US4954082A (en) * 1988-04-08 1990-09-04 Bernard Weissman Reciprocating dental tool
US4976625A (en) * 1988-04-08 1990-12-11 Bernard Weissman Inherently nonrotating reciprocating dental tool
WO1990000885A1 (en) * 1988-07-18 1990-02-08 Bernard Weissman Inherently nonrotating reciprocating dental tool
US5127833A (en) * 1990-01-26 1992-07-07 Kline Joseph M Dental scalers and curettes having improved cutting blade and shank configurations
US5169313A (en) * 1990-01-26 1992-12-08 Kline Joseph M Dental scales and curettes having improved cutting blade and shank configurations
US6497709B1 (en) 1992-03-31 2002-12-24 Boston Scientific Corporation Metal medical device
US5725570A (en) * 1992-03-31 1998-03-10 Boston Scientific Corporation Tubular medical endoprostheses
US7101392B2 (en) 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
US6290721B1 (en) 1992-03-31 2001-09-18 Boston Scientific Corporation Tubular medical endoprostheses
US6287331B1 (en) 1992-03-31 2001-09-11 Boston Scientific Corporation Tubular medical prosthesis
US6277084B1 (en) 1992-03-31 2001-08-21 Boston Scientific Corporation Ultrasonic medical device
US6527802B1 (en) 1993-01-19 2003-03-04 Scimed Life Systems, Inc. Clad composite stent
US5915965A (en) * 1994-01-28 1999-06-29 Amdent Ab Dental device and the working tool to be exchanged
US5749727A (en) * 1994-06-30 1998-05-12 Dentsply Research & Development Corp. Transducer activated subgingival tool tip
US5531597A (en) * 1994-06-30 1996-07-02 Dentsply Research & Development Corp. Transducer activated tool tip
US5567153A (en) * 1994-08-25 1996-10-22 Dentsply Research & Development Corp. Transducer activated tool tip
US6159175A (en) * 1995-06-02 2000-12-12 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5725495A (en) * 1995-06-02 1998-03-10 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5741226A (en) * 1995-06-02 1998-04-21 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5743871A (en) * 1995-06-02 1998-04-28 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
US5775901A (en) * 1996-03-07 1998-07-07 Hu-Friedy Mfg. Co., Ltd. Insert for ultrasonic scaler
US6869439B2 (en) 1996-09-19 2005-03-22 United States Surgical Corporation Ultrasonic dissector
US20080243160A1 (en) * 1996-09-19 2008-10-02 White Jeffrey S Ultrasonic Dissector
US6030212A (en) * 1996-09-27 2000-02-29 Dentsply Research & Development Corp. Stacking reservoir and scaler system
US6293793B1 (en) 1996-09-27 2001-09-25 Dentsply Research & Development Corp. Stackable reservoir and scaler system
US6036667A (en) * 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6063050A (en) * 1996-10-04 2000-05-16 United States Surgical Corp. Ultrasonic dissection and coagulation system
US5989274A (en) * 1996-10-17 1999-11-23 Ethicon Endo-Surgery, Inc. Methods and devices for improving blood flow to a heart of a patient
US6387109B1 (en) 1996-10-17 2002-05-14 Ethicon Endo-Surgery, Inc. Methods and device for improving blood flow to heart of a patient
US5776155A (en) * 1996-12-23 1998-07-07 Ethicon Endo-Surgery, Inc. Methods and devices for attaching and detaching transmission components
US6051010A (en) * 1996-12-23 2000-04-18 Ethicon Endo-Surgery, Inc. Methods and devices for joining transmission components
US5968060A (en) * 1997-02-28 1999-10-19 Ethicon Endo-Surgery, Inc. Ultrasonic interlock and method of using the same
US5989275A (en) * 1997-02-28 1999-11-23 Ethicon Endo-Surgery, Inc. Damping ultrasonic transmission components
US5810859A (en) * 1997-02-28 1998-09-22 Ethicon Endo-Surgery, Inc. Apparatus for applying torque to an ultrasonic transmission component
US5957943A (en) * 1997-03-05 1999-09-28 Ethicon Endo-Surgery, Inc. Method and devices for increasing ultrasonic effects
WO1998052274A2 (en) * 1997-05-13 1998-11-19 Etrema Products, Inc. High power ultrasonic motor
WO1998052274A3 (en) * 1997-05-13 1999-03-25 Etrema Products Inc High power ultrasonic motor
EP1029392A4 (en) * 1997-05-13 2006-02-01 Etrema Products Inc High power ultrasonic motor
US6624539B1 (en) 1997-05-13 2003-09-23 Edge Technologies, Inc. High power ultrasonic transducers
EP1029392A2 (en) * 1997-05-13 2000-08-23 Etrema Products, Inc. High power ultrasonic motor
US6164968A (en) * 1997-05-28 2000-12-26 Feine; James Trimodular ultrasonic dental device
US5980251A (en) * 1997-08-05 1999-11-09 Coltene/Whaledent, Inc. Laminated magnetostrictive transducer
US20110166483A1 (en) * 1997-08-14 2011-07-07 United States Surgical Corporation Ultrasonic curved blade
US6468286B2 (en) 1997-08-14 2002-10-22 The United States Surgical Corporation Ultrasonic curved blade
US6024750A (en) * 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6682544B2 (en) 1997-08-14 2004-01-27 United States Surgical Corporation Ultrasonic curved blade
US20040147946A1 (en) * 1997-08-14 2004-07-29 Mastri Dominick L. Ultrasonic curved blade
US20060122639A1 (en) * 1997-08-14 2006-06-08 Mastri Dominick L Ultrasonic curved blade
US6280407B1 (en) 1997-08-14 2001-08-28 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6312256B1 (en) * 1998-01-13 2001-11-06 Satelec Sa Dental ultrasound instrument for treating periodontal pockets
WO1999060943A2 (en) * 1998-05-28 1999-12-02 Ultrasonic Services, Inc. Trimodular ultrasonic dental device
WO1999060943A3 (en) * 1998-05-28 2000-04-20 Ultrasonic Services Inc Trimodular ultrasonic dental device
USD429526S (en) * 1998-11-12 2000-08-15 Coltene/Whaledent, Inc. Handle for an ultrasonic insert tool
US6817862B2 (en) 1999-06-04 2004-11-16 Dentsply International, Inc. Ultrasonic dental tool having quick change connector and method of making same
US20020072035A1 (en) * 1999-06-04 2002-06-13 Dentsply International Inc. Microendodontics ultrasonic surgical dental tool having water port and method of making same
US20040241608A1 (en) * 1999-06-04 2004-12-02 Dentsply International, Inc. Microendodontics ultrasonic surgical dental tool having water port and method of making same
US6810585B2 (en) 1999-06-04 2004-11-02 Dentsply International, Inc. Method of making a microendodontics ultrasonic surgical dental tool having water port
US7140878B2 (en) 1999-06-04 2006-11-28 Dentsply International, Inc. Microendodontics ultrasonic surgical dental tool having water port and method of making same
US6716028B2 (en) 2000-08-04 2004-04-06 Hu-Friedy Mfg. Co., Inc. Ultrasonic swivel insert
US7011520B2 (en) 2000-08-04 2006-03-14 Hu-Friedy Mfg. Co., Inc. Two part ultrasonic swivel insert, with one part rotatable relative to the other
US6811399B2 (en) 2001-07-27 2004-11-02 Hu-Friedy Mfg. Co., Inc. Torque lock for ultrasonic swivelable inserts and method
US20040191906A1 (en) * 2001-08-01 2004-09-30 Asher Holzer Method for selective enhancement of cell growth
US20030097879A1 (en) * 2001-11-28 2003-05-29 Van Klooster Jeroen Martin Flowmeter
US6799475B2 (en) * 2001-11-28 2004-10-05 Krohne A.G. Flowmeter
US20050143769A1 (en) * 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
US20040234924A1 (en) * 2002-11-15 2004-11-25 Teresa Hickok Waterguide design and method and tube assembly for use therewith
US20040265776A1 (en) * 2003-03-13 2004-12-30 Tipton David W. Ultrasonic insert with internal flow channel
US20060270935A1 (en) * 2005-03-31 2006-11-30 Perioimaging, Inc. Ultrasonic periodontal device and method of using
US20060281045A1 (en) * 2005-03-31 2006-12-14 Perioimaging, Inc. Ultrasonic periodontal, system and method of using
US20060281044A1 (en) * 2005-03-31 2006-12-14 Case Jennifer L Discrimination analysis algorithm, system and method of use
US20080035627A1 (en) * 2005-08-19 2008-02-14 Uit L.L.C. Oscillating system and tool for ultrasonic impact treatment
CN101405881B (en) * 2005-08-19 2012-03-21 U.I.T.有限责任公司 Oscillating system and tool for ultrasonic impact treatment
US20080097501A1 (en) * 2006-06-22 2008-04-24 Tyco Healthcare Group Lp Ultrasonic probe deflection sensor
US20100167235A1 (en) * 2006-09-25 2010-07-01 Piezosurgery S.R.L. Handpiece with surgical tool to perform holes in bone tissues
US20100165793A1 (en) * 2006-09-27 2010-07-01 Willi Haug Ultrasonic vibration transducer for ultrasonic drilling
US20100016728A1 (en) * 2008-07-15 2010-01-21 Dietz Timothy G Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
US8487487B2 (en) * 2008-07-15 2013-07-16 Ethicon Endo-Surgery, Inc. Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
US9233021B2 (en) 2009-07-01 2016-01-12 Alcon Research, Ltd. Phacoemulsification hook tip
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
US9788925B2 (en) 2009-08-19 2017-10-17 Vicky L Moran Transducer activated tool with water conduit
US9669471B2 (en) 2010-03-11 2017-06-06 Cumberland & Western Resources, Llc Devices for isolating acoustic vibrations in metalworking systems
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US8961176B2 (en) * 2011-09-21 2015-02-24 American Eagle Instruments, Inc. Ultrasonic tool
US20130071812A1 (en) * 2011-09-21 2013-03-21 Westdale Holdings Llc Ultrasonic tool
US9808325B2 (en) 2011-09-21 2017-11-07 American Eagle Instruments, Llc Ultrasonic tool
CN103586192B (en) * 2013-11-08 2015-09-23 华中科技大学 A kind of double excitation ultrasonic elliptical vibratory processing unit (plant)
CN103586192A (en) * 2013-11-08 2014-02-19 华中科技大学 Double-stimulation ultrasonic elliptical vibration processing device
WO2016036965A3 (en) * 2014-09-05 2016-08-25 Edison Welding Institute, Inc. Devices for isolating acoustic vibrations in metalworking systems
US11058449B2 (en) 2015-08-12 2021-07-13 Reach Surgical, Inc. Curved ultrasonic surgical blade

Similar Documents

Publication Publication Date Title
US3930173A (en) Ultrasonic transducers
US3015961A (en) Machine component
USRE25033E (en) Vibratory machine tool and vibratory abrasion method
JP4422188B2 (en) Ultrasonic transducer with sleeve
US2990616A (en) Ultrasonic cutting tool
US2946981A (en) Sonic transducers for fluid mediums
US4063557A (en) Ultrasonic aspirator
EP0541249B1 (en) Ultrasonic handpiece
US4417578A (en) Ultrasonic transducer with energy shielding
US5200666A (en) Ultrasonic transducer
US2792674A (en) Vibratory machine tool
US3075288A (en) Dental instrument
GB2073616A (en) Apparatus for atomising liquids
US3591862A (en) Ultrasonic motor transmission system
US3845332A (en) Ultrasonic motor
US4540123A (en) Ultrasonic liquid atomizer
US3257721A (en) Method and apparatus for employing torsional vibratory energy
US20070080609A1 (en) Low loss ultrasound transducers
US3681627A (en) Sonically operated tool and sonic motor therefor
US6871770B2 (en) Ultrasonic transducer
US3166840A (en) Apparatus and method for introducing high levels of vibratory energy to a work area
US5020724A (en) Nozzle for water jet cutting
US3458921A (en) Short pulse vibratory bonding
US3212312A (en) Apparatus utilizing vibratory energy
US2891179A (en) Support for vibratory devices