US3924120A - Heater remote control system - Google Patents

Heater remote control system Download PDF

Info

Publication number
US3924120A
US3924120A US397219A US39721973A US3924120A US 3924120 A US3924120 A US 3924120A US 397219 A US397219 A US 397219A US 39721973 A US39721973 A US 39721973A US 3924120 A US3924120 A US 3924120A
Authority
US
United States
Prior art keywords
instruments
control
signals
signal
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US397219A
Inventor
Iii Charles H Cox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US397219A priority Critical patent/US3924120A/en
Application granted granted Critical
Publication of US3924120A publication Critical patent/US3924120A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • H05B47/195Controlling the light source by remote control via wireless transmission the transmission using visible or infrared light

Definitions

  • ABSTRACT Continuation-impart of Ser. No 230,378, Feb. 29, A remote control system including infrared transmis- 1972 abandonedsion means for coupling control signals simultaneously to remotely located instruments from a central station U.S. Clvia either a plurality of modulated arriers or [51] Int. Cl. H0413 9/00 d word which carry the control information.
  • the Fleld of Search 250/199; 3l5/2 3 remote control system further includes a control coor- 317/124, 127 dination means whereby the control of various combinations of instruments can be coordinated.
  • Associated References Cited with each instrument is a separator circuit for select- UNITED STATES PATENTS ing only the control signal for that instrument, and a 3,111,587 11/1963 Rocard 250/199 controlled device Operated upon by Such Selected 3289,001 11/1966 Wilc0x. 250/199 trol signal and supplying a controlled amount of power 3,652,858 3/1972 Kinsel 250/199 t0 the instrument.
  • an infrared transmission 1 ,1 6/l972 Kaminown 250/199 means, and placing the controlled device with each 316761684 7/1972 9- 250/X99 instrument, the necessity of installing large numbers of 31706913 12/1972 Malatch' 315/292 separate, independent circuits is eliminated.
  • DIMMER INFRARED 28 I DETECTOR/RECEIVER *Nsassssaefi CONTROL AND HIGH FREQ- o- M/T a??? SIGNAL" AMPLIFIER SIGNAL *1 52 41 40 53 i M/T SCR COILEROL D g 121512 2 28 40 30 A coigaoL M/T t Z HiGH FREQ. 2 CONTROL SIGNAL#2 SIGN/A132 CONTROL *3 1 o- M/T 1 50 L Q: 22
  • This invention lies in the field of remote control systems and, more particularly, theatre control systems where all control signals are transmitted together over a common transmission medium and each instrument is controlled by separation of a specific control signal and control of a controlled device at the location of such each instrument.
  • each instrument used in lighting a given theatrical production has a particular function, e.g., being a solo spotlight, providing a particular effect such as a setting sun, etc.
  • each instrument must be subject to separate control, i.e., through its own dimmer.
  • the standard system has a master control board for control of the dimmers, with a separate circuit from each dimmer to 4 the remote position of the respective instrument.
  • a remote control system wherein each of the instruments in the theatre are controlled by a control device positioned contiguous or near thereto, each instrument being connected to a source of power, for example a battery or the theatre system power line with control means positioned at a point remote from said instruments and containing control units for generating control signals for each of such instruments.
  • the control signals modulate a carrier (or carriers) which are transmitted from such remote position to the respective instruments.
  • a plurality of subcarriers are generated, each modulated by respective control signals, the subcarriers in turn being combined or multiplexed on a plurality of carriers.
  • the control signals aretransmitted digitally in the form of binary code words.
  • infrared transmitters and receivers are utilized.
  • use of infrared transmission allows'forapplication of the principles of the present invention to control speaker systems, self propelled mobile stage props, and the like, as well as to lighting systems and apparatus.
  • FIG. 1 is a block diagram of the theatre system of this invention.
  • FIG. 2 is a block diagram showing the arrangement of the control signal generators and transmitters as used in this invention; curves (a'), (b), (c) and (d) in FIG. 2 illustrate the signal waveforms at corresponding points.
  • FIG. 3 is a modification of FIG. 1, showing an embodiment wherein a plurality of carriers and subcarriers are generated to carry the control signals which are sent to the light instrument dimmers.
  • FIG. 4 shows an alternative illustrative embodiment utilizing infrared transmission of digital pulses.
  • FIG. 1 a plurality of lighting instruments 30, shown connected to a pipe 31 which provides mechanical support of the instruments.
  • the variety of such instruments, and the manner of support of same, are choices available to the user and are, as such, not essential to this system.
  • the terms devices" and instruments are used interchangeably to describe the apparatus being controlled.
  • Each instrument 30 is electrically connected to the transmission line from a normal electrical plug 28, the connection being made through an instrument control unit 50, the details of which are described hereinbelow.
  • Each unti 40 is an electronic system designed to generate a control signal, which control signal is in turn transmitted to at least one lighting instrument, to actuate a control device connected to same.
  • Each control unit 40 produces a distinct control signal, which signals are programmed by the system operator.
  • the outputs of the control units 40 are suitably connected through a patch panel 45 to a plurality of modulator-transmitter (M/T) units 41.
  • M/T modulator-transmitter
  • Each unit 41 contains a generator for generating a carrier at a specified frequency, and a modulator which receives a control signal from one of the units 40, which control signal is caused to modulate the carrier signal.
  • the outputs of the units 41 are coupled to an infrared emitter which radiates the plurality of modulated carrier signals.
  • the infrared light may be reflected, focused, and/or carried via light pipes as required by a particular installation.
  • the output from the infrared emitter which is transmitted to all of the infrared detectors/receivers 51 located adjacent to lighting instruments 30, contains a plurality of carriers, each carrying a control signal. In operation, there are as many carriers as there are different control signals to be sent to the control devices associated with each instrument light. Thus, the infrared light detector/receiver at each instrument picks up all of the different carrier signals. These signals are first connected to a control signal separator, unit 51. Unit 51 also contains a tuned band pass filter which separates out one specific modulated carrier signal, which is connected through to the demodulator and amplifier unit 52. Unit 52 recovers the control signal, and connects same to the control input of the controlling device 53.
  • control signal is communicated to the controlling device, the power output of which is connected to instrument 30.
  • that control signal which is carried by the carrier frequency corresponding to its tuned band pass filter, is detected and caused to control the operation of the instrument, e.g., control the light intensity.
  • Each other instrument has associated with it an instrument control unit 50, containing in its signal separator a band pass filter tuned toa different frequency, so that it can be controlled uniquely of all other instruments in the theatre.
  • every instrument can be separately controlled. It is to be noted that, in practice, it may be desired to have a number of separate instruments commonly controlled, in which case the respective carriers for each such instrument carry the same 4 control signal. This is achieved by proper patching at the control station.
  • the controlling device 53 could be an SCR dimmer, the details of which are well known and need not be specified herein. See, for example, the General Electric SCR Manual, Second Edition, pages 119 and 120.
  • the dimming may be manually controlled by varying the time or phase delay which controls the dimming (or portion of each cycle that the power current is passed through the SCR).
  • the delay in turn-on time of the SCR, relative to the start of power half cycle may be controlled by an externally generated control signal. To accomplish this, it is necessary only that the control signal carry information as to when, for each half cycle of the power signal, the SCR is to turn on. I
  • control units 50 may also be battery powered, for the use of infrared radiation obviates the need for any fixed physical positioning or fixed electrical connection of the instrument being controlled.
  • the Hz power signal (shown at a), is connected to the input of a frequency doubler 38 which generates a Hz signal.
  • the 120 Hz signal is connected to a halfwave rectifier and squarer 43, the output of which is illustrated at b.
  • the 120 Hz squarewave thus produced is connected to the input of a variable monostable flip-flop 46 within a control unit 40.
  • Flip-flop 46 is set into its temporary state at the start of each positive going portion of the squarewave, i.e., at the start of each cycle of the 120 Hz signal.
  • the flipflop remains in its temporary state for a length of time determined by the setting of a controller 44, suitably a manually operated potentiometer.
  • the flip-flop returns to its stable state after a predetermined time period, corresponding to the desired delay before the SCR in the dimmer 53 is to be turned on.
  • the output of flip-flop 46 is shown at c, with the controllable time delay interval shown as D.
  • the inverse of the c signal designated as F, is also available (or can be generated by passing the 0 signal through an inverter). Consequently, the c output comprises a train of positive pulses, the duration of each positive pulse corresponding to the setting of its controller 44.
  • control signals are obviously possible within the scope and spirit of this invention.
  • zero-point or synchronous switching of SCRs is another common triggering technique.
  • zero-point switching turns the SCR on only when the voltage is zero (turn-off is always at a zero), thus avoiding the sharp transient associated with phase or delay switching.
  • Multilevel control is afforded by only triggering the SCR for a fraction of the number of cycles in a fixed interval. For example if the fixed interval is ten cycles of the 60 Hz line frequency, a setting of half onthe controller 40 would cause the SCR 53 to conduct on of the cycles; a controller setting of 0.05 would cause the SCR to conduct for only one half cycle over the IQ cycle interval.
  • SCS silicon controlled switch
  • the control signals thus generated are connected through patch panel 45, and modulate the output of transmitter 48 by operation of conventional electronic switch 49, or other modulator means.
  • the output of the entire modulator unit 41 is thus a pulse modulated carrier, with an envelope corresponding to the F control signal.
  • Each of such pulse modulated carriers, at their respective frequencies, are added together and fed to the infrared emitter.
  • each SCR dimmer corresponding to a respective lighting instrument 30 receives a corresponding control signal transmitted on that carrier frequency corresponding to the tuned filter associated with that light instrument.
  • each light 30 is independently controlled by the setting of a controller 44, such that the system operator can control simultaneously all of the lights from one centralized position.
  • FIG. 3 an alternate embodiment of this invention employing frequency miltiplexing is illustrated.
  • a limited number of main carriers suitably just two, are utilized. This contrasts with the system as described above, where there are as many carriers as there are light instruments.
  • each control signal modulates a low frequency subcarrier, the modulated subcarriers in turn being connected to and modulating a transmitter producing a main carrier.
  • FIG. 3 there are illustrated two main carrier generators 68, and three subcarrier generators 65.
  • there are 64 light instruments to be controlled and two main carriers, ideally there will be 32 different subcarrier generators 65.
  • each subcarrier unit 65 is connected to two modulator units 67, each of which modulates in accordance with a separate control signal connected thereto. Thus, from each subcarrier, there are produced two modulated signals. One of each subcarrier is then summed through respective summers 66, the outputs of which are coupled to the main carrier modulator-transmitters (M/T) 68. Thus, each main carrier carries each of the subcarrier frequencies.
  • M/T main carrier modulator-transmitters
  • the outputs of units 68 are connected to the infrared emitter or transmitter such that both main carriers are transmitted to all of the instrument control units.
  • the control signal is passed through a tunable band pass filter 76, designed to be tunable to one of the two main carrier frequencies available for selection.
  • a tunable band pass filter 76 designed to be tunable to one of the two main carrier frequencies available for selection.
  • the output of filter 76 is coupled to the carrier demodulator 55.
  • the carrier is demodulated, the subcarriers are amplified, and one of the subcarriers is selected by a low frequency, (e.g., audio), narrow band pass filter 77.
  • the selected subcarrier is then demodulated by demodulator 78, to derive the control signal which is connected to the controlling device.
  • the power line 25 supplies 60 Hz power current which is connected through to the controlling device.
  • This embodiment of the system lies in the fact that narrow band pass filters at low frequencies are readily available and a large number of subcarriers can be accommodated. For example, there are available commercial filters providing excellent narrow band characteristics at 15 Hz intervals. Thus, to 200 subcarriers could very efficiently be accommodated in this system. By contrast, where each lighting instrument has its own high frequency carrier, it would be necessary to generate such carriers over a wide range of frequencies since it is difficult to obtain narrow band filters at higher frequencies.
  • Another advantage of this embodiment is that it offers an additional means for controlling various combinations of instruments together. By simply tuning the high frequency bandpass filters to the same frequency, two instruments will receive the same signal and hence operate together. This would be useful in a theatre application for example when it is desired to control the illumination of large areas which require many lighting instruments.
  • the controller 401 produces a signal which can be connected to various digital encoders 402, 403, 405, etc.
  • the encoders whose outputs are coordinated by the sync and timing box 406, transform the controller 401 output into a suitable form for transmission.
  • An example of such a transformation would be the addition of redundant information which could be subsequently used by the decoder to reduce the probability of a transmission error.
  • the outputs of all the encoders 402, 403, 405, etc. feed the infrared emitter 407 which radiates or transmits the information.
  • the'control information is in the form of 0s and P5 with the corresponding infrared emitter 407 output being a sequence of on and off" flashes.
  • the infrared radiation is detected at a detector 408, decoded at 409,
  • the actual information content of the transmitted signal will of course vary considerably depending upon 7 the application.
  • several examples of the information transmitted are to be given.
  • LED photo-transistor systems also makes direct digital transmission much more feasible.
  • no carriers or subcarriers are used; instead the information is put in the form of a binary code which in turn is fed directly to the LED, thereby switching it on" and of
  • a specific instrument was identified by a certain carrier frequency (or carrier frequency and subcarrier frequency combination), with digital modulation each remote control unit is identified by a binary code word (or some combination of several binary words), as in the following examples.
  • Example I Transmit each instrument number, and the corresponding intensity.
  • the transmitter would send each instrument number, followed by the intensity at which that instrument should be set.
  • this is obviously quite a redundant scheme, i.e., with 320 instruments, each of which has control levels, this means that the same intensity will be transmitted 320 times if all instruments are to be at the same intensity.
  • Example II Transmit all instrument numbers of same intensity, followed by the desired intensity.
  • This scheme involves transmission of a sequence of instrument numbers followed by a single intensity at which all the previously listed instruments should be set.
  • this scheme involves division of the transmitted information into frames, each frame including a full set of numbers of instruments to be changed with corresponding intensity changes.
  • Example III Transmit intensity, common sync. If a common frequency is available at the transmitter and all receivers, then this frequency can be used to sync the transmitter and receiver.
  • the line frequency is an obvious example.
  • Example IV Transmit intensity, self clocking. If some instruments are to be battery operated, for example, then a self clocking code, such as a return to zero code, could be used. In a return to zero code, the level goes to zero between every bit, whereas in conventional binary code the level goes to zero only where the binary zero is to be transmitted. Hence, in a return-tozero code, the same number of edges get through, independent of the information being sent, and thus these edges can be used to drive or to sync the oscillator at the instrument.
  • a self clocking code such as a return to zero code
  • the infrared signal can be used directly to control an SCR.
  • Such an embodiment requires a highly directional infrared emitter, such as a laser.
  • the light-emitting diode (LED) only need be coarsely focused, such as by a 45 beam to on stage instruments and a 180 beam for orchestra and stage footlights.
  • receiving phototransistors conveniently may be mounted at one end ofa black flat finished tube pointing toward the transmitter. Lenses generally are required only for receivers more than 50l00 feet from the transmitter, in accordance with the present state of the art.
  • a digital memory may have stored therein 32 different time delay words, each being a 5 bit word and corresponding to the division of one half the power system period (l/l20th second) into 32 fractions thereof.
  • the operator may simply read out of the memory the desired word, which is used directly to pulse code modulate a carrier.
  • a conventional digital-to-analog device is used to generate an appropriate analog control signal which is used to control the SCR dimmer.
  • an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising:
  • c. means for converting said signals from said source to a predetermined digitally coded signal, said code being conditioned to energize actuation control means to bring said instruments selectively to desired operating levels, said means for converting including means for multiplexing signals for a plurality of instruments into an aggregate digital signal of predetermined format to associate control information for a given one of said instruments with the corresponding identification code;
  • optical transmission means including means for translating said aggregate signal into infrared energy, and at least one continuous optical transmission path between said means for translating and each of said photosensitive detectors, whereby transmitted aggregate signals from said optical transmission means contain all actuation control level change information for said theatre, and individual ones of said instruments are conditioned to extract corresponding infrared control signals and to reject infrared control signals which correspond to other ones of said instruments.
  • said means for converting includes means for producing actuation control level change information in the form of with binary code words uniquely associated with corresponding ones of said instruments, said binary code words representing said identification code, and wherein the digital signal decoder of each said instruments includes logic means energized only by a binary code word associated with the corresponding instruments.
  • said multiplexing means includes means for aggregating all binary code words of said instruments followed respectively by coded corresponding prospective actuation control level changes for said instruments.
  • each of said instruments comprises means for sampling said transmission path at predetermined unique periodic intervals
  • said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample said transmission path, the identification of said unique periodic intervals constituting said identification codes.
  • each of said instruments is connected to said means for translating by a different transmission path, and wherein 7.
  • said plurality of instruments are lighting instruments, said actuation control level change information being light intensity change information.
  • each of said instruments is self-clocking, being conditioned to sample said transmission path at intervals derived from the format of the code itself and wherein said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample the said transmission path, the identification of said sampling intervals constituting said identification code.
  • an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising:
  • transmitter means comprising a plurality of high frequency carrier generators, each generating a respective different carrier and each being modulated to carry information of the control signal of one of said control units;
  • infrared transmission means comprising a noncoherent infrared signal emitter and an optical transmission path to all of said instruments, for providing continuous signal transmission from the location of said transmitter means to the location of said light instruments;
  • control signal separation means connected to respective ones of said detectors, for separating at each said instrument a given one of said transmitter carriers, deriving the control signal carried thereon, and coupling said control signal to the controlled device positioned with said instruments.
  • said transmitter means comprises a plurality of low frequency subcarrier generators, signals from each such subcarrier generator being modulated by respective said control signals, the modulated subcarriers being multiplexed onto signals at said carrier transmitters so that said carriers are modulated to carry said modulated subcarriers;
  • said separation means has a tunable high frequency band pass filter to separate out one of said carriers, and a low frequency band pass filter to separate out a specific one of said subcarriers.

Abstract

A remote control system including infrared transmission means for coupling control signals simultaneously to remotely located instruments from a central station via either a plurality of modulated carriers or digital code words which carry the control information. The remote control system further includes a control coordination means whereby the control of various combinations of instruments can be coordinated. Associated with each instrument is a separator circuit for selecting only the control signal for that instrument, and a controlled device operated upon by such selected control signal and supplying a controlled amount of power to the instrument. By utilizing an infrared transmission means, and placing the controlled device with each instrument, the necessity of installing large numbers of separate, independent circuits is eliminated, and increased flexibility of control is achieved.

Description

United States Patent Cox, III 1 Dec. 2, 1975 1 1 HEATER REMOTE CONTROL SYSTEM 3.784.875 1/1974 Baker ct al. 315/312 x 3,845,293 10 1974 B 250 99 [76] Inventor: Charles 11. Cox, 111, 38 Lakeh1ll H t 7 Arhngton Mass" (Ly/4 Primary Examiner-Robert L. Griffin {22] Filed: Sept. 14, 1973 Assistant E.ruminerAristotelis M. Psitos [I 1, P l a 1 pp NO: 9 A orne) Agen 0r l/m au & Plu
Related U.S. Application Data [57] ABSTRACT [63] Continuation-impart of Ser. No 230,378, Feb. 29, A remote control system including infrared transmis- 1972 abandonedsion means for coupling control signals simultaneously to remotely located instruments from a central station U.S. Clvia either a plurality of modulated arriers or [51] Int. Cl. H0413 9/00 d word which carry the control information. The Fleld of Search 250/199; 3l5/2 3 remote control system further includes a control coor- 317/124, 127 dination means whereby the control of various combinations of instruments can be coordinated. Associated References Cited with each instrument is a separator circuit for select- UNITED STATES PATENTS ing only the control signal for that instrument, and a 3,111,587 11/1963 Rocard 250/199 controlled device Operated upon by Such Selected 3289,001 11/1966 Wilc0x. 250/199 trol signal and supplying a controlled amount of power 3,652,858 3/1972 Kinsel 250/199 t0 the instrument. By utilizing an infrared transmission 1 ,1 6/l972 Kaminown 250/199 means, and placing the controlled device with each 316761684 7/1972 9- 250/X99 instrument, the necessity of installing large numbers of 31706913 12/1972 Malatch' 315/292 separate, independent circuits is eliminated. and in- 3,706,914 Van Buren 1 t creased of control is achieved. 3 7lO,l22 1/l973 Burcher ct al. v 250/199 3,766,431 10/1973 lsaacs 315/292 11 Claims, 4 Drawing Figures 50' 6OHz POWER P 30 E) SCR j}: l
DIMMER INFRARED 28 I DETECTOR/RECEIVER *Nsassssaefi CONTROL AND HIGH FREQ- o- M/T a??? SIGNAL" AMPLIFIER SIGNAL *1 52 41 40 53 i M/T SCR COILEROL D g 121512 2 28 40 30 A coigaoL M/T t Z HiGH FREQ. 2 CONTROL SIGNAL#2 SIGN/A132 CONTROL *3 1 o- M/T 1 50 L Q: 22
o- M/T 41 Hz 30 5o POWER @:i :0: 25
Sheet 2 of4 3,924,120
U.S. Patent Dec. 2, 1975 US. Patent Dec. 2, 1975 Sheet 4 of4 3,924,120
ANALO DIGITAL T/4O2 CONTROLLER ENCODER I DIGITAL ANALOG I ENc0DER TO DIGITAL I I coNvERTER PATCH PANEL I l I i 40! I 05 I 4 I I DIGITAL coNTRoLLER 407 ENcoDER INFRARED I EMITTER/ SYNC a TRANSMITTER TIMING \406 4I 409 n I DIGITAL gggg INFRARED DECODER DETECTOR 4I2 I INSTRUMENT TRQ HEATER REMOTE CONTROL SYSTEM CROSS-REFERENCE TO RELATED APPLICATION This is a continuation-in-part of my co-pending U.S. application Ser. No. 230,378 now abandoned, filed Feb. 29, 1972, titled THEATRE LIGHTING CON- TROL AND DIMMER SYSTEM.
BACKGROUND OF THE INVENTION A. Field of the Invention This invention lies in the field of remote control systems and, more particularly, theatre control systems where all control signals are transmitted together over a common transmission medium and each instrument is controlled by separation of a specific control signal and control of a controlled device at the location of such each instrument.
- B. Description of the Prior Art Theatre lighting, being an integral part of each theatrical performance, or show, requires an implementation with sufficient flexibility to cover the demands of each show produced, and thus any given theatre lighting system must be sufficiently flexible to cover a wide range of different types of shows. A lighting system must provide visibility in different degrees, must provide composition and naturalism, and is essential in providing the overall atmosphere, or mood of the production. Specifically, each instrument used in lighting a given theatrical production has a particular function, e.g., being a solo spotlight, providing a particular effect such as a setting sun, etc. In order to obtain maximum flexibility, each instrument must be subject to separate control, i.e., through its own dimmer. To coordinate intensity changes in a large number of instruments, which instruments are separately located, the standard system has a master control board for control of the dimmers, with a separate circuit from each dimmer to 4 the remote position of the respective instrument.
In the construction of a theatre, it is not conceptually possible to anticipate the maximum number of circuits required at any given location in a theatre for any given show, nor is it economically feasible to install large numbers of circuits which will only be utilized on rare occasions. Consequently, present theatre lighting systems are based on the requirements of an averageshow, such that large multi conductor cables are installed to the most likely lighting positions. Typically, a total of from 100 to 600 individual circuits are installed, connecting from 50 to l50 dimmers to lighting instruments located throughout the theatre. A patch panel, which is essentially a high powered analog of a telephone switchboard, allows any circuit to be connected to any dimmer. Provisions are also made on the patch panel for more than one circuit, usually between 2 and 6 circuits, to be connected to the same dimmer. Connecting more than one lighting instrument to the same dimmer, however, tends to limit the effectiveness of the instruments, since they cannot be individually programmed.
2 other locations to the location where extra circuits are needed. Both of these alternatives result in a serious loss of flexibility, as well as increased installation time and expense.
SUMMARY OF THE INVENTION It is an object of this invention to provide a remote control system providing optimum flexibility in placement of instruments and control of such instruments, and which is simplified and inexpensive in comparison to prior art remote control systems.
It is further an object of this invention to provide a remote control system wherein control signals for all of the instruments in the system are generated at a remote control location, with all of the control signals being transmitted to respective instruments via infrared light such that separate cables are not necessary, and wherein controlled devices are mounted contiguous to or located near to each instrument and are individually and simultaneously controlled by the transmitted control signals.
It is yet another object to provide a control system for simultaneously operating select ones of a plurality of instruments to any level in their respective operational ranges, i.e., either on-of or at any level therebetween, as desired.
Unfortunately, few shows. are average, such that the specific needs for a given show are rarely met with the Finally, it is another object of this invention to provide means for coordinating the control of many remotely located instruments.
In accordance with the above objects, there is provided a remote control system wherein each of the instruments in the theatre are controlled by a control device positioned contiguous or near thereto, each instrument being connected to a source of power, for example a battery or the theatre system power line with control means positioned at a point remote from said instruments and containing control units for generating control signals for each of such instruments. In one embodiment, the control signals modulate a carrier (or carriers) which are transmitted from such remote position to the respective instruments. In another embodiment, a plurality of subcarriers are generated, each modulated by respective control signals, the subcarriers in turn being combined or multiplexed on a plurality of carriers. In still another embodiment the control signals aretransmitted digitally in the form of binary code words.
In a preferred embodiment, infrared transmitters and receivers are utilized. In the environment of a theatre, which has cavernous open spaces, use of infrared transmission allows'forapplication of the principles of the present invention to control speaker systems, self propelled mobile stage props, and the like, as well as to lighting systems and apparatus.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of the theatre system of this invention.
FIG. 2 is a block diagram showing the arrangement of the control signal generators and transmitters as used in this invention; curves (a'), (b), (c) and (d) in FIG. 2 illustrate the signal waveforms at corresponding points.
FIG. 3 is a modification of FIG. 1, showing an embodiment wherein a plurality of carriers and subcarriers are generated to carry the control signals which are sent to the light instrument dimmers.
FIG. 4 shows an alternative illustrative embodiment utilizing infrared transmission of digital pulses.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The devices to be controlled are distributed throughout the theatre. There is illustrated in FIG. 1 a plurality of lighting instruments 30, shown connected to a pipe 31 which provides mechanical support of the instruments. The variety of such instruments, and the manner of support of same, are choices available to the user and are, as such, not essential to this system. Hereinafter, the terms devices" and instruments are used interchangeably to describe the apparatus being controlled. Each instrument 30 is electrically connected to the transmission line from a normal electrical plug 28, the connection being made through an instrument control unit 50, the details of which are described hereinbelow.
Remote from the instruments 30, and centrally located to optimum advantage of the operator of the system, are a plurality of control signal generation units 40. Each unti 40 is an electronic system designed to generate a control signal, which control signal is in turn transmitted to at least one lighting instrument, to actuate a control device connected to same. Each control unit 40 produces a distinct control signal, which signals are programmed by the system operator. The outputs of the control units 40 are suitably connected through a patch panel 45 to a plurality of modulator-transmitter (M/T) units 41. Each unit 41 contains a generator for generating a carrier at a specified frequency, and a modulator which receives a control signal from one of the units 40, which control signal is caused to modulate the carrier signal. The outputs of the units 41 are coupled to an infrared emitter which radiates the plurality of modulated carrier signals. The infrared light may be reflected, focused, and/or carried via light pipes as required by a particular installation.
The output from the infrared emitter which is transmitted to all of the infrared detectors/receivers 51 located adjacent to lighting instruments 30, contains a plurality of carriers, each carrying a control signal. In operation, there are as many carriers as there are different control signals to be sent to the control devices associated with each instrument light. Thus, the infrared light detector/receiver at each instrument picks up all of the different carrier signals. These signals are first connected to a control signal separator, unit 51. Unit 51 also contains a tuned band pass filter which separates out one specific modulated carrier signal, which is connected through to the demodulator and amplifier unit 52. Unit 52 recovers the control signal, and connects same to the control input of the controlling device 53. Thus, the control signal is communicated to the controlling device, the power output of which is connected to instrument 30. Thus, for a particular instrument 30, that control signal which is carried by the carrier frequency corresponding to its tuned band pass filter, is detected and caused to control the operation of the instrument, e.g., control the light intensity. Each other instrument has associated with it an instrument control unit 50, containing in its signal separator a band pass filter tuned toa different frequency, so that it can be controlled uniquely of all other instruments in the theatre. Thus, if desired, every instrument can be separately controlled. It is to be noted that, in practice, it may be desired to have a number of separate instruments commonly controlled, in which case the respective carriers for each such instrument carry the same 4 control signal. This is achieved by proper patching at the control station.
The controlling device 53, as used in the system of this invention, could be an SCR dimmer, the details of which are well known and need not be specified herein. See, for example, the General Electric SCR Manual, Second Edition, pages 119 and 120. In the typical SCR dimmer as presently used in theatres and other applications, the dimming may be manually controlled by varying the time or phase delay which controls the dimming (or portion of each cycle that the power current is passed through the SCR). Alternately, the delay in turn-on time of the SCR, relative to the start of power half cycle, may be controlled by an externally generated control signal. To accomplish this, it is necessary only that the control signal carry information as to when, for each half cycle of the power signal, the SCR is to turn on. I
It should be noted that the control units 50, as well as the instruments being controlled, may also be battery powered, for the use of infrared radiation obviates the need for any fixed physical positioning or fixed electrical connection of the instrument being controlled.
By referring now to FIG. 2, a manner of generating the control signals used in this invention may be seen and understood. The Hz power signal, (shown at a), is connected to the input of a frequency doubler 38 which generates a Hz signal. The 120 Hz signal is connected to a halfwave rectifier and squarer 43, the output of which is illustrated at b. The 120 Hz squarewave thus produced is connected to the input of a variable monostable flip-flop 46 within a control unit 40. Flip-flop 46 is set into its temporary state at the start of each positive going portion of the squarewave, i.e., at the start of each cycle of the 120 Hz signal. The flipflop remains in its temporary state for a length of time determined by the setting of a controller 44, suitably a manually operated potentiometer. Thus, the flip-flop returns to its stable state after a predetermined time period, corresponding to the desired delay before the SCR in the dimmer 53 is to be turned on. The output of flip-flop 46 is shown at c, with the controllable time delay interval shown as D. As is known, the inverse of the c signal, designated as F, is also available (or can be generated by passing the 0 signal through an inverter). Consequently, the c output comprises a train of positive pulses, the duration of each positive pulse corresponding to the setting of its controller 44. When, and only when this control signal is received at the SCR dimmer 53, does the SCR therein conduct, such that power current is provided to the instrument light 30 only during the positive portion of the control signal, or after the time delay D. By using a pair of back-to-back SCRs in the dimmer, a controlled power signal is sent to the light instrument 30 each half cycle of the power current.
Other forms of control signals are obviously possible within the scope and spirit of this invention. For example, zero-point or synchronous switching of SCRs is another common triggering technique. As its name implies, zero-point switching turns the SCR on only when the voltage is zero (turn-off is always at a zero), thus avoiding the sharp transient associated with phase or delay switching. Multilevel control is afforded by only triggering the SCR for a fraction of the number of cycles in a fixed interval. For example if the fixed interval is ten cycles of the 60 Hz line frequency, a setting of half onthe controller 40 would cause the SCR 53 to conduct on of the cycles; a controller setting of 0.05 would cause the SCR to conduct for only one half cycle over the IQ cycle interval.
When the source of power is DC, some means will have to be provided to turn the SCR off, since with DC, the voltage obviously does not periodically drop to zero. Alternatively, a silicon controlled switch, SCS, which differs from an SCR only in that it also has an off gate, could be used.
All three of the above approaches are well known in the art and hence will not be discussed further here.
The control signals thus generated are connected through patch panel 45, and modulate the output of transmitter 48 by operation of conventional electronic switch 49, or other modulator means. The output of the entire modulator unit 41 is thus a pulse modulated carrier, with an envelope corresponding to the F control signal. Each of such pulse modulated carriers, at their respective frequencies, are added together and fed to the infrared emitter. By this arrangement, each SCR dimmer corresponding to a respective lighting instrument 30 receives a corresponding control signal transmitted on that carrier frequency corresponding to the tuned filter associated with that light instrument. In this manner, each light 30 is independently controlled by the setting of a controller 44, such that the system operator can control simultaneously all of the lights from one centralized position.
In a situation requiring a large number of instruments, e.g., 400, to be controlled simultaneously and independently, the use of individual carriers to carry the control information for each instrument is cumbersome. Two alternatives are available multiplexing and direct digital encoding. Further, two types of multiplexing are well known frequency multiplexing and time multiplexing. Since these types of multiplexing can be shown from an information theory point of view to be equivalent only the former will be discussed herein.
Referring now to FIG. 3, an alternate embodiment of this invention employing frequency miltiplexing is illustrated. In this embodiment, a limited number of main carriers, suitably just two, are utilized. This contrasts with the system as described above, where there are as many carriers as there are light instruments. In this embodiment, each control signal modulates a low frequency subcarrier, the modulated subcarriers in turn being connected to and modulating a transmitter producing a main carrier. Thus, in FIG. 3 there are illustrated two main carrier generators 68, and three subcarrier generators 65. It is to be noted that in a preferred embodiment there are as many different combinations of subcarriers and carriers as there are light instruments, so that the system has capacity to separately control each such instrument. Thus, if there are 64 light instruments to be controlled, and two main carriers, ideally there will be 32 different subcarrier generators 65.
The output of each subcarrier unit 65 is connected to two modulator units 67, each of which modulates in accordance with a separate control signal connected thereto. Thus, from each subcarrier, there are produced two modulated signals. One of each subcarrier is then summed through respective summers 66, the outputs of which are coupled to the main carrier modulator-transmitters (M/T) 68. Thus, each main carrier carries each of the subcarrier frequencies.
In this embodiment, the outputs of units 68 are connected to the infrared emitter or transmitter such that both main carriers are transmitted to all of the instrument control units. At each instrument, the control signal is passed through a tunable band pass filter 76, designed to be tunable to one of the two main carrier frequencies available for selection. An advantage is achieved here in that high frequency broad band pass filters are much more economical than the high frequency narrow band pass filters required where each instrument has its own high frequency carrier. The output of filter 76 is coupled to the carrier demodulator 55. There, the carrier is demodulated, the subcarriers are amplified, and one of the subcarriers is selected by a low frequency, (e.g., audio), narrow band pass filter 77. The selected subcarrier is then demodulated by demodulator 78, to derive the control signal which is connected to the controlling device. The power line 25 supplies 60 Hz power current which is connected through to the controlling device.
The advantage of this embodiment of the system lies in the fact that narrow band pass filters at low frequencies are readily available and a large number of subcarriers can be accommodated. For example, there are available commercial filters providing excellent narrow band characteristics at 15 Hz intervals. Thus, to 200 subcarriers could very efficiently be accommodated in this system. By contrast, where each lighting instrument has its own high frequency carrier, it would be necessary to generate such carriers over a wide range of frequencies since it is difficult to obtain narrow band filters at higher frequencies.
Another advantage of this embodiment is that it offers an additional means for controlling various combinations of instruments together. By simply tuning the high frequency bandpass filters to the same frequency, two instruments will receive the same signal and hence operate together. This would be useful in a theatre application for example when it is desired to control the illumination of large areas which require many lighting instruments.
While the above discussion had the high frequency filters tunable and the low frequency filters fixed, obviously the situation could be reversed, making the low frequency filter tunable and the high frequency filter fixed. Further, both could obviously be made tunable.
Another alternate embodiment of this invention employing direct digital modulation will be presented below. See FIG. 4. As previously disclosed, the controller 401 produces a signal which can be connected to various digital encoders 402, 403, 405, etc. The encoders, whose outputs are coordinated by the sync and timing box 406, transform the controller 401 output into a suitable form for transmission. An example of such a transformation would be the addition of redundant information which could be subsequently used by the decoder to reduce the probability of a transmission error. The outputs of all the encoders 402, 403, 405, etc., feed the infrared emitter 407 which radiates or transmits the information. If, for example, a binary code was used in the encoders 402, 403, etc., then the'control information is in the form of 0s and P5 with the corresponding infrared emitter 407 output being a sequence of on and off" flashes. At the receiver the infrared radiation is detected at a detector 408, decoded at 409,
, and fed to the controlling device 411.
The actual information content of the transmitted signal will of course vary considerably depending upon 7 the application. In the context of controlling lighting instruments, such as 412, several examples of the information transmitted are to be given.
The use of light emitting diode (LED) photo-transistor systems also makes direct digital transmission much more feasible. In such an all-digital system, no carriers or subcarriers are used; instead the information is put in the form of a binary code which in turn is fed directly to the LED, thereby switching it on" and of Whereas in the case of analog modulation, a specific instrument was identified by a certain carrier frequency (or carrier frequency and subcarrier frequency combination), with digital modulation each remote control unit is identified by a binary code word (or some combination of several binary words), as in the following examples.
Example I: Transmit each instrument number, and the corresponding intensity. The transmitter would send each instrument number, followed by the intensity at which that instrument should be set. With a large number of instruments, this is obviously quite a redundant scheme, i.e., with 320 instruments, each of which has control levels, this means that the same intensity will be transmitted 320 times if all instruments are to be at the same intensity.
Example II: Transmit all instrument numbers of same intensity, followed by the desired intensity. This scheme involves transmission of a sequence of instrument numbers followed by a single intensity at which all the previously listed instruments should be set. Thus, this scheme involves division of the transmitted information into frames, each frame including a full set of numbers of instruments to be changed with corresponding intensity changes.
Both of the above schemes still involve considerable redundancy since each instrument must know its number, in order to recognize its number when transmitted, such as by means of selective logic means. If the intensities are transmitted in a rigid sequence, i.e., instrument No. 'ls intensity is always transmitted first, instrument No. 2s second, etc., then a further simplification can be made. This can be done in at least two ways:
Example III: Transmit intensity, common sync. If a common frequency is available at the transmitter and all receivers, then this frequency can be used to sync the transmitter and receiver. The line frequency is an obvious example.
Example IV: Transmit intensity, self clocking. If some instruments are to be battery operated, for example, then a self clocking code, such as a return to zero code, could be used. In a return to zero code, the level goes to zero between every bit, whereas in conventional binary code the level goes to zero only where the binary zero is to be transmitted. Hence, in a return-tozero code, the same number of edges get through, independent of the information being sent, and thus these edges can be used to drive or to sync the oscillator at the instrument.
One additional embodiment, which will work under limited conditions, is that the infrared signal can be used directly to control an SCR. Such an embodiment requires a highly directional infrared emitter, such as a laser.
In the foregoing embodiments, it clearly is not necessary for power lines to be connected directly between the transmitter and the receiver. Rather, all that is required is a continuous optical circuit therebetween,
8 furnished either by open space, mirrors, lenses, fiberoptic bundles, or the like. In most practical situations, the theater affords ample volume for line of sight open space transmission.
Normally, the light-emitting diode (LED) only need be coarsely focused, such as by a 45 beam to on stage instruments and a 180 beam for orchestra and stage footlights. As desired, receiving phototransistors conveniently may be mounted at one end ofa black flat finished tube pointing toward the transmitter. Lenses generally are required only for receivers more than 50l00 feet from the transmitter, in accordance with the present state of the art.
The system as thus shown above, in each of the embodiments, is seen to provide great flexibility in allowing the instruments to be connected anywhere in the theatre, and without having to install any connecting cables or circuits. The efficiency of such installations can be improved even further by packaging the instrument control units 50, which include the controlling device, for mounting directly to or on the instrument. By thus integrally connecting the instrument control units to the instruments themselves, there is provided a single package which need only be mechanically sup ported at the position where it is to be installed. This feature provides optimum installation efficiency, and answers a long and seriously felt need for increased flexibility in theatre lighting systems.
While the preferred embodiments of this invention have been presented in their specifics, it is recognized that variations of specific components of the system may be made within the spirit and scope of the invention.
Even more importantly, the technique of digitally encoding time delay signals makes it possible to directly interface the system with a digital computer, by coding digital words in computer memory to carry the time delay information. For example, a digital memory (FIG. 2) may have stored therein 32 different time delay words, each being a 5 bit word and corresponding to the division of one half the power system period (l/l20th second) into 32 fractions thereof. When a given delay is desired (corresponding to a given percentage of full power), the operator may simply read out of the memory the desired word, which is used directly to pulse code modulate a carrier. At the receiving end, a conventional digital-to-analog device is used to generate an appropriate analog control signal which is used to control the SCR dimmer. The technique of read in and read out of a computer, or digital memory, is well known in the art, and need not be amplified further in the specification in order that this be a proper enabling disclosure.
I claim:
1. In a theatre system having a plurality of theatre instruments, an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising:
a. a plurality of instruments located at respective positions in the theatre, each having a different identification code and each including a photosensitive detector, a digital signal decoder, and an actuation control means;
b. a source of signals, said signals representing specifled variations in the operation of select ones of said instruments;
c. means for converting said signals from said source to a predetermined digitally coded signal, said code being conditioned to energize actuation control means to bring said instruments selectively to desired operating levels, said means for converting including means for multiplexing signals for a plurality of instruments into an aggregate digital signal of predetermined format to associate control information for a given one of said instruments with the corresponding identification code;
(1. optical transmission means including means for translating said aggregate signal into infrared energy, and at least one continuous optical transmission path between said means for translating and each of said photosensitive detectors, whereby transmitted aggregate signals from said optical transmission means contain all actuation control level change information for said theatre, and individual ones of said instruments are conditioned to extract corresponding infrared control signals and to reject infrared control signals which correspond to other ones of said instruments.
2. A system as described in claim 1 wherein said means for converting includes means for producing actuation control level change information in the form of with binary code words uniquely associated with corresponding ones of said instruments, said binary code words representing said identification code, and wherein the digital signal decoder of each said instruments includes logic means energized only by a binary code word associated with the corresponding instruments.
3. A system as described in claim 2 wherein said means for converting includes means for identifying all ones of said instruments having the same prospective actuation control level change, and wherein said multiplexing means includes means for grouping all binary code words of a given prospective actuation control level change with a digitally coded signal of said given prospective actuation control level change.
4. A system as described in claim 2 wherein said multiplexing means includes means for aggregating all binary code words of said instruments followed respectively by coded corresponding prospective actuation control level changes for said instruments.
5. A system as described in claim 1 wherein each of said instruments comprises means for sampling said transmission path at predetermined unique periodic intervals, and wherein said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample said transmission path, the identification of said unique periodic intervals constituting said identification codes.
6. A system as described in claim 1 wherein each of said instruments is connected to said means for translating by a different transmission path, and wherein 7. A system as described in claim 1 wherein said plurality of instruments are lighting instruments, said actuation control level change information being light intensity change information.
8. A system as described in claim 1 wherein each of said instruments is self-clocking, being conditioned to sample said transmission path at intervals derived from the format of the code itself and wherein said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample the said transmission path, the identification of said sampling intervals constituting said identification code.
9. In a theatre system having a plurality of theatre instruments, an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising:
a. a plurality of instruments located at respective positions in the theatre, each being associated with a photosensitive detector, a carrier demodulator, and an actuation control means;
b. a source of signals representing specified variations in the operation of select ones of said instruments;
0. transmitter means, comprising a plurality of high frequency carrier generators, each generating a respective different carrier and each being modulated to carry information of the control signal of one of said control units;
d. infrared transmission means, comprising a noncoherent infrared signal emitter and an optical transmission path to all of said instruments, for providing continuous signal transmission from the location of said transmitter means to the location of said light instruments;
e. a plurality of infrared detectors located respectively at the locations of said light instruments; and
f. control signal separation means, connected to respective ones of said detectors, for separating at each said instrument a given one of said transmitter carriers, deriving the control signal carried thereon, and coupling said control signal to the controlled device positioned with said instruments.
10. A system as described in claim 9, wherein:
a. said transmitter means comprises a plurality of low frequency subcarrier generators, signals from each such subcarrier generator being modulated by respective said control signals, the modulated subcarriers being multiplexed onto signals at said carrier transmitters so that said carriers are modulated to carry said modulated subcarriers; and
b. said separation means has a tunable high frequency band pass filter to separate out one of said carriers, and a low frequency band pass filter to separate out a specific one of said subcarriers.
11. A system as described in claim 9 wherein said plurality of instruments are lighting instruments said actuation control level change information being light intensity change information.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 1 ,9 4,12 Dated December 2, 1975 Inventor(s) Charles H. Cox, III.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the title of the patent, column [54] "HEATER REMOTE CONTROL SYSTEM" should read -THEATER REMOTE CONTROL SYSTEM--- Column 1, in the title, "HEATER REMOTE CONTROL SYSTEM" should read THEATER REMOTE CONTROL SYSTEM.
Column 3, line 21, "unti" should read unit--.
Signed and Sea-led this I Sixteenth D y f November 1976 [SEAL] Attesn RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner oj'lalents and Trademarks UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 1 ,9 4,12 Dated December 2, 1975 Inventor(s) Charles H. Cox, III.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the title of the patent, column [54] "HEATER REMOTE CONTROL SYSTEM" should read -THEATER REMOTE CONTROL SYSTEM--- Column 1, in the title, "HEATER REMOTE CONTROL SYSTEM" should read THEATER REMOTE CONTROL SYSTEM.
Column 3, line 21, "unti" should read unit--.
Signed and Sea-led this I Sixteenth D y f November 1976 [SEAL] Attesn RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner oj'lalents and Trademarks UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,924,120 Dated December 2, 1975 Inventor(s) Charles H. Cox, III.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the title of the patent, column [54] "HEATER REMOTE CONTROL SYSTEM" should read --THEATER REMOTE CONTROL SYSTEM-.
Column 1, in the title, "HEATER REMOTE CONTROL SYSTEM" should read -THEATER REMOTE CONTROL SYSTEM.
Column 3, line 21, "unti" should read -unit-.
Signed and Sea-led this Sixteenth D f November 1976 [SEAL] Arrest;
RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ufPaIenrs and Trademarks

Claims (11)

1. In a theatre system having a plurality of theatre instruments, an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising: a. a plurality of instruments located at respective positions in the theatre, each having a different identification code and each including a photosensitive detector, a digital signal decoder, and an actuation control means; b. a source of signals, said signals representing specified variations in the operation of select ones of said instruments; c. means for converting said signals from said source to a predetermined digitally coded signal, said code being conditioned to energize actuation control means to bring said instruments selectively to desired operating levels, said means for converting including means for multiplexing signals for a plurality of instruments into an aggregate digital signal of predetermined format to associate control information for a given one of said instruments with the corresponding identification code; d. optical transmission means including means for translating said aggregate signal into infrared energy, and at least one continuous optical transmission path between said means for translating and each of said photosensitive detectors, whereby transmitted aggregate signals from said optical transmission means contain all actuation control level change information for said theatre, and individual ones of said instruments are conditioned to extract corresponding infrared control signals and to reject infrared control signals which correspond to other ones of said instruments.
2. A system as described in claim 1 wherein said means for converting includes means for producing actuation control level change information in the form of with binary code words uniquely associated with corresponding ones of said instruments, said binary code words representing said identification code, and wherein the digital signal decoder of each said instruments includes logic means energized only by a binary code word associated with the corresponding instruments.
3. A system as described in claim 2 wherein said means for converting includes means for identifying all ones of said instruments having the same prospective actuation control level change, and wherein said multiplexing means includes means for grouping all binary code words of a given prospective actuation control level change with a digitally coded signal of said given prospective actuation control level change.
4. A system as described in claim 2 wherein said multiplexing means includes means for aggregating all binary code words of said instruments followed respectively by coded corresponding prospective actuation control level changes for said instruments.
5. A system as described in claim 1 wherein each of saId instruments comprises means for sampling said transmission path at predetermined unique periodic intervals, and wherein said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample said transmission path, the identification of said unique periodic intervals constituting said identification codes.
6. A system as described in claim 1 wherein each of said instruments is connected to said means for translating by a different transmission path, and wherein said means for multiplexing includes means for coupling said means for translating to any given one of said different transmission paths to selectively couple actuation control level change information to a corresponding given one of said instruments, coupling being accomplished on the basis of said different identification codes.
7. A system as described in claim 1 wherein said plurality of instruments are lighting instruments, said actuation control level change information being light intensity change information.
8. A system as described in claim 1 wherein each of said instruments is self-clocking, being conditioned to sample said transmission path at intervals derived from the format of the code itself and wherein said multiplexing means includes timing means for transmitting coded intensity change information only during the intervals during which the corresponding instruments is conditioned to sample the said transmission path, the identification of said sampling intervals constituting said identification code.
9. In a theatre system having a plurality of theatre instruments, an optimal control system for simultaneously operating select ones of said instruments at any level in the operational range thereof while maintaining optimal flexibility in location of said instruments, said control system comprising: a. a plurality of instruments located at respective positions in the theatre, each being associated with a photosensitive detector, a carrier demodulator, and an actuation control means; b. a source of signals representing specified variations in the operation of select ones of said instruments; c. transmitter means, comprising a plurality of high frequency carrier generators, each generating a respective different carrier and each being modulated to carry information of the control signal of one of said control units; d. infrared transmission means, comprising a non-coherent infrared signal emitter and an optical transmission path to all of said instruments, for providing continuous signal transmission from the location of said transmitter means to the location of said light instruments; e. a plurality of infrared detectors located respectively at the locations of said light instruments; and f. control signal separation means, connected to respective ones of said detectors, for separating at each said instrument a given one of said transmitter carriers, deriving the control signal carried thereon, and coupling said control signal to the controlled device positioned with said instruments.
10. A system as described in claim 9, wherein: a. said transmitter means comprises a plurality of low frequency subcarrier generators, signals from each such subcarrier generator being modulated by respective said control signals, the modulated subcarriers being multiplexed onto signals at said carrier transmitters so that said carriers are modulated to carry said modulated subcarriers; and b. said separation means has a tunable high frequency band pass filter to separate out one of said carriers, and a low frequency band pass filter to separate out a specific one of said subcarriers.
11. A system as described in claim 9 wherein said plurality of instruments are lighting instruments, said actuation control level change information being light intensity change information.
US397219A 1972-02-29 1973-09-14 Heater remote control system Expired - Lifetime US3924120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US397219A US3924120A (en) 1972-02-29 1973-09-14 Heater remote control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23037872A 1972-02-29 1972-02-29
US397219A US3924120A (en) 1972-02-29 1973-09-14 Heater remote control system

Publications (1)

Publication Number Publication Date
US3924120A true US3924120A (en) 1975-12-02

Family

ID=26924171

Family Applications (1)

Application Number Title Priority Date Filing Date
US397219A Expired - Lifetime US3924120A (en) 1972-02-29 1973-09-14 Heater remote control system

Country Status (1)

Country Link
US (1) US3924120A (en)

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623527A1 (en) * 1976-05-26 1977-12-01 Sennheiser Electronic Simultaneous signal transmission in separate channels - has electromagnetic radiation in optical range with several FM carrier oscillations combined to modulate source of IR radiations
US4091272A (en) * 1975-07-10 1978-05-23 Loewe-Opta Gmbh Infra-red remote controlled command system for a communications receiver
US4156167A (en) * 1976-07-12 1979-05-22 Wilkins & Associates, Inc. Radiation emitting system with pulse width and frequency control
US4267606A (en) * 1979-05-24 1981-05-12 Udo Polka Wireless, multi-channel remote control unit for toys
FR2573590A1 (en) * 1984-11-20 1986-05-23 Infradep Infrared remote control device.
US4616224A (en) * 1983-03-16 1986-10-07 Sheller-Globe Corporation Multifunction steering wheel
US4621374A (en) * 1981-12-24 1986-11-04 Itt Industries, Inc. Circuit arrangement for processing, transmitting, and acoustically reproducing digitized audio-frequency signals
US4628310A (en) * 1983-03-16 1986-12-09 Sheller-Globe Corporation Multifunction steering wheel
US5005211A (en) * 1987-07-30 1991-04-02 Lutron Electronics Co., Inc. Wireless power control system with auxiliary local control
US5040168A (en) * 1989-06-30 1991-08-13 United Technologies Automotive, Inc. Single wire, infrared, randomly reflected, vehicular multiplexing system
US5099193A (en) * 1987-07-30 1992-03-24 Lutron Electronics Co., Inc. Remotely controllable power control system
US5142396A (en) * 1987-03-23 1992-08-25 Johnson Service Company Diffused infrared communication control system
US5176442A (en) * 1990-09-04 1993-01-05 Morpheus Lights, Inc. Infra-red coupling mechanism for a light projector
US5225765A (en) * 1984-08-15 1993-07-06 Michael Callahan Inductorless controlled transition and other light dimmers
US5237264A (en) * 1987-07-30 1993-08-17 Lutron Electronics Co., Inc. Remotely controllable power control system
US5319301A (en) * 1984-08-15 1994-06-07 Michael Callahan Inductorless controlled transition and other light dimmers
US5323256A (en) * 1992-04-06 1994-06-21 Banks Franklin J Apparatus for controlling remote servoactuators using fiber optics
GB2284287A (en) * 1993-11-26 1995-05-31 Colin Eric Mason Remote control e.g. for electric lights
US5629607A (en) * 1984-08-15 1997-05-13 Callahan; Michael Initializing controlled transition light dimmers
US5764010A (en) * 1995-04-28 1998-06-09 United Technologies Automotive, Inc. Control system for an automotive vehicle multi-functional apparatus
US6331813B1 (en) 1999-05-25 2001-12-18 Richard S. Belliveau Multiparameter device control apparatus and method
US6577080B2 (en) * 1997-08-26 2003-06-10 Color Kinetics Incorporated Lighting entertainment system
US6608453B2 (en) 1997-08-26 2003-08-19 Color Kinetics Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6624597B2 (en) 1997-08-26 2003-09-23 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US6717376B2 (en) 1997-08-26 2004-04-06 Color Kinetics, Incorporated Automotive information systems
US6774584B2 (en) 1997-08-26 2004-08-10 Color Kinetics, Incorporated Methods and apparatus for sensor responsive illumination of liquids
US6777891B2 (en) 1997-08-26 2004-08-17 Color Kinetics, Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6781329B2 (en) 1997-08-26 2004-08-24 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US6801003B2 (en) 2001-03-13 2004-10-05 Color Kinetics, Incorporated Systems and methods for synchronizing lighting effects
US6869204B2 (en) 1997-08-26 2005-03-22 Color Kinetics Incorporated Light fixtures for illumination of liquids
US6888322B2 (en) 1997-08-26 2005-05-03 Color Kinetics Incorporated Systems and methods for color changing device and enclosure
US6897624B2 (en) 1997-08-26 2005-05-24 Color Kinetics, Incorporated Packaged information systems
US6936978B2 (en) 1997-08-26 2005-08-30 Color Kinetics Incorporated Methods and apparatus for remotely controlled illumination of liquids
US6965205B2 (en) 1997-08-26 2005-11-15 Color Kinetics Incorporated Light emitting diode based products
US6967448B2 (en) 1997-08-26 2005-11-22 Color Kinetics, Incorporated Methods and apparatus for controlling illumination
US6975079B2 (en) 1997-08-26 2005-12-13 Color Kinetics Incorporated Systems and methods for controlling illumination sources
US7031920B2 (en) 2000-07-27 2006-04-18 Color Kinetics Incorporated Lighting control using speech recognition
US7038399B2 (en) 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US7042172B2 (en) 2000-09-01 2006-05-09 Color Kinetics Incorporated Systems and methods for providing illumination in machine vision systems
US7064498B2 (en) 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
US7161311B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Multicolored LED lighting method and apparatus
US7178941B2 (en) 2003-05-05 2007-02-20 Color Kinetics Incorporated Lighting methods and systems
US7186003B2 (en) 1997-08-26 2007-03-06 Color Kinetics Incorporated Light-emitting diode based products
US7187141B2 (en) 1997-08-26 2007-03-06 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US7202613B2 (en) 2001-05-30 2007-04-10 Color Kinetics Incorporated Controlled lighting methods and apparatus
US7221104B2 (en) 1997-08-26 2007-05-22 Color Kinetics Incorporated Linear lighting apparatus and methods
US7231060B2 (en) 1997-08-26 2007-06-12 Color Kinetics Incorporated Systems and methods of generating control signals
US7242152B2 (en) 1997-08-26 2007-07-10 Color Kinetics Incorporated Systems and methods of controlling light systems
US7300192B2 (en) 2002-10-03 2007-11-27 Color Kinetics Incorporated Methods and apparatus for illuminating environments
US7303300B2 (en) 2000-09-27 2007-12-04 Color Kinetics Incorporated Methods and systems for illuminating household products
US7309965B2 (en) 1997-08-26 2007-12-18 Color Kinetics Incorporated Universal lighting network methods and systems
US7358679B2 (en) 2002-05-09 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Dimmable LED-based MR16 lighting apparatus and methods
US7385359B2 (en) 1997-08-26 2008-06-10 Philips Solid-State Lighting Solutions, Inc. Information systems
US7427840B2 (en) 1997-08-26 2008-09-23 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling illumination
US7453217B2 (en) 1997-08-26 2008-11-18 Philips Solid-State Lighting Solutions, Inc. Marketplace illumination methods and apparatus
US7482764B2 (en) 1997-08-26 2009-01-27 Philips Solid-State Lighting Solutions, Inc. Light sources for illumination of liquids
US20090159919A1 (en) * 2007-12-20 2009-06-25 Altair Engineering, Inc. Led lighting apparatus with swivel connection
US7572028B2 (en) 1999-11-18 2009-08-11 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US7598684B2 (en) 2001-05-30 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling devices in a networked lighting system
US7598686B2 (en) 1997-12-17 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Organic light emitting diode methods and apparatus
US20090290334A1 (en) * 2008-05-23 2009-11-26 Altair Engineering, Inc. Electric shock resistant l.e.d. based light
US7642730B2 (en) 2000-04-24 2010-01-05 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for conveying information via color of light
US20100008085A1 (en) * 2008-07-09 2010-01-14 Altair Engineering, Inc. Method of forming led-based light and resulting led-based light
US20100027259A1 (en) * 2008-07-31 2010-02-04 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented leds
US7659674B2 (en) 1997-08-26 2010-02-09 Philips Solid-State Lighting Solutions, Inc. Wireless lighting control methods and apparatus
US20100052542A1 (en) * 2008-09-02 2010-03-04 Altair Engineering, Inc. Led lamp failure alerting system
US20100052870A1 (en) * 2008-09-03 2010-03-04 Apple Inc. Intelligent infrared remote pairing
US20100067231A1 (en) * 2008-09-15 2010-03-18 Altair Engineering, Inc. Led-based light having rapidly oscillating leds
US20100106306A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Integration of led lighting with building controls
US20100103673A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. End cap substitute for led-based tube replacement light
US20100102730A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Light and light sensor
US20100103664A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Lighting including integral communication apparatus
US20100102960A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Integration of led lighting control with emergency notification systems
DE102008058878A1 (en) * 2008-11-26 2010-05-27 Vishay Semiconductor Gmbh Infrared receiver circuit
US20100172149A1 (en) * 2007-12-21 2010-07-08 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US20100177532A1 (en) * 2009-01-15 2010-07-15 Altair Engineering, Inc. Led lens
US20100181933A1 (en) * 2009-01-21 2010-07-22 Altair Engineering, Inc. Direct ac-to-dc converter for passive component minimization and universal operation of led arrays
US20100181925A1 (en) * 2009-01-21 2010-07-22 Altair Engineering, Inc. Ballast/Line Detection Circuit for Fluorescent Replacement Lamps
US7764026B2 (en) 1997-12-17 2010-07-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for digital entertainment
US20100220469A1 (en) * 2008-05-23 2010-09-02 Altair Engineering, Inc. D-shaped cross section l.e.d. based light
US7845823B2 (en) 1997-08-26 2010-12-07 Philips Solid-State Lighting Solutions, Inc. Controlled lighting methods and apparatus
US20100320922A1 (en) * 2009-06-23 2010-12-23 Altair Engineering, Inc. Illumination device including leds and a switching power control system
US20100321921A1 (en) * 2009-06-23 2010-12-23 Altair Engineering, Inc. Led lamp with a wavelength converting layer
US20110235318A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light tube with dual sided light distribution
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US20170219368A1 (en) * 2016-01-28 2017-08-03 At&T Intellectual Property I, L.P. Navigation system and methods for use therewith
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US10321528B2 (en) 2007-10-26 2019-06-11 Philips Lighting Holding B.V. Targeted content delivery using outdoor lighting networks (OLNs)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111587A (en) * 1954-09-30 1963-11-19 Hupp Corp Infra-red radiant energy devices
US3289001A (en) * 1964-01-23 1966-11-29 Exxon Production Research Co System for actuating remote electrical circuits with a beam of electromagnetic radiation
US3652858A (en) * 1970-09-25 1972-03-28 Bell Telephone Labor Inc Optical heterodyne time-division demultiplexer employing strobed assignment of channels among a tandem sequence of heterodyning elements
US3670166A (en) * 1970-12-28 1972-06-13 Bell Telephone Labor Inc Time division multiplex optical communication system
US3676684A (en) * 1970-09-23 1972-07-11 Bell Telephone Labor Inc Frequency-division multiplex communication system
US3706913A (en) * 1971-07-12 1972-12-19 James M Malatchi Plural channel light dimming system
US3706914A (en) * 1972-01-03 1972-12-19 George F Van Buren Lighting control system
US3710122A (en) * 1970-04-24 1973-01-09 Nasa A laser communication system for controlling several functions at a location remote to the laser
US3766431A (en) * 1967-10-23 1973-10-16 Thorn Electrical Ind Ltd A lighting control system including an analogue to digital converter
US3784875A (en) * 1971-05-07 1974-01-08 Rank Organisation Ltd Stage lighting control units
US3845293A (en) * 1966-12-21 1974-10-29 Telefunken Patent Electro-optical transmission system utilizing lasers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111587A (en) * 1954-09-30 1963-11-19 Hupp Corp Infra-red radiant energy devices
US3289001A (en) * 1964-01-23 1966-11-29 Exxon Production Research Co System for actuating remote electrical circuits with a beam of electromagnetic radiation
US3845293A (en) * 1966-12-21 1974-10-29 Telefunken Patent Electro-optical transmission system utilizing lasers
US3766431A (en) * 1967-10-23 1973-10-16 Thorn Electrical Ind Ltd A lighting control system including an analogue to digital converter
US3710122A (en) * 1970-04-24 1973-01-09 Nasa A laser communication system for controlling several functions at a location remote to the laser
US3676684A (en) * 1970-09-23 1972-07-11 Bell Telephone Labor Inc Frequency-division multiplex communication system
US3652858A (en) * 1970-09-25 1972-03-28 Bell Telephone Labor Inc Optical heterodyne time-division demultiplexer employing strobed assignment of channels among a tandem sequence of heterodyning elements
US3670166A (en) * 1970-12-28 1972-06-13 Bell Telephone Labor Inc Time division multiplex optical communication system
US3784875A (en) * 1971-05-07 1974-01-08 Rank Organisation Ltd Stage lighting control units
US3706913A (en) * 1971-07-12 1972-12-19 James M Malatchi Plural channel light dimming system
US3706914A (en) * 1972-01-03 1972-12-19 George F Van Buren Lighting control system

Cited By (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091272A (en) * 1975-07-10 1978-05-23 Loewe-Opta Gmbh Infra-red remote controlled command system for a communications receiver
DE2623527C2 (en) 1976-05-26 1982-05-13 Sennheiser Electronic Kg, 3002 Wedemark Method for the simultaneous transmission of messages in several separate signal channels by means of optical radiation
DE2623527A1 (en) * 1976-05-26 1977-12-01 Sennheiser Electronic Simultaneous signal transmission in separate channels - has electromagnetic radiation in optical range with several FM carrier oscillations combined to modulate source of IR radiations
US4156167A (en) * 1976-07-12 1979-05-22 Wilkins & Associates, Inc. Radiation emitting system with pulse width and frequency control
US4267606A (en) * 1979-05-24 1981-05-12 Udo Polka Wireless, multi-channel remote control unit for toys
US4621374A (en) * 1981-12-24 1986-11-04 Itt Industries, Inc. Circuit arrangement for processing, transmitting, and acoustically reproducing digitized audio-frequency signals
US4616224A (en) * 1983-03-16 1986-10-07 Sheller-Globe Corporation Multifunction steering wheel
US4628310A (en) * 1983-03-16 1986-12-09 Sheller-Globe Corporation Multifunction steering wheel
US5225765A (en) * 1984-08-15 1993-07-06 Michael Callahan Inductorless controlled transition and other light dimmers
US5672941A (en) * 1984-08-15 1997-09-30 Callahan; Michael Inductorless controlled transition light dimmers optimizing output waveforms
US5629607A (en) * 1984-08-15 1997-05-13 Callahan; Michael Initializing controlled transition light dimmers
US5319301A (en) * 1984-08-15 1994-06-07 Michael Callahan Inductorless controlled transition and other light dimmers
FR2573590A1 (en) * 1984-11-20 1986-05-23 Infradep Infrared remote control device.
US5142396A (en) * 1987-03-23 1992-08-25 Johnson Service Company Diffused infrared communication control system
US5237264A (en) * 1987-07-30 1993-08-17 Lutron Electronics Co., Inc. Remotely controllable power control system
US5099193A (en) * 1987-07-30 1992-03-24 Lutron Electronics Co., Inc. Remotely controllable power control system
US5005211A (en) * 1987-07-30 1991-04-02 Lutron Electronics Co., Inc. Wireless power control system with auxiliary local control
US5040168A (en) * 1989-06-30 1991-08-13 United Technologies Automotive, Inc. Single wire, infrared, randomly reflected, vehicular multiplexing system
US5176442A (en) * 1990-09-04 1993-01-05 Morpheus Lights, Inc. Infra-red coupling mechanism for a light projector
US5323256A (en) * 1992-04-06 1994-06-21 Banks Franklin J Apparatus for controlling remote servoactuators using fiber optics
GB2284287A (en) * 1993-11-26 1995-05-31 Colin Eric Mason Remote control e.g. for electric lights
EP0655879A1 (en) * 1993-11-26 1995-05-31 Colin Eric Mason Electrical lighting control
GB2284287B (en) * 1993-11-26 1998-03-04 Colin Eric Mason Remotely-controlled switching of electrical loads
US5764010A (en) * 1995-04-28 1998-06-09 United Technologies Automotive, Inc. Control system for an automotive vehicle multi-functional apparatus
US6717376B2 (en) 1997-08-26 2004-04-06 Color Kinetics, Incorporated Automotive information systems
US7525254B2 (en) 1997-08-26 2009-04-28 Philips Solid-State Lighting Solutions, Inc. Vehicle lighting methods and apparatus
US6608453B2 (en) 1997-08-26 2003-08-19 Color Kinetics Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6624597B2 (en) 1997-08-26 2003-09-23 Color Kinetics, Inc. Systems and methods for providing illumination in machine vision systems
US7309965B2 (en) 1997-08-26 2007-12-18 Color Kinetics Incorporated Universal lighting network methods and systems
US6774584B2 (en) 1997-08-26 2004-08-10 Color Kinetics, Incorporated Methods and apparatus for sensor responsive illumination of liquids
US6777891B2 (en) 1997-08-26 2004-08-17 Color Kinetics, Incorporated Methods and apparatus for controlling devices in a networked lighting system
US6781329B2 (en) 1997-08-26 2004-08-24 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US7845823B2 (en) 1997-08-26 2010-12-07 Philips Solid-State Lighting Solutions, Inc. Controlled lighting methods and apparatus
US6869204B2 (en) 1997-08-26 2005-03-22 Color Kinetics Incorporated Light fixtures for illumination of liquids
US6888322B2 (en) 1997-08-26 2005-05-03 Color Kinetics Incorporated Systems and methods for color changing device and enclosure
US6897624B2 (en) 1997-08-26 2005-05-24 Color Kinetics, Incorporated Packaged information systems
US6936978B2 (en) 1997-08-26 2005-08-30 Color Kinetics Incorporated Methods and apparatus for remotely controlled illumination of liquids
US6965205B2 (en) 1997-08-26 2005-11-15 Color Kinetics Incorporated Light emitting diode based products
US6967448B2 (en) 1997-08-26 2005-11-22 Color Kinetics, Incorporated Methods and apparatus for controlling illumination
US6975079B2 (en) 1997-08-26 2005-12-13 Color Kinetics Incorporated Systems and methods for controlling illumination sources
US7659674B2 (en) 1997-08-26 2010-02-09 Philips Solid-State Lighting Solutions, Inc. Wireless lighting control methods and apparatus
US6577080B2 (en) * 1997-08-26 2003-06-10 Color Kinetics Incorporated Lighting entertainment system
US7482764B2 (en) 1997-08-26 2009-01-27 Philips Solid-State Lighting Solutions, Inc. Light sources for illumination of liquids
US7064498B2 (en) 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
US7135824B2 (en) 1997-08-26 2006-11-14 Color Kinetics Incorporated Systems and methods for controlling illumination sources
US7161311B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Multicolored LED lighting method and apparatus
US7462997B2 (en) 1997-08-26 2008-12-09 Philips Solid-State Lighting Solutions, Inc. Multicolored LED lighting method and apparatus
US7186003B2 (en) 1997-08-26 2007-03-06 Color Kinetics Incorporated Light-emitting diode based products
US7187141B2 (en) 1997-08-26 2007-03-06 Color Kinetics Incorporated Methods and apparatus for illumination of liquids
US7453217B2 (en) 1997-08-26 2008-11-18 Philips Solid-State Lighting Solutions, Inc. Marketplace illumination methods and apparatus
US7221104B2 (en) 1997-08-26 2007-05-22 Color Kinetics Incorporated Linear lighting apparatus and methods
US7231060B2 (en) 1997-08-26 2007-06-12 Color Kinetics Incorporated Systems and methods of generating control signals
US7242152B2 (en) 1997-08-26 2007-07-10 Color Kinetics Incorporated Systems and methods of controlling light systems
US7248239B2 (en) 1997-08-26 2007-07-24 Color Kinetics Incorporated Systems and methods for color changing device and enclosure
US7253566B2 (en) 1997-08-26 2007-08-07 Color Kinetics Incorporated Methods and apparatus for controlling devices in a networked lighting system
US7274160B2 (en) 1997-08-26 2007-09-25 Color Kinetics Incorporated Multicolored lighting method and apparatus
US7427840B2 (en) 1997-08-26 2008-09-23 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling illumination
US7385359B2 (en) 1997-08-26 2008-06-10 Philips Solid-State Lighting Solutions, Inc. Information systems
US7764026B2 (en) 1997-12-17 2010-07-27 Philips Solid-State Lighting Solutions, Inc. Systems and methods for digital entertainment
US7598686B2 (en) 1997-12-17 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Organic light emitting diode methods and apparatus
US6331813B1 (en) 1999-05-25 2001-12-18 Richard S. Belliveau Multiparameter device control apparatus and method
US7959320B2 (en) 1999-11-18 2011-06-14 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US7572028B2 (en) 1999-11-18 2009-08-11 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for generating and modulating white light illumination conditions
US8866396B2 (en) 2000-02-11 2014-10-21 Ilumisys, Inc. Light tube and power supply circuit
US9006990B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
US10557593B2 (en) 2000-02-11 2020-02-11 Ilumisys, Inc. Light tube and power supply circuit
US9759392B2 (en) 2000-02-11 2017-09-12 Ilumisys, Inc. Light tube and power supply circuit
US9752736B2 (en) 2000-02-11 2017-09-05 Ilumisys, Inc. Light tube and power supply circuit
US8870412B1 (en) 2000-02-11 2014-10-28 Ilumisys, Inc. Light tube and power supply circuit
US9970601B2 (en) 2000-02-11 2018-05-15 Ilumisys, Inc. Light tube and power supply circuit
US9416923B1 (en) 2000-02-11 2016-08-16 Ilumisys, Inc. Light tube and power supply circuit
US9803806B2 (en) 2000-02-11 2017-10-31 Ilumisys, Inc. Light tube and power supply circuit
US9777893B2 (en) 2000-02-11 2017-10-03 Ilumisys, Inc. Light tube and power supply circuit
US10054270B2 (en) 2000-02-11 2018-08-21 Ilumisys, Inc. Light tube and power supply circuit
US9739428B1 (en) 2000-02-11 2017-08-22 Ilumisys, Inc. Light tube and power supply circuit
US9746139B2 (en) 2000-02-11 2017-08-29 Ilumisys, Inc. Light tube and power supply circuit
US9222626B1 (en) 2000-02-11 2015-12-29 Ilumisys, Inc. Light tube and power supply circuit
US9006993B1 (en) 2000-02-11 2015-04-14 Ilumisys, Inc. Light tube and power supply circuit
US7642730B2 (en) 2000-04-24 2010-01-05 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for conveying information via color of light
US7031920B2 (en) 2000-07-27 2006-04-18 Color Kinetics Incorporated Lighting control using speech recognition
US9955541B2 (en) 2000-08-07 2018-04-24 Philips Lighting Holding B.V. Universal lighting network methods and systems
US7042172B2 (en) 2000-09-01 2006-05-09 Color Kinetics Incorporated Systems and methods for providing illumination in machine vision systems
US7652436B2 (en) 2000-09-27 2010-01-26 Philips Solid-State Lighting Solutions, Inc. Methods and systems for illuminating household products
US7303300B2 (en) 2000-09-27 2007-12-04 Color Kinetics Incorporated Methods and systems for illuminating household products
US7038399B2 (en) 2001-03-13 2006-05-02 Color Kinetics Incorporated Methods and apparatus for providing power to lighting devices
US6801003B2 (en) 2001-03-13 2004-10-05 Color Kinetics, Incorporated Systems and methods for synchronizing lighting effects
US7449847B2 (en) 2001-03-13 2008-11-11 Philips Solid-State Lighting Solutions, Inc. Systems and methods for synchronizing lighting effects
US7352138B2 (en) 2001-03-13 2008-04-01 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for providing power to lighting devices
US7598684B2 (en) 2001-05-30 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling devices in a networked lighting system
US7202613B2 (en) 2001-05-30 2007-04-10 Color Kinetics Incorporated Controlled lighting methods and apparatus
US7550931B2 (en) 2001-05-30 2009-06-23 Philips Solid-State Lighting Solutions, Inc. Controlled lighting methods and apparatus
US7598681B2 (en) 2001-05-30 2009-10-06 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for controlling devices in a networked lighting system
US7358679B2 (en) 2002-05-09 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Dimmable LED-based MR16 lighting apparatus and methods
US7300192B2 (en) 2002-10-03 2007-11-27 Color Kinetics Incorporated Methods and apparatus for illuminating environments
US7178941B2 (en) 2003-05-05 2007-02-20 Color Kinetics Incorporated Lighting methods and systems
US8207821B2 (en) 2003-05-05 2012-06-26 Philips Solid-State Lighting Solutions, Inc. Lighting methods and systems
US10321528B2 (en) 2007-10-26 2019-06-11 Philips Lighting Holding B.V. Targeted content delivery using outdoor lighting networks (OLNs)
US20090159919A1 (en) * 2007-12-20 2009-06-25 Altair Engineering, Inc. Led lighting apparatus with swivel connection
US8928025B2 (en) 2007-12-20 2015-01-06 Ilumisys, Inc. LED lighting apparatus with swivel connection
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US7926975B2 (en) 2007-12-21 2011-04-19 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US20100172149A1 (en) * 2007-12-21 2010-07-08 Altair Engineering, Inc. Light distribution using a light emitting diode assembly
US8807785B2 (en) 2008-05-23 2014-08-19 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US20090290334A1 (en) * 2008-05-23 2009-11-26 Altair Engineering, Inc. Electric shock resistant l.e.d. based light
US20100220469A1 (en) * 2008-05-23 2010-09-02 Altair Engineering, Inc. D-shaped cross section l.e.d. based light
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US7976196B2 (en) 2008-07-09 2011-07-12 Altair Engineering, Inc. Method of forming LED-based light and resulting LED-based light
US20100008085A1 (en) * 2008-07-09 2010-01-14 Altair Engineering, Inc. Method of forming led-based light and resulting led-based light
US7946729B2 (en) 2008-07-31 2011-05-24 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented LEDs
US20100027259A1 (en) * 2008-07-31 2010-02-04 Altair Engineering, Inc. Fluorescent tube replacement having longitudinally oriented leds
US8674626B2 (en) 2008-09-02 2014-03-18 Ilumisys, Inc. LED lamp failure alerting system
US20100052542A1 (en) * 2008-09-02 2010-03-04 Altair Engineering, Inc. Led lamp failure alerting system
US20100052870A1 (en) * 2008-09-03 2010-03-04 Apple Inc. Intelligent infrared remote pairing
US9761129B2 (en) 2008-09-03 2017-09-12 Apple Inc. Intelligent infrared remote pairing
US8736427B2 (en) * 2008-09-03 2014-05-27 Apple Inc. Intelligent infrared remote pairing
US20100067231A1 (en) * 2008-09-15 2010-03-18 Altair Engineering, Inc. Led-based light having rapidly oscillating leds
US8256924B2 (en) 2008-09-15 2012-09-04 Ilumisys, Inc. LED-based light having rapidly oscillating LEDs
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
US10182480B2 (en) 2008-10-24 2019-01-15 Ilumisys, Inc. Light and light sensor
US10176689B2 (en) 2008-10-24 2019-01-08 Ilumisys, Inc. Integration of led lighting control with emergency notification systems
US9398661B2 (en) 2008-10-24 2016-07-19 Ilumisys, Inc. Light and light sensor
US11073275B2 (en) 2008-10-24 2021-07-27 Ilumisys, Inc. Lighting including integral communication apparatus
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US10036549B2 (en) 2008-10-24 2018-07-31 Ilumisys, Inc. Lighting including integral communication apparatus
US10342086B2 (en) 2008-10-24 2019-07-02 Ilumisys, Inc. Integration of LED lighting with building controls
US8444292B2 (en) 2008-10-24 2013-05-21 Ilumisys, Inc. End cap substitute for LED-based tube replacement light
US9353939B2 (en) 2008-10-24 2016-05-31 iLumisys, Inc Lighting including integral communication apparatus
US20110188240A1 (en) * 2008-10-24 2011-08-04 Altair Engineering, Inc. Lighting including integral communication apparatus
US11333308B2 (en) 2008-10-24 2022-05-17 Ilumisys, Inc. Light and light sensor
US9585216B2 (en) 2008-10-24 2017-02-28 Ilumisys, Inc. Integration of LED lighting with building controls
US9635727B2 (en) 2008-10-24 2017-04-25 Ilumisys, Inc. Light and light sensor
US20100102960A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Integration of led lighting control with emergency notification systems
US20100103664A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Lighting including integral communication apparatus
US10973094B2 (en) 2008-10-24 2021-04-06 Ilumisys, Inc. Integration of LED lighting with building controls
US20100102730A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Light and light sensor
US8946996B2 (en) 2008-10-24 2015-02-03 Ilumisys, Inc. Light and light sensor
US20100103673A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. End cap substitute for led-based tube replacement light
US20100106306A1 (en) * 2008-10-24 2010-04-29 Altair Engineering, Inc. Integration of led lighting with building controls
US10560992B2 (en) 2008-10-24 2020-02-11 Ilumisys, Inc. Light and light sensor
US10571115B2 (en) 2008-10-24 2020-02-25 Ilumisys, Inc. Lighting including integral communication apparatus
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US9101026B2 (en) 2008-10-24 2015-08-04 Ilumisys, Inc. Integration of LED lighting with building controls
US10713915B2 (en) 2008-10-24 2020-07-14 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8251544B2 (en) 2008-10-24 2012-08-28 Ilumisys, Inc. Lighting including integral communication apparatus
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US10932339B2 (en) 2008-10-24 2021-02-23 Ilumisys, Inc. Light and light sensor
DE102008058878A1 (en) * 2008-11-26 2010-05-27 Vishay Semiconductor Gmbh Infrared receiver circuit
US8744027B2 (en) 2008-11-26 2014-06-03 Vishay Semiconductor Gmbh Infrared receiver circuit
US20100177532A1 (en) * 2009-01-15 2010-07-15 Altair Engineering, Inc. Led lens
US8556452B2 (en) 2009-01-15 2013-10-15 Ilumisys, Inc. LED lens
US20100181933A1 (en) * 2009-01-21 2010-07-22 Altair Engineering, Inc. Direct ac-to-dc converter for passive component minimization and universal operation of led arrays
US20100181925A1 (en) * 2009-01-21 2010-07-22 Altair Engineering, Inc. Ballast/Line Detection Circuit for Fluorescent Replacement Lamps
US8664880B2 (en) 2009-01-21 2014-03-04 Ilumisys, Inc. Ballast/line detection circuit for fluorescent replacement lamps
US8362710B2 (en) 2009-01-21 2013-01-29 Ilumisys, Inc. Direct AC-to-DC converter for passive component minimization and universal operation of LED arrays
US8330381B2 (en) 2009-05-14 2012-12-11 Ilumisys, Inc. Electronic circuit for DC conversion of fluorescent lighting ballast
US8299695B2 (en) 2009-06-02 2012-10-30 Ilumisys, Inc. Screw-in LED bulb comprising a base having outwardly projecting nodes
US8421366B2 (en) 2009-06-23 2013-04-16 Ilumisys, Inc. Illumination device including LEDs and a switching power control system
US20100320922A1 (en) * 2009-06-23 2010-12-23 Altair Engineering, Inc. Illumination device including leds and a switching power control system
US20100321921A1 (en) * 2009-06-23 2010-12-23 Altair Engineering, Inc. Led lamp with a wavelength converting layer
US9057493B2 (en) 2010-03-26 2015-06-16 Ilumisys, Inc. LED light tube with dual sided light distribution
US9395075B2 (en) 2010-03-26 2016-07-19 Ilumisys, Inc. LED bulb for incandescent bulb replacement with internal heat dissipating structures
US8541958B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED light with thermoelectric generator
US9013119B2 (en) 2010-03-26 2015-04-21 Ilumisys, Inc. LED light with thermoelectric generator
US8840282B2 (en) 2010-03-26 2014-09-23 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US20110235318A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light tube with dual sided light distribution
US8540401B2 (en) 2010-03-26 2013-09-24 Ilumisys, Inc. LED bulb with internal heat dissipating structures
US8454193B2 (en) 2010-07-08 2013-06-04 Ilumisys, Inc. Independent modules for LED fluorescent light tube replacement
US8596813B2 (en) 2010-07-12 2013-12-03 Ilumisys, Inc. Circuit board mount for LED light tube
US8894430B2 (en) 2010-10-29 2014-11-25 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8523394B2 (en) 2010-10-29 2013-09-03 Ilumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
US8870415B2 (en) 2010-12-09 2014-10-28 Ilumisys, Inc. LED fluorescent tube replacement light with reduced shock hazard
US9072171B2 (en) 2011-08-24 2015-06-30 Ilumisys, Inc. Circuit board mount for LED light
US9184518B2 (en) 2012-03-02 2015-11-10 Ilumisys, Inc. Electrical connector header for an LED-based light
US9163794B2 (en) 2012-07-06 2015-10-20 Ilumisys, Inc. Power supply assembly for LED-based light tube
US10278247B2 (en) 2012-07-09 2019-04-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9807842B2 (en) 2012-07-09 2017-10-31 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US10966295B2 (en) 2012-07-09 2021-03-30 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
US9574717B2 (en) 2014-01-22 2017-02-21 Ilumisys, Inc. LED-based light with addressed LEDs
US10260686B2 (en) 2014-01-22 2019-04-16 Ilumisys, Inc. LED-based light with addressed LEDs
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
US11028972B2 (en) 2015-06-01 2021-06-08 Ilumisys, Inc. LED-based light with canted outer walls
US10690296B2 (en) 2015-06-01 2020-06-23 Ilumisys, Inc. LED-based light with canted outer walls
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
US11428370B2 (en) 2015-06-01 2022-08-30 Ilumisys, Inc. LED-based light with canted outer walls
US20170219368A1 (en) * 2016-01-28 2017-08-03 At&T Intellectual Property I, L.P. Navigation system and methods for use therewith

Similar Documents

Publication Publication Date Title
US3924120A (en) Heater remote control system
EP1564914B1 (en) Illumination light communication device
JP3827082B2 (en) Broadcast system, light bulb, lighting device
JP4885234B2 (en) Optical space transmission system using visible light and infrared light
US6392368B1 (en) Distributed lighting control system
US20060284728A1 (en) Pulse width modulation data transfer over commercial and residential power lines method, transmitter and receiver apparatus
KR20110055721A (en) Visible light communication system
CN101432997A (en) Illuminating light communication device
CA2026908A1 (en) Audio commentary system
ATE103437T1 (en) DEVICE FOR TRANSMISSION OF DATA BIT GROUPS AND METHOD FOR ASSESSING THE MOST PROBABLY TRANSMITTED SEQUENCE.
HK1037769A1 (en) Tricolor led display system having audio output.
JP2002511727A (en) Multi-function electronic transceiver for wireless networks
JP2009529272A (en) Electroluminescence transmitter for free space light transmission
US20200204256A1 (en) Led module for emitting signals
CA2766098A1 (en) Pushbits for semi-synchronized pointing
GB2174222A (en) Remote operation of an electrical light switch
US20110163677A1 (en) Lighting device, lighting and lighting method
EP0255580A2 (en) Electrical lighting system with telecontrolled light sources
CN105376893A (en) Dimmable light emitting diode (LED) lamp, dimming device and dimming system
CN102474942A (en) Method and device for driving a lamp
WO2003065201A1 (en) Simple display system especially adapted to display complex patterns
CN112351546B (en) Illumination control terminal information acquisition device, system and method based on optical communication
ITRM960116A1 (en) POER SYSTEM FOR DATA TRANSMISSION, REMOTE SENSING, REMOTE CONTROLS, REMOTE READING AND SIMILAR, PARTICULARLY SUITABLE FOR DISTRIBUTION LINES
US20150177714A1 (en) Battery powered wireless theatrical prop controller
JPH01292918A (en) Optical space transmitting and communicating system