US3923519A - U.V. light absorbers in supports of integral diffusion transfer film units - Google Patents

U.V. light absorbers in supports of integral diffusion transfer film units Download PDF

Info

Publication number
US3923519A
US3923519A US300277A US30027772A US3923519A US 3923519 A US3923519 A US 3923519A US 300277 A US300277 A US 300277A US 30027772 A US30027772 A US 30027772A US 3923519 A US3923519 A US 3923519A
Authority
US
United States
Prior art keywords
layer
film unit
image
photosensitive
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US300277A
Inventor
Ronald F Cieciuch
Herbert N Schlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Priority to US300277A priority Critical patent/US3923519A/en
Priority to JP48004105A priority patent/JPS4875235A/ja
Priority to GB22073A priority patent/GB1420224A/en
Priority to FR7300061A priority patent/FR2167591B1/fr
Priority to CA160,415A priority patent/CA990121A/en
Priority to NLAANVRAGE7300064,A priority patent/NL176981C/en
Priority to DE2300173A priority patent/DE2300173A1/en
Priority to US05/602,665 priority patent/US4025682A/en
Application granted granted Critical
Publication of US3923519A publication Critical patent/US3923519A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/24Photosensitive materials characterised by the image-receiving section
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/52Bases or auxiliary layers; Substances therefor

Definitions

  • the image receiving system of the products of the present invention comprise a transparent support or dimensionally stable layer through which the image pattern can be viewed and the transparent support or layer is characterized in that a distinctive UV light absorption capability is integrated therewith.
  • the transparent layer or support additionally comprises a finely divided pigment dispersed therein which provides an effective anti-light piping capability without impairing to any substantial degree the transparency of the support or layer.
  • the Field of the Invention relates to photographic products. More precisely, the invention disclosed herein relates to integral negative positive diffusion transfer photo graphic products.
  • Essential elements of such photographic products comprise a photosensitive system which after exposure and processing can provide a diffusion transfer image pattern, an image receiving system for receiving the diffusion transfer image pattern and a reflecting system integrated with the elements of the product so that after exposure and processing, the image pattern can be viewed as a reflection print.
  • Film products of the type to which the present invention pertains may also contain other layers capable of providing specific desired functions. Such layers can include, for example, spacer layers, barrier layers neutralizing layers etc. More often than not, a rupturable container retaining a processing composition is integrated with the above mentioned members and layers of such photographic products so that the processing composition can be applied to the exposed photosensitive system by the application of compressive force to the container.
  • multicolor images are obtained by employing a film unit containing at least two selectively sensitized silver halide layers each having associated therewith a dye image-providing material exhibiting desired spectral absorption characteristics.
  • the most commonly employed elements of this type are the so-called tripack structures employing a blue-, a greenand a red sensitive silver halide layer having associated therewith, respectively, a yellow, a magenta and a cyan dye image-providing material.
  • the dye image-providing materials which may be employed in such processes generally may be characterized as either (I) initially soluble or diffusible in the processing composition but are selectively rendered .non-diffusible in an imagewise pattern as a function of development; or (2) initially insoluble or non-diffusible in the processing composition but which are selectively rendered diffusible in an imagewise pattern as a function of development.
  • These materials may be complete dyes or dye intermediates, e.g., color couplers.
  • the image receiving system of products of the present invention essentially comprise a receiving layer for receiving a diffusion transfer image pattern after exposure of the photosensitive system and appropriate processing of the exposed system. Further the image receiving system comprises a substantially transparent layer or support member integrated with the receiving layer so that the image pattern obtained in the receiving layer can be viewed through the transparent layer or support.
  • the film units of the present invention also comprise as an essential element, a reflecting system which is arranged or can be arranged between the receiving system and the exposed photosensitive systemso that the reflective system can provide the requisite background for viewing the image pattern obtained in the image receiving layer.
  • the reflecting system comprises an opaque dimensionally stable layer positioned between the photosensitive sys' tem and the image receiving system.
  • the opaque layer is an integral part of the product prior to exposure thereof and provides a reflective background for viewing the image pattern obtained in the receiving system after exposure of the photosensitive system and processing thereof.
  • the reflective system is not present as an integral layer of the product prior to exposure but is provided after exposure such as by distributing a reflecting agent between the image receiving system and the photosensitive system after exposure thereof.
  • the reflecting system preferably is further characterized in that it additionally provides effective masking of the exposed photosensitive system as well as a suitable background for viewing by reflection the image pattern obtained in the image receiving system. Additional details relating to the reflecting systems of the products of the present invention including the ingredients of such systems and. the manners in which such systems can be integrated with integral negativepositive film products can be found in commonly as signed U.S. Patent Application Ser. No. 43,782 filed June 5, 1970 and now abandoned; Ser. No. 101,968 filed Dec.
  • the integral negative-positive film units of the present invention may be exposed to form a devel opable image which is developed thereafter by applying an appropriate processing composition to develop exposed silver halide and to form, as a function of development, an imagewise distribution of diffusible dye image-providing material which is then transferred to the dyeable stratum to impart thereto the desired color transfer image.
  • an appropriate processing composition to develop exposed silver halide and to form, as a function of development, an imagewise distribution of diffusible dye image-providing material which is then transferred to the dyeable stratum to impart thereto the desired color transfer image.
  • a reflecting system between the image receiving system and the photosensitive system to effectively mark the latter and to provide a background for viewing the color image imparted to the image receiving layer of the image receiving system so that this image may be viewed, by reflected light, without separation from the other layers or elements of the film unit.
  • Particularly preferred integral negative-positive film units of the present invention are those described in the aforementioned U.S. Pat. No. 3,415,644 and which comprise a composite structure having a photosensitive system containing in order, a dimensionally stable alkali solution impermeable opaque layer, a layer containing a cyan dye developer, a red-sensitive silver halide emulsion layer, a layer containing a magenta dye developer, a green-sensitive silver halide emulsion layer, a layer of yellow dye developer, a blue-sensitive silver halide emulsion layer.
  • the image receiving system of such products includes, in order, a dyeable stratum, a spacer layer, a neutralizing layer and a dimensionally stable alkali solution impermeable transparent layer with the dyeable stratum being positioned adjacent the blue sensitive silver halide layer of the photosensitive system.
  • the composite structure is employed in combination with a rupturable container retaining an aqueous alkaline processing composition including a reflection system comprising a white reflecting agent.
  • the container is integrated with the composite structure so that the containers contents can be distributed between the dyeable stratum and the blue-sensitive silver halide emulsion layer upon application of compressive pressure.
  • Expecially preferred film units of the type described in U.S. Pat. No. 3,415,644 are those wherein the image receiving system of the composite structure includes a dimensionally stable alkali solution impermeable transparent layer which comprises a distinctive anti-light piping capability.
  • These especially preferred film units are described in more detail in commonly assigned U.S. Pat. application Ser. No. 194,407 filed Nov. 1, 1971 by Edwin H. Land now abandoned in favor of application Ser. No. 419,808 filed Nov. 28, 1973. In that application a peculiar potential fogging problem encountered in integral negative-positive, diffusion transfer film units is described.
  • the fogging problem is caused by a phenomenon somewhat similar to light piping and can arise as the film unit is drawn from the camera between opposed rollers to distribute the processing composition-which includes a reflection system-between the image receiving system and the exposed photosensitive system. Wl-len the reflection system is completely distributed between the image receiving system and the photosensitive system it can provide protection for all portions of the exposed photosensitive system from activating radiation passing through the transparent layer of the image receiving system. However, until the reflection system is completely distributed between the image receiving system and the photosensitive system and all portions of the photosensitive system are so protected, there is a potential of some radiation passing through the transparent layer to the reflective system and then being reflected, scattered or otherwise transmitted to the unprotected portions of the photosensitive system.
  • the present invention is based on the discovery that the above discussed staining and its adverse effects on image quality and/or stability can be effectively overcome by including a UV absorber of a particular class in the transparent layer or member of the image receiving system.
  • Special advantages are obtained by the inclusion of the particular UV absorber(s) in the transparent layer especially when the transparent layer comprises a pigment which provides an antilight piping capability for the layer.
  • the particular UV absorber(s) in the transparent layer especially when the transparent layer comprises a pigment which provides an antilight piping capability for the layer.
  • UV absorber containing supports of the present invention Another advantage arises in those products wherein the transparent layer contains a finely divided carbon black providing an anti-light piping capability and this consideration relates to the effect of the UV absorber on the desired degree of transparency of the layer so that viewing of the image pattern therethrough is not adversally affected.
  • the particular UV absorber included in the transparent support of products of the present invention have been found to be remarkably compatable with the processing compositions involved and also do not adversally affect or otherwise impair the transparency of those layers comprising a carbon black pigment which provides an anti-light piping capability.
  • Another advantage obtained in the use of the UV absorber containing supports of the present invention involves the elimination of specialized filters when photosensitive systems are exposed through the support.
  • the UV absorbers employed in the support layers of the present invention are those that can provide layers that are substantially transparent, i.e., substantially colorless and can provide an optical density of l or greater at least across the major portions of the region between about 300 to about 375 mg.
  • optical density means the density measured as transmission density at the wavelength of maximum absorption and thc'terminology, the major portion of the regionbetween about 300 to about 375 mp.” means that a measurement at substantially all of the individual wavelengths would provide a density of at least about 1 although some wavelengths may provide lower densities.
  • Most preferred are those UV absorbers that provide an optical density greater than about 2 at least across the region between about 325 to about 360 mu.
  • a preferred class of UV absorbers employed in the practice of the present invention are certain 2-aryl-4,5 arylo-1,2,3-triazole compounds of the formula:-
  • A represents .a phenylene radical bound by two neighboring carbon atoms to two nitrogen atoms of the triazole ring
  • B represents a phenyl radical, substituted by groups not imparting strong coloration.
  • UV absorbers of the above formula Details relating to UV absorbers of the above formula can be found in UV absorbers of the above formula can be found in U.S. Pat. Nos. 3,004,896 and 3,189,615; both patents are expressly incorporated herein in their entirety by reference.
  • FIG. 1 illustrates a cross-sectional view of a photographic film unit of the present invention.
  • FIG. 2 illustrates means for measuring the light pip ing optical densityof support layers of the present invention.
  • FIG. I illustrates a typical film unit of the type to which this invention is directed.
  • such a film unit may com prise, a layer 13 of cyan dye developer.
  • Layers 13-21 comprise the photo sensitive system and layers 22-24 comprise the image receiving system.
  • dimensionally stable layer or support member 12 which is preferably opaque so as to permit development in the light and dimensionally stable layer or support member 25 which is transparent to permit viewing of a color transfer image formed as a function of development in receiving layer or dyeable stratum 22.
  • Layers l2 and 25 are preferably dimensionally stable liquid-impermeable layers which when taken together may possess a processing composition solvent vapor permeability sufficient to effect, after substantial transfer image formation and prior to any substantial environmental image degradation to which the resulting image may be prone, osmotic transpiration of processing composition solvent in a quantity effective to decrease the solvent from a first concentration at which the color-providingmaterial is diffusible to a second concentration at which it is not.
  • these layers may possess a vapor transmission rate of l or less gms./24 hrs./l00 inF/miL, they preferably possess a vapor transmission rate for the processing composition materials of this nature, mention may be made of those havingthe aforementioned characteristics and which are polymers derived from ethylene glycol and terephthalic acid; vinyl chloride polymers; polyvinyl acetate; cellulose derivatives, etc. An especially preferred polymeric material is Mylar".
  • layer 12 is of sufficient opacity to prevent fogging from occurring by light passing therethrough, and layer 26 is transparent to permit photoexposure and for viewing of a transfer image formed on receiving layer 23.
  • the silver halide layers preferably comprise photosensitive silver halide, e.g.. silver chloride, bromide or iodide or mixed silver halides such as silver iodobromide or chloriodobromide dispersed in a suitable colloidal binder such as gelatin and'such layers may typically be on the order of 0.6 to 6 microns in thickness.
  • photosensitive silver halide e.g.. silver chloride, bromide or iodide or mixed silver halides such as silver iodobromide or chloriodobromide dispersed in a suitable colloidal binder such as gelatin and'such layers may typically be on the order of 0.6 to 6 microns in thickness.
  • the silver halide layers may and in fact generally do contain other adjuncts, e.g., chemical sensitizers such as are disclosed in U.S. Pat. Nos.
  • coating aids e.g., hardeners, viscosityincreasing agents. stabilizers, preservatives, ultraviolet absorbers and/or speed-increasing compounds.
  • the preferred binder for the silver halide is gelatin, others such as albumin, casein, zein, resins such as cellulose derivatives, polyacrylamides, vinyl polymers, etc.. may replace the gelatin in whole or in part.
  • the respective dye developers which may be any of those heretofore known in the art and disclosed for example in U.S. Pat. No. 2,983,606, etc.. are preferably dispersed in an aqueous alkaline permeable polymeric binder, e.g., gelatin as a-layer from about 1 to 7 microns in thickness.
  • an aqueous alkaline permeable polymeric binder e.g., gelatin as a-layer from about 1 to 7 microns in thickness.
  • interlayers l5, l8 and 21 may comprise an alkaline permeable polymeric material such as gelatin and may be on the'order of from about 1 to microns in thickness.
  • alkaline permeable polymeric material such as gelatin
  • other materials for forming these interlayers mention may be made of those disclosed in U.S. Pat. No. 3,421,892 and the copending applications of Richard J. Haberlin, Ser. No. 854,491, filed Sept. 2, 1969, and Lloyd D. Taylor, Ser. No. 790.648, filed Jan. 13, 1969, etc.
  • interlayers may also contain additional reagents performing specific functions and the various ingredients necessary for development may also be contained initially in such layers in lieu of being present initially in the processing composition, in which event the desired developing composition is obtained by contacting such layers with the solvent for forming the processing composition, which solvent may include the other necessary ingredients dissolved therein.
  • the image-receiving layer may be on the other of 0.25 to 0.4 mil. in thickness.
  • Typical materials heretofore employed for this layer include dyeable polymers such as nylon, e.g., N-mcthoxymethyl poly-hexamethylene adipamide; partially hydrolyzed polyvinyl acetate; polyvinyl alcohol with or without plasticizers; cellulose acetate with filler as, for example, one-half cellulose acetate and one-half oleic acid; gelatin; polyvinyl alcohol or gelatin containing a dye mordant such as poly-4- vinylpyridine, etc.
  • Such receiving layers may,.
  • mordants e.g., any of the conventional mordant materials for acid dyes such as those disclosed, for example, in the aforementioned U.S. Pat. No. 3,227,500; as well as other additives such as ultraviolet absorbers, pH-reducing substances, etc. It may also contain specific reagents performing desired functions, e.g., a development restrainer, as disclosed, for example, in U.S. Pat. No. 3,265,498.
  • the spacer or timing layer may be on the order of 0.1 to 0.7 mil. thick.
  • Materials heretofore used for this purpose include polymers which exhibit inverse temperature-dependent permeability to alkali, e.g., as disclosed in U.S. Pat. No. 3,445,686.
  • Materials previously employed for this layer include polyvinyl alcohol, cyanoethylated polyvinyl alcohol, hydroxypropyl polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyvinyl oxazolidinone, hydroxypropylmethyl cellulose, partial acetals of polyvinyl alcohol such as partial polyvinyl butyral and partial polyvinyl propional, polyvinyl amides such as polyacrylamidc, etc.
  • the neutralizing layer may be on the order of 0.3 to 1.5 mil. in thickness.
  • Materials used heretofore in the preparation of this layer include the polymer acids disclosed in U.S. Pat. No. 3,362,819. e.g., dibasicacidhalf-ester derivatives of cellulose, .which derivatives.
  • cellulose acetate hydrogen phthalate cellulose acetate hydrogen glutarate
  • the film unit shown in the drawing may be developed by applying an aqueous alkaline processing composition including a reflection system which comrpises a reflecting agent, e.g., titanium dioxide, between stratum 22 and layer 21 to form a color transfer image viewable through support 25, without separation, as a color reflection print.
  • a reflecting agent e.g., titanium dioxide
  • the resulting print when exposed to light for extended periods has been observed in time to manifest a tendency for a staining or browning which has been determined to be caused by photolysis induced by actinic light in the UV range of the spectrum.
  • This problem is most noticeable under circumstances described with greater particularity in the aforementioned U.S. Pat. No. 3,647,437 which are highly colored at an alkaline pH so as to permit development of the film unit in the light but which are cleared or rendered transparent subsequent to development by lowering the pH so that they do not interfere with the viewing of the resulting image.
  • this problem can be effectively overcome by incorporating a UV absorber of the foregoing description in the transparent layer of the image receiving system, e.g., in layer 25.
  • UV absorber not any UV absorber can be employed in the practice of this invention; and the UV absorber so employed must be selected from those which possess the optical density characteristics heretofore described at the concentrations employed while at the same time being substantially visibly colorless above about 400 mp. so as not to detract from the image viewed through the UV-containing layer.
  • many UV absorbers become colored, e.g., yellow, upon contact .with alkali, where the UV absorber comes into contact with alkali from the processing fluid it should not be one so affected so as to detract from the visual quality of the image. In other words, apart from itsfunction in minimizing the staining caused by photolysis, the UV absorbershould appear visibly colorless at least after completion of image formation so as not to create a different problem while obviating the problem caused by photolysis.
  • the preferred UV absorbers employed in the practice of the present invention are certain 2- aryl-4,5 arylo-l ,2,3, triazole compounds of the formula lowing general formula:
  • Tinuvin 327 understood to be 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5- chlorobenzotriazole.
  • Tinuvin 328 may be employed, as well as other absorbers meeting the above-noted qualifications.
  • UV absorber employed will vary from system to system, as one skilled in the art will well understand, and the precise amounts of a given absorber needed in the particular film unit to be protected will be likewise readily ascertained by those skilled in the art.
  • Tinuvin 328 at a coverage on the order of 50 to 75 mgs./ft. has been found to be effective.
  • the transparent layer includes a UV absorber of the above described characteristics and a pigment which can provide a distinctive anti-light piping capability.
  • a potential fogging problem can be encountered in photographic products of the type described in U.S. Pat. No. 3,415,644. Essentially the problem arises by reason of the fact that a finite increment of time is required in order to completely distribute the reflection system between the exposed photosensitive system and the image receiving system. During this increment of time, light passing through the transparent layer of the image receiving system can be transmitted edgewise to the portions of the exposed photosensitive system which remain unprotected by the reflection system.
  • the pigment is a finely divided carbon black which is included in the transparent layer for the image receiving layer.
  • the amount of carbon black included in the layer is sufficient to provide an effective anti-light piping capability but yet insufficient to adversally affect the transparency of the layer.
  • the amount of pigment employed in the transparent layer is sufficient to provide an optical density. as measured edgewise at 700 mp. over a path length of 1 inch of at least about 5.
  • the amount of pig merit providing an effective ant:i-light piping capability further being insufficient to prevent transmission of substantially all of the light incident on the surface of the transparent layer so as not to interfere with exposure through the layer or viewing of the image therethrough.
  • PROCEDURE FOR MEASURING ANTI-LIGHT-PIPING OPTICAL DENSITY l The sample sheet to be measured is cut to measure 1 inch X 4 inches.
  • the Cary 14 is zeroed to 700 nm (mu) with nothing in the light path.
  • the block is inserted into the light path of the Cary (as shown in the figure) so that the A inch end of the sample sheet protrudes directly into the integrating sphere.
  • the light beam then strikes the sample perpendicularly at point P.
  • the optical density is meaasured at 700 nm, using filters as necessary to mask the reference beam in order to measure the densities which are greater than the normal maximum density scale (2.4).
  • the transparent layer of the image receiving system includes a UV absorber as well as a pigment which can provide the anti-light piping capability described in the above-mentioned U.S. Pat. Application Ser. No. 194,407.
  • a gelatin subbed, 4 mil. opaque polyethylene terephthalate film base may be coated with the following layers:
  • a blue-sensitive gelatino silver iodobromide emulsion layer including the auxiliary developer 4-methylphenyl hydroquinone coated at a coverage of about 120 mgs./ft. of silver, about 60 mgs./ft. of gelatin and about 30 mgs./ft. of auxiliary developer; and
  • the three dye developers employed above may be the following:
  • Tinuvin 328 may be coated, in succession, with the following illustrative layers:
  • the two components may then be laminated together to provide the desired integral film unit.
  • a rupturable container comprising an outer layer of lead oil and an inner liner or layer of polyvinyl chloride retaining an aqueous alkaline processing solution may then be fixedly mounted on the leading edge of each of the laminates, by pressure-sensitive tapes, interconnecting the respective container and laminates so that, upon application of compressive pressure to the container to rupture the contain ers marginal seal, its contents may be distributed between the dyeable stratum (layer 22 of the positive component) and the gelatin layer (layer 21) of the negative component.
  • An illustrative processing composition to be employed in the rupturable container may comprise the following properties of ingredients:
  • This film unit may then be exposed in known manner to form a developable image and the thus exposed element may then be developed by applying compressive pressure to the rupturable container in order to distribute the aqueous alkaline processing composition, thereby forming a multicolor transfer image which is viewable through the transparent polyethylene terephthalate film base as a positive reflection print.
  • a photographic comprising a diffusion transfer photosensitive system, a diffusion transfer image receiving system and a reflecting system and wherein said systems are integrated so that the product is adapted for forming a visible image by diffusion transfer of image providing material from said photosensitive system to said image receiving system which image is viewable by reflection and without separation of said receiving system and said photosensitive system, said image receiving system including an image receiving layer and a dimensionally stable layer through which said image is viewable and through which said photosensitive system is exposed;
  • the improvement which comprises including in said dimensionally stable transparent layer an ultraviolet absorber, said ultraviolet absorber being substantially transparent to visible light and wherein said ultraviolet absorber provides an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 mu and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-1,2,3 triazole of the formula N A N N-B where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
  • B represents a Z-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
  • said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
  • said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
  • a photographic product of claim 3 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
  • an integral negative-positive film unit including a photosensitive system having a negative component comprising at least one light-sensitive silver halide layer having a dye image-providing material associated therewith, an image receiving system including a positive component comprising a dyeable stratum and a dimensionally stable transparent layer through which said light sensitive layer is exposed, means for applying a reflecting system between said positive and negative components in an amount sufficient upon development of said film unit to mask effectively said negative component and to provide a background for viewing through said transparent layer, a color image imparted to said dyeable stratum of said positive component by reflected light by applying an aqueous alkaline processing fluid to said film unit after exposure thereof;
  • said transparent layer of said positive component comprises an ultraviolet light absorber characterized as being substantially transparent to visible light and providing an optical 17 density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 mu and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-l,2,3 triazole of the formula where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
  • B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
  • a film unit as defined in claim 6 wherein said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
  • said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
  • a film unit of claim 8 wherein said amount of pigment is sufficient to provide an optical density for said layer of about as measured on the edge of said layer.
  • a film unit as defined in claim 6 wherein said means for applying a reflecting layer comprises an aqueous alkaline processing fluid including a white reflecting material and at least one optical filter agent which is highly colored at the pH of said alkaline pro- 14.
  • said neg- comprises an aqueous alkaline processing fluid including a white reflecting material and at least one optical filter agent which is highly colored at the pH of said alkaline pro- 14.
  • ative component includes a red-sensitive silver halde emulsion layer having a cyan dye image-providing material associated therewith, a green-sensitive silver halide emulsion layer having a magenta dye image-providing material associated therewith and blue-sensitive silver halide emulsion layer having a yellow dye imageproviding material associated therewith.
  • a photographic film unit which is adapted to be processed by passing said unit between a pair ofjuxtaposed pressure-applying members and which comprises, in combination:
  • a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline solution permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer, wherein the adhesion exhibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate; and
  • a rupturable container retaining an alkaline processing solution having said first. pH and containing dispersed therein a reflecting system in a quantity sufficient to mask said dye image providing material, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional dicharge of the containers contents between said alkaline solution permeable and dyeable polymeric layer and said photosensitive silver halide emulsion layer next adjacent thereto at said interface exhibiting said less adhesion upon application of compressive force to said container, the improvement wherein said] dimensionally stable transparent layer includes an ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths between about 300 to 375 mu, said ultraviolet absorber being a 2-aryl-4,5 arylo-l,2,3 triazole of the formula where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
  • B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
  • a film unit as defined in claim 16 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
  • a film unit of claim 17 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
  • a film unit of claim 16 wherein said dye imageproviding material is a dye which is a silver halide developing agent.
  • a film unit of claim 16 including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
  • a photographic film unit which is adapted to be processed by passing said unit between a pair ofjuxtaposed pressure-applying members and which comprises, in combination:
  • a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent layer, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline solution permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH of a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer wherein the adhesion exibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate and a rupturable container retaining an alkaline processing solution having said first pH and containing dispersed therein reflecting agent, in a quantity sufficient to mask said
  • B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration and said transparent layer comprises a particulate carbon in an amount sufficient to provide an optical density of at leasct about 5 for said layer as measured on the edge of said layer.
  • a photographic film unit of claim 26 including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
  • a photographic product comprising a diffusion transfer photosensitive system, a diffusion transfer image receiving system and a reflecting system and wherein said systems are integrated so that the product is adapted for forming a visible image by diffusion transfer of image providing material from said photosensitive system to said image receiving system which image is viewable by reflection and without separation of said receiving system and said photosensitive system, said image receiving system including an image receiving layer and a dimensionally stable layer through which said image is viewable and through which said photosensitive system is exposed;
  • the improvement which comprises including in said dimensionally stable transparent layer an ultraviolet absorber which is substantially transparent to visible light, said ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 my. whereby image discloration due to photolysis of silver containing substances is at least substantially reduced and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-l ,2,3 triazole of the formula ation.

Abstract

Integral negative-positive patterns viewable without separation of the negative-positive components. Essential elements of such film units comprise a photosensitive system which after exposure and processing can provide a diffusion transfer image pattern, an image pattern receiving system and a reflection system integrated with the elements of the product so that after exposure and processing, the image pattern can be viewed as a reflection print. The image receiving system of the products of the present invention comprise a transparent support or dimensionally stable layer through which the image pattern can be viewed and the transparent support or layer is characterized in that a distinctive UV light absorption capability is integrated therewith. In the especially preferred products, the transparent layer or support additionally comprises a finely divided pigment dispersed therein which provides an effective anti-light piping capability without impairing to any substantial degree the transparency of the support or layer.

Description

Cieciuch et al.
Dec. 2, 1975 U.V. LIGHT ABSORBERS IN SUPPORTS OF INTEGRAL DIFFUSION TRANSFER FILM UNITS Inventors: Ronald F. Cieciuch, Boston; Herbert N. Schlein, Beverly, both of Mass.
Assignee: Polaroid Corporation, Cambridge,
Mass.
Filed: Oct. 24, 1972 App]. No.: 300,277
Related US. Application Data Continuation-impart of Ser. No. 214,600, Jan. 3, 1972.
US. Cl 96/77; 96/76 R; 96/84 R; 96/84 UV Int. CL G03C l/40; (103C 1/48;G03C 1/84 Field of Search 96/3, 77, 84 UV, 29 D, 96/84 R, 76 R References Cited UNITED STATES PATENTS NTER LAYER FOREIGN PATENTS OR APPLICATIONS 972,050 lO/1964 United Kingdom 96/67 Primary Examiner-Ronald H. Smith Assistant Examiner-Richard L. Schilling Attorney, Agent, or Firm-John P. Morley [5 7] ABSTRACT Integral negative-positive patterns viewable without separation of the negative'positive components. Essential elements of such film. units comprise a photosensitive system which after exposure and processing can provide a diffusion transfer image pattern, an image pattern receiving system and a reflection system integrated with the elements of the product so that after exposure and processing, the image pattern can be viewed as a reflection print. The image receiving system of the products of the present invention comprise a transparent support or dimensionally stable layer through which the image pattern can be viewed and the transparent support or layer is characterized in that a distinctive UV light absorption capability is integrated therewith. In the especially preferred products, the transparent layer or support additionally comprises a finely divided pigment dispersed therein which provides an effective anti-light piping capability without impairing to any substantial degree the transparency of the support or layer.
34 Claims, 2 Drawing Figures UPPORT CYAN DYE DEVELOPER LAYER RED-SENSITIVE SILVER HALIDE EMULSION LAYER LAYER DYE DEVELOPER LAYER a- SILVER HALlDE YELLOW DYE DEVELOPER LAYER SILVER HALIDE LAYER --RECE|V1NG LAYER LAYER LAYER UPPORT US. Patent Dec. 2, 1975 Sheet 1 of2 3,923,519
V ASUPPORT LK /-CYAN DYE DEVELOPER LAYER REDSENSITIV SILVER HALIDE EMULSION LAYER flNTER LAYER MAGENTA DYE DEVELOPER LAYER GREEN- NSITIVE SILVER HALIDE EMULS LAYER INTER LAYER YELLOW DYE DEVELOPER LAYER BLUE-SENSITIVE SILVER HALIDE EMULSION LAYER FAUXILIARY LAYER IMAGE-RECEIVING LAYER k-SPACER LAYER 24 NEUTRALIZING LAYER 25- SUPPORT FIG. I
US. Patent Dec. 2, 1975 Sheet 2 of? 3,923,519
TO PHOTOTUBE SHEET LIGHT BEAM SIDE VIEW 9cm DIAMETER INTEGRATING SPHERE ON DIFFUSE REFLECTANCE ACCESSORY FOR CARY I4 SPECTROPHOTOMETER U.V. LIGHT ABSORBERS IN SUPPORTS OF INTEGRAL DIFFUSION TRANSFER FILM UNITS CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. Pat. Application Ser. No. 214,600 filed Jan. 3, 1972.
BACKGROUND OF THE INVENTION 1. The Field of the Invention This invention relates to photographic products. More precisely, the invention disclosed herein relates to integral negative positive diffusion transfer photo graphic products.
Part 2. Description of the Prior Art Integral negative-positive diffusion transfer photographic products which can provide image patterns viewable by reflection are known to the art. Photo graphic products of this type are described in more detail, for example, in U.S. Pat. Nos. 3,415,644; 3,415,645; 3,415,646; 3,473,925; 3,573,042; 3,573,043; 3,573,044; 3,576,625; 3,576,626;
3,578,540; 3,579,333; 3,594,164; 3,594,165 all of which are expressly incorporated herein by reference. Essential elements of such photographic products comprise a photosensitive system which after exposure and processing can provide a diffusion transfer image pattern, an image receiving system for receiving the diffusion transfer image pattern and a reflecting system integrated with the elements of the product so that after exposure and processing, the image pattern can be viewed as a reflection print. Film products of the type to which the present invention pertains may also contain other layers capable of providing specific desired functions. Such layers can include, for example, spacer layers, barrier layers neutralizing layers etc. More often than not, a rupturable container retaining a processing composition is integrated with the above mentioned members and layers of such photographic products so that the processing composition can be applied to the exposed photosensitive system by the application of compressive force to the container.
In photographic products of the type described above, multicolor images are obtained by employing a film unit containing at least two selectively sensitized silver halide layers each having associated therewith a dye image-providing material exhibiting desired spectral absorption characteristics. The most commonly employed elements of this type are the so-called tripack structures employing a blue-, a greenand a red sensitive silver halide layer having associated therewith, respectively, a yellow, a magenta and a cyan dye image-providing material.
The dye image-providing materials which may be employed in such processes generally may be characterized as either (I) initially soluble or diffusible in the processing composition but are selectively rendered .non-diffusible in an imagewise pattern as a function of development; or (2) initially insoluble or non-diffusible in the processing composition but which are selectively rendered diffusible in an imagewise pattern as a function of development. These materials may be complete dyes or dye intermediates, e.g., color couplers.
As examples of initially soluble or diffusible materials and their application in color diffusion transfer, mention may be made of those disclosed, for example, in U.S. Pat. Nos. 2,647,049; 2,661,293; 2,698,244;
2 2,698,798; 2,802,735; 2,774,668; and 2,983,606. As examples of initially non-diffusible materials and their use in color transfer systems, mention may be made of the materials and systems disclosed in U.S. Pat. Nos. 3,443,939; 3,443,940; 3,227,550; 3,227,551; 3,227,552; 3,227,554; 3,243,294; and 3,445,228.
The image receiving system of products of the present invention essentially comprise a receiving layer for receiving a diffusion transfer image pattern after exposure of the photosensitive system and appropriate processing of the exposed system. Further the image receiving system comprises a substantially transparent layer or support member integrated with the receiving layer so that the image pattern obtained in the receiving layer can be viewed through the transparent layer or support.
The film units of the present invention also comprise as an essential element, a reflecting system which is arranged or can be arranged between the receiving system and the exposed photosensitive systemso that the reflective system can provide the requisite background for viewing the image pattern obtained in the image receiving layer. In one embodiment of the products embraced within the scope of the present invention, the reflecting system comprises an opaque dimensionally stable layer positioned between the photosensitive sys' tem and the image receiving system. In such products the opaque layer is an integral part of the product prior to exposure thereof and provides a reflective background for viewing the image pattern obtained in the receiving system after exposure of the photosensitive system and processing thereof. In still another embodiment of the products of the present invention, the reflective system is not present as an integral layer of the product prior to exposure but is provided after exposure such as by distributing a reflecting agent between the image receiving system and the photosensitive system after exposure thereof. In both embodiments mentioned above, the reflecting system preferably is further characterized in that it additionally provides effective masking of the exposed photosensitive system as well as a suitable background for viewing by reflection the image pattern obtained in the image receiving system. Additional details relating to the reflecting systems of the products of the present invention including the ingredients of such systems and. the manners in which such systems can be integrated with integral negativepositive film products can be found in commonly as signed U.S. Patent Application Ser. No. 43,782 filed June 5, 1970 and now abandoned; Ser. No. 101,968 filed Dec. 28, 1970 and now U.S. Pat. No. 3,647,437; Ser. No. 846,441 filed July 31, 1965 and now U.S. Pat. No. 3,615,421; Ser. No. 3,645 filed Jan. 19, 1970 and now U.S. Pat. No. 3,620,724 and Ser. Nos. 43,741 and 43,742 both filed June 5, 1970 and now U.S. Pat. Nos. 3,647,434 and 3,647,435 respectively.
In general the integral negative-positive film units of the present invention may be exposed to form a devel opable image which is developed thereafter by applying an appropriate processing composition to develop exposed silver halide and to form, as a function of development, an imagewise distribution of diffusible dye image-providing material which is then transferred to the dyeable stratum to impart thereto the desired color transfer image. As has been mentioned before, common to all of these systems is the provision of a reflecting system between the image receiving system and the photosensitive system to effectively mark the latter and to provide a background for viewing the color image imparted to the image receiving layer of the image receiving system so that this image may be viewed, by reflected light, without separation from the other layers or elements of the film unit.
Particularly preferred integral negative-positive film units of the present invention are those described in the aforementioned U.S. Pat. No. 3,415,644 and which comprise a composite structure having a photosensitive system containing in order, a dimensionally stable alkali solution impermeable opaque layer, a layer containing a cyan dye developer, a red-sensitive silver halide emulsion layer, a layer containing a magenta dye developer, a green-sensitive silver halide emulsion layer, a layer of yellow dye developer, a blue-sensitive silver halide emulsion layer. The image receiving system of such products includes, in order, a dyeable stratum, a spacer layer, a neutralizing layer and a dimensionally stable alkali solution impermeable transparent layer with the dyeable stratum being positioned adjacent the blue sensitive silver halide layer of the photosensitive system. The composite structure is employed in combination with a rupturable container retaining an aqueous alkaline processing composition including a reflection system comprising a white reflecting agent. The container is integrated with the composite structure so that the containers contents can be distributed between the dyeable stratum and the blue-sensitive silver halide emulsion layer upon application of compressive pressure.
Expecially preferred film units of the type described in U.S. Pat. No. 3,415,644 are those wherein the image receiving system of the composite structure includes a dimensionally stable alkali solution impermeable transparent layer which comprises a distinctive anti-light piping capability. These especially preferred film units are described in more detail in commonly assigned U.S. Pat. application Ser. No. 194,407 filed Nov. 1, 1971 by Edwin H. Land now abandoned in favor of application Ser. No. 419,808 filed Nov. 28, 1973. In that application a peculiar potential fogging problem encountered in integral negative-positive, diffusion transfer film units is described. Essentially, the fogging problem is caused by a phenomenon somewhat similar to light piping and can arise as the film unit is drawn from the camera between opposed rollers to distribute the processing composition-which includes a reflection system-between the image receiving system and the exposed photosensitive system. Wl-len the reflection system is completely distributed between the image receiving system and the photosensitive system it can provide protection for all portions of the exposed photosensitive system from activating radiation passing through the transparent layer of the image receiving system. However, until the reflection system is completely distributed between the image receiving system and the photosensitive system and all portions of the photosensitive system are so protected, there is a potential of some radiation passing through the transparent layer to the reflective system and then being reflected, scattered or otherwise transmitted to the unprotected portions of the photosensitive system. In other words, in film units of the type described in U.S. Pat. No. 3,415,644 there is a finite increment of time required to completely distribute the reflection system between the image receiving and photosensitive systems. During the time necessary to achieve complete distribution, radiation can be transmitted to unprotected portions of the photosensitive system to cause unwanted fogging. In accordance with the invention disclosed in U.S. Pat. application Ser. No. 194,407 mentioned before, this unwanted fogging can be virtually eliminated by including a minor amount of a pigment in at least one of the layers comprising the image receiving system and preferably in the transparent layer of the system. The minor amount of pigment is sufficient to effectively prevent the potential fogging but is insufficient to affect the overall transparency of the layer through which the image pattern is viewed.
When integral negative-positive diffusion transfer film units of the types described are exposed to light for extended periods as when left on a table face up, the color reflection print has been observed to evidence in time a stain or discoloration which is considered to be caused by photolysis, e.g., a decomposition or chemical action effected by the action of light. This problem is most pronounced in those systems employing a reflection system of the type disclosed in the aforementioned applications Ser. Nos. 43,782 and 101,968 which includes a reflective agent and an optical filter agent which is rendered colorless after development by reduction of the environmental pH. The staining or instability of the image pattern is also believed to be caused, at least in part, by photolysis of silver in some form which has diffused from the negative component to the positive component.
SUMMARY OF THE INVENTION The present invention is based on the discovery that the above discussed staining and its adverse effects on image quality and/or stability can be effectively overcome by including a UV absorber of a particular class in the transparent layer or member of the image receiving system. Special advantages are obtained by the inclusion of the particular UV absorber(s) in the transparent layer especially when the transparent layer comprises a pigment which provides an antilight piping capability for the layer. For example, it has been found that specialized considerations had to be given to the selection of the particular UV absorber to be employed in order to overcome to above discussed staining problems in integral positive-negative diffusion transfer photographic products of the type described before. Chief among these considerations are the potential instability of the UV absorber in the presence of the processing fluid. Another special consideration arises in those products wherein the transparent layer contains a finely divided carbon black providing an anti-light piping capability and this consideration relates to the effect of the UV absorber on the desired degree of transparency of the layer so that viewing of the image pattern therethrough is not adversally affected. The particular UV absorber included in the transparent support of products of the present invention have been found to be remarkably compatable with the processing compositions involved and also do not adversally affect or otherwise impair the transparency of those layers comprising a carbon black pigment which provides an anti-light piping capability. Another advantage obtained in the use of the UV absorber containing supports of the present invention involves the elimination of specialized filters when photosensitive systems are exposed through the support. As those skilled in the art know, such specialized filters are oftentimes employed to reduce haze and/or to protect UV sensitive elements of photographic products such as blue sensitized silver halide emulsion layers which are inherently sensitive to UV. Such filters need not be employed when phdtographic products employ the UV absorber containing supports of the present invention.
The UV absorbers employed in the support layers of the present invention are those that can provide layers that are substantially transparent, i.e., substantially colorless and can provide an optical density of l or greater at least across the major portions of the region between about 300 to about 375 mg. The term optical density means the density measured as transmission density at the wavelength of maximum absorption and thc'terminology, the major portion of the regionbetween about 300 to about 375 mp." means that a measurement at substantially all of the individual wavelengths would provide a density of at least about 1 although some wavelengths may provide lower densities. Most preferred are those UV absorbers that provide an optical density greater than about 2 at least across the region between about 325 to about 360 mu.
A preferred class of UV absorbers employed in the practice of the present invention are certain 2-aryl-4,5 arylo-1,2,3-triazole compounds of the formula:-
where:
A represents .a phenylene radical bound by two neighboring carbon atoms to two nitrogen atoms of the triazole ring, and
B represents a phenyl radical, substituted by groups not imparting strong coloration.
Details relating to UV absorbers of the above formula can be found in UV absorbers of the above formula can be found in U.S. Pat. Nos. 3,004,896 and 3,189,615; both patents are expressly incorporated herein in their entirety by reference.
DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a cross-sectional view of a photographic film unit of the present invention.
FIG. 2 illustrates means for measuring the light pip ing optical densityof support layers of the present invention.
DESCRIPTION or THE PREFERRED EMBODIMENT so that a transfer image formed in the image receiving system may be viewed, without separation, "as a reflection print The essence of theinvention of the present application resides in the inclusion of a UV absorber having the heretofore described properties in the transparent support of the image receiving system. The UV absorber may be conveniently included in the transpar- 6 ent support simply by dispersing it with the ingredients employed to prepare this support. e.g.. by casting.
The present invention may best be illustrated by reference to FIG. I which illustrates a typical film unit of the type to which this invention is directed.
As shown in the drawing, such a film unit may com prise, a layer 13 of cyan dye developer. red-sensitive silver halide emulsion layer 14, interlayer 15, a layer of magenta dye developer 16, green-sensitive silver halide emulsion layer 17, interlayer 18, yellow dye developer layer 19, blue-sensitive silver halide emulsion layer 20, auxiliary layer 21, image receiving layer or dyeable stratum 22, spacer layer 23, and a pI-I'reducing or neutralizing layer 24. Layers 13-21 comprise the photo sensitive system and layers 22-24 comprise the image receiving system. These layers are shown to be confined between a dimensionally stable layer or support member 12 which is preferably opaque so as to permit development in the light and dimensionally stable layer or support member 25 which is transparent to permit viewing of a color transfer image formed as a function of development in receiving layer or dyeable stratum 22.
Layers l2 and 25 are preferably dimensionally stable liquid-impermeable layers which when taken together may possess a processing composition solvent vapor permeability sufficient to effect, after substantial transfer image formation and prior to any substantial environmental image degradation to which the resulting image may be prone, osmotic transpiration of processing composition solvent in a quantity effective to decrease the solvent from a first concentration at which the color-providingmaterial is diffusible to a second concentration at which it is not. Although these layers may possess a vapor transmission rate of l or less gms./24 hrs./l00 inF/miL, they preferably possess a vapor transmission rate for the processing composition materials of this nature, mention may be made of those havingthe aforementioned characteristics and which are polymers derived from ethylene glycol and terephthalic acid; vinyl chloride polymers; polyvinyl acetate; cellulose derivatives, etc. An especially preferred polymeric material is Mylar". As heretofore noted layer 12 is of sufficient opacity to prevent fogging from occurring by light passing therethrough, and layer 26 is transparent to permit photoexposure and for viewing of a transfer image formed on receiving layer 23.
The silver halide layers preferably comprise photosensitive silver halide, e.g.. silver chloride, bromide or iodide or mixed silver halides such as silver iodobromide or chloriodobromide dispersed in a suitable colloidal binder such as gelatin and'such layers may typically be on the order of 0.6 to 6 microns in thickness. It will be appreciated that the silver halide layers may and in fact generally do contain other adjuncts, e.g., chemical sensitizers such as are disclosed in U.S. Pat. Nos. l-,5'74;944; 1,623,499; 2,410,689; 2,597,856; 2,597,915; 2,487,850 2,518,698; 2,521,926; etc.; as well as other additives performing specific desired functions. e.g., coating aids, hardeners, viscosityincreasing agents. stabilizers, preservatives, ultraviolet absorbers and/or speed-increasing compounds. While the preferred binder for the silver halide is gelatin, others such as albumin, casein, zein, resins such as cellulose derivatives, polyacrylamides, vinyl polymers, etc.. may replace the gelatin in whole or in part.
The respective dye developers, which may be any of those heretofore known in the art and disclosed for example in U.S. Pat. No. 2,983,606, etc.. are preferably dispersed in an aqueous alkaline permeable polymeric binder, e.g., gelatin as a-layer from about 1 to 7 microns in thickness.
interlayers l5, l8 and 21 may comprise an alkaline permeable polymeric material such as gelatin and may be on the'order of from about 1 to microns in thickness. As examples of other materials for forming these interlayers, mention may be made of those disclosed in U.S. Pat. No. 3,421,892 and the copending applications of Richard J. Haberlin, Ser. No. 854,491, filed Sept. 2, 1969, and Lloyd D. Taylor, Ser. No. 790.648, filed Jan. 13, 1969, etc. These interlayers may also contain additional reagents performing specific functions and the various ingredients necessary for development may also be contained initially in such layers in lieu of being present initially in the processing composition, in which event the desired developing composition is obtained by contacting such layers with the solvent for forming the processing composition, which solvent may include the other necessary ingredients dissolved therein.
The image-receiving layer may be on the other of 0.25 to 0.4 mil. in thickness. Typical materials heretofore employed for this layer include dyeable polymers such as nylon, e.g., N-mcthoxymethyl poly-hexamethylene adipamide; partially hydrolyzed polyvinyl acetate; polyvinyl alcohol with or without plasticizers; cellulose acetate with filler as, for example, one-half cellulose acetate and one-half oleic acid; gelatin; polyvinyl alcohol or gelatin containing a dye mordant such as poly-4- vinylpyridine, etc. Such receiving layers may,. if desired, contain suitable mordants, e.g., any of the conventional mordant materials for acid dyes such as those disclosed, for example, in the aforementioned U.S. Pat. No. 3,227,500; as well as other additives such as ultraviolet absorbers, pH-reducing substances, etc. It may also contain specific reagents performing desired functions, e.g., a development restrainer, as disclosed, for example, in U.S. Pat. No. 3,265,498.
The spacer or timing layer may be on the order of 0.1 to 0.7 mil. thick. Materials heretofore used for this purpose include polymers which exhibit inverse temperature-dependent permeability to alkali, e.g., as disclosed in U.S. Pat. No. 3,445,686. Materials previously employed for this layer include polyvinyl alcohol, cyanoethylated polyvinyl alcohol, hydroxypropyl polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyvinyl oxazolidinone, hydroxypropylmethyl cellulose, partial acetals of polyvinyl alcohol such as partial polyvinyl butyral and partial polyvinyl propional, polyvinyl amides such as polyacrylamidc, etc.
The neutralizing layer may be on the order of 0.3 to 1.5 mil. in thickness. Materials used heretofore in the preparation of this layer include the polymer acids disclosed in U.S. Pat. No. 3,362,819. e.g., dibasicacidhalf-ester derivatives of cellulose, .which derivatives.
contain free carboxyl groups, e.g., cellulose acetate hydrogen phthalate, cellulose acetate hydrogen glutarate,
8 cellulose acetate hydrogen succinate, ethyl cellulose hydrogen succinate, ethyl cellulose acetate hydrogen succinate, cellulose acetate hydrogen succinate hydrogen phthalate: ether and ester derivatives or cellulose modified with sulfoanhydrides. e.g., with ortho-sulfobenzoic anhydride;-polystyrcne sulfonic acid; carboxymethyl cellulose: polyvinyl hydrogen phthalate', polyvinyl acetate hydrogen phthalate: polyacrylic acid; acetals of polyvinyl alcohol with carboxy or sulfo sub stituted aldehydes. e.g., o-. m-. or p-benzaldehyde sulfonic acid or carboxylic acid; partial esters of ethylene/maleic anhydride copolymers; partial esters of .methyl-vinyl ether maleic anhydride copolymcrs', etc.
As is disclosed. for example. in the aforementioned U.S. Pat. No. 3,415.644. the film unit shown in the drawing may be developed by applying an aqueous alkaline processing composition including a reflection system which comrpises a reflecting agent, e.g., titanium dioxide, between stratum 22 and layer 21 to form a color transfer image viewable through support 25, without separation, as a color reflection print. The resulting print when exposed to light for extended periods has been observed in time to manifest a tendency for a staining or browning which has been determined to be caused by photolysis induced by actinic light in the UV range of the spectrum. This problem is most noticeable under circumstances described with greater particularity in the aforementioned U.S. Pat. No. 3,647,437 which are highly colored at an alkaline pH so as to permit development of the film unit in the light but which are cleared or rendered transparent subsequent to development by lowering the pH so that they do not interfere with the viewing of the resulting image.
Tests have also shown that something in the photosensitive system. i.e., something migrating of diffusing from the photosensitive system to the image receiving system also contributes to this staining as a result of photolysis. While not wishing to be limited to any particular theory as to the latter, it is believed that this substance in the photosensitive system may be some form of silver, e.g., a soluble silver complex which has diffused during or after development to the reflecting layer and/or through it to the image receiving system where the relatively high energy of UV light causes a decomposition or chemical reaction, possibly the production of metallic silver which will appear yellow or brown because of its fine particle size.
In accordance with this invention, this problem can be effectively overcome by incorporating a UV absorber of the foregoing description in the transparent layer of the image receiving system, e.g., in layer 25.
It is to be noted that not any UV absorber can be employed in the practice of this invention; and the UV absorber so employed must be selected from those which possess the optical density characteristics heretofore described at the concentrations employed while at the same time being substantially visibly colorless above about 400 mp. so as not to detract from the image viewed through the UV-containing layer. Moreover, since many UV absorbers become colored, e.g., yellow, upon contact .with alkali, where the UV absorber comes into contact with alkali from the processing fluid it should not be one so affected so as to detract from the visual quality of the image. In other words, apart from itsfunction in minimizing the staining caused by photolysis, the UV absorbershould appear visibly colorless at least after completion of image formation so as not to create a different problem while obviating the problem caused by photolysis.
As mentioned, the preferred UV absorbers employed in the practice of the present invention are certain 2- aryl-4,5 arylo-l ,2,3, triazole compounds of the formula lowing general formula:
HO R
N N X where C] and R alkyl or hydrogen.)
A preferred absorber is Tinuvin 327, understood to be 2-(3,5-di-t-butyl-2-hydroxyphenyl)-5- chlorobenzotriazole. Other Tinuvin absorbers such as Tinuvin 328 may be employed, as well as other absorbers meeting the above-noted qualifications.
The amount of UV absorber employed will vary from system to system, as one skilled in the art will well understand, and the precise amounts of a given absorber needed in the particular film unit to be protected will be likewise readily ascertained by those skilled in the art. By way ofillustration, Tinuvin 328 at a coverage on the order of 50 to 75 mgs./ft. has been found to be effective.
in the especially preferred film units of the present invention, the transparent layer includes a UV absorber of the above described characteristics and a pigment which can provide a distinctive anti-light piping capability. As mentioned before, a potential fogging problem can be encountered in photographic products of the type described in U.S. Pat. No. 3,415,644. Essentially the problem arises by reason of the fact that a finite increment of time is required in order to completely distribute the reflection system between the exposed photosensitive system and the image receiving system. During this increment of time, light passing through the transparent layer of the image receiving system can be transmitted edgewise to the portions of the exposed photosensitive system which remain unprotected by the reflection system. In accordance with the invention described and claimed in commonly assigned U.S. Pat. Application Ser. No. 194,407 filed Nov. 1, 1971 by Edwin H. Land, this potential fogging problem which is a byproduct of such light piping, can be virtually eliminated by including a minor amount of a pigment in a layer of the image receiving system. Colored pigments are especially preferred and in the preferred embodiment, the pigment is a finely divided carbon black which is included in the transparent layer for the image receiving layer. Moreover, the amount of carbon black included in the layer is sufficient to provide an effective anti-light piping capability but yet insufficient to adversally affect the transparency of the layer. In general the amount of pigment employed in the transparent layer is sufficient to provide an optical density. as measured edgewise at 700 mp. over a path length of 1 inch of at least about 5. The amount of pig merit providing an effective ant:i-light piping capability further being insufficient to prevent transmission of substantially all of the light incident on the surface of the transparent layer so as not to interfere with exposure through the layer or viewing of the image therethrough.
A simple method for measurzingor determining the anti-light piping capability, e.g., optical density, of transparent layers is described below taken in connection with FIG. 2.
PROCEDURE FOR MEASURING ANTI-LIGHT-PIPING OPTICAL DENSITY l. The sample sheet to be measured is cut to measure 1 inch X 4 inches.
2. It is inserted in the black wooden block between parts (A) and (B) (See FIG. 2), such that inch protrudes at the exit slit, which will be placed up against the integrating sphere. The long end of the sample is wrapped around the semicyclindrical surface tightly, and the end taped securely to the flat side of the (B) block.
3. The wind nuts are tightened.
4. The Cary 14 is zeroed to 700 nm (mu) with nothing in the light path.
5. The block is inserted into the light path of the Cary (as shown in the figure) so that the A inch end of the sample sheet protrudes directly into the integrating sphere. The light beam then strikes the sample perpendicularly at point P.
6. The optical density is meaasured at 700 nm, using filters as necessary to mask the reference beam in order to measure the densities which are greater than the normal maximum density scale (2.4).
Accordingly in the especially preferred products of the present invention, the transparent layer of the image receiving system includes a UV absorber as well as a pigment which can provide the anti-light piping capability described in the above-mentioned U.S. Pat. Application Ser. No. 194,407.
By way of further illustrating the practice of this invention as applied to a film unit of the type shown in the drawing, a gelatin subbed, 4 mil. opaque polyethylene terephthalate film base may be coated with the following layers:
1. a layer of cyan dye developer dispersed in gelatin and coated at a coverage of about mgs./ft. of dye and-about 8O mgs./ft. of gelatin;
2. a red-sensitive gelatino silver indobromide emulsion coated at a coverage of about mgs./ft. of silver and about 70 mgs./ft. of gelatin;
3. a layer of a 60-3046 copolymer of butylacrylate, diacetone acrylamide, styrene and methacrylic acid and polyacrylamide coated at a coverage of about mgs./ft. of the copolymer and about 5 mgs./ft. of polyacrylamide;
4. a layer of magneta dye developer dispersed in gelatin and coated at a coverage of about 100 mgs./ft. of
dye and about 100 mgs/it. of gelatin;
5. a green-sensitive gelatino silver iodobromide emulsion coated at a coverage of about 100 mgsJfc. of silver and about 50 mgs./ft. of gelatin;
6. a layer containing the copolymer referred to above in layer 3 and polyacrylamide coated at a coverage of about 100 mgs./ft. of copolymer and about 12 mgs./ft. of polyacrylamide;
7. a layer of yellow dye developer dispersed in gelatin and coated at a coverage of about 70 mgs./ft. of dye and about 56 mgs./ft. of gelatin;
8. a blue-sensitive gelatino silver iodobromide emulsion layer including the auxiliary developer 4-methylphenyl hydroquinone coated at a coverage of about 120 mgs./ft. of silver, about 60 mgs./ft. of gelatin and about 30 mgs./ft. of auxiliary developer; and
9. a layer of gelatin coated at a coverage of about 50 mgs./ft. of gelatin.
The three dye developers employed above may be the following:
12 a magneta dye developer; and
\ Q\c /O O O QH ll CCH C H a yellow dye developer.
Then a transparent 4 mil. polyester film base containing a finely divided carbon black dispersed therein in an amount sufficient to provide an optical density as measured on the side of at least about 5 and Tinuvin 328 in an amount sufficient to provide about 50 N====-C c N I OH H $02NH(I2H c c Ho l I: N Cu N\ CH3 L c OH I Hc-NH--O s C N o 1 CH3 cl-l so NHCH a cyan dye developer;
HO-C H -CH 2 HOCH2CH2 mgsJft. of Tinuvin 328 may be coated, in succession, with the following illustrative layers:
l. the partial butyl ester of polyethylene/maleic anhydride copolymer at a coverage of about 2,400 mgs./ft. of polymer to provide a neutralizing layer.
2. a graft copolymer of acrylamide and diacetone acrylamide on a polyvinyl alcohol backbone in a molar ratio of 113.211 at a coverage of about 700 mgs./ft. to provide a polymeric spacer or timing layer; and
3. a 2:1 mixture, by weight, of polyvinyl alcohol and poly-4-vinylpyridine, at a coverage of about 400 mgs./ft. to provide a polymeric image-receiving layer containing development restrainer.
The two components may then be laminated together to provide the desired integral film unit.
A rupturable container comprising an outer layer of lead oil and an inner liner or layer of polyvinyl chloride retaining an aqueous alkaline processing solution may then be fixedly mounted on the leading edge of each of the laminates, by pressure-sensitive tapes, interconnecting the respective container and laminates so that, upon application of compressive pressure to the container to rupture the contain ers marginal seal, its contents may be distributed between the dyeable stratum (layer 22 of the positive component) and the gelatin layer (layer 21) of the negative component.
An illustrative processing composition to be employed in the rupturable container may comprise the following properties of ingredients:
Water 100 cc. Potassium hydroxide 11.2 grns. Hydroxyethyl cellulose (high viscosity) [commercially available from Hercules Powder Co., Wilmington,
Delaware, under the trade name Natrasol 250] 3.4 gms. N-phenethyl-a-picolinium bromide 2.7 gms. Benzotriazole 1.15 gms. Titanium dioxide 50 0 grnsv (A) 208 gms.
0 52 gms.
This film unit may then be exposed in known manner to form a developable image and the thus exposed element may then be developed by applying compressive pressure to the rupturable container in order to distribute the aqueous alkaline processing composition, thereby forming a multicolor transfer image which is viewable through the transparent polyethylene terephthalate film base as a positive reflection print.
Since certain changes may be made in the above product and process without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
What is claimed is:
1. In a photographic comprising a diffusion transfer photosensitive system, a diffusion transfer image receiving system and a reflecting system and wherein said systems are integrated so that the product is adapted for forming a visible image by diffusion transfer of image providing material from said photosensitive system to said image receiving system which image is viewable by reflection and without separation of said receiving system and said photosensitive system, said image receiving system including an image receiving layer and a dimensionally stable layer through which said image is viewable and through which said photosensitive system is exposed;
the improvement which comprises including in said dimensionally stable transparent layer an ultraviolet absorber, said ultraviolet absorber being substantially transparent to visible light and wherein said ultraviolet absorber provides an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 mu and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-1,2,3 triazole of the formula N A N N-B where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
B represents a Z-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
2. A product as defined in claim 1 wherein said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
3. A product as defined in claim 1 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
4. A photographic product of claim 3 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
5. A photographic product of claim 3 wherein said pigment is a particulate carbon.
6. In an integral negative-positive film unit including a photosensitive system having a negative component comprising at least one light-sensitive silver halide layer having a dye image-providing material associated therewith, an image receiving system including a positive component comprising a dyeable stratum and a dimensionally stable transparent layer through which said light sensitive layer is exposed, means for applying a reflecting system between said positive and negative components in an amount sufficient upon development of said film unit to mask effectively said negative component and to provide a background for viewing through said transparent layer, a color image imparted to said dyeable stratum of said positive component by reflected light by applying an aqueous alkaline processing fluid to said film unit after exposure thereof;
the improvement wherein said transparent layer of said positive component comprises an ultraviolet light absorber characterized as being substantially transparent to visible light and providing an optical 17 density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 mu and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-l,2,3 triazole of the formula where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
7. A film unit as defined in claim 6 wherein said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
8. A film unit as defined in claim 6 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
9. A film unit of claim 8 wherein said amount of pigment is sufficient to provide an optical density for said layer of about as measured on the edge of said layer.
10. A film unit of claim 8 wherein said pigment is a particulate carbon.
11. A film unit as defined in claim 6 wherein said means for applying a reflecting layer comprises an aqueous alkaline processing fluid including a white reflecting material and at least one optical filter agent which is highly colored at the pH of said alkaline pro- 14. A film unit as defined in claim 6 wherein said neg-.
ative component includes a red-sensitive silver halde emulsion layer having a cyan dye image-providing material associated therewith, a green-sensitive silver halide emulsion layer having a magenta dye image-providing material associated therewith and blue-sensitive silver halide emulsion layer having a yellow dye imageproviding material associated therewith.
15. A film unit as defined in claim 14 wherein said dye image-providing materials are intially soluble and diffusible in said aqueous alkaline processing fluid but are selectively rendered non-diffusible in an imagewise pattern as a function of development.
16. In a photographic film unit which is adapted to be processed by passing said unit between a pair ofjuxtaposed pressure-applying members and which comprises, in combination:
a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline solution permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer, wherein the adhesion exhibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate; and
a rupturable container retaining an alkaline processing solution having said first. pH and containing dispersed therein a reflecting system in a quantity sufficient to mask said dye image providing material, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional dicharge of the containers contents between said alkaline solution permeable and dyeable polymeric layer and said photosensitive silver halide emulsion layer next adjacent thereto at said interface exhibiting said less adhesion upon application of compressive force to said container, the improvement wherein said] dimensionally stable transparent layer includes an ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths between about 300 to 375 mu, said ultraviolet absorber being a 2-aryl-4,5 arylo-l,2,3 triazole of the formula where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration.
17. A film unit as defined in claim 16 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
18. A film unit of claim 17 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
19. A film unit of claim 17 wherein said pigment is a particulate carbon.
20. A film unit of claim 16 wherein said dye imageproviding material is a dye which is a silver halide developing agent.
21. A film unit of claim 16 wherein said dye is substantially soluble and diffusible in only the reduced form at said first pH and is substantially insoluble and 19 nondiffusible in said reduced form at said second pH.
22. A film unit of claim 16, including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
23. A photographic film unit of claim 16 wherein said alkaline solution permeable polymeric spacer layer possesses decreasing alkaline solution permeability with increasing temperature.
24. A photographic film unit as defined in claim 16 wherein said reflecting system comprises titanium dioxide.
25. A photographic film unit of claim 16 wherein said reflecting system comprises an inorganic reflecting pigment dispersion and at least one optical filter agent which is colored at a pH above the pKa of the optical filter agent in a concentration effective to provide a layer exhibiting optical transmission density 6.0 density units with respect to incident radiation actinic to the photosensitive silver halide layer and said film unit comprises means for reducing the pH of the film unit to a pH below the pKa of the optical filter agent so that said agent is substantially colorless after substantial diffusion of solubilized image-forming material to the layer adapted to receive image-forming material diffusing thereto.
26. In a photographic film unit which is adapted to be processed by passing said unit between a pair ofjuxtaposed pressure-applying members and which comprises, in combination:
a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent layer, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline solution permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH of a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer wherein the adhesion exibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate and a rupturable container retaining an alkaline processing solution having said first pH and containing dispersed therein reflecting agent, in a quantity sufficient to mask said dye image providing material, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the containers contents between said transparent layer and said photosensitive silver halide emulsion layer next adjacent thereto exhibiting said less adhesion upon application of compressive force to said container, the improvement wherein said dimensionally stable transparent layer includes an ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths between about 300 to about 375 mu, and wherein said absorber is a 2- aryl-4,5 arylo-l,2,3 triazole of the formula where A represents a phenylene radical bounded by two neighboring carbon atoms to two nitrogen atoms of the triazole ring and,
B represents a 2-hydroxyphenyl radical which can be substituted by groups not imparting strong coloration and said transparent layer comprises a particulate carbon in an amount sufficient to provide an optical density of at leasct about 5 for said layer as measured on the edge of said layer.
27. A photographic film unit of claim 26 wherein said dye image providing material is a dye which is a silver halide developing agent.
28. A photographic film unit of claim 26 wherein said dye is substantially soluble and diffusible in only the reduced form at said first pH and is substantially insoluble and non-diffusible in said reduced form of said second pH.
29. A photographic film unit of claim 26 including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
30. A photographic film unit of claim 29 wherein said alkaline solution permeable polymeric spacer layer possesses decreasing alkaline solution permeability with increasing temperature.
31. A photographic film unit as defined in claim 26 wherein said reflecting system comprises titanium dioxide.
32. A photographic film unit as defined in claim 26 wherein the amount of carbon dispersed in said transparent layer is sufficient to provide an optical density of about 6.0 as measured on the edge of said layer.
33. A photographic film unit as defined in claim 26 wherein said reflecting system comprises an inorganic reflecting pigment dispersion and at least one optical filter agent which is colored at a pH above the pKa of the optical filter agent in a concentration effective to provide a layer exhibiting optical transmission density 6.0 density units with respect to incident radiation actinic to the photosensitive silver halide layer; and said film unit comprises means for reducing the pH of the film unit to a pH below the pKa of the optical filter agent so that said agent is substantially colorless after substantial diffusion of solubilized image-forming material to the layer adapted to receive image-forming material diffusing thereto.
34. In a photographic product comprising a diffusion transfer photosensitive system, a diffusion transfer image receiving system and a reflecting system and wherein said systems are integrated so that the product is adapted for forming a visible image by diffusion transfer of image providing material from said photosensitive system to said image receiving system which image is viewable by reflection and without separation of said receiving system and said photosensitive system, said image receiving system including an image receiving layer and a dimensionally stable layer through which said image is viewable and through which said photosensitive system is exposed;
the improvement which comprises including in said dimensionally stable transparent layer an ultraviolet absorber which is substantially transparent to visible light, said ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 my. whereby image discloration due to photolysis of silver containing substances is at least substantially reduced and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-l ,2,3 triazole of the formula ation.

Claims (34)

1. IN A PHTOGRAPHIC COMPRISING A DIFFUSIN TRANSFER PHOTOSENSITIVE SYSTEM, A DIFFUSION TRANSFER IMAGE RECEIVING SYSTEM AND A REFLECTING SYSTEM AND WHEREIN SAID SYSTEMS ARE INTEGRATED SO THAT THE PRODUCT IS ADAPTED FOR FORMING A VISIBLE IMAGE BY DIFFUSION TRANSFER OF IMAGE PROVIDING MATERIAL FROM SAID PHOTOSENSTIVE SYSTEM TO SAID IMAGE RECEIVING SYSTEM WHICH IMAGE IS VIEWABLE BY REFLECTION AND WITHOUT SEPARATION OF SAID RECEIVING SYSTEM AND SAID PHOTOSENSTITIVE LAYER AND IMAGE RECEIVING SYSTEM INCLUDING AN IMAGE RECEIVING LAYER AND A DIMENSIONALLY STABLE LAYER THROUGH WHICH SAID IMAGE IS VIEWABLE AND THROUGH WHICH SAID PHOTOSENSITIVE SYSTEM IS EXPOSED; THE IMPROVEMENT WHICH COMPRISES INCLUDING IN SAID DIMENSIONALLY STABLE TRANSPARENT LAYER AN ULTRAVIOLET ABSORBER, SAID ULTRAVIOLET ABSORBER BEING SUBSTANTIALLY TRANSPARENT TO VISIBLE LIGHT AND WHEREIN SAID ULTRAVIOLET ABSORBER PROVIDES AN OPTICAL DENSITY OF AT LEAST ABOUT 1 AT SIBSTANTIALLY ALL OF THE WAVELENGTHS AT LEAST BETWEEN THE REGION OF ABOUT 300 TO ABOUT 375 MU AND WHEREIN SAID ULTRAVIOLET ABSORBER IS A 2-ARYL-4,5 ARYLO1,2,3 TRIAZOLE OF THE FORMULA
2. A product as defined in claim 1 wherein said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
3. A product as defined in claim 1 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
4. A photographic product of claim 3 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
5. A photographic product of claim 3 wherein said pigment is a particulate carbon.
6. In an integral negative-positive film unit including a photosensitive system having a negative component comprising at least one light-sensitive silver halide layer having a dye image-providing material associated therewith, an image receiving system including a positive component comprising a dyeable stratum and a dimensionally stable transparent layer through which said light sensitive layer is exposed, means for applying a reflecting system between said positiVe and negative components in an amount sufficient upon development of said film unit to mask effectively said negative component and to provide a background for viewing through said transparent layer, a color image imparted to said dyeable stratum of said positive component by reflected light by applying an aqueous alkaline processing fluid to said film unit after exposure thereof; the improvement wherein said transparent layer of said positive component comprises an ultraviolet light absorber characterized as being substantially transparent to visible light and providing an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 m Mu and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-1,2,3 triazole of the formula
7. A film unit as defined in claim 6 wherein said ultraviolet absorber provides an optical density of about 2 at substantially all of the wavelengths at least between the region of about 325 to about 360.
8. A film unit as defined in claim 6 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
9. A film unit of claim 8 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
10. A film unit of claim 8 wherein said pigment is a particulate carbon.
11. A film unit as defined in claim 6 wherein said means for applying a reflecting layer comprises an aqueous alkaline processing fluid including a white reflecting material and at least one optical filter agent which is highly colored at the pH of said alkaline processing composition but which is capable of being rendered substantially colorless by lowering said pH subsequent to development and dye transfer image formation.
12. A film unit as defined in claim 6 including a neutralizing layer disposed on the side of said dyeable stratum opposed from said negative component.
13. A film unit as defined in claim 12 wherein a timing layer is disposed between said dyeable stratum and said neutralizing layer.
14. A film unit as defined in claim 6 wherein said negative component includes a red-sensitive silver halde emulsion layer having a cyan dye image-providing material associated therewith, a green-sensitive silver halide emulsion layer having a magenta dye image-providing material associated therewith and blue-sensitive silver halide emulsion layer having a yellow dye image-providing material associated therewith.
15. A film unit as defined in claim 14 wherein said dye image-providing materials are intially soluble and diffusible in said aqueous alkaline processing fluid but are selectively rendered non-diffusible in an imagewise pattern as a function of development.
16. In a photographic film unit which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which comprises, in combination: a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline soluTion permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH to a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer, wherein the adhesion exhibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate; and a rupturable container retaining an alkaline processing solution having said first pH and containing dispersed therein a reflecting system in a quantity sufficient to mask said dye image providing material, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional dicharge of the container''s contents between said alkaline solution permeable and dyeable polymeric layer and said photosensitive silver halide emulsion layer next adjacent thereto at said interface exhibiting said less adhesion upon application of compressive force to said container, the improvement wherein said dimensionally stable transparent layer includes an ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths between about 300 to 375 m Mu , said ultraviolet absorber being a 2-aryl-4,5 arylo-1,2,3 triazole of the formula
17. A film unit as defined in claim 16 wherein said dimensionally stable transparent layer comprises a pigment in an amount sufficient to prevent edgewise transmission of activating radiation to said unprotected portions of said photosensitive system, said amount also being insufficient to prevent substantially all of the light incident on said layer from being transmitted therethrough.
18. A film unit of claim 17 wherein said amount of pigment is sufficient to provide an optical density for said layer of about 5 as measured on the edge of said layer.
19. A film unit of claim 17 wherein said pigment is a particulate carbon.
20. A film unit of claim 16 wherein said dye imageproviding material is a dye which is a silver halide developing agent.
21. A film unit of claim 16 wherein said dye is substantially soluble and diffusible in only the reduced form at said first pH and is substantially insoluble and nondiffusible in said reduced form at said second pH.
22. A film unit of claim 16, including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
23. A photographic film unit of claim 16 wherein said alkaline solution permeable polymeric spacer layer possesses decreasing alkaline solution permeability with increasing temperature.
24. A photographic film unit as defined in claim 16 wherein said reflecting system comprises titanium dioxide.
25. A photographic film unit of claim 16 wherein said reflecting system comprises an inorganic reflecting pigment dispersion and at least one optical filter agent which is colored at a pH above the pKa of the optical filter agent in a concentration effective to provide a layer exhibiting optical transmission density >* 6.0 density units with respect to incident radiation actinic to the photosensitive silver halide layer and said film unit comprises means for reducing the pH of the film unit to a pH below the pKa of the optical filter agent so that said agent is substantially colorless after substantial diffusion of solubilized image-forming material to the lAyer adapted to receive image-forming material diffusing thereto.
26. In a photographic film unit which is adapted to be processed by passing said unit between a pair of juxtaposed pressure-applying members and which comprises, in combination: a photosensitive element comprising a laminate having, as essential layers, in order, a dimensionally stable opaque layer, a photosensitive silver halide emulsion layer having associated therewith a dye image-forming material which is soluble and diffusible, in alkali, at a first pH, an alkaline solution permeable transparent layer, an alkaline solution permeable transparent polymeric layer dyeable by said dye image providing material, an alkaline solution permeable transparent polymeric acid layer containing sufficient acidifying groups to effect reduction of a processing solution having said first pH of a second pH at which said dye image providing material is insoluble and non-diffusible, and a dimensionally stable transparent layer wherein the adhesion exibited at an interface intermediate said dyeable polymeric layer and said silver halide emulsion layer next adjacent thereto is less than that exhibited at the remaining interfaces of said laminate and a rupturable container retaining an alkaline processing solution having said first pH and containing dispersed therein reflecting agent, in a quantity sufficient to mask said dye image providing material, fixedly positioned and extending transverse a leading edge of said photosensitive element to effect unidirectional discharge of the container''s contents between said transparent layer and said photosensitive silver halide emulsion layer next adjacent thereto exhibiting said less adhesion upon application of compressive force to said container, the improvement wherein said dimensionally stable transparent layer includes an ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths between about 300 to about 375 m Mu , and wherein said absorber is a 2-aryl-4,5 arylo-1,2,3 triazole of the formula
27. A photographic film unit of claim 26 wherein said dye image providing material is a dye which is a silver halide developing agent.
28. A photographic film unit of claim 26 wherein said dye is substantially soluble and diffusible in only the reduced form at said first pH and is substantially insoluble and non-diffusible in said reduced form of said second pH.
29. A photographic film unit of claim 26 including an alkaline solution permeable transparent polymeric spacer layer positioned intermediate said alkaline solution permeable and dyeable polymeric layer and said alkaline solution permeable polymeric acid layer.
30. A photographic film unit of claim 29 wherein said alkaline solution permeable polymeric spacer layer possesses decreasing alkaline solution permeability with increasing temperature.
31. A photographic film unit as defined in claim 26 wherein said reflecting system comprises titanium dioxide.
32. A photographic film unit as defined in claim 26 wherein the amount of carbon dispersed in said transparent layer is sufficient to provide an optical density of about 6.0 as measured on the edge of said layer.
33. A photographic film unit as defined in claim 26 wherein said reflecting system comprises an inorganic reflecting pigment dispersion and at least one optical filter agent which is colored at a pH above the pKa of the optical filter agent in a concentration effective to provide a layer exhibiting optical transmission density > * 6.0 density units with respect to incident radiation actinic to the photosensitive silver halide layer; and said film unit comprises means for reducing the pH of the film unit to a pH below the pKa of the optical filter agent so that said agent is substantially colorless after substantial diffusion of solubilized image-forming material to the layer adapted to receive image-forming material diffusing thereto.
34. In a photographic product comprising a diffusion transfer photosensitive system, a diffusion transfer image receiving system and a reflecting system and wherein said systems are integrated so that the product is adapted for forming a visible image by diffusion transfer of image providing material from said photosensitive system to said image receiving system which image is viewable by reflection and without separation of said receiving system and said photosensitive system, said image receiving system including an image receiving layer and a dimensionally stable layer through which said image is viewable and through which said photosensitive system is exposed; the improvement which comprises including in said dimensionally stable transparent layer an ultraviolet absorber which is substantially transparent to visible light, said ultraviolet absorber providing an optical density of at least about 1 at substantially all of the wavelengths at least between the region of about 300 to about 375 m Mu whereby image discloration due to photolysis of silver containing substances is at least substantially reduced and wherein said ultraviolet absorber is a 2-aryl-4,5 arylo-1,2,3 triazole of the formula
US300277A 1972-01-03 1972-10-24 U.V. light absorbers in supports of integral diffusion transfer film units Expired - Lifetime US3923519A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US300277A US3923519A (en) 1972-01-03 1972-10-24 U.V. light absorbers in supports of integral diffusion transfer film units
JP48004105A JPS4875235A (en) 1972-01-03 1972-12-29
FR7300061A FR2167591B1 (en) 1972-01-03 1973-01-02
CA160,415A CA990121A (en) 1972-01-03 1973-01-02 Photographic products and processes
GB22073A GB1420224A (en) 1972-01-03 1973-01-02 Photographic products containing ultraviolet absorbers
NLAANVRAGE7300064,A NL176981C (en) 1972-01-03 1973-01-03 PHOTOGRAPHIC PRODUCT.
DE2300173A DE2300173A1 (en) 1972-01-03 1973-01-03 LIGHT SENSITIVE PHOTOGRAPHIC RECORDING MATERIAL
US05/602,665 US4025682A (en) 1972-10-24 1975-08-07 Photographic products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21460072A 1972-01-03 1972-01-03
US300277A US3923519A (en) 1972-01-03 1972-10-24 U.V. light absorbers in supports of integral diffusion transfer film units

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21460072A Continuation-In-Part 1972-01-03 1972-01-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/602,665 Division US4025682A (en) 1972-10-24 1975-08-07 Photographic products

Publications (1)

Publication Number Publication Date
US3923519A true US3923519A (en) 1975-12-02

Family

ID=26909165

Family Applications (1)

Application Number Title Priority Date Filing Date
US300277A Expired - Lifetime US3923519A (en) 1972-01-03 1972-10-24 U.V. light absorbers in supports of integral diffusion transfer film units

Country Status (7)

Country Link
US (1) US3923519A (en)
JP (1) JPS4875235A (en)
CA (1) CA990121A (en)
DE (1) DE2300173A1 (en)
FR (1) FR2167591B1 (en)
GB (1) GB1420224A (en)
NL (1) NL176981C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148648A (en) * 1977-02-16 1979-04-10 Polaroid Corporation Diffusion transfer elements comprising U V light absorbers
US4518686A (en) * 1982-06-05 1985-05-21 Konishiroku Photo Industry Co., Ltd. Color photographic light-sensitive material containing UV filter compounds
USRE37693E1 (en) * 1982-06-05 2002-05-07 Konishiroku Photo Industry Co., Ltd. Color photographic light-sensitive material containing UV filter compounds

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004896A (en) * 1956-12-14 1961-10-17 Geigy Ag J R Ultra-violet light-absorbing composition of matter
US3330656A (en) * 1963-08-14 1967-07-11 Polaroid Corp Novel photographic products and processes
US3351470A (en) * 1963-07-25 1967-11-07 Polaroid Corp Novel photographic products, processes and compositions
US3364022A (en) * 1963-04-01 1968-01-16 Eastman Kodak Co Direct positive photographic color reproduction process and element utilizing thio-substituted hydroquinones as development inhibitors
US3460942A (en) * 1959-01-14 1969-08-12 Polaroid Corp Color diffusion transfer process utilizing ultraviolet light absorbers
US3533794A (en) * 1968-03-25 1970-10-13 Fuji Photo Film Co Ltd Color photographic light-sensitive material containing ultraviolet absorbing agents
US3698907A (en) * 1969-12-29 1972-10-17 Konishiroku Photo Ind Light-sensitive silver halide color-photographic material
US3702245A (en) * 1970-06-05 1972-11-07 Polaroid Corp Photographic diffusion-transfer processes and elements utilizing ph-sensitive optical filter agents to prevent fogging by extraneous actinic radiation during development

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1185610B (en) * 1956-12-14 1965-01-21 Geigy Ag J R Use of 2-phenylbenzotriazole compounds to protect organic substances against ultraviolet radiation
US3249432A (en) * 1960-08-22 1966-05-03 Polaroid Corp Novel photographic processes
BE623419A (en) * 1961-10-10
US3415644A (en) * 1967-03-10 1968-12-10 Polaroid Corp Novel photographic products and processes
US3573043A (en) * 1967-03-10 1971-03-30 Polaroid Corp Photographic diffusion transfer color process and composite film unit for use therein
BE757959A (en) * 1969-10-24 1971-04-23 Eastman Kodak Co PRODUCT FOR THE IMPLEMENTATION OF A COLOR PHOTOGRAPHY PROCESS BY DIFFUSION-TRANSFER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004896A (en) * 1956-12-14 1961-10-17 Geigy Ag J R Ultra-violet light-absorbing composition of matter
US3460942A (en) * 1959-01-14 1969-08-12 Polaroid Corp Color diffusion transfer process utilizing ultraviolet light absorbers
US3364022A (en) * 1963-04-01 1968-01-16 Eastman Kodak Co Direct positive photographic color reproduction process and element utilizing thio-substituted hydroquinones as development inhibitors
US3351470A (en) * 1963-07-25 1967-11-07 Polaroid Corp Novel photographic products, processes and compositions
US3330656A (en) * 1963-08-14 1967-07-11 Polaroid Corp Novel photographic products and processes
US3533794A (en) * 1968-03-25 1970-10-13 Fuji Photo Film Co Ltd Color photographic light-sensitive material containing ultraviolet absorbing agents
US3698907A (en) * 1969-12-29 1972-10-17 Konishiroku Photo Ind Light-sensitive silver halide color-photographic material
US3702245A (en) * 1970-06-05 1972-11-07 Polaroid Corp Photographic diffusion-transfer processes and elements utilizing ph-sensitive optical filter agents to prevent fogging by extraneous actinic radiation during development

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148648A (en) * 1977-02-16 1979-04-10 Polaroid Corporation Diffusion transfer elements comprising U V light absorbers
US4518686A (en) * 1982-06-05 1985-05-21 Konishiroku Photo Industry Co., Ltd. Color photographic light-sensitive material containing UV filter compounds
USRE37693E1 (en) * 1982-06-05 2002-05-07 Konishiroku Photo Industry Co., Ltd. Color photographic light-sensitive material containing UV filter compounds

Also Published As

Publication number Publication date
FR2167591A1 (en) 1973-08-24
NL176981C (en) 1985-07-01
CA990121A (en) 1976-06-01
NL7300064A (en) 1973-07-05
DE2300173C2 (en) 1987-09-10
DE2300173A1 (en) 1973-07-26
FR2167591B1 (en) 1982-02-19
GB1420224A (en) 1976-01-07
JPS4875235A (en) 1973-10-11

Similar Documents

Publication Publication Date Title
US3415644A (en) Novel photographic products and processes
US3594165A (en) Novel photographic products and processes
US3415645A (en) Opaque permeable polymeric layer in photo-sensitive element
US3415646A (en) Novel photographic products and processes
US3702244A (en) Diffusion transfer photographic processes and elements utilizing ph-sensitive agents to prevent fogging by extraneous actinic radiation during development
US3793022A (en) Diffusion transfer films with anti-reflection layers and processes
US3706557A (en) Color diffusion transfer film unit containing a temporary barrier for developer restrainers
US3615422A (en) Photographic products and processes
US3473925A (en) Photographic diffusion transfer color process and film unit for use therein
US3888669A (en) Photographic products and processes with barrier layers for diffusable dyes
US3923519A (en) U.V. light absorbers in supports of integral diffusion transfer film units
EP0683430A2 (en) Photographic processing compositions including hydrophobically modified thickening agent
US3734727A (en) Photographic products and processes
US4144065A (en) Polysilicates in photographic products and processes
US3579333A (en) Multicolor diffusion transfer photographic products and processes with a developing composition comprising a desensitizing agent
US3772026A (en) Colorless precursor of alkyl viologen as filter agent in photographic film
US4025682A (en) Photographic products
US3802881A (en) Color diffusion transfer film with whitening agent
US4003744A (en) Photographic products with photosensitive layers of same spectral sensitivity and different speed
US3615421A (en) Novel photographic products and processes
US3573043A (en) Photographic diffusion transfer color process and composite film unit for use therein
US4071366A (en) Polymeric quaternary dye image receiving layers with overcoat
US4088487A (en) Diffusion transfer integral film units with flare reducing layers
US3836365A (en) Novel photographic products and processes
US3816126A (en) Novel photographic products and processes