US3923056A - Compliance compensation for electronically controlled volume respirator systems - Google Patents

Compliance compensation for electronically controlled volume respirator systems Download PDF

Info

Publication number
US3923056A
US3923056A US480799A US48079974A US3923056A US 3923056 A US3923056 A US 3923056A US 480799 A US480799 A US 480799A US 48079974 A US48079974 A US 48079974A US 3923056 A US3923056 A US 3923056A
Authority
US
United States
Prior art keywords
signal
volume
gas
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US480799A
Inventor
Richard Bingmann
Frank J Desiderio
Donald O'neal Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US480799A priority Critical patent/US3923056A/en
Application granted granted Critical
Publication of US3923056A publication Critical patent/US3923056A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit

Definitions

  • the [58] 5 145 6 signal is then used to compensate a volume cycled 7 id control signal for the volume of gas required to fill the interconnecting hoses and equipment between the vol- [56] References Cited ume measuring apparatus and the patient interface to assure that the prescribed volume of gas is delivered UNITED STATES PATENTS to the patient. 3,033,195 5/1962 Gilroy et a1 128/D1G. 17 3,633,576 1/1972 Gorsuch 128/145.8 13 Claims, 1 Drawing Figure +V VOSLEJ1ME 18 19 5 ,4 25
  • the present invention relates to respirators and, more particularly, to a control system for a fixed volume delivery respirator.
  • Forced breathing respirators are generally either of a type for providing a breathable gas to a patient at a prescribed pressure or of a type for providing a prescribed volume of breathable gas to a patient. ,These types of respirators are referred to respectively as pressurecycled and volume-cycled.
  • a third type. of respirator is a time-cycled respirator in which breathable gas is made available to a patient at timed intervals.
  • the volume-cycled is preferable for long-term patient ventilation since physiological changes in a patient require frequent adjustment of the pressure-cycled and time-cycled types of respirators.
  • volume cycling is advantageous because a predetermined volume of gas is delivered to a patient regardless of any change in compliance of the patient.
  • any change in compliance of the interconnecting hoses and equipment between the patient and the gas supply will result in a change in the volume of gas delivered to the patient.
  • compliance with respect to the interconnecting hoses is defined as the change in the volume of gas in the hoses with respect to the change in pressure across the hoses, it can be seen that the volume of gas required to fill the hoses will vary with temperature and pressure thus resulting in a change in compliance. Even with a constant temperature, the volume of gas required to fill the hoses will vary as patient resistance varies and will change the amount of gas which is actually delivered to the patient. Obviously as the hose length increases the change in the volume of gas delivered to the patient increases and such change may reach a point where the patients life is threatened by the change, particularly where the change is such as to significantly reduce the volume of gas delivered.
  • a volumecycled respirator of the type including a gas source, an inhale valve, a flow sensor and interconnecting hoses and further including control apparatus responsive to the flow sensor for controlling the inhale valve, is provided with pressure responsive apparatus connected to monitor the gas pressure developed at the patient interface.
  • the pressure responsive apparatus is conected to adjust the control apparatus to correct for changes in pressure such that the desired volume of gas is delivered to the patient.
  • the pressure responsive apparatus includes a calibrating adjustment which allows initial calibration of the volume-cycled controlled apparatus to compensate for the volume of gas required to fill the interconnecting hoses and equipment.
  • FIG. 1 of the accompanying drawing showing a block diagram of a volume-cycled respirator control system incorporating a pressure responsive apparatus in accordance with the present invention.
  • the respirator includes a pressurized source 10 for supplying a breathable gas through a passageway 11 to an inhale valve 12 and from inhale valve 12 through a passageway 13 to a flow sensor 14. From flow sensor 14, which provides a signal representative of the gas flow therethrough, the gas passes through a flexible interconnecting hose 15 to a patient indicated generally at 16.
  • interconnecting hose 15 is formed generally in a Y configuration with one arm of the Y connected to receive a gas from flow sensor 14 during an inhalation phase and the other arm of the Y connected to expel air through an exhale valve 17 to atmosphere during an exhalation phase.
  • Check valves may be incorporated in both the inhale and exhale portions of the respirator, and other controls such as, e.g., pattern or flow rate controls may also be incorporated in the inhalation passageway of the respirator intermediate the gas source and the patient, all of the thus far mentioned elements being well known in the art.
  • a control system connected to respond to an electrical signal from flow sensor 14, which signal is representative of the mass flow of gas per unit time passing through flow sensor 14, for controlling the operation of inhale and exhale valves 12 and 17.
  • the signal from flow sensor 14 is directed into a linearizer 18 of a type well known in the art which converts the signal from flow sensor 14 to a voltage signal proportional to flow rate.
  • the voltage signal or flow rate signal from linearizer 18 is supplied to an integrator 19 also of a type well known in the art which integrates the flow rate signal.
  • the amplitude of the output signal developed by flow integrator 19 is proportional to the volume of gas which has passed through flow sensor 14.
  • the signal from a flow integrator such as flow integrator 19 would be compared to a volume set signal and when the two were equal would be utilized to close off an inhale valve and open an exhale valve on the assumption that the volume of air flowing through the flow sensor represented a constant volume of air being delivered to the patient under all given sets of temperature, pressure, and patient resistance.
  • the output signal from flow integrator 19 is combined with a signal generated by a pressure responsive circuit to produce a resultant signal which is proportional to the actual amount of gas delivered to the patient.
  • the pressure responsive circuit comprises a pressure transducer 20 and a pressure amplifier 21.
  • Pressure transducer 20 is connected to monitor the gas pressure in interconnecting hose 15 and to provide an output signal to amplifier 21 which signal is proportional to the pressure of the gas in hose 15.
  • Amplifier 21 includes a gain adjust 22 which provides calibration adjustment. Since hose 15 is of a semi-rigid quality and is not conducive to stretch, its geometric volume, i.e., length of hose multiplied by cross-sectional area, is substantially constant.
  • the output signal developed by amplifier 21 is applied to a first input terminal of a differential amplifier 23 which differential amplifier also includes a second input terminal connected to receive the output signal from flow integrator 19.
  • the output signal from differential amplifier 23 is applied to a first input terminal of a threshold detector 24.
  • a second input terminal of threshold detector 24 is connected to receive a voltage from a volume set control 25 which voltage is proportional to the desired volume of gas to be supplied to patient 16.
  • Threshold detector 24 is connected to supply control signals to inhale valve 12 and exhale valve 17 for controlling respectively the inhalation and exhalation phases of the respiration cycle of patient 16.
  • the system is initially calibrated by energizing source and setting control 25 to cause threshold detector 24 to provide a signal to open inhale valve 12 and close exhale valve 17 such that a flow of gas is supplied to interconnecting hose 15.
  • threshold detector 24 At this time the end of hose which would normally be connected to a patient is blocked off, e.g., by placing ones hand over the end of the hose, and hose 15 is allowed to be pressurized to the full pressure of source 10.
  • the amplified signal from flow sensor 14 as integrated by integrator 19 will represent the amount of gas necessary to fill the volume of interconnecting hose 15.
  • the output signal from pressure transducer 20 as amplified by pressure amplifier 21 will represent the pressure of the gas and thus be proportional to the volume of the gas in hose 15.
  • a volt meter 26 is connected to monitor the amplitude of the signal produced by differential amplifier 23 as a result of the subtraction of the signals from integrator 19 and amplifier 21. Gain adjust 22 is then adjusted until the amplitude of the output signal from differential amplifier 23 is zero. A repeated series of steps of alternately blocking the hose and adjusting gain adjust 22 for calibration will result in zero reading of volt meter 26 when the input to the differential amplifier 23 from flow integrator 19 is equal to the input signal from pressure amplifier 21. At this point the volume of air which is required to fill the hoses has been compensated for. Any subsequent compliance change will result in a change of the output signal from transducer 20 in a direction to adjust the volume of gas supplied to the hoses 15 to assure that the prescribed volume is delivered to patient 16.
  • the output signal developed by differential amplifier 23 will be directly proportional to the volume of air which is actually received by the patient independently of the interconnecting hoses.
  • This output signal is then compared in threshold detector 24 with the volume set signal developed from set control 25.
  • threshold detector 24 produces a signal which is applied to inhale valve 12 to terminate the inhalation cycle and to exhale valve 17 to initiate the exhalation cycle.
  • suitable circuitry (not shown) is normally provided to control the duration of the exhalation cycle and to provide a reset signal to integrator 19 to initiate a new inhalation cycle.
  • the present invention provides a respirator in which the volume of gas actually delivered to the patient is accurately determined and may be compensated for by a pressure transducer to assure that the prescribed volume is applied to the patient regardless of interconnecting hose or equipment compliance or patient compliance.
  • a respirator including an interconnecting hose assembly adapted to be connected to a patient and connected to an inhalation passageway and to an exhalation passageway and further including a pressurized gas source connected to said inhalation passageway and a flow control valve and flow rate sensor connected in said inhalation passageway intermediate said source and said interconnecting hose, a flow control valve in said exhalation passageway and control means responsive to said flow rate sensor to control operation of said flow control valves, the improvement comprising:
  • pressure responsive means connected to said interconnecting hose assembly for developing a first signal representative of a gas pressure in said interconnecting hose assembly, means for supplying said first signal to said control means for modifying the operation of said control means in proportion to gas pressure in said interconnecting hose assembly;
  • an integrating circuit means connected to said flow rate sensor for developing a second signal proportional to a volume of gas passing through said flow sensor, means for supplying said second signal to said control means for controlling the operation of said control means in response to said volume of gas flowing through said flow sensor, wherein said control means responds to said second signal by controlling the operation of said flow control valves.
  • said pressure responsive means includes:
  • a pressure transducer connected to said interconnecting hose assembly for producing said first sig- 6 proportional to said prescribed volume of gas for controlling said flow control valves.

Abstract

A volume-cycled respirator for delivering a prescribed volume of gas to a patient utilizing pressure responsive apparatus to monitor the gas pressure developed at the patient interface. The apparatus produces a signal proportional to gas pressure and includes a variable gain amplifier to proportion the signal to volume. The signal is then used to compensate a volume cycled control signal for the volume of gas required to fill the interconnecting hoses and equipment between the volume measuring apparatus and the patient interface to assure that the prescribed volume of gas is delivered to the patient.

Description

United States Patent Bingmann et a1. Dec. 2, 1975 COMPLIANCE COMPENSATION FOR 3,677,092 7/1972 Gaurino 73/194 F ELECTRONICALLY CONTROLLED 3,729,000 4/1973 Bell 128/1456 3,768,468 10/1973 Cox 128/1458 VOLUME RESPIRATOR SYSTEMS 3,834,381 9/1974 Peterson 128/145.6 [75] Inventors: Richard Bingmann, Audobon;
Frank P west Chester; Primary ExaminerRobert W. Michell 333 l hN li r'g Assistant ExaminerLee S. Cohen 1 a e p 1a, a 0 a.
[73] Assignee: gist-rill Iilectrlc Company, New ABSTRACT [22] Filed June 19 1974 A volume-cycled respirator for delivering a prescribed volume of gas to a patient utilizing pressure responsive [21] Appl. No.: 480,799 apparatus to monitor the gas pressure developed at the patient interface. The apparatus produces a signal [52] U 8 Cl 128/145 128/DIG, 17 proportional to gas pressure and includes a variable [51] 1 A61M 16/00 gain amplifier to proportion the signal to volume. The [58] 5 145 6 signal is then used to compensate a volume cycled 7 id control signal for the volume of gas required to fill the interconnecting hoses and equipment between the vol- [56] References Cited ume measuring apparatus and the patient interface to assure that the prescribed volume of gas is delivered UNITED STATES PATENTS to the patient. 3,033,195 5/1962 Gilroy et a1 128/D1G. 17 3,633,576 1/1972 Gorsuch 128/145.8 13 Claims, 1 Drawing Figure +V VOSLEJ1ME 18 19 5 ,4 25
FLOW DIFE THRESHOLD L'NEAR'ZER INTEGRATOR AMPL DETECTOR a CALIBRATION 22 24 .ADJUST. 23 VOLTMETER AMPLIFIER 26 K (PRESSURE) 14 "l INHALE FLOW I VALVE r SENSOR l2 PRESSURE SOURCE ,t/IO l7 EXHALE VALVE A M PRESSURE T TRANSDUCER FIG US. Patent Dec.2, 1975 3,923,056
+v VOLUME '9 SET FLOW DIFE THRESHOLD '1 Z CALIBRATION 22 23 24 ADJUST VOLTMETER v AMPLIFIER 26 K (PRESSURE) I4 "1 INHALE FLOW VALVE r SENSOR l2 PRESSURE SOURCE fl/lo I7 EXHALE .S, VALVE PRESSURE M TRANSDUCER COMPLIANCE COMPENSATION FOR ELECTRONICALLY CONTROLLED VOLUME RESPIRATOR SYSTEMS The invention herein described was made under a contract with the Department of the Navy, Office of Naval Research.
BACKGROUND OF THE INVENTION The present invention relates to respirators and, more particularly, to a control system for a fixed volume delivery respirator.
Forced breathing respirators are generally either of a type for providing a breathable gas to a patient at a prescribed pressure or of a type for providing a prescribed volume of breathable gas to a patient. ,These types of respirators are referred to respectively as pressurecycled and volume-cycled. A third type. of respirator is a time-cycled respirator in which breathable gas is made available to a patient at timed intervals. Of the foregoing three types, the volume-cycled is preferable for long-term patient ventilation since physiological changes in a patient require frequent adjustment of the pressure-cycled and time-cycled types of respirators.
Volume cycling is advantageous because a predetermined volume of gas is delivered to a patient regardless of any change in compliance of the patient. However, any change in compliance of the interconnecting hoses and equipment between the patient and the gas supply will result in a change in the volume of gas delivered to the patient. Since compliance with respect to the interconnecting hoses is defined as the change in the volume of gas in the hoses with respect to the change in pressure across the hoses, it can be seen that the volume of gas required to fill the hoses will vary with temperature and pressure thus resulting in a change in compliance. Even with a constant temperature, the volume of gas required to fill the hoses will vary as patient resistance varies and will change the amount of gas which is actually delivered to the patient. Obviously as the hose length increases the change in the volume of gas delivered to the patient increases and such change may reach a point where the patients life is threatened by the change, particularly where the change is such as to significantly reduce the volume of gas delivered.
Accordingly, it is an object of the present invention to provide a volume-cycled respirator control system which can be calibrated to deliver a desired volume of breathable gas to a patient.
It is a further object of the present invention to provide a volume-cycled respirator control system which automatically compensates for changes in compliance of interconnecting hoses and equipment.
It is another object of the present invention to provide a volume-cycled respirator control system which automatically adjusts the volume of gas applied to the interconnecting hoses and equipment to assure that the desired volume of gas is delivered to the patient.
SUMMARY OF THE INVENTION In accordance with the present invention, a volumecycled respirator of the type including a gas source, an inhale valve, a flow sensor and interconnecting hoses and further including control apparatus responsive to the flow sensor for controlling the inhale valve, is provided with pressure responsive apparatus connected to monitor the gas pressure developed at the patient interface. The pressure responsive apparatus is conected to adjust the control apparatus to correct for changes in pressure such that the desired volume of gas is delivered to the patient. The pressure responsive apparatus includes a calibrating adjustment which allows initial calibration of the volume-cycled controlled apparatus to compensate for the volume of gas required to fill the interconnecting hoses and equipment.
BRIEF DESCRIPTION OF THE DRAWING For a better understanding of the invention, reference may be had to FIG. 1 of the accompanying drawing showing a block diagram of a volume-cycled respirator control system incorporating a pressure responsive apparatus in accordance with the present invention.
DETAILED DESCRIPTION Referring now to the drawing, there is shown a simplified representation of an electronically controlled volume-cycled respirator in which those elements not essential to an understanding of the present invention have been omitted. The respirator includes a pressurized source 10 for supplying a breathable gas through a passageway 11 to an inhale valve 12 and from inhale valve 12 through a passageway 13 to a flow sensor 14. From flow sensor 14, which provides a signal representative of the gas flow therethrough, the gas passes through a flexible interconnecting hose 15 to a patient indicated generally at 16. As is shown, interconnecting hose 15 is formed generally in a Y configuration with one arm of the Y connected to receive a gas from flow sensor 14 during an inhalation phase and the other arm of the Y connected to expel air through an exhale valve 17 to atmosphere during an exhalation phase. Check valves may be incorporated in both the inhale and exhale portions of the respirator, and other controls such as, e.g., pattern or flow rate controls may also be incorporated in the inhalation passageway of the respirator intermediate the gas source and the patient, all of the thus far mentioned elements being well known in the art.
In order to control the opening and closing of the inhale and exhale valves 12 and 17, respectively, to thereby provide a prescribed volume of gas to the patient 16, there is provided a control system connected to respond to an electrical signal from flow sensor 14, which signal is representative of the mass flow of gas per unit time passing through flow sensor 14, for controlling the operation of inhale and exhale valves 12 and 17. The signal from flow sensor 14 is directed into a linearizer 18 of a type well known in the art which converts the signal from flow sensor 14 to a voltage signal proportional to flow rate. The voltage signal or flow rate signal from linearizer 18 is supplied to an integrator 19 also of a type well known in the art which integrates the flow rate signal. Since the integral of flow rate is a volume equivalent, the amplitude of the output signal developed by flow integrator 19 is proportional to the volume of gas which has passed through flow sensor 14. In the prior art systems, the signal from a flow integrator such as flow integrator 19 would be compared to a volume set signal and when the two were equal would be utilized to close off an inhale valve and open an exhale valve on the assumption that the volume of air flowing through the flow sensor represented a constant volume of air being delivered to the patient under all given sets of temperature, pressure, and patient resistance.
In the present invention the output signal from flow integrator 19 is combined with a signal generated by a pressure responsive circuit to produce a resultant signal which is proportional to the actual amount of gas delivered to the patient. The pressure responsive circuit comprises a pressure transducer 20 and a pressure amplifier 21. Pressure transducer 20 is connected to monitor the gas pressure in interconnecting hose 15 and to provide an output signal to amplifier 21 which signal is proportional to the pressure of the gas in hose 15. Amplifier 21 includes a gain adjust 22 which provides calibration adjustment. Since hose 15 is of a semi-rigid quality and is not conducive to stretch, its geometric volume, i.e., length of hose multiplied by cross-sectional area, is substantially constant. Under such conditions and considering the small pressure range over which a gas is supplied to a patient, the well-known relationship of pressure being equal to a constant times volume is applicable. Therefore, a measurement of pressure in hose 15 will yield a signal directly proportional to the volume of gas in the hose.
The output signal developed by amplifier 21 is applied to a first input terminal of a differential amplifier 23 which differential amplifier also includes a second input terminal connected to receive the output signal from flow integrator 19. The output signal from differential amplifier 23 is applied to a first input terminal of a threshold detector 24. A second input terminal of threshold detector 24 is connected to receive a voltage from a volume set control 25 which voltage is proportional to the desired volume of gas to be supplied to patient 16. Threshold detector 24 is connected to supply control signals to inhale valve 12 and exhale valve 17 for controlling respectively the inhalation and exhalation phases of the respiration cycle of patient 16.
In operation, the system is initially calibrated by energizing source and setting control 25 to cause threshold detector 24 to provide a signal to open inhale valve 12 and close exhale valve 17 such that a flow of gas is supplied to interconnecting hose 15. At this time the end of hose which would normally be connected to a patient is blocked off, e.g., by placing ones hand over the end of the hose, and hose 15 is allowed to be pressurized to the full pressure of source 10. The amplified signal from flow sensor 14 as integrated by integrator 19 will represent the amount of gas necessary to fill the volume of interconnecting hose 15. Likewise, the output signal from pressure transducer 20 as amplified by pressure amplifier 21 will represent the pressure of the gas and thus be proportional to the volume of the gas in hose 15. These two signals are combined in subtractive relationship in differential amplifier 23.
A volt meter 26 is connected to monitor the amplitude of the signal produced by differential amplifier 23 as a result of the subtraction of the signals from integrator 19 and amplifier 21. Gain adjust 22 is then adjusted until the amplitude of the output signal from differential amplifier 23 is zero. A repeated series of steps of alternately blocking the hose and adjusting gain adjust 22 for calibration will result in zero reading of volt meter 26 when the input to the differential amplifier 23 from flow integrator 19 is equal to the input signal from pressure amplifier 21. At this point the volume of air which is required to fill the hoses has been compensated for. Any subsequent compliance change will result in a change of the output signal from transducer 20 in a direction to adjust the volume of gas supplied to the hoses 15 to assure that the prescribed volume is delivered to patient 16. This means that when a patient is connected to the respirator, the output signal developed by differential amplifier 23 will be directly proportional to the volume of air which is actually received by the patient independently of the interconnecting hoses. This output signal is then compared in threshold detector 24 with the volume set signal developed from set control 25. When the amplitude of the signal from differential amplifier 23 indicates that the prescribed volume of gas has been delivered to patient 16, threshold detector 24 produces a signal which is applied to inhale valve 12 to terminate the inhalation cycle and to exhale valve 17 to initiate the exhalation cycle. It is noted that suitable circuitry (not shown) is normally provided to control the duration of the exhalation cycle and to provide a reset signal to integrator 19 to initiate a new inhalation cycle.
It will thus be seen that the present invention provides a respirator in which the volume of gas actually delivered to the patient is accurately determined and may be compensated for by a pressure transducer to assure that the prescribed volume is applied to the patient regardless of interconnecting hose or equipment compliance or patient compliance.
Although the invention has been described with respect to a single embodiment, it is intended that the appended claims not be limited to the specific embodiment of the invention described, but that they cover modifications falling within the spirit and scope of the claims.
What is new and desired to be secured by Letters Patent of the United States is:
1. In a respirator including an interconnecting hose assembly adapted to be connected to a patient and connected to an inhalation passageway and to an exhalation passageway and further including a pressurized gas source connected to said inhalation passageway and a flow control valve and flow rate sensor connected in said inhalation passageway intermediate said source and said interconnecting hose, a flow control valve in said exhalation passageway and control means responsive to said flow rate sensor to control operation of said flow control valves, the improvement comprising:
pressure responsive means connected to said interconnecting hose assembly for developing a first signal representative of a gas pressure in said interconnecting hose assembly, means for supplying said first signal to said control means for modifying the operation of said control means in proportion to gas pressure in said interconnecting hose assembly; and
an integrating circuit means connected to said flow rate sensor for developing a second signal proportional to a volume of gas passing through said flow sensor, means for supplying said second signal to said control means for controlling the operation of said control means in response to said volume of gas flowing through said flow sensor, wherein said control means responds to said second signal by controlling the operation of said flow control valves.
2. The apparatus as defined in claim 1 wherein said pressure responsive means includes:
a pressure transducer connected to said interconnecting hose assembly for producing said first sig- 6 proportional to said prescribed volume of gas for controlling said flow control valves. 3. The apparatus as defined in claim 2 and including a variable gain amplifier connected intermediate said pressure transducer and said differential amplifier means for adjusting the amplitude of said first signal to proportion said first signal to a volume signal.

Claims (3)

1. In a respirator including an interconnecting hose assembly adapted to be connected to a patient and connected to an inhalation passageway and to an exhalation passageway and further including a pressurized gas source connected to said inhalation passageway and a flow control valve and flow rate sensor connected in said inhalation passageway intermediate said source and said interconnecting hose, a flow control valve in said exhalation passageway and control means responsive to said flow rate sensor to control operation of said flow control valves, the improvement comprising: pressure responsive means connected to said interconnecting hose assembly for developing a first signal representative of a gas pressure in said interconnecting hose assembly, means for supplying said first signal to said control means for modifying the operation of said control means in proportion to gas pressure in said interconnecting hose assembly; and an integrating circuit means connected to said flow rate sensor for developing a second signal proportional to a volume of gas passing through said flow sensor, means for supplying said second signal to said control means for controlling the operation of said control means in response to said volume of gas flowing through said flow sensor, wherein said control means responds to said second signal by controlling the operation of said flow control valves.
2. The apparatus as defined in claim 1 wherein said pressure responsive means includes: a pressure transducer connected to said interconnecting hose assembly for producing said first signal representative of said gas pressure in said hose assembly; differential amplifier means for combining said first signal with said second signal representative of said volume of gas flowing into said hose assembly to produce a third signal representative of a difference therebetween; and means for comparing said third signal to a voltage proportional to said prescribed volume of gas for controlling said flow control valves.
3. The apparatus as defined in claim 2 and including a variable gain amplifier connected intermediate said pressure transducer and said differential amplifier means for adjusting the amplitude of said first signal to proportion said first signal to a volume signal.
US480799A 1974-06-19 1974-06-19 Compliance compensation for electronically controlled volume respirator systems Expired - Lifetime US3923056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US480799A US3923056A (en) 1974-06-19 1974-06-19 Compliance compensation for electronically controlled volume respirator systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US480799A US3923056A (en) 1974-06-19 1974-06-19 Compliance compensation for electronically controlled volume respirator systems

Publications (1)

Publication Number Publication Date
US3923056A true US3923056A (en) 1975-12-02

Family

ID=23909412

Family Applications (1)

Application Number Title Priority Date Filing Date
US480799A Expired - Lifetime US3923056A (en) 1974-06-19 1974-06-19 Compliance compensation for electronically controlled volume respirator systems

Country Status (1)

Country Link
US (1) US3923056A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031885A (en) * 1975-10-15 1977-06-28 Puritan-Bennett Corporation Method and apparatus for determining patient lung pressure, compliance and resistance
US4121581A (en) * 1976-11-01 1978-10-24 Sandoz, Inc. Patient ventilator monitor
US4421113A (en) * 1980-06-18 1983-12-20 Engstrom Medical Aktiebolag Method and apparatus for controlling lung ventilators
EP0118850A2 (en) * 1983-03-04 1984-09-19 Polska Akademia Nauk Instytut Biocybernetyki i Inzynierii Biomedycznej Apparatus for independent ventilation of two lungs with selective use of positive end-expiratory pressures
US4624251A (en) * 1984-09-13 1986-11-25 Riker Laboratories, Inc. Apparatus for administering a nebulized substance
US4635627A (en) * 1984-09-13 1987-01-13 Riker Laboratories, Inc. Apparatus and method
US4651729A (en) * 1982-07-30 1987-03-24 Rae Ronald D Fluid flow regulator
US4819629A (en) * 1986-10-28 1989-04-11 Siemens Aktiengesellschaft Method and apparatus for delivering aerosol to the airways and/or lungs of a patient
US4827964A (en) * 1987-04-23 1989-05-09 Mine Safety Appliances Company System for metering of breathing gas for accommodation of breathing demand
US4957107A (en) * 1988-05-10 1990-09-18 Sipin Anatole J Gas delivery means
US5048515A (en) * 1988-11-15 1991-09-17 Sanso David W Respiratory gas supply apparatus and method
US5072728A (en) * 1989-09-12 1991-12-17 Dragerwerk Ag Recirculating respirator
EP0560490A1 (en) * 1992-02-12 1993-09-15 Puritan-Bennett Corporation System and method for controlling a periodically actuated ventilation flow system
US5331995A (en) * 1992-07-17 1994-07-26 Bear Medical Systems, Inc. Flow control system for medical ventilator
US5345930A (en) * 1992-02-10 1994-09-13 National Research Council Canada Intellectual Property Services Office Method and apparatus for assisting expulsional movement of pulmonary secretions via supramaximal flows
US5535737A (en) * 1993-11-16 1996-07-16 The Boc Group, Inc. Anesthetic vaporizers
EP0742027A2 (en) * 1995-05-12 1996-11-13 Instrumentarium Oy Arrangement for leak testing taking place in connection with a ventilator
US5794614A (en) * 1989-05-19 1998-08-18 Gruenke; Roger A. Apparatus for compensating for flow and pressure variances in pneumatic circuits
US5797393A (en) * 1995-05-05 1998-08-25 Dragerwerk Aktiengesellschaft Method for controlling the respirating phase in a ventilating apparatus
US5810002A (en) * 1996-09-26 1998-09-22 Dragerwerk Ag Respirator
EP0965356A1 (en) * 1998-06-15 1999-12-22 Siemens-Elema AB A method for determining the volume of a tubing system and a breathing apparatus system
US6041780A (en) * 1995-06-07 2000-03-28 Richard; Ron F. Pressure control for constant minute volume
US6142150A (en) * 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
US6152134A (en) * 1996-10-18 2000-11-28 Invacare Corporation Oxygen conserving device
US20020148466A1 (en) * 1996-09-23 2002-10-17 Michael Berthon-Jones Methods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support
US6557553B1 (en) * 2000-09-05 2003-05-06 Mallinckrodt, Inc. Adaptive inverse control of pressure based ventilation
EP1355689A1 (en) * 2000-12-29 2003-10-29 Resmed Ltd. Characterisation of mask systems
US6679258B1 (en) 1998-08-25 2004-01-20 Siemens Elema Ab Ventilator operable in a compensated volume support mode
US20060037616A1 (en) * 2004-08-17 2006-02-23 Drager Medical Ag & Co. Kgaa Process for the automatic recording of pressure-vs.-volume curves during artificial respiration
US20060065270A1 (en) * 2004-09-24 2006-03-30 Kun Li Gas flow control method in a blower based ventilation system
FR2887777A1 (en) * 2005-06-29 2007-01-05 Taema Sa Medical ventilator for e.g. administering gas to patient, has control unit with data storage and/or processing unit, estimating patient`s biomechanical condition based on gaseous circuit`s pressure, gas flow and preset compliance value
US20070101992A1 (en) * 2005-11-09 2007-05-10 Viasys Manufacturing, Inc. System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US20080264419A1 (en) * 2007-04-26 2008-10-30 Joseph Lomask Integrated ventilator with calibration
US20100024820A1 (en) * 1994-09-12 2010-02-04 Guy Bourdon Pressure-Controlled Breathing Aid
US20110100365A1 (en) * 2004-02-10 2011-05-05 Wolfgang Wedler Respiratory device and method for controlling a respiratory device
CN101365507B (en) * 2005-10-11 2013-03-06 卡尔夫207有限公司 System and method for circuit compliance compensated volume control in a patient respiratory ventilator
US20140360497A1 (en) * 2012-03-30 2014-12-11 Covidien Lp Methods and systems for triggering with unknown base flow
CN104874065A (en) * 2014-02-28 2015-09-02 北京谊安医疗系统股份有限公司 Respirator and method of suppressing core jitter of inhalation valve of respirator
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
CN109152899A (en) * 2016-03-01 2019-01-04 万提诺瓦技术有限责任公司 Method and apparatus for giving patient ventilating
US10434270B2 (en) 2011-12-27 2019-10-08 Koninklijke Philips N.V. Compensation of breath delivery
US11918744B2 (en) * 2016-11-04 2024-03-05 Viomedex Limited Therapy delivery device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033195A (en) * 1957-09-16 1962-05-08 Air Reduction Respirator apparatus and method
US3633576A (en) * 1969-10-24 1972-01-11 Bourns Inc Volumetric respirator
US3677092A (en) * 1970-06-17 1972-07-18 Us Health Education & Welfare Volume metering apparatus for circulatory assist pumps
US3729000A (en) * 1971-05-18 1973-04-24 Puritan Bennett Corp Compliance compensated ventilation system
US3768468A (en) * 1970-01-21 1973-10-30 British Oxygen Co Ltd Ventilators
US3834381A (en) * 1972-08-25 1974-09-10 Puritan Bennett Corp Compliance compensated ventilation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033195A (en) * 1957-09-16 1962-05-08 Air Reduction Respirator apparatus and method
US3633576A (en) * 1969-10-24 1972-01-11 Bourns Inc Volumetric respirator
US3768468A (en) * 1970-01-21 1973-10-30 British Oxygen Co Ltd Ventilators
US3677092A (en) * 1970-06-17 1972-07-18 Us Health Education & Welfare Volume metering apparatus for circulatory assist pumps
US3729000A (en) * 1971-05-18 1973-04-24 Puritan Bennett Corp Compliance compensated ventilation system
US3834381A (en) * 1972-08-25 1974-09-10 Puritan Bennett Corp Compliance compensated ventilation system

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031885A (en) * 1975-10-15 1977-06-28 Puritan-Bennett Corporation Method and apparatus for determining patient lung pressure, compliance and resistance
US4121581A (en) * 1976-11-01 1978-10-24 Sandoz, Inc. Patient ventilator monitor
US4421113A (en) * 1980-06-18 1983-12-20 Engstrom Medical Aktiebolag Method and apparatus for controlling lung ventilators
US4651729A (en) * 1982-07-30 1987-03-24 Rae Ronald D Fluid flow regulator
EP0118850A2 (en) * 1983-03-04 1984-09-19 Polska Akademia Nauk Instytut Biocybernetyki i Inzynierii Biomedycznej Apparatus for independent ventilation of two lungs with selective use of positive end-expiratory pressures
EP0118850A3 (en) * 1983-03-04 1985-11-27 Polska Akademia Nauk Instytut Biocybernetyki I Inzynierii Biomedycznej Apparatus for independent ventilation of two lungs with selective use of positive end-expiratory pressures
US4624251A (en) * 1984-09-13 1986-11-25 Riker Laboratories, Inc. Apparatus for administering a nebulized substance
US4635627A (en) * 1984-09-13 1987-01-13 Riker Laboratories, Inc. Apparatus and method
US4819629A (en) * 1986-10-28 1989-04-11 Siemens Aktiengesellschaft Method and apparatus for delivering aerosol to the airways and/or lungs of a patient
US4827964A (en) * 1987-04-23 1989-05-09 Mine Safety Appliances Company System for metering of breathing gas for accommodation of breathing demand
US4957107A (en) * 1988-05-10 1990-09-18 Sipin Anatole J Gas delivery means
US5048515A (en) * 1988-11-15 1991-09-17 Sanso David W Respiratory gas supply apparatus and method
US5794614A (en) * 1989-05-19 1998-08-18 Gruenke; Roger A. Apparatus for compensating for flow and pressure variances in pneumatic circuits
US5072728A (en) * 1989-09-12 1991-12-17 Dragerwerk Ag Recirculating respirator
US5345930A (en) * 1992-02-10 1994-09-13 National Research Council Canada Intellectual Property Services Office Method and apparatus for assisting expulsional movement of pulmonary secretions via supramaximal flows
EP0560490A1 (en) * 1992-02-12 1993-09-15 Puritan-Bennett Corporation System and method for controlling a periodically actuated ventilation flow system
US5319540A (en) * 1992-02-12 1994-06-07 Puritan-Bennett Corporation System and method for controlling a periodically actuated ventilation flow system
US5331995A (en) * 1992-07-17 1994-07-26 Bear Medical Systems, Inc. Flow control system for medical ventilator
US5535737A (en) * 1993-11-16 1996-07-16 The Boc Group, Inc. Anesthetic vaporizers
US20100024820A1 (en) * 1994-09-12 2010-02-04 Guy Bourdon Pressure-Controlled Breathing Aid
US8573206B2 (en) * 1994-09-12 2013-11-05 Covidien Lp Pressure-controlled breathing aid
US5797393A (en) * 1995-05-05 1998-08-25 Dragerwerk Aktiengesellschaft Method for controlling the respirating phase in a ventilating apparatus
EP0742027A2 (en) * 1995-05-12 1996-11-13 Instrumentarium Oy Arrangement for leak testing taking place in connection with a ventilator
US5661231A (en) * 1995-05-12 1997-08-26 Instrumentarium Oy Arrangement for leak testing place in connection with a ventilator
EP0742027A3 (en) * 1995-05-12 1997-03-26 Instrumentarium Oy Arrangement for leak testing taking place in connection with a ventilator
US6041780A (en) * 1995-06-07 2000-03-28 Richard; Ron F. Pressure control for constant minute volume
US8733351B2 (en) 1996-09-23 2014-05-27 Resmed Limited Method and apparatus for providing ventilatory assistance
US20020148466A1 (en) * 1996-09-23 2002-10-17 Michael Berthon-Jones Methods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support
US20030079750A1 (en) * 1996-09-23 2003-05-01 Michael Berthon-Jones Assisted ventilation to match patient respiratory need
US9974911B2 (en) 1996-09-23 2018-05-22 Resmed Limited Method and apparatus for providing ventilatory assistance
US6688307B2 (en) * 1996-09-23 2004-02-10 Resmed Limited Methods and apparatus for determining instantaneous elastic recoil and assistance pressure during ventilatory support
US6810876B2 (en) * 1996-09-23 2004-11-02 Resmed Ltd. Assisted ventilation to match patient respiratory need
US7137389B2 (en) 1996-09-23 2006-11-21 Resmed Limited Method and apparatus for determining instantaneous inspired volume of a subject during ventilatory assistance
US5810002A (en) * 1996-09-26 1998-09-22 Dragerwerk Ag Respirator
US6152134A (en) * 1996-10-18 2000-11-28 Invacare Corporation Oxygen conserving device
US6142150A (en) * 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
US6253765B1 (en) 1998-06-15 2001-07-03 Siemens Elema Ab Method for determining the volume of a tubing system and a breathing apparatus system
EP0965356A1 (en) * 1998-06-15 1999-12-22 Siemens-Elema AB A method for determining the volume of a tubing system and a breathing apparatus system
US6679258B1 (en) 1998-08-25 2004-01-20 Siemens Elema Ab Ventilator operable in a compensated volume support mode
US6557553B1 (en) * 2000-09-05 2003-05-06 Mallinckrodt, Inc. Adaptive inverse control of pressure based ventilation
JP2011067667A (en) * 2000-12-29 2011-04-07 Resmed Ltd Characterization of mask systems
EP1355689A1 (en) * 2000-12-29 2003-10-29 Resmed Ltd. Characterisation of mask systems
EP1355689A4 (en) * 2000-12-29 2007-08-08 Resmed Ltd Characterisation of mask systems
US8677997B2 (en) 2000-12-29 2014-03-25 Resmed Limited Characterisation of mask systems
US20040074495A1 (en) * 2000-12-29 2004-04-22 Wickham Peter John Deacon Characterisation of mask systems
US7987847B2 (en) 2000-12-29 2011-08-02 Resmed Limited Characterisation of mask systems
US10252013B2 (en) 2004-02-10 2019-04-09 Lowenstein Medical Technology S.A. Respiratory device and method for controlling a respiratory device
US11660411B2 (en) 2004-02-10 2023-05-30 Loewenstein Medical Technology S.A. Respiratory device and method for controlling a respiratory device
US20110100365A1 (en) * 2004-02-10 2011-05-05 Wolfgang Wedler Respiratory device and method for controlling a respiratory device
US20060037616A1 (en) * 2004-08-17 2006-02-23 Drager Medical Ag & Co. Kgaa Process for the automatic recording of pressure-vs.-volume curves during artificial respiration
US7708015B2 (en) * 2004-08-17 2010-05-04 Dräger Medical AG & Co. KG Process for the automatic recording of pressure-vs.-volume curves during artificial respiration
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
US20060065270A1 (en) * 2004-09-24 2006-03-30 Kun Li Gas flow control method in a blower based ventilation system
FR2887777A1 (en) * 2005-06-29 2007-01-05 Taema Sa Medical ventilator for e.g. administering gas to patient, has control unit with data storage and/or processing unit, estimating patient`s biomechanical condition based on gaseous circuit`s pressure, gas flow and preset compliance value
CN101365507B (en) * 2005-10-11 2013-03-06 卡尔夫207有限公司 System and method for circuit compliance compensated volume control in a patient respiratory ventilator
US20110214672A1 (en) * 2005-11-09 2011-09-08 Soliman Ihab S System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US8453644B2 (en) 2005-11-09 2013-06-04 Carefusion 207, Inc. System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US20070101992A1 (en) * 2005-11-09 2007-05-10 Viasys Manufacturing, Inc. System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US7918223B2 (en) * 2005-11-09 2011-04-05 Carefusion 207, Inc. System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US20080264419A1 (en) * 2007-04-26 2008-10-30 Joseph Lomask Integrated ventilator with calibration
US8316849B2 (en) * 2007-04-26 2012-11-27 Buxco Electronics, Inc. Integrated ventilator with calibration
US10434270B2 (en) 2011-12-27 2019-10-08 Koninklijke Philips N.V. Compensation of breath delivery
US20140360497A1 (en) * 2012-03-30 2014-12-11 Covidien Lp Methods and systems for triggering with unknown base flow
US10029057B2 (en) * 2012-03-30 2018-07-24 Covidien Lp Methods and systems for triggering with unknown base flow
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
CN104874065A (en) * 2014-02-28 2015-09-02 北京谊安医疗系统股份有限公司 Respirator and method of suppressing core jitter of inhalation valve of respirator
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
CN109152899A (en) * 2016-03-01 2019-01-04 万提诺瓦技术有限责任公司 Method and apparatus for giving patient ventilating
US11918744B2 (en) * 2016-11-04 2024-03-05 Viomedex Limited Therapy delivery device

Similar Documents

Publication Publication Date Title
US3923056A (en) Compliance compensation for electronically controlled volume respirator systems
US4928684A (en) Apparatus for assisting the spontaneous respiration of a patient
US5265594A (en) Apparatus for regulating the flow-through amount of a flowing medium
US5319540A (en) System and method for controlling a periodically actuated ventilation flow system
US3675649A (en) Electronically controlled oxygen regulators
US4057059A (en) Intermittent positive pressure breathing device
US4344144A (en) Apparatus for creating gas flow cycles
US3831596A (en) Control device for a respiratory apparatus
US3768468A (en) Ventilators
EP0475993B1 (en) Improvements in or relating to medical ventilators
JPH0225627B2 (en)
CA2579086C (en) Gas flow control in a ventilator
US6371113B1 (en) Zero flow pause during volume ventilation
US5331995A (en) Flow control system for medical ventilator
CA1154348A (en) Flow control equipment
US20090293876A1 (en) System and Method for Adaptive High Frequency Flow Interrupter Control In A Patient Repiratory Ventilator
US3033195A (en) Respirator apparatus and method
EP0469797A1 (en) Anaesthetic vaporiser
US4232666A (en) Medical breathing apparatus
US3729000A (en) Compliance compensated ventilation system
US3587438A (en) Gaseous atmosphere control device
US3633576A (en) Volumetric respirator
US4241732A (en) Arrangement in respirators using a fluidistor to determine volume of air passed to a patient and pressure sensor to correct volume reading in terms of actual pressure
US4112931A (en) Tidal volume display
US3834381A (en) Compliance compensated ventilation system