US3912503A - Galling resistant austenitic stainless steel - Google Patents

Galling resistant austenitic stainless steel Download PDF

Info

Publication number
US3912503A
US3912503A US360402A US36040273A US3912503A US 3912503 A US3912503 A US 3912503A US 360402 A US360402 A US 360402A US 36040273 A US36040273 A US 36040273A US 3912503 A US3912503 A US 3912503A
Authority
US
United States
Prior art keywords
percent
steel
maximum
silicon
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US360402A
Inventor
William J Schumacher
Harry Tanczyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BALTIMORE SPECIALTY STEELS Corp A CORP OF DE
Original Assignee
Armco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armco Inc filed Critical Armco Inc
Priority to US360402A priority Critical patent/US3912503A/en
Priority to SE7406366A priority patent/SE411558B/en
Priority to FR7416509A priority patent/FR2229776B1/fr
Priority to IT50955/74A priority patent/IT1015984B/en
Priority to YU01316/74A priority patent/YU131674A/en
Priority to CA199,693A priority patent/CA1095746A/en
Priority to BR3886/74A priority patent/BR7403886D0/en
Priority to GB2126874A priority patent/GB1459255A/en
Priority to ES426307A priority patent/ES426307A1/en
Priority to DE2423193A priority patent/DE2423193C2/en
Priority to JP5378874A priority patent/JPS5632387B2/ja
Priority to ZA00743060A priority patent/ZA743060B/en
Priority to US05/552,357 priority patent/US4039356A/en
Application granted granted Critical
Publication of US3912503A publication Critical patent/US3912503A/en
Assigned to ARMCO ADVANCED MATERIALS CORPORATION reassignment ARMCO ADVANCED MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ARMCO, INC.
Assigned to BALTIMORE SPECIALTY STEELS CORPORATION, A CORP. OF DE. reassignment BALTIMORE SPECIALTY STEELS CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ARMCO ADVANCED MATERIALS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • Hoffman ABSTRACT An austenitic stainless steel having excellent galling resistance by reason of a silicon-containing surface oxide film and a high work hardening rate, good wear resistance, good corrosion resistance in chloridecontaining environments, and excellent oxidation resistance, containing 10 to 25 percent chromium, 3 to 15 percent nickel, 6 to 16 percent manganese, 2 to 7 percent silicon, 0.001 to 0.25 percent carbon, 0.001 to 0.4 percent nitrogen, and balance iron except for incidental impurities. Up to 4 percent molybdenum, up to 4 percent copper, 0.09 percent maximum phosphorus, up to 0.25 percent maximum sulfur and up to 0.50 percent maximum selenium may be present.
  • the steel is readily workable on ordinary equipment into plate, sheet, strip, bar, rod and like wrought products.
  • This invention relates to an austenitic stainless steel having excellent galling resistance in conventional wrought form, good wear resistance, good corrosion resistance in chloride-containing environments, excellent high temperature oxidation resistance, and a high work hardening rate.
  • the alloy of this invention can be readily worked with conventional equipment into plate, sheet, strip, bar, rod and the like, and retains a substantially austenitic structure throughout a wide temperature range.
  • the steel of the invention is adapted to applications in which moving metal-to-metal contact and corrosive attack are encountered in combination.
  • the steel has particular utility for fabrication into roller chains, link belts on conveyors, valves subjected to elevated temperature, woven metal belts for continuous heat treating furnaces, fasteners, pins and bushings.
  • Galling may be defined as the development of a condition on a rubbing surface of one or both contacting metal parts wherein excessive friction between minute high spots on the surfaces results in localized welding of the metals at these spots. With continued surface movement this results in the formation of even more weld junctions which eventually sever in one of the base metal surfaces. The result is a build-up of metal on one surface, usually at the end of a deep surface groove. Galling is thus associated primarily with moving metal-to-metal contactand results in sudden catastrophic failure by seizure of the metal parts.
  • wear is synonymous with abrasion and can result from metal-to-metal contact or metal to nonmetal contact, e.g. the abrasion of steel mining equipment by rocks and similar mineral deposits.
  • Such wear is characterized by relatively uniform loss of metal from the surface, as. contrasted to localized grooving with consequent metal build-up, as a result of rubbing a much harder metallic surface against a softer metallic surface.
  • galling and wear can perhaps best be illustrated by the fact that galling can be eliminated by mating or coupling a very hard metallic surface with a much softer metallic surface, whereas wear or abrasion in metal-to-metal contact would be increased by mating a very hard surface with a much softer one.
  • the austenitic AISI Type 304 is suited to a variety of uses involving welding and fabrication, but the galling and wear resistance of this steel are poor, and the metal is likely to fail when subjected to such conditions.
  • a precipitation-hardening stainless steel, sold under the registered trademark ARMCO 17-4 PH (about 16.5 percent chromium, about 4.0 percent nickel, about 4.0 percent copper, about 1.0 percent manganese, about 1.0 percent silicon, up to 0.07 percent carbon, 0.35 percent columbium, and remainder iron), while possessing high strength and hardness in the hardened condition, exhibits only fair galling and wear resistance.
  • the broad composition ranges are about 10 percent to about 22 percent chromium, about 14 percent to about 25 percent nickel, about 5 percent to about 12 percent silicon, one or more of the elements molybdenum up to about 10 percent, tungsten up to about 8 percent, vanadium up to about 5 percent, columbium up to about 5 percent and titanium up to about 5 percent, these additional elements being in sum total of about 3 percent to about 12 percent.
  • Carbon is present up to about 0.15 percent and nitrogen up to about 0.05 percent.
  • silicon is stated to form silicides of molybdenum, tungsten and the like, in finely dispersed form in the matrix of the precipitationhardened steel. These silicides are of extreme hardness, thereby providing good wear resistance.
  • a prior art steel presently considered to have the best resistance to wear and galling is the straight chromium AISI Type 440C, containing about 16 percent to 18 percent chromium, about 1 percent maximum manganese, about 1 percent maximum silicon, about 0.75 percent maximum molybdenum, about 0.95 percent to 1.20 percent carbon, and remainder iron.
  • This steel is hardenable by heat treatment but has poor corrosion resistance and poor fonnability. It is difficult to roll into plate, strip, sheet, bar or rod, and articles of ultimate use cannot be readily fabricated from plate, sheet, strip, bar or rod form.
  • composition comprises from about 15.5 to about 20 percent chromium, from about 1 1 percent to about 14 percent manganese, from about 1.1 percent to about 3.75 percent nickel, from about 0.01 percent to about 0.12 percent carbon, from about 0.20 percent to about 0.38 percent nitrogen, up to about 1 percent silicon, up to about 0.06 percent phosphorus, up to about 0.04 percent sulfur, and remainder substantially iron.
  • the steel of the present invention consists essentially of about percent to about 25 percent chromium, about 3 percent to about nickel, about 6 percent to about 16 percent manganese, about 2 percent to about 7 percent silicon, about 0.001 percent to about 0.25 percent carbon, about 0.001 percent to about 0.4 percent nitrogen, up to about 4 percent molybdenum, up to about 4 percent copper, a maximum of about 0.09 percent phosphorus, a maximum of about 0.25 percent sulfur, a maximum of about 0.50 percent selenium, and balance substantially iron except for incidental impurities, all percentages being by weight.
  • the elements chromium, nickel, manganese, silicon, and nitrogen, and the balance therebetween, are critical in every sense. Omission of one of the elements, or departure of any of these critical elements from the ranges set forth above results in loss of one or more of the desired properties.
  • Nickel is varied directly in proportion to the silicon content, for reasons set forth hereafter.
  • the silicon content of the steel of the invention is of particular criticality. Although not wishing to be bound by theory, it is believed that silicon within the range of 2 percent to 7 percent, and more particularly within the range of 3 percent to 5 percent by weight, performs a dual function. First, it appears to modify the composition of the surface oxide film of the steel, making it more stable and adherent. Secondly, silicon exerts a significant influence on the work hardening rate of the steel. An increase in silicon within the limits set forth above results in an increase in the work hardening rate.
  • silicon does not form a silicide of molybdenum, tungsten, vanadium, columbium and/or titanium which silicide is relied upon to impart wear resistance in the steel of that patent.
  • the silicon present in the surface oxide film is believed to be dispersed as a substitutional atom in the oxide lattice providing a low shear strength oxide film which is tightly adherent to the surface.
  • another oxide film rapidly forms at ordinary temperatures, so that the surface, is in effect, self-healing.”
  • compositions are modified by addition of sulfur in amounts of about 0.15 percent to 0.25 percent, and/or selenium in amounts of about 0.25 percent to 0.50 percent.
  • At least 10 percent chromium is required for corrosion resistance. More than 25 percent chromium results in extreme difficulties in processing, and disturbs the austenitic balance of the alloy. For many applications a maximum of 19 percent, or even 17 percent, chromium should be observed in order to insure a substantially fully austenitic structure.
  • Nickel is an austenite former, and at least 3 percent nickel is required in order to assure an austenitic structure. Preferably 4 percent, and more preferably 6 percent, nickel is added for this purpose. Since silicon is a ferrite former, nickel is added in direct proportion to the silicon content, e.g. when silicon is low, nickel is low. A'maximum of 15 percent, or still better, 13 percent by weight nickel must be observed since hot workability of the steel is adversely affected with nickel in amounts exceeding about 13 percent and certainly above 15 percent. It is of course also evident that large amounts of nickel greatly increase the cost of the alloy. Preferably a maximum of 12 percent nickel is observed for a preferred maximum silicon content of 5 percent, while a maximum of 10 percent nickel is preferred for the more preferred maximum silicon content of 4.2 percent.
  • silicon is essential in an amount of at least 2 percent for its effect in making the surface oxide layer more stable and adherent.
  • an increase in the silicon content increases the work hardening rate of the steel of the invention.
  • this effect is somewhat mitigated due to the necessity to increase the nickel directly in proportion to the increased silicon content (to offset the. ferrite-forming potential of silicon), and an increase in the nickel content tends to lower slightly the work hardening rate of the steel.
  • the net effect is an increase in the work hardening rate as the silicon content is increased. At least 3 percent silicon is preferred for these reasons, and the more preferred minimum is 3.7 percent silicon.
  • silicon is a ferrite former, more than 7 percent silicon cannot be tolerated, at the nickel levels herein contemplated, in order to insure a substantially austenitic structure. Moreover, a silicon content in excess of 7 percent adversely affects hot workability, and for best cold formability the silicon content should not exceed 5 percent. For optimum properties the maximum silicon content is about 4 percent.
  • manganese is a weak austenite former, it is present primarily for its effect in stabilizing the austenitic structure of the steel and in keeping nitrogen in solid solution. For these purposes, at least about 6 percent manganese is essential. More than about 16 percent manganese would upset the composition balance and would lower the general corrosion resistance of the steel. Preferably a maximum of 13 percent, and even more preferably a maximum of 8.5 percent, are observed with the chromium, nickel and silicon ranges set forth above.
  • Nitrogen is present, the minimum being about 0.001 percent, and a purposeful addition is preferably made for its effects as an austenite former and in strengthening and work hardening the steel. Low nitrogen levels have no noticeable benefit, while a maximum of 0.4 percent nitrogen must be observed in order to avoid exceeding the solubility limits of nitrogen in the steel. Optimum benefits are realized with nitrogen present in the range of 0.03 percent to 0.3 percent, or even better within the range 0.10 percent 0.20 percent.
  • Molybdenum and/or copper may be present up to a maximum of 4 percent each for improving high temperature properties and corrosion resistance. Where such improved properties are not needed, a preferred maximum of 0.75 percent, and more preferred maximum of 0.5 percent, for each element are observed.
  • Carbon is of course present as an impurity, and ordinarily will amount to at least about 0.001 percent. Carbon should be restricted to a maximum of about 0.25 percent, preferably about 0.12 percent, and even more preferably about 0.10 percent maximum, since excessive carbon adversely affects corrosion resistance and weldability.
  • Phosphorus is held to 0.09 percent maximum for welding and hot working reasons. Sulfur may be added up to 0.25 percent maximum (and/or selenium up to 0.50 percent maximum) for good machinability.
  • While the steel of the present invention exhibits good wear resistance, its outstanding and principal property is its resistance to galling.
  • EXAMPLE I An exemplary heat has been prepared consisting essentially of 16 percent chromium, 7.4 percent nickel, 8 percent manganese, 4 percent silicon, 0.09 percent carbon, 0.14 percent nitrogen, 0.010 percent phosphorus, 0.014 percent sulfur, 0.02 percent molybdenum, 0.04 percent copper, and balance iron. The heat was melted in an induction furnace, cast into an ingot, hot rolled on a conventional rolling mill to intermediate size and hot rolled to final 1 inch diameter, annealed at 1850 F for 5% hour and water quenched.
  • Example I The annealed bar stock of Example I was subjected to galling and wear resistance tests. Test results on galling resistance are summarized in Table I. For purposes of comparison a number of prior art alloys were tested under the same conditions and reported in Table I below.
  • EXAMPLE 2 Another exemplary alloy of the invention contained 16 percent chromium, 4.0 percent nickel, 13 percent manganese, 4.0 percentsilicon, 0.05 percent carbon,
  • AISI 440C (555) 36 A151 430 (156) v. A181 430 (156) 4 S.N. 238,862 (235) v. SN. 238,362 (235) 22 SN. 238,862 (235) v. AISI 304 (140) 6 AISI 4337 (509) v. AISI 4337 (509) 3 Steel of the present invention "No galling; exceeded limits of test machine.
  • the test method utilized in obtaining the data of Table I involved rotation of a polished cylindrical section or button for one revolution under pressure against a polished block surface in a standard Brinell hardness machine.
  • a button specimen was prepared by drilling a countersunk hole to accommodate most of the exposed Brinell hardness ball, the specimen then being mounted in bakelite and polished to a 600 grit finish in a Buehler Automet unit to obtain a relatively flat test surface, with the edges slightly rounded. The button was then broken out of the bakelite and the edges were hand deburred.
  • a block specimen was ground parallel on two sides and hand polished to a 3/0 emery grit finish, equivalent to a 600 grit finish.
  • Both the button and block specimens were degreased by wetting with acetone, and the hardness ball was lubricated just prior to testing.
  • the button was hand-rotated slowly at a predetermined load for one revolution and examined for galling at 10X magnification. If galling was not observed (i.e., absence of metal build-up, usually at the end of a groove), a new button and block area couple was tested at successively higher loads until galling was first observed. Confirmation was obtained by testing one more couple or combination at a higher load. Since light loads did not cause full area contact due to the rounded button edges, the actual contact area was measured at 10X to convert to galling stress.
  • the button specimen is the first alloy mentioned in each couple and the second alloy is the block specimen. Double asterisks beside the galling stress indicate that the test was terminated at that point because the limits of the test equipment were exceeded.
  • Espy (test specimen analyzing 18.0 percent chromium, 1.60 percent nickel, 12.0 percent manganese, 0.10 percent carbon, 0.34 percent nitrogen, and remainder iron) galls when rotated against itself at a stress of only 22 ksi, although the Brinell hardness (235) was about the same as that of the steel of the invention.
  • the corrosion resistance of the steel of the invention was compared to that of AISI Type 304, which is generally considered to have corrosion resistance adequate for most applications. These comparisons are set forth in Table III below.
  • This invention therefore provides an austenitic stainless steel having excellent galling resistance, good wear resistance, good corrosion resistance against chloridecontaining environments, especially pitting environments, and excellent high temperature oxidation resistance. Moreover, the steel can easily be worked with standard equipment into plate, sheet, strip, bar or rod, and such wrought products can be fabricated readily into ultimate useful products.
  • wrought products of the present steel are sufficiently soft and ductile to permit ready fabrication into chains, valves, woven metal belts, fasteners of various types, and other articles of ultimate use wherein metal-to-metal contact under stress or load would be encountered.
  • the steel of the invention can readily be welded or brazed and may be cut, drilled, tapped, threaded and machined in other manner in fabrication of articles of ultimate use.
  • Austenitic stainless steel having excellent resistance against galling, a high work hardening rate, and excellent resistance against pitting corrosion in chloride-containing environments, consisting essentially of from about 12 percent to about 19 percent chromium, about 4 percent to about 12 percent nickel, about 7 percent to about 13 percent manganese, 3 percent to 5 percent silicon, about 0.01 percent to about 0.12 percent carbon, about 0.03 percent to about 0.3 percent nitrogen, about 0.75 percent maximum molybdenum, about 0.75 percent maximum copper, about 0.09 percent maximum phosphorous about 0.05 percent maximum sulfur, and remainder essentially iron except for incidental impurities, all percentages being by weight, the nickel content being varied directly in proportion to the silicon content.
  • the steel of claim 1 consisting essentially of from about 15 percent to about 17 percent chromium, from about 6 percent to about 10 percent nickel, from about 7.5 percent to about 8.5 percent manganese, from about 3.7 percent to about 4.2 silicon, from about 0.05 percent to about 0.10 percent carbon, from about 0.10 percent to about 0.20 percent nitrogen, about 0.5 percent maximum molybdenum, about 0.5 percent maximum copper, about 0.07 percent maximum phosphorus, about 0.03 percent maximum sulfur, and remainder substantially iron except for incidental impurities.
  • the steel of claim 3 consisting essentially of about 16 percent chromium, about 7.4 nickel, about 8 manganese, about 4 percent silicon, about 0.09 percent carbon, about 0.14 percent nitrogen, about 0.010 percent phosphorus, about 0.014 percent sulfur, about 0.02 percent molybdenum, about 0.04 percent copper, and

Abstract

An austenitic stainless steel having excellent galling resistance by reason of a silicon-containing surface oxide film and a high work hardening rate, good wear resistance, good corrosion resistance in chloride-containing environments, and excellent oxidation resistance, containing 10 to 25 percent chromium, 3 to 15 percent nickel, 6 to 16 percent manganese, 2 to 7 percent silicon, 0.001 to 0.25 percent carbon, 0.001 to 0.4 percent nitrogen, and balance iron except for incidental impurities. Up to 4 percent molybdenum, up to 4 percent copper, 0.09 percent maximum phosphorus, up to 0.25 percent maximum sulfur and up to 0.50 percent maximum selenium may be present. The steel is readily workable on ordinary equipment into plate, sheet, strip, bar, rod and like wrought products.

Description

Schumacher et a1.
Oct. 14, 1975 CALLING RESISTANT AUSTENITIC STAINLESS STEEL [75] Inventors: William J. Schumacher; Harry Tanczyn, both of Baltimore, Md.
[73] Assignee: Armco Steel Corporation,
Middletown, Ohio [22] Filed: May 14, 1973 [21] Appl. No.: 360,402
[52] US. Cl 75/125; 75/128 A; 75/128 C; 75/128 N; 75/128 W [51] Int. Cl. C22c 39/26; C22c 39/48 [58] Field of Search. 75/125, 128 A, 128 C, 128 W, 75/128 N [56] References Cited UNITED STATES PATENTS 2,177,454 10/1939 Frerert 75/128 A 2,484,903 10/1949 Payson..... 75/128 A 2,687,955 8/1954 Bloom 75/128 A 2,820,708 l/1958 Waxweiler 75/128 C 3,152,934 10/1964 Lulg 75/128 A 3,615,368 10/1971 Baumel 75/128 A 3,726,668 4/1973 Baumel 75/128 C Primary Examiner-L. Dewayne Rutledge Assistant ExaminerArthur J. Steiner Attorney, Agent, or Firm-Melville, Strasser, Foster &
Hoffman ABSTRACT An austenitic stainless steel having excellent galling resistance by reason of a silicon-containing surface oxide film and a high work hardening rate, good wear resistance, good corrosion resistance in chloridecontaining environments, and excellent oxidation resistance, containing 10 to 25 percent chromium, 3 to 15 percent nickel, 6 to 16 percent manganese, 2 to 7 percent silicon, 0.001 to 0.25 percent carbon, 0.001 to 0.4 percent nitrogen, and balance iron except for incidental impurities. Up to 4 percent molybdenum, up to 4 percent copper, 0.09 percent maximum phosphorus, up to 0.25 percent maximum sulfur and up to 0.50 percent maximum selenium may be present. The steel is readily workable on ordinary equipment into plate, sheet, strip, bar, rod and like wrought products.
3 Claims, No Drawings GALLING RESISTANT AUSTENITIC STAINLESS STEEL BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an austenitic stainless steel having excellent galling resistance in conventional wrought form, good wear resistance, good corrosion resistance in chloride-containing environments, excellent high temperature oxidation resistance, and a high work hardening rate. The alloy of this invention can be readily worked with conventional equipment into plate, sheet, strip, bar, rod and the like, and retains a substantially austenitic structure throughout a wide temperature range.
The steel of the invention is adapted to applications in which moving metal-to-metal contact and corrosive attack are encountered in combination. Although not so limited, the steel has particular utility for fabrication into roller chains, link belts on conveyors, valves subjected to elevated temperature, woven metal belts for continuous heat treating furnaces, fasteners, pins and bushings.
2. Description of the Prior Art Although galling and wear may occur under similar conditions, the types of deterioration involved are not similar. Galling may be defined as the development of a condition on a rubbing surface of one or both contacting metal parts wherein excessive friction between minute high spots on the surfaces results in localized welding of the metals at these spots. With continued surface movement this results in the formation of even more weld junctions which eventually sever in one of the base metal surfaces. The result is a build-up of metal on one surface, usually at the end of a deep surface groove. Galling is thus associated primarily with moving metal-to-metal contactand results in sudden catastrophic failure by seizure of the metal parts.
On the other hand, wear is synonymous with abrasion and can result from metal-to-metal contact or metal to nonmetal contact, e.g. the abrasion of steel mining equipment by rocks and similar mineral deposits. Such wear is characterized by relatively uniform loss of metal from the surface, as. contrasted to localized grooving with consequent metal build-up, as a result of rubbing a much harder metallic surface against a softer metallic surface. The distinction between galling and wear can perhaps best be illustrated by the fact that galling can be eliminated by mating or coupling a very hard metallic surface with a much softer metallic surface, whereas wear or abrasion in metal-to-metal contact would be increased by mating a very hard surface with a much softer one.
An article by Harry Tanczyn entitled Stainless Steel Galling Characteristics Checked in STEEL, Apr. 20,
. 1954 points out that stainless, steel sections at a relatively high hardness level, or with a substantial difference in hardness, exhibit better resistance to galling than the combination of two soft members. This may be explained by the theory that the hardened sections deform elastically near the contact points under loading, while the softer pieces yield plastically for a significant =distance beneath the contact points. During movement,
the hardened surfaces apparently recover elastically with decrease in pressure, and this motion tends to sever any metallic welding. This article also indicates that good resistance to galling may be traceable to the combination of a suitable oxide surface film and a hard backing. Oxide films were found to influence the galling characteristics of metals, e.g. a film of Fe O increased the resistance of mild steel to galling, while a film of Fe O did not benefit resistance to galling.
Among the numerous prior art steels currently available, the austenitic AISI Type 304 is suited to a variety of uses involving welding and fabrication, but the galling and wear resistance of this steel are poor, and the metal is likely to fail when subjected to such conditions.
A precipitation-hardening stainless steel, sold under the registered trademark ARMCO 17-4 PH (about 16.5 percent chromium, about 4.0 percent nickel, about 4.0 percent copper, about 1.0 percent manganese, about 1.0 percent silicon, up to 0.07 percent carbon, 0.35 percent columbium, and remainder iron), while possessing high strength and hardness in the hardened condition, exhibits only fair galling and wear resistance.
United States Pat. No. 3,663,215, issued May 16, 1972 to H. Tanczyn, discloses a steel having improved wear resistance, which at the same time is weldable, workable, and/or machinable, and precipitation hardenable by heat treatment to great hardness. It has been found that this steel has good galling resistance. However, it contains large amounts of expensive alloying elements, and it is difficult to process with standard steel mill equipment. The broad composition ranges are about 10 percent to about 22 percent chromium, about 14 percent to about 25 percent nickel, about 5 percent to about 12 percent silicon, one or more of the elements molybdenum up to about 10 percent, tungsten up to about 8 percent, vanadium up to about 5 percent, columbium up to about 5 percent and titanium up to about 5 percent, these additional elements being in sum total of about 3 percent to about 12 percent. Carbon is present up to about 0.15 percent and nitrogen up to about 0.05 percent. In this alloy silicon is stated to form silicides of molybdenum, tungsten and the like, in finely dispersed form in the matrix of the precipitationhardened steel. These silicides are of extreme hardness, thereby providing good wear resistance.
A prior art steel presently considered to have the best resistance to wear and galling is the straight chromium AISI Type 440C, containing about 16 percent to 18 percent chromium, about 1 percent maximum manganese, about 1 percent maximum silicon, about 0.75 percent maximum molybdenum, about 0.95 percent to 1.20 percent carbon, and remainder iron. This steel is hardenable by heat treatment but has poor corrosion resistance and poor fonnability. It is difficult to roll into plate, strip, sheet, bar or rod, and articles of ultimate use cannot be readily fabricated from plate, sheet, strip, bar or rod form.
Reference is further made to Ser. No. 238,862 filed Mar. 28, 1972 (as a C-I-P ofSer. No. 868,893 filed Oct. 23, 1969) in the names of George N. Goller and Ronald H. Espy and assigned to the assignee of the present application. This application discloses and claims an austenitic stainless steel-having excellent stress corrosion cracking resistance, good weldability, good-cryogenic strength and toughness, and high strength at room temperature resulting from a high work hardening rate. This alloy has been found to possess good galling and wear resistance. Its broad composition comprises from about 15.5 to about 20 percent chromium, from about 1 1 percent to about 14 percent manganese, from about 1.1 percent to about 3.75 percent nickel, from about 0.01 percent to about 0.12 percent carbon, from about 0.20 percent to about 0.38 percent nitrogen, up to about 1 percent silicon, up to about 0.06 percent phosphorus, up to about 0.04 percent sulfur, and remainder substantially iron.
From the above background of the present state of the art, it is apparent that there is not now available an alloy having excellent galling resistance in wrought form, good wear resistance, good corrosion resistance to chloridecontaining environments, good high temperature oxidation resistance, and which is readily workable into plate, sheet, strip, bar, rod and like wrought products.
SUMMARY It is therefore an object of the present invention to provide an austenitic stainless steel having the abovementioned combination of properties and which at the same time contains a relatively low level of expensive alloying ingredients.
In broad composition the steel of the present invention consists essentially of about percent to about 25 percent chromium, about 3 percent to about nickel, about 6 percent to about 16 percent manganese, about 2 percent to about 7 percent silicon, about 0.001 percent to about 0.25 percent carbon, about 0.001 percent to about 0.4 percent nitrogen, up to about 4 percent molybdenum, up to about 4 percent copper, a maximum of about 0.09 percent phosphorus, a maximum of about 0.25 percent sulfur, a maximum of about 0.50 percent selenium, and balance substantially iron except for incidental impurities, all percentages being by weight.
The elements chromium, nickel, manganese, silicon, and nitrogen, and the balance therebetween, are critical in every sense. Omission of one of the elements, or departure of any of these critical elements from the ranges set forth above results in loss of one or more of the desired properties. Nickel is varied directly in proportion to the silicon content, for reasons set forth hereafter.
The silicon content of the steel of the invention is of particular criticality. Although not wishing to be bound by theory, it is believed that silicon within the range of 2 percent to 7 percent, and more particularly within the range of 3 percent to 5 percent by weight, performs a dual function. First, it appears to modify the composition of the surface oxide film of the steel, making it more stable and adherent. Secondly, silicon exerts a significant influence on the work hardening rate of the steel. An increase in silicon within the limits set forth above results in an increase in the work hardening rate.
Unlike the steel of the above mentioned U.S. Pat. No. 3,663,215, silicon does not form a silicide of molybdenum, tungsten, vanadium, columbium and/or titanium which silicide is relied upon to impart wear resistance in the steel of that patent. Instead, the silicon present in the surface oxide film is believed to be dispersed as a substitutional atom in the oxide lattice providing a low shear strength oxide film which is tightly adherent to the surface. Moreover, upon removal of the surface oxide film, as by abrasion, another oxide film rapidly forms at ordinary temperatures, so that the surface, is in effect, self-healing."
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred and more preferred compositions of the steel of the invention are as follows, all percentages being by weight:
Where good machinability is desired, the above compositions are modified by addition of sulfur in amounts of about 0.15 percent to 0.25 percent, and/or selenium in amounts of about 0.25 percent to 0.50 percent.
At least 10 percent chromium is required for corrosion resistance. More than 25 percent chromium results in extreme difficulties in processing, and disturbs the austenitic balance of the alloy. For many applications a maximum of 19 percent, or even 17 percent, chromium should be observed in order to insure a substantially fully austenitic structure.
Nickel is an austenite former, and at least 3 percent nickel is required in order to assure an austenitic structure. Preferably 4 percent, and more preferably 6 percent, nickel is added for this purpose. Since silicon is a ferrite former, nickel is added in direct proportion to the silicon content, e.g. when silicon is low, nickel is low. A'maximum of 15 percent, or still better, 13 percent by weight nickel must be observed since hot workability of the steel is adversely affected with nickel in amounts exceeding about 13 percent and certainly above 15 percent. It is of course also evident that large amounts of nickel greatly increase the cost of the alloy. Preferably a maximum of 12 percent nickel is observed for a preferred maximum silicon content of 5 percent, while a maximum of 10 percent nickel is preferred for the more preferred maximum silicon content of 4.2 percent.
As indicated above, silicon is essential in an amount of at least 2 percent for its effect in making the surface oxide layer more stable and adherent. Moreover, it has been found that an increase in the silicon content increases the work hardening rate of the steel of the invention. However, this effect is somewhat mitigated due to the necessity to increase the nickel directly in proportion to the increased silicon content (to offset the. ferrite-forming potential of silicon), and an increase in the nickel content tends to lower slightly the work hardening rate of the steel. The net effect, however, is an increase in the work hardening rate as the silicon content is increased. At least 3 percent silicon is preferred for these reasons, and the more preferred minimum is 3.7 percent silicon. However, since silicon is a ferrite former, more than 7 percent silicon cannot be tolerated, at the nickel levels herein contemplated, in order to insure a substantially austenitic structure. Moreover, a silicon content in excess of 7 percent adversely affects hot workability, and for best cold formability the silicon content should not exceed 5 percent. For optimum properties the maximum silicon content is about 4 percent.
Although manganese is a weak austenite former, it is present primarily for its effect in stabilizing the austenitic structure of the steel and in keeping nitrogen in solid solution. For these purposes, at least about 6 percent manganese is essential. More than about 16 percent manganese would upset the composition balance and would lower the general corrosion resistance of the steel. Preferably a maximum of 13 percent, and even more preferably a maximum of 8.5 percent, are observed with the chromium, nickel and silicon ranges set forth above.
Nitrogen is present, the minimum being about 0.001 percent, and a purposeful addition is preferably made for its effects as an austenite former and in strengthening and work hardening the steel. Low nitrogen levels have no noticeable benefit, while a maximum of 0.4 percent nitrogen must be observed in order to avoid exceeding the solubility limits of nitrogen in the steel. Optimum benefits are realized with nitrogen present in the range of 0.03 percent to 0.3 percent, or even better within the range 0.10 percent 0.20 percent.
Molybdenum and/or copper may be present up to a maximum of 4 percent each for improving high temperature properties and corrosion resistance. Where such improved properties are not needed, a preferred maximum of 0.75 percent, and more preferred maximum of 0.5 percent, for each element are observed.
Carbon is of course present as an impurity, and ordinarily will amount to at least about 0.001 percent. Carbon should be restricted to a maximum of about 0.25 percent, preferably about 0.12 percent, and even more preferably about 0.10 percent maximum, since excessive carbon adversely affects corrosion resistance and weldability.
Phosphorus is held to 0.09 percent maximum for welding and hot working reasons. Sulfur may be added up to 0.25 percent maximum (and/or selenium up to 0.50 percent maximum) for good machinability.
While the steel of the present invention exhibits good wear resistance, its outstanding and principal property is its resistance to galling.
EXAMPLE I An exemplary heat has been prepared consisting essentially of 16 percent chromium, 7.4 percent nickel, 8 percent manganese, 4 percent silicon, 0.09 percent carbon, 0.14 percent nitrogen, 0.010 percent phosphorus, 0.014 percent sulfur, 0.02 percent molybdenum, 0.04 percent copper, and balance iron. The heat was melted in an induction furnace, cast into an ingot, hot rolled on a conventional rolling mill to intermediate size and hot rolled to final 1 inch diameter, annealed at 1850 F for 5% hour and water quenched.
The annealed bar stock of Example I was subjected to galling and wear resistance tests. Test results on galling resistance are summarized in Table I. For purposes of comparison a number of prior art alloys were tested under the same conditions and reported in Table I below.
EXAMPLE 2 Another exemplary alloy of the invention contained 16 percent chromium, 4.0 percent nickel, 13 percent manganese, 4.0 percentsilicon, 0.05 percent carbon,
0.010 percent phosphorus, 0,010 percent sulfur, 0.10 percent molybdenum, 0.10 percent copper and balance iron.
TABLE I Galling Properties Unlubricated Tests Galling Stress Couple and (Brinell Hardness Ksi Example 1 (200)* v. Example 1 (216)* 63** Example l (216)* v. AISI 304 (I40) 54 Example I (200)* v. AISI 430 (190) 36 Example 1 (200)* v. AISI 440C (555) 64** Example 1 (200)* v. A181 4337 (283) 64** MS] 304 v. A151 304 (140) 3 AISl3l6(l52)v. AISI316(152) 4 AISI 410 9375) v. AISI 410 (375) 20 AISI 440C (555) v. AISI 440C (555) 36 A151 430 (156) v. A181 430 (156) 4 S.N. 238,862 (235) v. SN. 238,362 (235) 22 SN. 238,862 (235) v. AISI 304 (140) 6 AISI 4337 (509) v. AISI 4337 (509) 3 Steel of the present invention "No galling; exceeded limits of test machine.
The test method utilized in obtaining the data of Table I involved rotation of a polished cylindrical section or button for one revolution under pressure against a polished block surface in a standard Brinell hardness machine. A button specimen was prepared by drilling a countersunk hole to accommodate most of the exposed Brinell hardness ball, the specimen then being mounted in bakelite and polished to a 600 grit finish in a Buehler Automet unit to obtain a relatively flat test surface, with the edges slightly rounded. The button was then broken out of the bakelite and the edges were hand deburred. A block specimen was ground parallel on two sides and hand polished to a 3/0 emery grit finish, equivalent to a 600 grit finish. Both the button and block specimens were degreased by wetting with acetone, and the hardness ball was lubricated just prior to testing. The button was hand-rotated slowly at a predetermined load for one revolution and examined for galling at 10X magnification. If galling was not observed (i.e., absence of metal build-up, usually at the end of a groove), a new button and block area couple was tested at successively higher loads until galling was first observed. Confirmation was obtained by testing one more couple or combination at a higher load. Since light loads did not cause full area contact due to the rounded button edges, the actual contact area was measured at 10X to convert to galling stress.
In Table I the button specimen is the first alloy mentioned in each couple and the second alloy is the block specimen. Double asterisks beside the galling stress indicate that the test was terminated at that point because the limits of the test equipment were exceeded.
The data of Table I show that the steel of the present invention does not gall when rotated against itself at stresses as high at 63 ksi, even though the Brinell hardness is only about 200. In contrast to this, AISI Types 410 and 4337, having Brinell hardness values of 375 and 509 repsectively, gall on themselves at stresses of only 20 and 3 ksi respectively. The best prior art alloy currently available, viz. AISI Type 440C, galls on itself at a stress of 36 ksi, depite the extremely high Brinell hardness of 555. The steel of the above mentioned Ser. No. 238,862 filed in the names of G. N. Goller and R. G. Espy, (test specimen analyzing 18.0 percent chromium, 1.60 percent nickel, 12.0 percent manganese, 0.10 percent carbon, 0.34 percent nitrogen, and remainder iron) galls when rotated against itself at a stress of only 22 ksi, although the Brinell hardness (235) was about the same as that of the steel of the invention.
The outstanding superiority against galling resistance of the steel of the invention when rotated against itself is thus clearly demonstrated.
Another highly significant feature of the data of Table I is the fact that conventional alloys such as AISI Types 304, 430, 440C and 4337 can sustain much higher galling stresses when mated against the steel of the present invention rather than against themselves. Of the above mentioned standard alloys, only Type 430 and Type 304 showed actual galling when mated or coupled against the steel of the present invention, and even here galling occurred at a stress of 36 ksi and 54 ksi, respectively, as compared to a stress of 4 ksi when Type 430 was rotated against itself and 3 ksi when Type 304 was rotated against itself. It is of further significance to note that the steel of SN 238,862 was ineffective in preventing galling of AISI Type 304 at a stress above 6 ksi.
In connection with the reported hardness of the steel surfaces, it should be recognized that the hardness determination was made prior to subjecting the specimens to rotation under load. Since the steel of the invention has a rapid work hardening rate, hardening occurred as a result of the applied stress, so that the final hardness after one revolution must be considered to be substantially higher than the reported values, insofar as the steel of the present invention is concerned. It is of course apparent that the same effect would be otained when an article of ultimate use in subjected to stress or load, i.e., the article would work-harden when placed in actual operation in a metal-to-metal contact situation.
It should further be recognized, as indicated above, that an oxide surface film containing silicon reforms rapidly after the specimen is polished for testing. Accordingly, both the surface film and the rapid work hardening combine to achieve the outstanding galling resistance of the steel of the invention.
Wear and hardness tests are reported in Table ll below. Again, for purposes of comparison, a number of prior art alloys were tested uner the same conditions. In Table II a wear index of 1.00 for AISI Type 316 was taken as a basis for comparison. Values higher than 1.00 have poorer wear resistance than Type 316, and values lower than 1.00 have better wear resistance than type 316.
In Table II metal-to-metal abrasive wear resistance was determined on the LFW-l Wear Machine under the following conditions:
Rockwell C hardness 64 carburized ring, water lubricant, 30-pound load, 3,300 feet, 300 RPM.
Steel of the present invention. "Analysis the same as Table l specimens.
It is apparent from Table II that the steel of the present invention exhibits wear resistance superior to that of AISI Types 416, 304, 316 and Armco 17-4PI-l, while the wear resistance of the steel of Ser. No. 238,862 is the same as that of the steel of this invention. Although AISI Type 440C exhibits superior wear resistance to that of the present steel, this prior art alloy is rolled with difficulty into plate, strip, sheet, bar or rod, i.e., conventional wrought form, and has relatively poor corrosion resistance.
All the tests reported in Tables I and II were conducted at ambient temperature. However, the steel of the invention retains its greatly superior galling resistance at much higher temperatures. For example, cyclic internal combustion engine tests at temperaatures up to 1400 F were conducted by an automobile manufacturer and it was observed that all of the standard stainless steels failed catastrophically by seizing and galling in less than 6 hours. In contrast, the steel of the invention showed no galling during the entire duration of the test, which was 200 hours.
The corrosion resistance of the steel of the invention was compared to that of AISI Type 304, which is generally considered to have corrosion resistance adequate for most applications. These comparisons are set forth in Table III below.
TABLE III Corrosion Properties Example 1* AISI 304 65% boiling HNO [PM 0.006 0.0010 1% HCl at 35 C IPY 0.038 0.240 2% 11,50 at C IPY 1.40 0.480 10% Fe C1 at RT gm/in 0.050 0.310
(pitting test) Steel of the present invention From the above data it will be evident that the steel of the invention has corrosion resistance comparable to that of Type 304 in boiling 65 percent nitric acid. In 2 TABLE IV Oxidation Properties Weight Loss in mg/cm 1900F 2000F 2100F 2200F Example 1 11.0 13.7 15.8 AISI 304 270.0 880.0 AISI 310* 9.7 9.9 13.0 RA333** 5.7 84 12.9
Melting specifications: 0.25% max. carbon, 24-26% chromium, 19-22% nickel, 2% max. manganese. 1.5% max. silicon, balance iron.
"Test sample analyzed 0.05% carbon, 25% chromium, 45% nickel, 1.5% manganese. 1.25% silicon, 3.0% cobalt, 3.0% tungsten, 3.0% molybdenum, 18% On.
The test results on galling resistance and oxidation resistance at elevated temperatures shown that the steel has great utility for fabrication into components and parts of power generating equipment involving fuel ignition (for example, exhaust valves in internal combustion engines), such environments requiring excellent galling resistance, excellent oxidation reresistance, and high strength at temperatures up to 1400 F.
This invention therefore provides an austenitic stainless steel having excellent galling resistance, good wear resistance, good corrosion resistance against chloridecontaining environments, especially pitting environments, and excellent high temperature oxidation resistance. Moreover, the steel can easily be worked with standard equipment into plate, sheet, strip, bar or rod, and such wrought products can be fabricated readily into ultimate useful products.
In the annealed condition, wrought products of the present steel are sufficiently soft and ductile to permit ready fabrication into chains, valves, woven metal belts, fasteners of various types, and other articles of ultimate use wherein metal-to-metal contact under stress or load would be encountered. The steel of the invention can readily be welded or brazed and may be cut, drilled, tapped, threaded and machined in other manner in fabrication of articles of ultimate use.
While certain preferred embodiments of the invention have been specifically disclosed and described, it should be understood that the invention is not limited thereto, since many variations will be apparent to those skilled in the art, and the invention is to be given its broadest interpretation within the terms of the following claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
l. Austenitic stainless steel having excellent resistance against galling, a high work hardening rate, and excellent resistance against pitting corrosion in chloride-containing environments, consisting essentially of from about 12 percent to about 19 percent chromium, about 4 percent to about 12 percent nickel, about 7 percent to about 13 percent manganese, 3 percent to 5 percent silicon, about 0.01 percent to about 0.12 percent carbon, about 0.03 percent to about 0.3 percent nitrogen, about 0.75 percent maximum molybdenum, about 0.75 percent maximum copper, about 0.09 percent maximum phosphorous about 0.05 percent maximum sulfur, and remainder essentially iron except for incidental impurities, all percentages being by weight, the nickel content being varied directly in proportion to the silicon content.
2. The steel of claim 1, consisting essentially of from about 15 percent to about 17 percent chromium, from about 6 percent to about 10 percent nickel, from about 7.5 percent to about 8.5 percent manganese, from about 3.7 percent to about 4.2 silicon, from about 0.05 percent to about 0.10 percent carbon, from about 0.10 percent to about 0.20 percent nitrogen, about 0.5 percent maximum molybdenum, about 0.5 percent maximum copper, about 0.07 percent maximum phosphorus, about 0.03 percent maximum sulfur, and remainder substantially iron except for incidental impurities.
3. The steel of claim 1, consisting essentially of about 16 percent chromium, about 7.4 nickel, about 8 manganese, about 4 percent silicon, about 0.09 percent carbon, about 0.14 percent nitrogen, about 0.010 percent phosphorus, about 0.014 percent sulfur, about 0.02 percent molybdenum, about 0.04 percent copper, and
remainder iron.

Claims (3)

1. AUSTENITIC STAINLESS STEEL HAVING EXCELLANT RESISTANCE AGANST GALLING A HIGH WORK HARDENING RATE AND EXCELLENT RESISTANCE AGAINST PITTING CORROSION IN CHLORIDE-CONTAINING ENVIROMENTS CONSISTING ESSENTIALLY OF FROM ABOUT 12 PERCENT TO ABOUT 19 PERCENT CHROMIUM ABOUT 4 PERCENT OT ABOUT 12 PERCENT NICKEL ABOUT 7 PERCENT TO ABOUT 13 PERCENT MANGANESE 3 PERCENT TO 5 PERCENT SILICON ABOUT 0.01 PERCENT TO ABOUT 0.12 PERCENT CARBON ABOUT 0.03 PERCENT TO ABOUT 0.3 PERCENT NITROGEN ABOUT 0.75 PERCENT MAXIMUM MOLYBDENUM, ABOUT 0.75 PERCENT MIXIMUM COPPER ABOUUT 0.09 PERCENT MAXIMUM PHOSPHOROUS ABOUT 0.05 PERCENT MAXIMUM SULFUR, AND REMAINDER ESSENTIALLY IRON EXCEPT FOR INDICENTAL IMPURITIES ALL PERCENTAGES BEING BY WEIGHT THE NICKEL CONTENT BEING VARIED DIRECTLY IN PROPORTION TO THE SILICON CONTENT.
2. The steel of claim 1, consisting essentially of from about 15 percent to about 17 percent chromium, from about 6 percent to about 10 percent nickel, from about 7.5 percent to about 8.5 percent manganese, from about 3.7 percent to about 4.2 silicon, from about 0.05 percent to about 0.10 percent carbon, from about 0.10 percent to about 0.20 percent nitrogen, about 0.5 percent maximum molybdenum, about 0.5 percent maximum copper, about 0.07 percent maximum phosphorus, about 0.03 percent maximum sulfur, and remainder substantially iron except for incidental impurities.
3. The steel of claim 1, consisting essentially of about 16 percent chromium, about 7.4 nickel, about 8 manganese, about 4 percent silicon, about 0.09 percent carbon, about 0.14 percent nitrogen, about 0.010 percent phosphorus, about 0.014 percent sulfur, about 0.02 percent molybdenum, about 0.04 percent copper, and remainder iron.
US360402A 1973-05-14 1973-05-14 Galling resistant austenitic stainless steel Expired - Lifetime US3912503A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US360402A US3912503A (en) 1973-05-14 1973-05-14 Galling resistant austenitic stainless steel
FR7416509A FR2229776B1 (en) 1973-05-14 1974-05-13
IT50955/74A IT1015984B (en) 1973-05-14 1974-05-13 IMPROVEMENT IN DABLE AUSTENITIC STAINLESS STEELS
YU01316/74A YU131674A (en) 1973-05-14 1974-05-13 Process for producing stainless steel of a splendid abrasion resistance
CA199,693A CA1095746A (en) 1973-05-14 1974-05-13 Galling resistant austenitic stainless steel
BR3886/74A BR7403886D0 (en) 1973-05-14 1974-05-13 AUSTENITIC STAINLESS STEEL
SE7406366A SE411558B (en) 1973-05-14 1974-05-13 AUSTENITIC STAINLESS STEEL
ES426307A ES426307A1 (en) 1973-05-14 1974-05-14 Galling resistant austenitic stainless steel
GB2126874A GB1459255A (en) 1973-05-14 1974-05-14 Galling resistant austenitic stainless steel
DE2423193A DE2423193C2 (en) 1973-05-14 1974-05-14 Use of an austenitic stainless steel
JP5378874A JPS5632387B2 (en) 1973-05-14 1974-05-14
ZA00743060A ZA743060B (en) 1973-05-14 1974-05-14 Galling resistant austenitic stainless stell
US05/552,357 US4039356A (en) 1973-05-14 1975-02-24 Galling resistant austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US360402A US3912503A (en) 1973-05-14 1973-05-14 Galling resistant austenitic stainless steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/552,357 Division US4039356A (en) 1973-05-14 1975-02-24 Galling resistant austenitic stainless steel

Publications (1)

Publication Number Publication Date
US3912503A true US3912503A (en) 1975-10-14

Family

ID=23417822

Family Applications (1)

Application Number Title Priority Date Filing Date
US360402A Expired - Lifetime US3912503A (en) 1973-05-14 1973-05-14 Galling resistant austenitic stainless steel

Country Status (12)

Country Link
US (1) US3912503A (en)
JP (1) JPS5632387B2 (en)
BR (1) BR7403886D0 (en)
CA (1) CA1095746A (en)
DE (1) DE2423193C2 (en)
ES (1) ES426307A1 (en)
FR (1) FR2229776B1 (en)
GB (1) GB1459255A (en)
IT (1) IT1015984B (en)
SE (1) SE411558B (en)
YU (1) YU131674A (en)
ZA (1) ZA743060B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039356A (en) * 1973-05-14 1977-08-02 Schumacher William J Galling resistant austenitic stainless steel
US4060389A (en) * 1975-01-10 1977-11-29 Toyo Soda Manufacturing Co., Ltd. Apparatus for use in the ammonia soda process or the ammonium chloride soda process
US4099967A (en) * 1976-12-14 1978-07-11 Armco Steel Corporation Galling resistant austenitic stainless steel
US4178983A (en) * 1977-09-29 1979-12-18 Toshiba Kikai Kabushiki Kaisha Method for manufacturing stainless steel die cast products having low melting point
US4216270A (en) * 1978-12-13 1980-08-05 Abex Corporation Machine parts of powdered metal
US4220689A (en) * 1979-01-26 1980-09-02 Armco Inc. Galling resistant austenitic stainless steel powder product
US4266974A (en) * 1978-10-30 1981-05-12 Kawasaki Steel Corporation Alloy steel powder having excellent compressibility, moldability and heat-treatment property
US4294614A (en) * 1979-10-17 1981-10-13 Teledyne Industries, Inc. Austenitic iron-base cryogenic alloy and arc welding electrode for depositing the same
US4337088A (en) * 1980-05-12 1982-06-29 Moses Jr Edward L Non-magnetic stabilizer
US4462957A (en) * 1980-07-09 1984-07-31 Hitachi, Ltd. Sliding mechanism
US4494988A (en) * 1983-12-19 1985-01-22 Armco Inc. Galling and wear resistant steel alloy
US4814140A (en) * 1987-06-16 1989-03-21 Carpenter Technology Corporation Galling resistant austenitic stainless steel alloy
US4946644A (en) * 1989-03-03 1990-08-07 Baltimore Specialty Steels Corporation Austenitic stainless steel with improved castability
DE3940438C1 (en) * 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
DE4023462C1 (en) * 1989-10-12 1991-07-04 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
US5147475A (en) * 1990-02-26 1992-09-15 Sandvik Ab High strength stainless steel
US5154781A (en) * 1991-05-30 1992-10-13 Wilson Sporting Goods Co. Method to make casting alloy golf clubs
EP0557044A1 (en) * 1992-02-19 1993-08-25 Linvatec Corporation Surgical cutting instrument
US5328529A (en) * 1993-03-25 1994-07-12 Armco Inc. High strength austenitic stainless steel having excellent galling resistance
US5413756A (en) * 1994-06-17 1995-05-09 Magnolia Metal Corporation Lead-free bearing bronze
US5865385A (en) * 1997-02-21 1999-02-02 Arnett; Charles R. Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
US6494659B1 (en) 2000-02-04 2002-12-17 Emhart Llc Anti-galling fastener inserts
US20040101217A1 (en) * 2002-09-30 2004-05-27 Shinji Kinoshita Hydrodynamic bearing, motor device, and method of plastic deformation processing
US20040211411A1 (en) * 1999-05-26 2004-10-28 Boehringer Ingelheim Pharma Kg Stainless steel canister for propellant-driven metering aerosols
WO2007090403A1 (en) * 2006-02-08 2007-08-16 Alfa Laval Tank Equipment A/S A cleaning head
US20160230578A1 (en) * 2015-02-06 2016-08-11 United Technologies Corporation Gas turbine engine containment structures
US20170130355A1 (en) * 2014-03-28 2017-05-11 Abel Co., Ltd. Stainless steel plate
US10094010B2 (en) 2014-06-19 2018-10-09 The Ohio State University Cobalt-free, galling and wear resistant austenitic stainless steel hard-facing alloy
EP3530383A1 (en) * 2018-02-27 2019-08-28 Rolls-Royce plc A method of manufacturing an austenitic iron alloy
US20210364032A1 (en) * 2018-02-27 2021-11-25 Sky Climber Fasteners LLC Precision Torque Control Positive Lock Nut
CN114393181A (en) * 2022-01-29 2022-04-26 燕山大学 Ultrahigh-strength plastic-tough high manganese steel, assembled frog thereof and preparation method
CN115710680A (en) * 2022-10-28 2023-02-24 同济大学 Fe-Mn-Si-Cr-Ni-C series shape memory alloy and preparation method thereof
CN115772626A (en) * 2022-11-17 2023-03-10 华能国际电力股份有限公司 Nickel-based high-temperature alloy and preparation method and application thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579859A (en) * 1980-06-17 1982-01-19 Toshiba Corp Corrosion-resistant material
JPS57152447A (en) * 1981-03-13 1982-09-20 Toshiba Corp Corrosion resistant material
JPS57152448A (en) * 1981-03-13 1982-09-20 Toshiba Corp Water apparatus and its manufacture
JPS57210958A (en) * 1981-06-19 1982-12-24 Toshiba Corp Runner of water turbine
US4487630A (en) * 1982-10-25 1984-12-11 Cabot Corporation Wear-resistant stainless steel
SE441455B (en) * 1983-10-21 1985-10-07 Avesta Ab STALL OF AUSTENITIC TYPE
JP2668113B2 (en) * 1986-08-04 1997-10-27 日新製鋼株式会社 Method for producing high-strength non-magnetic stainless steel material with excellent workability
DE102011101827A1 (en) * 2011-05-17 2012-11-22 Minebea Co., Ltd. Spindle motor used in hard disk drive, has stator and rotor in which at least one component contains chromium steel containing specified amount of manganese
GB201716640D0 (en) * 2017-10-11 2017-11-22 Rolls Royce Plc Cobalt-free alloys
DE102020202736A1 (en) 2020-03-04 2021-09-09 Mahle International Gmbh Metallic material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177454A (en) * 1938-02-23 1939-10-24 Midvale Company Alloy steel for internal combustion valves or valve elements
US2484903A (en) * 1948-09-24 1949-10-18 Crucible Steel Company Heat and corrosion resisting alloy steel
US2687955A (en) * 1951-11-05 1954-08-31 Armco Steel Corp Cold-workable stainless steel and articles
US2820708A (en) * 1955-05-17 1958-01-21 Armco Steel Corp Stainless steel and method of producing same
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
US3615368A (en) * 1967-06-19 1971-10-26 Boehler & Co Ag Geb Nickel-chromium steel having increased resistance to corrosion
US3726668A (en) * 1969-11-29 1973-04-10 Boehler & Co Ag Geb Welding filling material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US26903A (en) * 1860-01-24 Boot and shoe sole
US3235378A (en) * 1963-11-14 1966-02-15 Armco Steel Corp Alloy steel and articles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177454A (en) * 1938-02-23 1939-10-24 Midvale Company Alloy steel for internal combustion valves or valve elements
US2484903A (en) * 1948-09-24 1949-10-18 Crucible Steel Company Heat and corrosion resisting alloy steel
US2687955A (en) * 1951-11-05 1954-08-31 Armco Steel Corp Cold-workable stainless steel and articles
US2820708A (en) * 1955-05-17 1958-01-21 Armco Steel Corp Stainless steel and method of producing same
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
US3615368A (en) * 1967-06-19 1971-10-26 Boehler & Co Ag Geb Nickel-chromium steel having increased resistance to corrosion
US3726668A (en) * 1969-11-29 1973-04-10 Boehler & Co Ag Geb Welding filling material

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039356A (en) * 1973-05-14 1977-08-02 Schumacher William J Galling resistant austenitic stainless steel
US4060389A (en) * 1975-01-10 1977-11-29 Toyo Soda Manufacturing Co., Ltd. Apparatus for use in the ammonia soda process or the ammonium chloride soda process
US4099967A (en) * 1976-12-14 1978-07-11 Armco Steel Corporation Galling resistant austenitic stainless steel
US4146412A (en) * 1976-12-14 1979-03-27 Armco Steel Corporation Galling resistant austenitic stainless steel
US4178983A (en) * 1977-09-29 1979-12-18 Toshiba Kikai Kabushiki Kaisha Method for manufacturing stainless steel die cast products having low melting point
US4266974A (en) * 1978-10-30 1981-05-12 Kawasaki Steel Corporation Alloy steel powder having excellent compressibility, moldability and heat-treatment property
US4216270A (en) * 1978-12-13 1980-08-05 Abex Corporation Machine parts of powdered metal
US4220689A (en) * 1979-01-26 1980-09-02 Armco Inc. Galling resistant austenitic stainless steel powder product
US4294614A (en) * 1979-10-17 1981-10-13 Teledyne Industries, Inc. Austenitic iron-base cryogenic alloy and arc welding electrode for depositing the same
US4337088A (en) * 1980-05-12 1982-06-29 Moses Jr Edward L Non-magnetic stabilizer
US4462957A (en) * 1980-07-09 1984-07-31 Hitachi, Ltd. Sliding mechanism
US4494988A (en) * 1983-12-19 1985-01-22 Armco Inc. Galling and wear resistant steel alloy
US4814140A (en) * 1987-06-16 1989-03-21 Carpenter Technology Corporation Galling resistant austenitic stainless steel alloy
US4946644A (en) * 1989-03-03 1990-08-07 Baltimore Specialty Steels Corporation Austenitic stainless steel with improved castability
DE4023462C1 (en) * 1989-10-12 1991-07-04 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
DE3940438C1 (en) * 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
US5147475A (en) * 1990-02-26 1992-09-15 Sandvik Ab High strength stainless steel
US5154781A (en) * 1991-05-30 1992-10-13 Wilson Sporting Goods Co. Method to make casting alloy golf clubs
EP0557044A1 (en) * 1992-02-19 1993-08-25 Linvatec Corporation Surgical cutting instrument
US5328529A (en) * 1993-03-25 1994-07-12 Armco Inc. High strength austenitic stainless steel having excellent galling resistance
US5413756A (en) * 1994-06-17 1995-05-09 Magnolia Metal Corporation Lead-free bearing bronze
US6080247A (en) * 1997-02-21 2000-06-27 Gs Technologies Operating Company Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
US5865385A (en) * 1997-02-21 1999-02-02 Arnett; Charles R. Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
US20040211411A1 (en) * 1999-05-26 2004-10-28 Boehringer Ingelheim Pharma Kg Stainless steel canister for propellant-driven metering aerosols
US6983743B2 (en) 1999-05-26 2006-01-10 Boehringer Ingelheim Pharma Kg Stainless steel canister for propellant-driven metering aerosols
US6494659B1 (en) 2000-02-04 2002-12-17 Emhart Llc Anti-galling fastener inserts
US20040101217A1 (en) * 2002-09-30 2004-05-27 Shinji Kinoshita Hydrodynamic bearing, motor device, and method of plastic deformation processing
US20090032073A1 (en) * 2006-02-08 2009-02-05 Alfa Laval Tank Equipment A/S Cleaning Head
CN101378853A (en) * 2006-02-08 2009-03-04 阿尔法拉瓦尔容器装备股份有限公司 A cleaning head
US7942157B2 (en) 2006-02-08 2011-05-17 Alfa Laval Tank Equipment A/S Cleaning head
WO2007090403A1 (en) * 2006-02-08 2007-08-16 Alfa Laval Tank Equipment A/S A cleaning head
US20170130355A1 (en) * 2014-03-28 2017-05-11 Abel Co., Ltd. Stainless steel plate
US10801124B2 (en) * 2014-03-28 2020-10-13 Abel Co., Ltd. Stainless steel plate
US10094010B2 (en) 2014-06-19 2018-10-09 The Ohio State University Cobalt-free, galling and wear resistant austenitic stainless steel hard-facing alloy
US10557358B2 (en) * 2015-02-06 2020-02-11 United Technologies Corporation Gas turbine engine containment structures
US20160230578A1 (en) * 2015-02-06 2016-08-11 United Technologies Corporation Gas turbine engine containment structures
EP3530383A1 (en) * 2018-02-27 2019-08-28 Rolls-Royce plc A method of manufacturing an austenitic iron alloy
CN110193598A (en) * 2018-02-27 2019-09-03 劳斯莱斯有限公司 A method of manufacture austenitic iron alloy
US11007571B2 (en) 2018-02-27 2021-05-18 Rolls-Royce Plc Method of manufacturing an austenitic iron alloy
US20210364032A1 (en) * 2018-02-27 2021-11-25 Sky Climber Fasteners LLC Precision Torque Control Positive Lock Nut
CN110193598B (en) * 2018-02-27 2023-03-10 劳斯莱斯有限公司 Method for manufacturing austenitic iron alloy
US11873856B2 (en) * 2018-02-27 2024-01-16 Bpc Lg 2, Llc Precision torque control positive lock nut
CN114393181A (en) * 2022-01-29 2022-04-26 燕山大学 Ultrahigh-strength plastic-tough high manganese steel, assembled frog thereof and preparation method
CN115710680A (en) * 2022-10-28 2023-02-24 同济大学 Fe-Mn-Si-Cr-Ni-C series shape memory alloy and preparation method thereof
CN115710680B (en) * 2022-10-28 2024-04-12 同济大学 Fe-Mn-Si-Cr-Ni-C system shape memory alloy and preparation method thereof
CN115772626A (en) * 2022-11-17 2023-03-10 华能国际电力股份有限公司 Nickel-based high-temperature alloy and preparation method and application thereof
CN115772626B (en) * 2022-11-17 2023-11-28 华能国际电力股份有限公司 Nickel-based superalloy, and preparation method and application thereof

Also Published As

Publication number Publication date
CA1095746A (en) 1981-02-17
DE2423193C2 (en) 1984-12-13
SE411558B (en) 1980-01-14
ES426307A1 (en) 1976-09-01
JPS5632387B2 (en) 1981-07-27
ZA743060B (en) 1975-05-28
DE2423193A1 (en) 1974-12-05
JPS5030727A (en) 1975-03-27
BR7403886D0 (en) 1974-12-03
YU131674A (en) 1983-01-21
FR2229776A1 (en) 1974-12-13
GB1459255A (en) 1976-12-22
FR2229776B1 (en) 1976-06-25
IT1015984B (en) 1977-05-20

Similar Documents

Publication Publication Date Title
US3912503A (en) Galling resistant austenitic stainless steel
US3904401A (en) Corrosion resistant austenitic stainless steel
US4871268A (en) Rolling bearing
US4039356A (en) Galling resistant austenitic stainless steel
EP0458646B1 (en) Bearing steel
EP1507016B1 (en) Low-carbon free cutting steel
EP0149340B1 (en) Galling and wear resistant steel alloy
WO2001042524A2 (en) Low carbon, low chromium carburizing high speed steels
TWI434941B (en) Steel
US4146412A (en) Galling resistant austenitic stainless steel
JPS645100B2 (en)
US5415705A (en) Rolling bearing
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2761181B2 (en) Tin-based white metal bearing alloy with excellent heat and fatigue resistance
US4220689A (en) Galling resistant austenitic stainless steel powder product
JPH0555585B2 (en)
US1941648A (en) Ferrous alloy
US4994235A (en) Wear-resistance aluminum bronze alloy
GB1595755A (en) Galling resistant austenitic stainless steel
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
US3955936A (en) Heavy-duty aluminum bearing alloy
US2677610A (en) High temperature alloy steel and articles made therefrom
JP2020045557A (en) Slide member
JPH02179839A (en) High strength copper alloy having excellent impact resistance
JPS6167761A (en) Cold worked member of austenitic stainless steel for nuclear reactor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARMCO ADVANCED MATERIALS CORPORATION, STANDARD AVE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. , EFFECTIVE DEC. 31, 1987.;ASSIGNOR:ARMCO, INC.;REEL/FRAME:004850/0157

Effective date: 19871216

Owner name: ARMCO ADVANCED MATERIALS CORPORATION,PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARMCO, INC.;REEL/FRAME:004850/0157

Effective date: 19871216

AS Assignment

Owner name: BALTIMORE SPECIALTY STEELS CORPORATION, 3501 E. BI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ARMCO ADVANCED MATERIALS CORPORATION;REEL/FRAME:004923/0686

Effective date: 19880401

Owner name: BALTIMORE SPECIALTY STEELS CORPORATION, A CORP. OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARMCO ADVANCED MATERIALS CORPORATION;REEL/FRAME:004923/0686

Effective date: 19880401