US3907578A - Compositions for inhibiting the corrosion of metals - Google Patents

Compositions for inhibiting the corrosion of metals Download PDF

Info

Publication number
US3907578A
US3907578A US353048A US35304873A US3907578A US 3907578 A US3907578 A US 3907578A US 353048 A US353048 A US 353048A US 35304873 A US35304873 A US 35304873A US 3907578 A US3907578 A US 3907578A
Authority
US
United States
Prior art keywords
amine
acids
alkyl
composition
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US353048A
Inventor
Claude-Jacques Scherrer
Jean-Louis Mauleon
Jean-Daniel Gmerek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Francaise de Raffinage SA
Honeywell UOP LLC
Original Assignee
Compagnie Francaise de Raffinage SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Francaise de Raffinage SA filed Critical Compagnie Francaise de Raffinage SA
Priority to US05/556,372 priority Critical patent/US3981780A/en
Application granted granted Critical
Publication of US3907578A publication Critical patent/US3907578A/en
Assigned to UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP reassignment UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD
Assigned to UOP, A GENERAL PARTNERSHIP OF NY reassignment UOP, A GENERAL PARTNERSHIP OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UOP INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors

Definitions

  • This inhibitor will prevent the corrosion of ferrous metals which have been exposed to corrosive hydrogen sulfide vapors and also to water which contains hydrogen sulfide.
  • these corrosion inhibitors are limited to the use of low boiling aliphatic monoamines as the volatile portion of the inhibitor, and to the inhibition of vapor phase and water phase corrosion by hydrogen sulfide.
  • the prcsesz. invention is con cerned with a composition which will inhibit the corrosion of metals which are exposed to water or water vapor which contains chloride contaminants. These chloride contaminants are present in crude petroleum fractions and will upon contact with water, at temperatures commonly used in distilling crude petroleum, form hydrochloric acid.
  • the present invention concerns new corrosion inhibiting agents and especially agents for inhibiting the corrosion which occurs at the top of distillation columns.
  • Measures taken upstream comprise principally desalting of crude petroleum, for example by electrostatic means.
  • the desalting may be followed by a complementary neutralization, for example, by addition of soda.
  • Measures taken downstream include injection of neutralizing agent in the overhead fraction of the distillation column and injection of corrosion inhibitor.
  • the crude petroleum After desalting and possible complementary neutraL ization, for example, with soda, the crude petroleum still contains sodium chloride, calcium chloride and magnesium chloride. Unlike sodium chloride, which is stable, calcium chloride and magnesium chloride are hydrolyzed by water vapor at a temperature higher than about 120 C. and thus produce hydrochloric acid. Hydrochloric acid is concentrated in the overhead vapors, and in the water condensed from this vapor.
  • a neutralizing agent such as ammonia in gaseous phase or aqueous solution
  • a neutralizing agent such as ammonia in gaseous phase or aqueous solution
  • This injection is designed to maintain the pH of the water which condenses in this line at a predetermined value or, more precisely, to keep pl-l variations within a predetermined range.
  • the pH of this water is closely related to the salts formed in the column overhead vapor line. Thus, effective control of corrosion in the column overhead vapor line depends on close control of the pH of the water that condenses in this line.
  • a corrosion inhibitor is generally added downstream of the point of injection of the neutralizing agent. This inhibitor forms a film on all downstream metal surfaces or on the iron sulfide film covering the metal.
  • the corrosion inhibitors available in industry are polar substances, usually nitrogen derivatives dissolved in a solvent. These products are only slightly volatile and decompose at about 250 C., thus they rapidly become concentrated by solubility into the phase consisting of liquid hydrocarbons, in such a. way that they exercise their function only in the presence of the liquid hydrocarbon phase.
  • An object of the present invention is to extend the domain of action of the corrosion inhibitors even to areas where water condenses, to provide effective protection against corrosion of metal parts in contact with water vapor which may condense.
  • an embodiment of this invention re sides in a composition for inhibiting the corrosion of metals due to contact with water containing a chloride contaminant, said composition comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
  • Another embodiment of this invention is found in a process for the inhibition of corrosion of metal due to contact of said metal with water containing a chloride contaminant which comprises injecting a neutralizing agent into'the upper part of a distillation column and thereafter injecting a corrosion inhibitor composition downstream of the injection point of said neutralizing agent, said inhibitor composition comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
  • the first active constituent of the composition of the present invention consists of a salt of a dicarboxylic acid and an amine.
  • Dicarboxylic acids containing from about 10 to about 50 carbon atoms, and preferably from about 20 to about 40 carbon atoms per molecule are suitable for the synthesis of this salt. Numerous acids answering to these characteristics are available in industry; these are generally mixtures of acids, and may contain impurities without this being a disadvantage. Acids sold under the commercial name of VR-l acid which are a mixture of polybasic, principally dibasic, acids and whose average molecular weight is about 750 are suitable, the same applies to acids sold under the commerical names Dimer-Acids, this name being used generally to characterize bifunctional carboxylic acids D-50- MEX" a composite containing dimer-acids manufactured by the Harchem Division of Union Camp Corporation and Empol 222. The latter is an acid corre sponding to the following formula:
  • CH'CH and its properties are the following:
  • alkyl dicarboxylic acids of which the alkyl portion comprises at least ten carbon atoms may also be used.
  • Suitable acids include alkyl malonic acids, alkyl succinic acids, alkyl glutaric acids, alkyl adipic acids, alkyl pimelic acids, alkyl sebaric acids, alkyl phthalic acids. Mixtures of these acids as well as dicarboxylic acids of higher molecular weight are also suitable for reaction with the hereinafter set forth aliphatic amines.
  • Aliphatic amines containing from about to about 30, and preferably from about 12 to about 20, carbon atoms per molecule are suitable for reaction with the aforementioned acids to form the desired salt thereof.
  • These are monoamines such as a primary amine and belong to the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecyl-, pentadecylhexadecyl-, heptadecyl, octadecyl-, nonadecyl-, eicosyl-, heneicosyl-, docosyl-, tricosyl-, tetracosyl-, pentacosyl-, hexacosylheptacosyl-, octacosyl-, nonacosyl-, triacontylamine, the corresponding alkenylamines and mixtures of these amines.
  • amines are prepared from the corresponding fatty acids and can be named according to the acid from which they derive: laurylamine, myristylamine, palmitylstearyl-, arachidyl-, palmitolyl-, oleyl-, ricinoleyl-, dinoleyllinolenylamine, etc. Mixtures of these amines are available under commercial names such as Alamine H26D, Armeen HTD. These products include mixtures of alkyl amines whose alkyl portions contain principally between 16 and 18 carbon atoms, and, in smaller quantities, 14 carbon atoms. Other fatty amines such as tallowamine, cocoamine, palmamine, etc. and their mixtures, as well as the hydrogenated derivatives of these amines may also be employed.
  • the salts of dicarboxylic acids and amines are obtained by any convenient means known in the art and, principally, temperature, preferably with strong agitation. Higher temperatures may be employed but they should not exceed 90 C. to avoid formation of amides or other undesirable products.
  • the acid and amine are used in a ratio in the range of from about 1:1 to about 3:1 equivalents of acid per equivalent of amine.
  • One molecule of dibasic acid contains two equivalents of acid, one molecule of monoamine contains one equivalent of base.
  • the second active constituent of the corrosion inhibitor consists of a cyclic amine or mixture of cyclic amines with ten or less carbon atoms.
  • cyclic amine will include cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds.
  • this constituent will be designated as volatile amine, for its function is precisely to be condensed last and thus follow the water condensation.
  • the volatile amine may be chosen from the group consisting of cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds.
  • These latter bases have a boiling point generally between and 250 C. and are generally carried over with water vapor.
  • They include the following nitrogen-containing cyclic compounds:
  • aniline 25-30 percent
  • quinoline 25-30 percent
  • isoquinoline 2-3 percent
  • the volatile amine of the type hereinbefore set forth and the salt of the dicarboxylic acid and amine may be present in the composition in a range of from about 1:1 to about 1:20 weight percent of amine per weight percent of salt. If so desired, they may be dissolved in an aliphatic alcohol or in an organic solvent such as the aromatic hydrocarbons (benzene, toluene, xylenes, ethylbenzene, diethylbenzene, cumene, etc.), paraffinic hydrocarbons (hexane, heptane, octane, nonane, decane, undecane, dodecane, etc. as well as mixtures of hydrocarbons such as the naphthas and kerosene, may be used.
  • aromatic hydrocarbons benzene, toluene, xylenes, ethylbenzene, diethylbenzene, cumene, etc.
  • paraffinic hydrocarbons hex
  • the corrosion inhibitor should form a film on the parts to be protected, which film will not be stripped off by fluid flow and in addition the corrosion inhibitor should also affect the quality of the hydrocarbon products especially the gasolines removed overhead in the distillation column as little as possible, consequently the inhibitor should not promote an emulsification of oil and water.
  • FIG. 1 is a graphic representation of the loss of thickness of carbon steel bars placed in different zones of condensation of overhead vapors, as a function of temperature and of pH;
  • FIG. 2 is a graphic representation of the loss of thickness of the electrode of a corrosion measuring device as a function of time and of the hydrodynamic conditions of the flow of fluid on the electrode;
  • FIG. 3 is a graphic representation of the relative emulsive power of the different inhibitors as a function of pH.
  • EXAMPLE I This example concerns the measurement of the amount of protection against corrosion of various inhibitors.
  • a distillation column with reflux of overhead material is fed by non-desalted Quatar crude petroleum, containing 1.2 wt. percent S, injected at a temperature of 220 C., with a flow rate of 4.7 liters/hour. Since the salinity of the crude petroleum is variable, a constant value of 50 ppm of chloride is maintained by addition of hydrochloric acid to the water vapor injected to simulate stripping. The stripping vapor is equivalent to 3 wt. percent of the feed or wt. percent of the overhead vapor.
  • the crude petroleum does not contain hydrogen sulfide.
  • the crude is deaerated to contain less than 0.1 ppm of dissolved oxygen.
  • T is a commercially available corrosion inhibitor comprising a fatty alkanolamide and volatile amines; T is a commercially available corrosion inhibitor which does not contain volatile compounds; T is obtained by adding to T percent by weight of a volatile compound; A is an inhibitor conforming to the invention.
  • A is composed of a mixture:
  • pyridine base 1.0 picolines +2,6 lutidine 9.5 lutidincs 15.5 collidines 6.0 aniline 26.5 quinoline 23.5 isoquinoline 2.5 toluidines 1 1.5 quinaldine 2.0 heavy pyridines 2.0
  • FIG. 1 is a graphic representation of the results.
  • Fluid velocities present in distillation columns over head lines, where water and hydrocarbon condensation take place are, for gases between 15 and meters/sec. and, for liquids between 3 and. 6 meters/sec. Fluid flowing at these velocities may strip away the film of corrosion inhibitor.
  • a corrosion inhibitor is added in a quantity equal to 5 or 10 ppm of the total water-gasoline mixture.
  • a corrosion measuring device whose electrodes are of soft steel, is placed in the enclosure.
  • a resistant film of corrosion inhibitor is deposited on the corrosion measuring device.
  • the measurements are taken intermittently in the aqueous phase, after stopping agitation. They allow determination of the amount of protection of the device as a function of time for a relatively slow flow velocity of 1.3 meters/sec. then at a velocity of 5.5 meters/sec. Table 11 contains the results obtained for the inhibitors tested in Example 1.
  • FIG. 2 represents the rate of corrosion of the device as a function of time under previously cited conditions for a corrosion inhibitor concentration of 10 ppm.
  • the left portion corresponds to the formation of a protec' tive film on the device.
  • the existence of the film leads, more or less rapidly depending on the inhibitor, to a stabilization and reduction of the rate of corrosion.
  • the rate of corrosion is stabilized at a value always higher than at slower flow velocity.
  • the results are expressed in thickness lost per year (in 1/ 100 millimeters).
  • Inhibitor A of the present invention, is remarkable in that the two corrosion values are very close to each other.
  • inhibitor A is only very slightly affected by the high fluid velocity.
  • EXAMPLE III This example measures the emulsifying tendencies of water in gasoline in the presence of various corrosion inhibitors.
  • volume of decarbonated water (having a controlled chloride and sulfide content) are dispersed by vibration in 100 volumes of light desulfurized gasoline to which has been added a corrosion inhibitor in an amount equal to 10 ppm. of water-gasoline mixture.
  • the change of the water content of the gasoline is followed and measured by the Karl Fisher method.
  • Relative Emulsifying Tendency means the ratio of water contents of gasoline with and without inhibitor measured after the gasoline samples stand for 10 minutes.
  • FIG. 3 is a graphic representation of the results.
  • the area suitable for consideration is preferably that between pH 5.8 and pH 6.2.
  • a composition for inhibiting the corrosion of metals due to contact with water containing a chloride contaminant comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, said salt containing an acid to amine ratio of about 1:1 to about 3:1 equivalents of acid per equivalent of amine, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
  • composition of claim 1 in which said dicarboxylic acid is selected from the group consisting of alkyl malonic acids, alkyl succinic acids, alkyl glutaric acids, alkyl adipic acids, alkyl pimelic acids, alkyl suberic acids, alkyl azelaic acids, alkyl sebaric acids, alkyl phthalic acids, and mixtures thereof.
  • composition of claim 1 in which said aliphatic amine is selected from the group consisting of decyl amine, undecyl amine, dodecyl amine, tridecyl amine, tetradecyl amine, pentadecyl amine, hexadecyl amine, heptadecyl amine, octadecyl amine, nonadecyl amine, eicosyl amine, triacontyl amine, laurylamine, myristylamine, palmitylaminc, stearylamine, arachidylamine, palmitolylamine, oleylamine, ricinoleylarnine, dinoleylamine, linolenylamine, and mixtures thereof.
  • composition of claim 1 in which said cyclic amine is selected from the group consisting of cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds.
  • composition of claim 4 in which said cyclic amine or mixture of cyclic amines is selected from the group consisting of morpholine, cyclohexylamine, pyridine and quinoline.
  • composition of claim 1 in which said cyclic amine or mixture of cyclic amines is present in said composition in a ratio of from about 1:1 to about 1:20 weight percent of amine per weight percent of said salt of a dicarboxylic acid and an aliphatic amine.

Abstract

Compositions for inhibiting the corrosion of metals which are contacted with water containing a chloride contaminant will comprise a mixture of a salt of a dicarboxylic acid and an aliphatic amine with a cyclic amine or a mixture of cyclic amines. The composition is exemplified by a salt of a dicarboxylic acid and oleylamine with a volatile cyclic amine comprising a mixture of pyridine, picoline, lutidine, aniline, quinoline, isoquinoline, toluidine, and heavy pyridine.

Description

limited States Patent [191 Scherrer et a1,
[ Sept. 23, 1975 COMPOSITIONS FOR INHIBITING THE CORROSION OF METALS [75] Inventors: Claude-Jacques Scherrer, Le Havre;
Jean-Louis Mauleon, Saint Addresse; Jean-Daniel Gmerek, Bleriot Place, all of France [73] Assignees: Compagnie Francaise de Raffinage,
Paris, France; Universal Oil Products Company, Des Plaines, Ill. part interest to each [22] Filed: Apr. 20, 1973 [21] Appl. No.: 353,048
[30] Foreign Application Priority Data Apr. 18, 1972 France 72.13600 52] US. Cl. 106/14; 21/2.7; 252/390 [51] Int. Cl. C23f 15/00 [58] Field of Search 106/14; 252/390; 21/2.7
[56] References Cited UNITED STATES PATENTS 3,441,419 4/1969 Atterby 106/14 3,585,051 6/1971 Johnson i 106/3 3,654,177 4/1972 Foley 252/356 3,669,615 6/1972 Mu-rray 2l/2.7
Primary Examiner-Lester L. Lee Attorney, Agent, or Firm-James R. Hoatson, Jr.; Raymond H. Nelson; William H. Page, [1
[5 7] ABSTRACT 6 Claims, 3 Drawing Figures US Patent Sept. 23,1975 Sheet 1of3 3,907,578
Figure Rafe of Sample Loss /00 mm. per Year Zone "080C Zone 80-50C US Patent Sept. 23,1975 Sheet 2 of3 3,907,578
QxbEQ mER v N Q I w m in m m o 55E s 4 3 N 95mm US Patent Sept. 23,1975 Sheet 3 of3 3,907,578
Figure 3 Re/af/ve Emu/sify/ng Tendency Pref erre a A cceptab/e g l l 1 5 6 7 pH of Water T} I ...7 k /-t COMPOSHTHONS FOR HNHKBHTTNG THE CUOSIIUN F METALS BACKGROUND OF THE INVENTlON It is known in the prior art that the corrosion of metals in contact with water or water vapors containing contaminants such as hydrogen sulfide may be inhibited by the addition of certain compositions comprising a low-boiling aliphatic monoamine containing from 1 to 6 carbon atoms either alone or in combination with a salt of a high-boiling aliphatic amine and a carboxylic acid. This inhibitor will prevent the corrosion of ferrous metals which have been exposed to corrosive hydrogen sulfide vapors and also to water which contains hydrogen sulfide. However, as hereinbefore set forth, these corrosion inhibitors are limited to the use of low boiling aliphatic monoamines as the volatile portion of the inhibitor, and to the inhibition of vapor phase and water phase corrosion by hydrogen sulfide.
ln contradistinction to this, as will be hereinafter shown in greater detail, the prcsesz. invention is con cerned with a composition which will inhibit the corrosion of metals which are exposed to water or water vapor which contains chloride contaminants. These chloride contaminants are present in crude petroleum fractions and will upon contact with water, at temperatures commonly used in distilling crude petroleum, form hydrochloric acid.
The present invention concerns new corrosion inhibiting agents and especially agents for inhibiting the corrosion which occurs at the top of distillation columns.
It is known that distillation of crude petroleum at atmospheric pressure can be accomplished industrially only if precautions are taken to limit the corrosion of the installations.
Among these precautions, certain measures are taken upstream of the column and others downstream. Measures taken upstream comprise principally desalting of crude petroleum, for example by electrostatic means. The desalting may be followed by a complementary neutralization, for example, by addition of soda.
Measures taken downstream include injection of neutralizing agent in the overhead fraction of the distillation column and injection of corrosion inhibitor.
After desalting and possible complementary neutraL ization, for example, with soda, the crude petroleum still contains sodium chloride, calcium chloride and magnesium chloride. Unlike sodium chloride, which is stable, calcium chloride and magnesium chloride are hydrolyzed by water vapor at a temperature higher than about 120 C. and thus produce hydrochloric acid. Hydrochloric acid is concentrated in the overhead vapors, and in the water condensed from this vapor.
Crude petroleum, after stabilization, contains practically no dissolved hydrogen sulfide, however, the cracking of sulfur compounds which occurs during distillation, forms hydrogen sulfide, which is also removed overhead in the column.
in order to neutralize the acids present in the overhead vapors, a neutralizing agent, such as ammonia in gaseous phase or aqueous solution, is injected into the line which connects the top of the column to the condenser or into a reflux line at the top of the distillation column. This injection is designed to maintain the pH of the water which condenses in this line at a predetermined value or, more precisely, to keep pl-l variations within a predetermined range. The pH of this water is closely related to the salts formed in the column overhead vapor line. Thus, effective control of corrosion in the column overhead vapor line depends on close control of the pH of the water that condenses in this line.
A corrosion inhibitor is generally added downstream of the point of injection of the neutralizing agent. This inhibitor forms a film on all downstream metal surfaces or on the iron sulfide film covering the metal. The corrosion inhibitors available in industry are polar substances, usually nitrogen derivatives dissolved in a solvent. These products are only slightly volatile and decompose at about 250 C., thus they rapidly become concentrated by solubility into the phase consisting of liquid hydrocarbons, in such a. way that they exercise their function only in the presence of the liquid hydrocarbon phase.
An object of the present invention is to extend the domain of action of the corrosion inhibitors even to areas where water condenses, to provide effective protection against corrosion of metal parts in contact with water vapor which may condense.
In one aspect an embodiment of this invention re sides in a composition for inhibiting the corrosion of metals due to contact with water containing a chloride contaminant, said composition comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
Another embodiment of this invention is found in a process for the inhibition of corrosion of metal due to contact of said metal with water containing a chloride contaminant which comprises injecting a neutralizing agent into'the upper part of a distillation column and thereafter injecting a corrosion inhibitor composition downstream of the injection point of said neutralizing agent, said inhibitor composition comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
The first active constituent of the composition of the present invention consists of a salt of a dicarboxylic acid and an amine.
Dicarboxylic acids containing from about 10 to about 50 carbon atoms, and preferably from about 20 to about 40 carbon atoms per molecule are suitable for the synthesis of this salt. Numerous acids answering to these characteristics are available in industry; these are generally mixtures of acids, and may contain impurities without this being a disadvantage. Acids sold under the commercial name of VR-l acid which are a mixture of polybasic, principally dibasic, acids and whose average molecular weight is about 750 are suitable, the same applies to acids sold under the commerical names Dimer-Acids, this name being used generally to characterize bifunctional carboxylic acids D-50- MEX" a composite containing dimer-acids manufactured by the Harchem Division of Union Camp Corporation and Empol 222. The latter is an acid corre sponding to the following formula:
CH'CH and its properties are the following:
molecular weight 600 acidity index 180-192 iodine index 80-95 neutralization index 290-310 saponification index 185-195 index of refraction at 25 C. 1.4919 density at 155 C. in relation to water at 15.5 C. 0.95 flash point 277 C. ignition point 316 C. viscosity at 100 C. 100 cst VR-l acid is manufactured by Rohm and Haas Company and D50 MEX is manufactured by l-larChem Co. Tl-le composition of these two acids is disclosed in US. Pat. No. 2,880,095 and US. Pat. No. 2,948,598.
In addition alkyl dicarboxylic acids, of which the alkyl portion comprises at least ten carbon atoms may also be used. Suitable acids include alkyl malonic acids, alkyl succinic acids, alkyl glutaric acids, alkyl adipic acids, alkyl pimelic acids, alkyl sebaric acids, alkyl phthalic acids. Mixtures of these acids as well as dicarboxylic acids of higher molecular weight are also suitable for reaction with the hereinafter set forth aliphatic amines.
Aliphatic amines containing from about to about 30, and preferably from about 12 to about 20, carbon atoms per molecule are suitable for reaction with the aforementioned acids to form the desired salt thereof. These are monoamines such as a primary amine and belong to the group consisting of decylamine, undecylamine, dodecylamine, tridecylamine, tetradecyl-, pentadecylhexadecyl-, heptadecyl, octadecyl-, nonadecyl-, eicosyl-, heneicosyl-, docosyl-, tricosyl-, tetracosyl-, pentacosyl-, hexacosylheptacosyl-, octacosyl-, nonacosyl-, triacontylamine, the corresponding alkenylamines and mixtures of these amines. These amines are prepared from the corresponding fatty acids and can be named according to the acid from which they derive: laurylamine, myristylamine, palmitylstearyl-, arachidyl-, palmitolyl-, oleyl-, ricinoleyl-, dinoleyllinolenylamine, etc. Mixtures of these amines are available under commercial names such as Alamine H26D, Armeen HTD. These products include mixtures of alkyl amines whose alkyl portions contain principally between 16 and 18 carbon atoms, and, in smaller quantities, 14 carbon atoms. Other fatty amines such as tallowamine, cocoamine, palmamine, etc. and their mixtures, as well as the hydrogenated derivatives of these amines may also be employed.
The salts of dicarboxylic acids and amines are obtained by any convenient means known in the art and, principally, temperature, preferably with strong agitation. Higher temperatures may be employed but they should not exceed 90 C. to avoid formation of amides or other undesirable products. In general, the acid and amine are used in a ratio in the range of from about 1:1 to about 3:1 equivalents of acid per equivalent of amine. One molecule of dibasic acid contains two equivalents of acid, one molecule of monoamine contains one equivalent of base.
by simply mixing acid and amine at room The second active constituent of the corrosion inhibitor consists of a cyclic amine or mixture of cyclic amines with ten or less carbon atoms. As used in the present specification and appended claims the term cyclic amine will include cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds. For the rest of the description, this constituent will be designated as volatile amine, for its function is precisely to be condensed last and thus follow the water condensation. The volatile amine may be chosen from the group consisting of cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds. By way of example, one may cite morpholine, cyclohexylamine, aniline, crude or refined quinoline and pyridine bases produced from coal tar extracts, etc. These latter bases have a boiling point generally between and 250 C. and are generally carried over with water vapor. They include the following nitrogen-containing cyclic compounds:
pyridine (1-2 percent), picolines (5-10 percent),
lutidines (10-15 percent), collidines (4-6 percent),
aniline (25-30 percent), toluidines 10-15 percent), quinoline (25-30 percent), isoquinoline (2-3 percent),
quinaldine (3-4 percent), heavy pyridines (1-2 percent).
The volatile amine of the type hereinbefore set forth and the salt of the dicarboxylic acid and amine may be present in the composition in a range of from about 1:1 to about 1:20 weight percent of amine per weight percent of salt. If so desired, they may be dissolved in an aliphatic alcohol or in an organic solvent such as the aromatic hydrocarbons (benzene, toluene, xylenes, ethylbenzene, diethylbenzene, cumene, etc.), paraffinic hydrocarbons (hexane, heptane, octane, nonane, decane, undecane, dodecane, etc. as well as mixtures of hydrocarbons such as the naphthas and kerosene, may be used.
In order to be industrially useful, the corrosion inhibitor should form a film on the parts to be protected, which film will not be stripped off by fluid flow and in addition the corrosion inhibitor should also affect the quality of the hydrocarbon products especially the gasolines removed overhead in the distillation column as little as possible, consequently the inhibitor should not promote an emulsification of oil and water.
The advantages of the present invention are illustrated by the following examples and graphic representations of test results.
FIG. 1 is a graphic representation of the loss of thickness of carbon steel bars placed in different zones of condensation of overhead vapors, as a function of temperature and of pH;
FIG. 2 is a graphic representation of the loss of thickness of the electrode of a corrosion measuring device as a function of time and of the hydrodynamic conditions of the flow of fluid on the electrode;
FIG. 3 is a graphic representation of the relative emulsive power of the different inhibitors as a function of pH.
EXAMPLE I This example concerns the measurement of the amount of protection against corrosion of various inhibitors.
A distillation column with reflux of overhead material is fed by non-desalted Quatar crude petroleum, containing 1.2 wt. percent S, injected at a temperature of 220 C., with a flow rate of 4.7 liters/hour. Since the salinity of the crude petroleum is variable, a constant value of 50 ppm of chloride is maintained by addition of hydrochloric acid to the water vapor injected to simulate stripping. The stripping vapor is equivalent to 3 wt. percent of the feed or wt. percent of the overhead vapor. The crude petroleum does not contain hydrogen sulfide. The crude is deaerated to contain less than 0.1 ppm of dissolved oxygen.
A comparison is made of the weight loss of the carbon steel samples in various zones of overhead vapor condensation, for various pH values (5, 6 and 7), which are maintained at a constant rate by the injection of ammonia. The corrosion inhibitor is injected downstream of the ammonia in a quantity equal to 10 ppm of overhead vapors. The results obtained are shown in Table I following: they are expressed in 1/100 mm of thickness of carbon steel loss per year.
T is a commercially available corrosion inhibitor comprising a fatty alkanolamide and volatile amines; T is a commercially available corrosion inhibitor which does not contain volatile compounds; T is obtained by adding to T percent by weight of a volatile compound; A is an inhibitor conforming to the invention.
A is composed of a mixture:
30 wt. percent salt of a carboxylic diacid (D-50- MEX) and oleylamine, prepared by the reaction with agitation at room temperature and, of two equivalent acids to one equivalent amine.
30 wt. percent of a mixture of volatile amines extracted from coal tar; this mixture boils between 90 C. and 250 C. and contains:
pyridine base 1.0 picolines +2,6 lutidine 9.5 lutidincs 15.5 collidines 6.0 aniline 26.5 quinoline 23.5 isoquinoline 2.5 toluidines 1 1.5 quinaldine 2.0 heavy pyridines 2.0
40 wt. solvent composed of catalytic naphtha. FIG. 1 is a graphic representation of the results.
EXAMPLE n This example shows the resistance of the inhibitor film to the stripping action of fluid flow.
Fluid velocities present in distillation columns over head lines, where water and hydrocarbon condensation take place are, for gases between 15 and meters/sec. and, for liquids between 3 and. 6 meters/sec. Fluid flowing at these velocities may strip away the film of corrosion inhibitor.
A mixture of light desulfurized gasoline and an equal volume of decarbonated distilled water, having a controlled chloride and sulfur content, and a pH of 5 which is adjusted by the addition of ammonia, is agitated in an enclosure by means of a turbine. This agitation creates hydrodynamic conditions comparable to those existing at the industrial condensation. point. A corrosion inhibitor is added in a quantity equal to 5 or 10 ppm of the total water-gasoline mixture.
A corrosion measuring device, whose electrodes are of soft steel, is placed in the enclosure. A resistant film of corrosion inhibitor is deposited on the corrosion measuring device.
The measurements are taken intermittently in the aqueous phase, after stopping agitation. They allow determination of the amount of protection of the device as a function of time for a relatively slow flow velocity of 1.3 meters/sec. then at a velocity of 5.5 meters/sec. Table 11 contains the results obtained for the inhibitors tested in Example 1.
FIG. 2 represents the rate of corrosion of the device as a function of time under previously cited conditions for a corrosion inhibitor concentration of 10 ppm. The left portion corresponds to the formation of a protec' tive film on the device. The existence of the film leads, more or less rapidly depending on the inhibitor, to a stabilization and reduction of the rate of corrosion. When theflow speed is increased, the film is stripped off to some extent. The rate of corrosion is stabilized at a value always higher than at slower flow velocity. The results are expressed in thickness lost per year (in 1/ 100 millimeters).
Inhibitor A, of the present invention, is remarkable in that the two corrosion values are very close to each other. inhibitor A is only very slightly affected by the high fluid velocity. A synergistic effect, which was not foreseen, is exidenced.
TABLE 1 Temperature 1 10 90C. 80 C. 30 20 C.
corrosion inhibitors ph 5 6 7 5 6 7 5 6 7 T 15 2O 15 18 19 1O 18 13 5 T 7 17 16 26 46 58 16 27 20 T 8 1 1 6 1 1 7 6 10 5 3 A 20 18 2O 22 23 22 17 12 6 without inhibitor 85 76 6O 8O 78 8O 45 38 35 Values in table are reported as rate of metal loss. 0.01 mrn/year.
TABLE ll Flow Speed Flow Speed Inhibitor Concentration 1.3 meters/sec. 5.5 meters/sec.
(p.p.m.) Protection Loss of Protection Protection Measured After Measured After Remaining T 5 95.3 (1 hour 30 min.) 28.6 (30 min.) 66.7 10 92.6 (2 hours) 21 (36 min.) 71.6 T 5 40 (1 hour 18 min.) 28.3 (42 min.) 11.7 10 50.5 (1 hour 25 min.) 25.2 (42 min.) 25.3 T, 5 91.6 (1 hour 36 min.) 26.6 (42 min.)
TABLE ll-continued Flow Speed Flow Speed Inhibitor Concentration l.3 meters/secv 5.5 meters/sec.
(p.p.m.) Protection (76) Loss of Protection Protection Measured After (7d Measured After Remaining (72) 10 833 (l hour 24 min.) 23.6 (42 min.) 60
A 77.6(] hour l8 min.) 9.7 (27 min.) 67.9 79 (2 hours) 5.7 (42 min.) 73.3
EXAMPLE III This example measures the emulsifying tendencies of water in gasoline in the presence of various corrosion inhibitors.
In a cylinder, volumes of decarbonated water (having a controlled chloride and sulfide content) are dispersed by vibration in 100 volumes of light desulfurized gasoline to which has been added a corrosion inhibitor in an amount equal to 10 ppm. of water-gasoline mixture. The change of the water content of the gasoline is followed and measured by the Karl Fisher method.
The results obtained at various pH levels of water for the inhibitors tested in Examples l and II are assembled in Table III.
Relative Emulsifying Tendency means the ratio of water contents of gasoline with and without inhibitor measured after the gasoline samples stand for 10 minutes.
TABLE III Relative Emullnhibitor pH sifying Tendency T, 5 1.3 6 L3 7 0.2 T 5 0.7 6 1.3 7 0.5 T 5 0.5 6 0.8 7 0.4 A 5 0.6 6 0.6 7 0.4
FIG. 3 is a graphic representation of the results. The area suitable for consideration is preferably that between pH 5.8 and pH 6.2.
The preceding examples have shown the properties of inhibitors of the present invention; they realize a compromise which satisfies three requirements:
i. protection against corrosion in water condensation zones,
ii resistance of the protective film to pulling away in zones of severe hydrodynamic operation,
iii minimal disruption of gasoline-water separation.
We claim as our invention:
1. A composition for inhibiting the corrosion of metals due to contact with water containing a chloride contaminant, said composition comprising a mixture of (a) a salt of a dicarboxylic acid containing from about 10 to about 50 carbon atoms and an aliphatic amine containing from about 10 to about 30 carbon atoms, said salt containing an acid to amine ratio of about 1:1 to about 3:1 equivalents of acid per equivalent of amine, and (b) a cyclic amine or a mixture of cyclic amines containing 10 or less carbon atoms.
2. The composition of claim 1 in which said dicarboxylic acid is selected from the group consisting of alkyl malonic acids, alkyl succinic acids, alkyl glutaric acids, alkyl adipic acids, alkyl pimelic acids, alkyl suberic acids, alkyl azelaic acids, alkyl sebaric acids, alkyl phthalic acids, and mixtures thereof.
3. The composition of claim 1 in which said aliphatic amine is selected from the group consisting of decyl amine, undecyl amine, dodecyl amine, tridecyl amine, tetradecyl amine, pentadecyl amine, hexadecyl amine, heptadecyl amine, octadecyl amine, nonadecyl amine, eicosyl amine, triacontyl amine, laurylamine, myristylamine, palmitylaminc, stearylamine, arachidylamine, palmitolylamine, oleylamine, ricinoleylarnine, dinoleylamine, linolenylamine, and mixtures thereof.
4. The composition of claim 1 in which said cyclic amine is selected from the group consisting of cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds.
5. The composition of claim 4 in which said cyclic amine or mixture of cyclic amines is selected from the group consisting of morpholine, cyclohexylamine, pyridine and quinoline.
6. The composition of claim 1 in which said cyclic amine or mixture of cyclic amines is present in said composition in a ratio of from about 1:1 to about 1:20 weight percent of amine per weight percent of said salt of a dicarboxylic acid and an aliphatic amine.

Claims (6)

1. A COMPOSITION FOR INHIBITING THE CORROSION OF METALS DUE TO CONTACT WITH WATER CONTAINING A CHLORIDE CONTAMINANT, SAID COMPOSITION COMPRISING A MIXTURE OF (A) A SALT OF A DICARBOXYLIC ACID CONTAINING FROM ABOUT 10 TO ABOUT 50 CARBON ATOMS AND AN ALIPHATIC AMINE CONTAINING FROM ABOUT 10 TO ABOUT 30 CARBON ATOMS, SAID SALT CONTAINING AN ACID TO AMONE RATIO OF ABOUT 1:1 TO ABOUT 3:1 EQUIVALENT OF ACID PER EQUIVALENT OF AMINE, AND (B) A CYCLIC AMINE OR A MIXTURE OF CYCLIC AMINES CONTAINING 10 OR LESS CARBON ATOMS.
2. The composition of claim 1 in which said dicarboxylic acid is selected from the group consisting of alkyl malonic acids, alkyl succinic acids, alkyl glutaric acids, alkyl adipic acids, alkyl pimelic acids, alkyl suberic acids, alkyl azelaic acids, alkyl sebaric acids, alkyl phthalic acids, and mixtures thereof.
3. The composition of claim 1 in which said aliphatic amine is selected from the group consisting of decyl amine, undecyl amine, dodecyl amine, tridecyl amine, tetradecyl amine, pentadecyl amine, hexadecyl amine, heptadecyl amine, octadecyl amine, nonadecyl amine, eicosyl amine, triacontyl amine, laurylamine, myristylamine, palmitylamine, stearylamine, arachidylamine, palmitolylamine, oleylamine, ricinoleylamine, dinoleylamine, linolenylamine, and mixtures thereof.
4. The composition of claim 1 in which said cyclic amine is selected from the group consisting of cycloaliphatic amines, aromatic amines and nitrogen-containing heterocyclic compounds.
5. The composition of claim 4 in which said cyclic amine or mixture of cyclic amines is selected from thE group consisting of morpholine, cyclohexylamine, pyridine and quinoline.
6. The composition of claim 1 in which said cyclic amine or mixture of cyclic amines is present in said composition in a ratio of from about 1:1 to about 1:20 weight percent of amine per weight percent of said salt of a dicarboxylic acid and an aliphatic amine.
US353048A 1972-04-18 1973-04-20 Compositions for inhibiting the corrosion of metals Expired - Lifetime US3907578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/556,372 US3981780A (en) 1973-04-20 1975-03-07 Compositions for inhibiting the corrosion of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7213600A FR2180481B1 (en) 1972-04-18 1972-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/556,372 Division US3981780A (en) 1973-04-20 1975-03-07 Compositions for inhibiting the corrosion of metals

Publications (1)

Publication Number Publication Date
US3907578A true US3907578A (en) 1975-09-23

Family

ID=9097057

Family Applications (1)

Application Number Title Priority Date Filing Date
US353048A Expired - Lifetime US3907578A (en) 1972-04-18 1973-04-20 Compositions for inhibiting the corrosion of metals

Country Status (10)

Country Link
US (1) US3907578A (en)
JP (1) JPS5244302B2 (en)
BE (1) BE798273A (en)
CA (1) CA1001836A (en)
DE (1) DE2319833C3 (en)
FR (1) FR2180481B1 (en)
GB (1) GB1424544A (en)
IT (1) IT982051B (en)
NL (1) NL165510C (en)
ZA (1) ZA732646B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977981A (en) * 1975-11-14 1976-08-31 Shell Oil Company Inhibiting corrosion with macrocyclic tetramine corrosion inhibitors
US4131583A (en) * 1977-12-01 1978-12-26 Northern Instruments Corporation Corrosion inhibiting compositions
US4344861A (en) * 1980-01-15 1982-08-17 Uop Inc. Bis-amides as corrosion inhibitors
US4869841A (en) * 1982-12-27 1989-09-26 Bp Chimie S.A. Process for the treatment of aqueous fluids to reduce corrosion comprising dicarboxylic aliphatic acid salt and polyol
WO1993013186A1 (en) * 1991-12-23 1993-07-08 Exxon Research And Engineering Company Lubricating oil having improved rust inhibition and demulsibility
US5891364A (en) * 1996-07-09 1999-04-06 Geo Specialty Chemicals, Inc. Corrosion inhibitors for cement compositions
US6071436A (en) * 1995-12-01 2000-06-06 Geo Specialty Chemicals, Inc. Corrosion inhibitors for cement compositions
US20120145187A1 (en) * 2009-07-06 2012-06-14 Naigai Chemical Products Co., Ltd. Method for treatment of iron-based metal surface exposed to superheated steam
US20160215400A1 (en) * 2015-01-23 2016-07-28 Chemtreat, Inc. Compositions and methods for inhibiting corrosion in hydrostatic systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135832A1 (en) * 1981-09-10 1983-03-24 Hoechst Ag, 6000 Frankfurt BISAMID, METHOD FOR THE PRODUCTION AND USE THEREOF
ATE177480T1 (en) * 1994-11-08 1999-03-15 Betz Europ Inc METHOD USING A WATER SOLUBLE CORROSION INHIBITOR BASED ON SALTS OF DICARBONIC ACIDS, CYCLIC AMINES AND ALKANOLAMINES.
FR2846670B1 (en) * 2002-11-06 2005-09-23 Concorde Chimie INHIBITOR COMPOSITION FOR ENCOURAGING AND CORROSION OF WATER CIRCUITS
RU2749958C2 (en) * 2019-10-31 2021-06-21 Федеральное Государственное Бюджетное Научное Учреждение Уфимский Федеральный Исследовательский Центр Российской Академии Наук (Уфиц Ран) Method for protecting steel against corrosion in mineralized water-oil environments containing hydrogen sulfide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441419A (en) * 1965-04-05 1969-04-29 Albin Atterby Process for cleaning and corrosion protection of metals and a composition therefor
US3585051A (en) * 1966-12-08 1971-06-15 Swift & Co Method of polishing surfaces
US3654177A (en) * 1970-01-12 1972-04-04 Witco Chemical Corp Emulsifier composition
US3669615A (en) * 1970-09-28 1972-06-13 William Bruce Murray Corrosion inhibiting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889276A (en) * 1955-03-30 1959-06-02 Pan American Petroleum Corp Vapor space corrosion inhibitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441419A (en) * 1965-04-05 1969-04-29 Albin Atterby Process for cleaning and corrosion protection of metals and a composition therefor
US3585051A (en) * 1966-12-08 1971-06-15 Swift & Co Method of polishing surfaces
US3654177A (en) * 1970-01-12 1972-04-04 Witco Chemical Corp Emulsifier composition
US3669615A (en) * 1970-09-28 1972-06-13 William Bruce Murray Corrosion inhibiting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977981A (en) * 1975-11-14 1976-08-31 Shell Oil Company Inhibiting corrosion with macrocyclic tetramine corrosion inhibitors
US4131583A (en) * 1977-12-01 1978-12-26 Northern Instruments Corporation Corrosion inhibiting compositions
US4344861A (en) * 1980-01-15 1982-08-17 Uop Inc. Bis-amides as corrosion inhibitors
US4869841A (en) * 1982-12-27 1989-09-26 Bp Chimie S.A. Process for the treatment of aqueous fluids to reduce corrosion comprising dicarboxylic aliphatic acid salt and polyol
WO1993013186A1 (en) * 1991-12-23 1993-07-08 Exxon Research And Engineering Company Lubricating oil having improved rust inhibition and demulsibility
US5227082A (en) * 1991-12-23 1993-07-13 Exxon Research And Engineering Company Lubricating oil having improved rust inhibition and demulsibility
US6071436A (en) * 1995-12-01 2000-06-06 Geo Specialty Chemicals, Inc. Corrosion inhibitors for cement compositions
US5891364A (en) * 1996-07-09 1999-04-06 Geo Specialty Chemicals, Inc. Corrosion inhibitors for cement compositions
US20120145187A1 (en) * 2009-07-06 2012-06-14 Naigai Chemical Products Co., Ltd. Method for treatment of iron-based metal surface exposed to superheated steam
US20160215400A1 (en) * 2015-01-23 2016-07-28 Chemtreat, Inc. Compositions and methods for inhibiting corrosion in hydrostatic systems
US10221489B2 (en) * 2015-01-23 2019-03-05 Chemtreat, Inc Compositions and methods for inhibiting corrosion in hydrostatic systems

Also Published As

Publication number Publication date
JPS4917333A (en) 1974-02-15
IT982051B (en) 1974-10-21
AU5469473A (en) 1974-10-24
NL165510C (en) 1981-04-15
ZA732646B (en) 1974-04-24
NL7305456A (en) 1973-10-22
DE2319833A1 (en) 1973-10-25
FR2180481A1 (en) 1973-11-30
DE2319833C3 (en) 1978-07-13
GB1424544A (en) 1976-02-11
BE798273A (en) 1973-10-16
NL165510B (en) 1980-11-17
FR2180481B1 (en) 1974-12-20
DE2319833B2 (en) 1977-11-17
CA1001836A (en) 1976-12-21
JPS5244302B2 (en) 1977-11-07

Similar Documents

Publication Publication Date Title
US3981780A (en) Compositions for inhibiting the corrosion of metals
US3907578A (en) Compositions for inhibiting the corrosion of metals
US4062764A (en) Method for neutralizing acidic components in petroleum refining units using an alkoxyalkylamine
US2736658A (en) Method of protecting metal surfaces from corrosion and corrosion inhibitor compositions
US3447891A (en) Corrosion inhibiting process
US2646399A (en) Method of inhibiting corrosion of metals
US3183070A (en) Rust inhibited oil containing aliphaticaminoalkylsuccinates
US3997469A (en) Corrosion inhibition with oil soluble diamides
US3981682A (en) Corrosion inhibiting compositions and process for inhibiting corrosion of metals
US3766053A (en) Corrosion inhibitors for refining & petrochemical processing equipment
US3458453A (en) Corrosion inhibiting composition containing a neutral amide and c3-c8 volatile amine
US2944969A (en) Prevention of rust and corrosion
US2567156A (en) Corrosion inhibitor for concentrated phosphoric acid
US7285519B2 (en) Oil production additive formulations
US3976593A (en) Amine bisulfites
US2828259A (en) Corrosion inhibiting composition
US3060007A (en) Hydrocarbon oils containing reaction products of imidazolines and alkylene iminodiacetic acids
US4229284A (en) Corrosion control method using methoxypropylamine (mopa) in water-free petroleum and petrochemical process units
US3061553A (en) Corrosion inhibitors
CA1113503A (en) Ether diamine salts of n-acylsarcosines and their use as corrosion inhibitors
US20200370185A1 (en) Mitigating Internal Corrosion of Crude Oil Transportation Pipeline
US2913305A (en) Process for corrosion inhibition
US4855035A (en) Method of abating corrosion in crude oil distillation units
US2865817A (en) Coke quenching liquids
GB985117A (en) Corrosion inhibitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD;REEL/FRAME:005006/0782

Effective date: 19880916

AS Assignment

Owner name: UOP, A GENERAL PARTNERSHIP OF NY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UOP INC.;REEL/FRAME:005077/0005

Effective date: 19880822