US3903331A - Method of making a flocked porous air permeable fabric - Google Patents

Method of making a flocked porous air permeable fabric Download PDF

Info

Publication number
US3903331A
US3903331A US35109673A US3903331A US 3903331 A US3903331 A US 3903331A US 35109673 A US35109673 A US 35109673A US 3903331 A US3903331 A US 3903331A
Authority
US
United States
Prior art keywords
substrate
binder
flock
flocked
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Charles Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Merchants and Manuf Inc
Original Assignee
United Merchants and Manuf Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Merchants and Manuf Inc filed Critical United Merchants and Manuf Inc
Priority to US05351096 priority Critical patent/US3903331A/en
Priority to US05/581,252 priority patent/US3961116A/en
Application granted granted Critical
Publication of US3903331A publication Critical patent/US3903331A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/16Flocking otherwise than by spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23943Flock surface

Definitions

  • ABSTRACT A process for making a porous flocked fabric by coating one side of a loosely interlaced substrate with a flock binder. The coated side of the substrate is flocked and the binder is allowed to migrate or strike through to the opposite side of the substrate. A particulate material, e.g., flock, ground flock, talc, etc., is then applied to said opposite side by means of an auxiliary substrate and the binder is permanently set by 1,645,858 10 1927 Hayes.. ....117 33 1,810,328 6/1931 Slater ....117 33x uring.
  • a particulate material e.g., flock, ground flock, talc, etc.
  • Such fabrics normally comprise three layers, a backing fabric layer, an adhesive interlayer and a flocked layer of upstanding fibers. Because of the nature of the adhesive interlayer, i.e., the adhesive used spreads over the backing layer in a continuous film, this layer constitutes essentially a gas or moisture impermeable barrier. For this reason, flocked fabrics have heretofore only been used in relatively heavy fabrics in the apparel field.
  • the flocked fabric of the present invention is prepared by coating one side of a loosely interlaced substrate with a flock binder or adhesive and then applying raised fibers, e.g., flock or pile, to the coated side of said substrate. Thereafter, the coated substrate is held for a sufficient time to allow the binder to migrate through the substrate to the opposite side thereof. A particulate material is then applied to the opposite side of the substrate whereby it is secured to the substrate by virtue of the migrated binder. Thereafter, the binder is permanently set.
  • the product obtained comprises a laminate having a backing layer of a loosely interlaced fabric which has a non-continuous, permeable coating of the binder thereon.
  • the binder also permeates through the spaces of the backing layer.
  • the laminate possesses a top layer of upstanding fibers, i.e., flock or pile, which is secured to the backing layer by the binder.
  • the laminate further possesses a bottom layer ofa particulate material which is secured to the backing layer by the binder.
  • the product obtained does not have a continuous film or sheet of binder or adhesive thereon.
  • the binder is sufficiently dispersed or distributed on the backing layer such that a relatively uniform layer of raised fibers is adhered thereto.
  • the fabric remains porous because of the discontinuous nature of the adhesive or binder layer. This contributes both to the soft aesthetic hand of the fabric as well as the relative permeability thereof.
  • FIG. 1 is a cross-sectional view of the present invention.
  • FIG. 2 is a schematic diagram of the process of the present invention.
  • FIG. 3 is a schematic diagram of yet another embodiment of the process of the present invention.
  • the laminate of the present invention is shown generally at 100. It comprises an upper layer of raised fibers 102, e.g., a flock or pile, se cured to a backing layer or substrate of a loosely interlaced fabric 104.
  • the raised fibers 102 are secured to the backing layer 104 by an adhesive binder which is disposed on the backing 104 in a noncontinuous coating so as not to interfere with the air and moisture permeability of the laminate.
  • the binder permeates through the backing 104 in order to secure a bottom layer of particulate material 106 to the back side of the backing layer 104.
  • flock is intended to mean short fibers or filamentary material, generally less than one-quarter inch in length, although flock of greater length is known and can be used.
  • pile fibers is generally intended to refer to a classification of upstanding fibers having somewhat longer length than flock, e.g., one-half to 2 or 3 inches in length. However, it is understood that any type of fibers or groups of fibers which are intended to be disposed in a substantially upright position and attached to a backing or support material by use of an adhesive binder can be used for the present invention.
  • particulate material is intended to include flock fibers, ground flock or powdered fibers, or any other type of finely provided or granulated solid material which could suitably and desirably be secured to the bottom side of the substrate by the binder.
  • talc a type of finely provided or granulated solid material which could suitably and desirably be secured to the bottom side of the substrate by the binder.
  • talc a type of finely provided or granulated solid material which could suitably and desirably be secured to the bottom side of the substrate by the binder.
  • talc, sand, powdered rubber, etc. could be used, depending on the end use and aesthetic results contemplated.
  • the laminate of the present invention may be produced by first coating a substrate comprised of a loosely interlaced fabric 12 obtained from roll 10 with an adhesive binder applied with knife 14.
  • the adhesive may be applied with a roll, stipple roller, and other conventional methods well known in the art.
  • the textile fabric used as the substrate may be Woven, non-woven, knitted, etc.
  • the fabric should be a relatively loosely interlaced material such that strike through of the binder can occur.
  • Typical examples of such a material would be a light weight knitted fabric such as a ninon, nylon tricot, batiste, chiffon, chiffonette, and marquisette.
  • single or double knitted fabrics, including nylon tricot ranging in weight from about 12 to 20 yards per pound (54 inch width) can be used.
  • Flocking box 16 is a conventional type flocker as is well known in the art. Thus, it can be either of the electrostatic or beater bar type. The production of flocked fabrics by such methods are well known in the art (see for example U.S. Pat. No. 3,079,212, incorporated herein by reference).
  • the substrate 12 After passing through flocking box 16, the substrate 12 is passed over a means for depositing a particulate material as defined hereinabove to the bottom side thereof. As shown in FIG. 2, this means typically may comprise a series ofjets 20 for blowing or directing the particulate material 21 against the bottom side of substrate 12. A chamber 22 is shown for retrieving any particulate material which fails to adhere to the bottom side of the substrate.
  • the substrate is then conveyed through a curing chamber 24 of the type normally used in the art.
  • curing may be effected by heat or by ultra-violet or other ionizing type radiation.
  • the substrate is conveyed onto wind up roll 28.
  • the flock binder which is used may be any type of curable adhesive normally used for flocking purposes or which is suitable for adhering raised fibers to a fabric substrate.
  • adhesives may be foamed or unfoamed as is well known in the art.
  • such adhesives are generally classified as water base, solvent base, or curable liquid systems.
  • such adhesives are generally classified as water base, solvent base adhesives or curable liquid systems.
  • Water base adhesives consist of a binder, generally an emulsion polymer, and a viscosity builder. They may also contain plasticizers, thermosetting resins, curing catalysts, stabilizers and other additives well known in the art.
  • the emulsion polymers generally used include acrylic, vinylacrylic, vinyl, urethane and styrenebutadiene latexes.
  • the viscosity is dictated by the particular backing being used and the specific adhesive.
  • the adhesive must migrate or strike-through the porous fabric and contact the particulate material which is applied to the back side of the substrate. If the adhesive is too viscous, it will not do this. On the other hand, if the binder is not sufficiently viscous, too much strike-through will occur. This, of course, can create difficulties with respect to processing as well as undesirable product properties.
  • adhesives having a viscosity in the range from about 10,000 to 500,000 centipoises is sufficient.
  • the viscosity is generally in the range less than about 3,000 centipoises as determined by the Brookfield method with spindle No. 6 at 4 rpm.
  • Blow up-ratios for such adhesives are generally in the range from about 1:2 to 1:10, and preferably from 1:2 to 1:5.
  • Methods for forming adhesives for this use are well known in the art, see for example, U.S. Pat. No. 3,607,341, incorporated herein by reference.
  • Suitable thickeners for use to build viscosity include water soluble polymers, such as carboxymethyl cellulose, hydroxyethyl cellulose, polyoxyethylenes and natural gums as well as alkyl swellable polymers, such as, highly carboxylated acrylic emulsion polymers.
  • Plasticizers may be added to alter the hand of the finishecl goods or to improve the flow and levelling characteristics of the adhesives. Where the primary goal is the latter, fugitive plasticizers, such as, the phthalate esters may be employed.
  • Thermosetting resins such as methylol-melamines, ureaformaldehyde condensates or 'phenol formaldehyde condensates may be incorporated to improve durability or abrasion resistance of the finished goods.
  • Catalysts such as oxalic acid diammonium phosphate can be used to increase the rate of cure of the adhesive.
  • More specialized additives include ultra-violet absorbers.
  • Solvent adhesives include both fully reacted soluble polymers, such as, acrylic homo and co-polymers, polyesters, polyamides, or polyurethanes and two package systems, such as, polyester polyols with diisocyanates or isocyanate prepolymers and epoxies with polyamines.
  • the polymer or pre-polymer is dissolved in a suitable solvent which is preferably low boiling, and then thickened to the proper viscosity in a manner similar to that used for the water-base adhesives.
  • Catalysts, cross-linking agents, stabilizers, pigments, or dyes may also be incorporated.
  • Curable liquid systems include two-part urethanes, e.g., a diisocyanate and a polymeric polyol, flexible epoxy systems, e.g., liquid epoxy resins or solutions of solid epoxy resins coreacted with polyamides or polyamines and dimercaptans and a polyene with a peroxide.
  • hot melts can be used, such as, polyethylenevinyl acetate copolymer, polyethyleneethylacrylate copolymer, and plasticized polyvinylchloride in the form of a plastisol which can be heated to fuse and then cured.
  • the general concept of the present invention contemplates the adherence of a bottom layer of particulate material to a loosely interlace structure carrying raised fibers as a top layer by virtue of the migration or strike-through of adhesive through the substrate. It is understood, of course, that many methods for applying the bottom layer of particulate material to the substrate having the migrated binder or adhesive therein will be apparent to the skilled art worker. In FIG. 3, a preferred method of such application is shown.
  • a support sheet 103 obtained from roll 101 is coated with a first adhesive binder applied with knife 105.
  • Supporting sheet 103 may be any type of sheet material which is suitable for use on a temporary basis and which is relatively inexpensive inasmuch as it usually may only be used once and then disposed of.
  • sheet 103 may be paper, plastic, fabric, etc.
  • Other supporting sheets, e.g., a back cloth, a back grey as used in roller printing, etc, which are suitable for reuse can be used. it is important, however, that sheet 103 be capable of withstanding the various flocking and heating treatments used in the present process.
  • the first adhesive material may be any type of flock binder known to the art which is suitable for binding the flock to the supporting sheet on a temporary basis.
  • a binder material would be an adhesive composition or one which possesses minimal adhesive properties.
  • the wax merely serves to retain flock on the paper in a relatively loose form, but to hold it sufficiently such that it is not blown off in the flocking box.
  • the flock which is contacted with the paper remains thereon for a relatively short time, i.e., until it reaches the second flocking step 122 which will be hereinafter described.
  • uncurable adhesive composition means a composition which when subjected to the usual curing conditions, e.g., heat, ultra-violet, etc, will not permanently set or adhere to the substrate.
  • compositions typically are low molecular weight polyethylene, polystyrene and the like.
  • starched based adhesives such as, canary dextron and British Gum
  • gums such as gum arabic and gum tragacanth
  • water soluble, non-curing polymers such as, the polyvinyl alcohols, particularly hydrolyzed polyvinyl acetate, etc.
  • glycerin and urea Another example of such a composition.
  • a curable adhesive for the supporting sheet.
  • this can only be used when the laydown of the adhesive is minimal. That is to say, only a sufficient thickness of adhesive is placed on the supporting sheet so as to secure a minimum amount of particulate material, as hereinafter described, to the sheet.
  • the minimal amount of particulate material which is secured to the adhesive itself, serves to further temporarily adhere the particulate material which is adjacent to or on top of it. This latter particulate material, inasmuch as it is not in actual contact with the adhesive, can be removed from the supporting sheet in the manner as hereinafter described.
  • a low solids neoprene solution (2-3%), low solids acrylic in solvent form, sodium alginate thickeners, etc., can be used as the temporary binder.
  • Flocking box 107 is a conventional type flocker as is well known in the art. Thus it can be either of the electrostatic or beater bar type.
  • the flocked paper After exiting flocking box 107, the flocked paper is married to a loosely interlaced fabric 112 such as is described above in connection with FIG. 2.
  • Fabric 112 is delivered from roll 110 past a positioning roll 114 and then passes together with supporting sheet 103 through rolls 116.
  • the rolls 116 do not exert any substantial pressure on the laminate, but are simply sufficiently close together to maintain the fabric and the supporting sheet substantially next to one another.
  • laminate 118 is coated on the fabric side with a second flock binder by knife 120.
  • the second flock binder possess a greater affinity for the flock than the first flock binder.
  • the flock binder applied with knife also serves to secure flock picked up from supporting sheet 103 to the back side of fabric 112.
  • the second flock binder is a curable flock adhesive, and is the same material as described herein in connection with FIG. 2.
  • the laminate 118 is passed through flocking box 122 using conveyor 124. Again, this flocking step is typical of flocking methods well known to the art.
  • the supporting sheet 102 is separated from the flocked fabric 128. As shown, supporting sheet 103 is then rolled up on roll 124 for disposal or possible reuse.
  • the second flock binder migrates or strikes-through to the opposite side of fabric 112.
  • the bottom side of fabric 112 is, of course, in direct contact with the particulate material which is on supporting sheet 103. Accordingly, this particulate material will be picked up and secured to the bottom side of fabric 112 by the migrated binder. It is easily within the skill of the operator of the process to adjust the travel speeds to assure that sufficient strike through occurs during this period to secure the desired amount of particulate material onto the bottom side of fabric 118. Understandably, the exact time required depends on a number of factors, e.g., the adhesive binder used, the density of the loosely interlaced fabric, etc.
  • the fabric 128 which is now flocked or carries raised fibers on the upper side and carries the particulate material on the bottom side enters curing box 130.
  • this particular curing step can be any type as is well known in the art, e.g., heating, ultra-violet, etc.
  • the finished sheet is rolled up onto roll 132.
  • the supporting sheet 102 it is not necessary that the supporting sheet 102 be separated from fabric 128 at point 126, i.e., prior to curing step 130.
  • the appropriate adhesive binders i.e., wherein the first adhesive binder is non-curable
  • the laminate with the raised fibers and the particulate material thereon can be processed through curing box 130 and thereafter the supporting sheet 103 may be separated from the fabric layer 128.
  • This latter procedure i.e., separation after curing, is preferred for those second binders which are relatively slow drying, e.g., aqueous foamed and non-foamed systems.
  • finishing steps or treatment subsequent to curing step 130 e.g., scouring, resin, finishing, and the like, which processes and methods are well known and conventional in the art.
  • FIG. 3 has included a flocking box 107 for application of the particulate material, in this case flock, to support sheet 103, this particulate material may be applied in other ways.
  • the particulate material in this case flock
  • the particulate material is talc, sand or some other type of material which is not suitably applied by a flocking type method
  • other means e.g., airjets and the like
  • the particular method of application of the particulate material obviously is not critical to the final result of the present invention.
  • Example 1 A heavy-weight paper was coated with gum Arabic having a viscosity of 80,000 cps and was then flocked with ground cotton on a beater bar flocking unit. The flocked paper was dried at lC. for minutes.
  • Nylon tricot was placed on top of the flocked paper and coated with a foamed aqueousbased acrylic. The acrylic to air ratio was 1:3 and the wet lay-down was l0 mil.
  • the coated nylon tricot still in contact with the flocked paper was flocked with a 4 mm rayon flock on a beater bar flocking unit and was then dried for 20 minutes at 60C and cured for minutes at 150C. Finally, the paper was separated from the nylon substrate.
  • the resulting substrate was porous and permeable to air and possessed a bottom and top layer of flock.
  • Example 2 Rayon challis was coated with a starch paste having a viscosity of 200,000 cps to a wet lay-down of 5 mil.
  • the coated substrate was flocked with ground cotton on a beater bar flocking unit and dried at 100C. for 10 minutes.
  • a sample of polyester ninon was placed on top of the flocked nylon substrate in such a way that the ground cotton faced the back side of the ninon.
  • the top side of the ninon was coated with a highviscosity, nonfoamed acrylic bonder.
  • the ninon was flocked with a 1 mm rayon flock while in contact with the rayon substrate and was then dried for minutes at 60C and cured for 10 minutes at 150C. Finally, the rayon substrate was separated from the ninon.
  • the resulting substrate possessed a top surface comprising a 1 mm rayon flock and a back surface comprising a ground cotton pile.
  • Example 3 A nylon non-woven was placed on top ofa paper substrate which was temporarily flocked with ground cotton in such a way that the ground cotton on the paper contacted the back side of the non-woven.
  • the top side of the non-woven was coated with a solvent-based adhesive to a wet lay-down of 5 mil.
  • the coated nonwoven, now bonded to the flocked paper was flocked with a 1 mm rayon flock and was then cured for 5 minutes at 150C. Finally, the paper was separated from the non-woven.
  • the resulting non-woven possessed a pile on both sides.
  • Example 4 A sample of a nylon non-woven was coated with a sorbitol solution which was thickened to a viscosity of 30,000 cps to a wet lay-down of 3 mil. The coated sample was uniformly covered with talcum powder by means of a flour sifter and was then dried for 20 minutes at C.
  • nylon tricot was placed on top of the talcumcovered non-woven in such a way that the talcum surface faced the back side of the nylon substrate.
  • the front side of the nylon was coated with a solvent-based adhesive to a wet-lay down of 5 mil and was then flocked with a 4 mm rayon flock on the beater bar flocking unit.
  • the laminate was dried at 60C. for 20 minutes. Finally, the non-woven was separated from the tricot.
  • the resulting substrate possessed a pile on the front side and a thin layer of talcum on the back side.
  • a process for making a porous air permeable fabric which comprises:

Abstract

A process for making a porous flocked fabric by coating one side of a loosely interlaced substrate with a flock binder. The coated side of the substrate is flocked and the binder is allowed to migrate or strike through to the opposite side of the substrate. A particulate material, e.g., flock, ground flock, talc, etc., is then applied to said opposite side by means of an auxiliary substrate and the binder is permanently set by curing.

Description

United States Patent 1191 Klein 1451 Sept. 2, 1975 METHOD OF MAKING A FLOCKED POROUS AIR PERMEABLE FABRIC [75] Inventor: Charles Klein, Mexico City, Mexico [73] Assignee: United Merchants and Manufacturers, Inc., New York, N.Y.
22 Filed: Apr. 13, 1973 211 Appl. No.: 351,096
[56] References Cited UNITED STATES PATENTS 1,580,717 4/1926 Flick..... 117/13 2,527,501 10/1950 Saks 117/17 X 2,548,872 4/1951 Cross et a1. 1 17/17 X 2,592,602 4/1952 Saks 117/17 X 3,219,507 11/1965 Penman 117/33 X 3,459,579 8/1969 Newman 117/17 X 3,741,789 6/1973 Young et a1. 117/17 X Primary ExaminerWilliam D. Martin Assistant Examiner-Shrive P. Beck Attorney, Agent, or Firm.lohn P. McGann; Michael A. Caputo; Jules E. Goldberg [5 7 ABSTRACT A process for making a porous flocked fabric by coating one side of a loosely interlaced substrate with a flock binder. The coated side of the substrate is flocked and the binder is allowed to migrate or strike through to the opposite side of the substrate. A particulate material, e.g., flock, ground flock, talc, etc., is then applied to said opposite side by means of an auxiliary substrate and the binder is permanently set by 1,645,858 10 1927 Hayes.. ....117 33 1,810,328 6/1931 Slater ....117 33x uring. 1,989,885 2 1935 Richter ....117 33x 2,368,706 2/1945 Fountain ..117 25x 1 Clalm,3DraWmg Flgllres 1/ 111111111111111111111111111111mm I METHOD OF MAKING A FLOCKED POROUS AIR PERMEABLE FABRIC BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the field of flocked or pile type fabrics. More particularly it concerns a fabric carrying raised fibers and having a highly porous structure.
2. Description of the Prior Art Flocked fabrics and methods for preparing such have been known to the art for some time. One of the major disadvantages with such flocked fabrics is that they have found limited use because of their stiff hand and relative impermeability to gases. and moisture.
Such fabrics normally comprise three layers, a backing fabric layer, an adhesive interlayer and a flocked layer of upstanding fibers. Because of the nature of the adhesive interlayer, i.e., the adhesive used spreads over the backing layer in a continuous film, this layer constitutes essentially a gas or moisture impermeable barrier. For this reason, flocked fabrics have heretofore only been used in relatively heavy fabrics in the apparel field.
Additionally, attempts to flock shear fabrics, particularly knits, to produce relatively permeable flocked fabrics have been unsuccessful because of the dimensional instability of such fabrics during the flocking process.
SUMMARY OF THE INVENTION I have discovered a new type flocked fabric and a method for making same, which fabric is relatively porous and light and possesses a very soft velvet-like hand. Additionally, I have discovered a method for flocking relatively shear, woven or knitted fabrics, i.e., loosely interlaced fabrics, while avoiding the dimensional stability problems normally associated with such materials.
The flocked fabric of the present invention is prepared by coating one side of a loosely interlaced substrate with a flock binder or adhesive and then applying raised fibers, e.g., flock or pile, to the coated side of said substrate. Thereafter, the coated substrate is held for a sufficient time to allow the binder to migrate through the substrate to the opposite side thereof. A particulate material is then applied to the opposite side of the substrate whereby it is secured to the substrate by virtue of the migrated binder. Thereafter, the binder is permanently set.
The product obtained comprises a laminate having a backing layer of a loosely interlaced fabric which has a non-continuous, permeable coating of the binder thereon. The binder also permeates through the spaces of the backing layer. The laminate possesses a top layer of upstanding fibers, i.e., flock or pile, which is secured to the backing layer by the binder. The laminate further possesses a bottom layer ofa particulate material which is secured to the backing layer by the binder.
By virtue of the foregoing described process, it will be seen that the product obtained does not have a continuous film or sheet of binder or adhesive thereon. However, the binder is sufficiently dispersed or distributed on the backing layer such that a relatively uniform layer of raised fibers is adhered thereto. Additionally, the fabric remains porous because of the discontinuous nature of the adhesive or binder layer. This contributes both to the soft aesthetic hand of the fabric as well as the relative permeability thereof.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of the present invention.
FIG. 2 is a schematic diagram of the process of the present invention.
FIG. 3 is a schematic diagram of yet another embodiment of the process of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, the laminate of the present invention is shown generally at 100. It comprises an upper layer of raised fibers 102, e.g., a flock or pile, se cured to a backing layer or substrate of a loosely interlaced fabric 104. The raised fibers 102 are secured to the backing layer 104 by an adhesive binder which is disposed on the backing 104 in a noncontinuous coating so as not to interfere with the air and moisture permeability of the laminate. It is understood, of course,
'that there must be sufficient binder disposed on the backing 104 to secure enough raised fibers to the fabric to give the desired density of the covering.
Additionally, the binder permeates through the backing 104 in order to secure a bottom layer of particulate material 106 to the back side of the backing layer 104.
As used herein, the term flock is intended to mean short fibers or filamentary material, generally less than one-quarter inch in length, although flock of greater length is known and can be used.
The term pile fibers is generally intended to refer to a classification of upstanding fibers having somewhat longer length than flock, e.g., one-half to 2 or 3 inches in length. However, it is understood that any type of fibers or groups of fibers which are intended to be disposed in a substantially upright position and attached to a backing or support material by use of an adhesive binder can be used for the present invention.
As used herein, the term particulate material is intended to include flock fibers, ground flock or powdered fibers, or any other type of finely provided or granulated solid material which could suitably and desirably be secured to the bottom side of the substrate by the binder. Typically, for example, talc, sand, powdered rubber, etc., could be used, depending on the end use and aesthetic results contemplated.
Referring now to FIG. 2, the laminate of the present invention may be produced by first coating a substrate comprised of a loosely interlaced fabric 12 obtained from roll 10 with an adhesive binder applied with knife 14. Alternately, the adhesive may be applied with a roll, stipple roller, and other conventional methods well known in the art. The textile fabric used as the substrate may be Woven, non-woven, knitted, etc. Preferably, the fabric should be a relatively loosely interlaced material such that strike through of the binder can occur. Typical examples of such a material would be a light weight knitted fabric such as a ninon, nylon tricot, batiste, chiffon, chiffonette, and marquisette. Also single or double knitted fabrics, including nylon tricot ranging in weight from about 12 to 20 yards per pound (54 inch width) can be used.
After application of the flock binder or adhesive, the coated substrate is conveyed by conveyor 18 through flocking box 16. Flocking box 16 is a conventional type flocker as is well known in the art. Thus, it can be either of the electrostatic or beater bar type. The production of flocked fabrics by such methods are well known in the art (see for example U.S. Pat. No. 3,079,212, incorporated herein by reference).
As will be discussed hereinafter, subsequent to the application of the coating and during the travel of the substrate through the flocking box, a portion of the binder migrates through to the opposite side of the fabric substrate. Depending on the nature of the binder, it will require a certain amount of time to accomplish this migration or strike-through. It is often possible to force the binder through the fabric merely by using the coating knife. Ordinarily, it is a relatively short amount of time such that by the time substrate 12 reaches the deposition step as hereinafter described, the strikethrough has been accomplished. It might be necessary, in certain instances, to build into the process an additional lag time, i.e., in addition to the time which it takes the substrate to go through flocking box 16, in order to achieve the strike-through. Whether or not this is necessary, as well as the appropriate strikethrough times, are easily determined for any given substrate or adhesive binder.
After passing through flocking box 16, the substrate 12 is passed over a means for depositing a particulate material as defined hereinabove to the bottom side thereof. As shown in FIG. 2, this means typically may comprise a series ofjets 20 for blowing or directing the particulate material 21 against the bottom side of substrate 12. A chamber 22 is shown for retrieving any particulate material which fails to adhere to the bottom side of the substrate.
After deposition of the particulate material, the substrate is then conveyed through a curing chamber 24 of the type normally used in the art. Depending on the nature of the adhesive, curing may be effected by heat or by ultra-violet or other ionizing type radiation. Thereafter, the substrate is conveyed onto wind up roll 28.
The flock binder which is used may be any type of curable adhesive normally used for flocking purposes or which is suitable for adhering raised fibers to a fabric substrate. Such adhesives may be foamed or unfoamed as is well known in the art.
Typically, such adhesives are generally classified as water base, solvent base, or curable liquid systems. Typically, such adhesives are generally classified as water base, solvent base adhesives or curable liquid systems.
Water base adhesives consist of a binder, generally an emulsion polymer, and a viscosity builder. They may also contain plasticizers, thermosetting resins, curing catalysts, stabilizers and other additives well known in the art.
The emulsion polymers generally used include acrylic, vinylacrylic, vinyl, urethane and styrenebutadiene latexes. In order that the flock be held in a desired position until the adhesive is fully cured, it is generally necessary to raise the viscosity of the latex to about 300 to 300,000 centipoises. The viscosity is dictated by the particular backing being used and the specific adhesive. Thus, for example, in the present invention, the adhesive must migrate or strike-through the porous fabric and contact the particulate material which is applied to the back side of the substrate. If the adhesive is too viscous, it will not do this. On the other hand, if the binder is not sufficiently viscous, too much strike-through will occur. This, of course, can create difficulties with respect to processing as well as undesirable product properties. Generally, adhesives having a viscosity in the range from about 10,000 to 500,000 centipoises is sufficient.
When a foamed adhesive is to be used, the viscosity is generally in the range less than about 3,000 centipoises as determined by the Brookfield method with spindle No. 6 at 4 rpm. Blow up-ratios for such adhesives are generally in the range from about 1:2 to 1:10, and preferably from 1:2 to 1:5. Methods for forming adhesives for this use are well known in the art, see for example, U.S. Pat. No. 3,607,341, incorporated herein by reference.
Suitable thickeners for use to build viscosity include water soluble polymers, such as carboxymethyl cellulose, hydroxyethyl cellulose, polyoxyethylenes and natural gums as well as alkyl swellable polymers, such as, highly carboxylated acrylic emulsion polymers.
Plasticizers may be added to alter the hand of the finishecl goods or to improve the flow and levelling characteristics of the adhesives. Where the primary goal is the latter, fugitive plasticizers, such as, the phthalate esters may be employed.
Thermosetting resins such as methylol-melamines, ureaformaldehyde condensates or 'phenol formaldehyde condensates may be incorporated to improve durability or abrasion resistance of the finished goods.
Catalysts such as oxalic acid diammonium phosphate can be used to increase the rate of cure of the adhesive.
More specialized additives include ultra-violet absorbers.
Solvent adhesives include both fully reacted soluble polymers, such as, acrylic homo and co-polymers, polyesters, polyamides, or polyurethanes and two package systems, such as, polyester polyols with diisocyanates or isocyanate prepolymers and epoxies with polyamines. The polymer or pre-polymer is dissolved in a suitable solvent which is preferably low boiling, and then thickened to the proper viscosity in a manner similar to that used for the water-base adhesives. Catalysts, cross-linking agents, stabilizers, pigments, or dyes may also be incorporated.
Curable liquid systems include two-part urethanes, e.g., a diisocyanate and a polymeric polyol, flexible epoxy systems, e.g., liquid epoxy resins or solutions of solid epoxy resins coreacted with polyamides or polyamines and dimercaptans and a polyene with a peroxide. Also, hot melts can be used, such as, polyethylenevinyl acetate copolymer, polyethyleneethylacrylate copolymer, and plasticized polyvinylchloride in the form of a plastisol which can be heated to fuse and then cured.
As noted above, the general concept of the present invention contemplates the adherence of a bottom layer of particulate material to a loosely interlace structure carrying raised fibers as a top layer by virtue of the migration or strike-through of adhesive through the substrate. It is understood, of course, that many methods for applying the bottom layer of particulate material to the substrate having the migrated binder or adhesive therein will be apparent to the skilled art worker. In FIG. 3, a preferred method of such application is shown.
As shown therein, a support sheet 103 obtained from roll 101 is coated with a first adhesive binder applied with knife 105. Supporting sheet 103 may be any type of sheet material which is suitable for use on a temporary basis and which is relatively inexpensive inasmuch as it usually may only be used once and then disposed of. Typically, sheet 103 may be paper, plastic, fabric, etc. Other supporting sheets, e.g., a back cloth, a back grey as used in roller printing, etc, which are suitable for reuse can be used. it is important, however, that sheet 103 be capable of withstanding the various flocking and heating treatments used in the present process.
The first adhesive material may be any type of flock binder known to the art which is suitable for binding the flock to the supporting sheet on a temporary basis. Typically, such a binder material would be an adhesive composition or one which possesses minimal adhesive properties. Thus, for example, it is possible merely to use a wax diluted or dissolved in a suitable solvent such that it can be applied in a thin film to the paper. The wax merely serves to retain flock on the paper in a relatively loose form, but to hold it sufficiently such that it is not blown off in the flocking box. Thus, the flock which is contacted with the paper remains thereon for a relatively short time, i.e., until it reaches the second flocking step 122 which will be hereinafter described.
As used herein, the term uncurable adhesive composition means a composition which when subjected to the usual curing conditions, e.g., heat, ultra-violet, etc, will not permanently set or adhere to the substrate.
Also, typical of such compositions are low molecular weight polyethylene, polystyrene and the like. Additionally, starched based adhesives, such as, canary dextron and British Gum; gums, such as gum arabic and gum tragacanth; water soluble, non-curing polymers, such as, the polyvinyl alcohols, particularly hydrolyzed polyvinyl acetate, etc.; may be used. Another example of such a composition is glycerin and urea.
It is also possible, if desired, to use a curable adhesive for the supporting sheet. However, this can only be used when the laydown of the adhesive is minimal. That is to say, only a sufficient thickness of adhesive is placed on the supporting sheet so as to secure a minimum amount of particulate material, as hereinafter described, to the sheet. What actually occurs when such a curable adhesive is used is that the minimal amount of particulate material which is secured to the adhesive, itself, serves to further temporarily adhere the particulate material which is adjacent to or on top of it. This latter particulate material, inasmuch as it is not in actual contact with the adhesive, can be removed from the supporting sheet in the manner as hereinafter described.
Typically, a low solids neoprene solution (2-3%), low solids acrylic in solvent form, sodium alginate thickeners, etc., can be used as the temporary binder.
After application of the first binder, the coated supporting sheet 103 is conveyed by conveyor 108 through flocking box 107. Flocking box 107 is a conventional type flocker as is well known in the art. Thus it can be either of the electrostatic or beater bar type.
After exiting flocking box 107, the flocked paper is married to a loosely interlaced fabric 112 such as is described above in connection with FIG. 2.
Fabric 112 is delivered from roll 110 past a positioning roll 114 and then passes together with supporting sheet 103 through rolls 116. The rolls 116 do not exert any substantial pressure on the laminate, but are simply sufficiently close together to maintain the fabric and the supporting sheet substantially next to one another.
Thereafter, laminate 118 is coated on the fabric side with a second flock binder by knife 120. It is important that the second flock binder possess a greater affinity for the flock than the first flock binder. Thus, while it is the purpose of the first flock binder to merely retain the flock on the supporting sheet in order to carry it through the process, it is the purpose of the second flock binder to be later cured so as to secure the flock or raised fibers permanently to the fabric. Additionally, as will be seen hereinafter, the flock binder applied with knife also serves to secure flock picked up from supporting sheet 103 to the back side of fabric 112. The second flock binder is a curable flock adhesive, and is the same material as described herein in connection with FIG. 2.
After being coated with the second flock binder, the laminate 118 is passed through flocking box 122 using conveyor 124. Again, this flocking step is typical of flocking methods well known to the art. After exiting flocking box 122, at point 126, the supporting sheet 102 is separated from the flocked fabric 128. As shown, supporting sheet 103 is then rolled up on roll 124 for disposal or possible reuse.
During the time that it takes the laminate 118 to travel from the point of application of the second flock binder at knife 120 through flocking box 122 to the point of separation of the two sheets 126, the second flock binder migrates or strikes-through to the opposite side of fabric 112. The bottom side of fabric 112 is, of course, in direct contact with the particulate material which is on supporting sheet 103. Accordingly, this particulate material will be picked up and secured to the bottom side of fabric 112 by the migrated binder. It is easily within the skill of the operator of the process to adjust the travel speeds to assure that sufficient strike through occurs during this period to secure the desired amount of particulate material onto the bottom side of fabric 118. Understandably, the exact time required depends on a number of factors, e.g., the adhesive binder used, the density of the loosely interlaced fabric, etc.
After the separation of the 2 sheets at point 128, the fabric 128 which is now flocked or carries raised fibers on the upper side and carries the particulate material on the bottom side enters curing box 130. Again, this particular curing step can be any type as is well known in the art, e.g., heating, ultra-violet, etc. After exiting curing box 130, the finished sheet is rolled up onto roll 132.
If desired, it is not necessary that the supporting sheet 102 be separated from fabric 128 at point 126, i.e., prior to curing step 130. Thus, it is possible, when the appropriate adhesive binders are used, i.e., wherein the first adhesive binder is non-curable, that the laminate with the raised fibers and the particulate material thereon can be processed through curing box 130 and thereafter the supporting sheet 103 may be separated from the fabric layer 128. This latter procedure, i.e., separation after curing, is preferred for those second binders which are relatively slow drying, e.g., aqueous foamed and non-foamed systems.
It may be further desirable, to insert various finishing steps or treatment subsequent to curing step 130, e.g., scouring, resin, finishing, and the like, which processes and methods are well known and conventional in the art.
It should be further understood, that while for purposes of illustration, FIG. 3 has included a flocking box 107 for application of the particulate material, in this case flock, to support sheet 103, this particulate material may be applied in other ways.
Thus, for example, if the particulate material is talc, sand or some other type of material which is not suitably applied by a flocking type method, other means, e.g., airjets and the like may be employed. The particular method of application of the particulate material obviously is not critical to the final result of the present invention.
The following examples serve to illustrate the invention: In the examples, the strike-through of the fabric was effected by the mechanical action during the coating process whereby the binder was squeezed through the interstices of the substrate.
Example 1 A heavy-weight paper was coated with gum Arabic having a viscosity of 80,000 cps and was then flocked with ground cotton on a beater bar flocking unit. The flocked paper was dried at lC. for minutes.
Nylon tricot was placed on top of the flocked paper and coated with a foamed aqueousbased acrylic. The acrylic to air ratio was 1:3 and the wet lay-down was l0 mil. The coated nylon tricot still in contact with the flocked paper was flocked with a 4 mm rayon flock on a beater bar flocking unit and was then dried for 20 minutes at 60C and cured for minutes at 150C. Finally, the paper was separated from the nylon substrate.
The resulting substrate was porous and permeable to air and possessed a bottom and top layer of flock.
Example 2 Rayon challis was coated with a starch paste having a viscosity of 200,000 cps to a wet lay-down of 5 mil. The coated substrate was flocked with ground cotton on a beater bar flocking unit and dried at 100C. for 10 minutes.
A sample of polyester ninon was placed on top of the flocked nylon substrate in such a way that the ground cotton faced the back side of the ninon. The top side of the ninon was coated with a highviscosity, nonfoamed acrylic bonder. The ninon was flocked with a 1 mm rayon flock while in contact with the rayon substrate and was then dried for minutes at 60C and cured for 10 minutes at 150C. Finally, the rayon substrate was separated from the ninon.
The resulting substrate possessed a top surface comprising a 1 mm rayon flock and a back surface comprising a ground cotton pile.
Example 3 A nylon non-woven was placed on top ofa paper substrate which was temporarily flocked with ground cotton in such a way that the ground cotton on the paper contacted the back side of the non-woven. The top side of the non-woven was coated with a solvent-based adhesive to a wet lay-down of 5 mil. The coated nonwoven, now bonded to the flocked paper, was flocked with a 1 mm rayon flock and was then cured for 5 minutes at 150C. Finally, the paper was separated from the non-woven.
The resulting non-woven possessed a pile on both sides.
Example 4 A sample of a nylon non-woven was coated with a sorbitol solution which was thickened to a viscosity of 30,000 cps to a wet lay-down of 3 mil. The coated sample was uniformly covered with talcum powder by means of a flour sifter and was then dried for 20 minutes at C.
A sample of nylon tricot was placed on top of the talcumcovered non-woven in such a way that the talcum surface faced the back side of the nylon substrate. The front side of the nylon was coated with a solvent-based adhesive to a wet-lay down of 5 mil and was then flocked with a 4 mm rayon flock on the beater bar flocking unit. The laminate was dried at 60C. for 20 minutes. Finally, the non-woven was separated from the tricot.
The resulting substrate possessed a pile on the front side and a thin layer of talcum on the back side.
Variations, can, of course, be made without departing from the spirit and scope of the invention.
Having thus described my invention, what l desire to secure and claim my Letters Patent is:
l. A process for making a porous air permeable fabric which comprises:
a. placing a loosely interlaced substrate on an auxiliary substrate on which flock fibers have been temporarily and removably deposited to cover substantially the entire surface of the auxiliary substrate;
b. coating substantially the entire side of the interlaced substrate which faces away from the auxialiary substrate with an adhesive binder;
c. distributing flock fibers over substantially the entire surface of the coating;
(1. allowing the coating to strike-through the interlaced substrate sufficiently to secure the flock fibers on said auxiliary substrate to the side of the interlaced substrate opposite the coated side;
e. permanently setting the binder; and
f. separating the flocked substrate and the auxiliary substrate from each other.

Claims (1)

1. A PROCESS FOR MAKING A POROUS AIR PERMEABLE FABRIC WHICH COMPRISES: A. PLACING A LOOSELY INTERLACED SUBSTRATE ON AN AUXILIARY SUBSTRATE ON WHICH FLOCK FIBERS HAVE BEEN TEMPORARILY AND REMOVABLY DEPOSITED TO COVER SUBSTANTIALLY THE ENTIRE SURFACE OF THE AUXILIARY SUBSTRATE, B. COATING SUBSTANTIALLY THE ENTIRE SIDE OF THE INTERLACED SUBSTRATE WHICH FACES AWAY FROM THE AUXIALIARY SUBSTRATE WITH AN ADHESIVE BINDER, C. DISTRIBUTING FLOCK FIBERS OVER SUBSTANTIALLY THE ENTIRE SURFACE OF THE COATING, D. ALLOWING THE COATING TO STRIKE-THROUGH THE INTERLACED SUBSTRATE SUFFICIENTLY TO SECURE THE FLOCK FIBERS ON SAID AUXILIARY SUBSTRATE TO THE SIDE OF THE INTERLACED SUBSTRATE OPPOSITE THE COATED SIDE, E. PERMANENTLY SETTING THE BINDER, AND F. SEPARATING THE FLOCKED SUBSTRATE AND THE AUXILIARY SUBSTRATE FROM EACH OTHER.
US05351096 1973-04-13 1973-04-13 Method of making a flocked porous air permeable fabric Expired - Lifetime US3903331A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US05351096 US3903331A (en) 1973-04-13 1973-04-13 Method of making a flocked porous air permeable fabric
US05/581,252 US3961116A (en) 1973-04-13 1975-05-27 Novel flocked fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05351096 US3903331A (en) 1973-04-13 1973-04-13 Method of making a flocked porous air permeable fabric

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/581,252 Continuation US3961116A (en) 1973-04-13 1975-05-27 Novel flocked fabric

Publications (1)

Publication Number Publication Date
US3903331A true US3903331A (en) 1975-09-02

Family

ID=23379553

Family Applications (1)

Application Number Title Priority Date Filing Date
US05351096 Expired - Lifetime US3903331A (en) 1973-04-13 1973-04-13 Method of making a flocked porous air permeable fabric

Country Status (1)

Country Link
US (1) US3903331A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100311A (en) * 1974-05-10 1978-07-11 Energy Sciences Inc. Process for curing of adhesives for flocking and texturing on heat-sensitive substrates, by electron-beam radiation
US4238526A (en) * 1979-09-04 1980-12-09 Chitouras Costa G Method of coating objects
FR2479860A1 (en) * 1979-08-09 1981-10-09 Tokyo Horaisha Co PROVISIONALLY FROZEN FIBER SUPPORTED FIBER SHEET AND METHOD OF MANUFACTURING THE SAME
US4308296A (en) * 1976-11-24 1981-12-29 Chitouras Costa G Method of curing particle-coated substrates
US4377546A (en) * 1981-08-11 1983-03-22 The United States Of America As Represented By The Secretary Of The Air Force Process for producing aromatic heterocyclic polymer alloys
US4413019A (en) * 1979-06-06 1983-11-01 The Standard Products Company Radiation curable adhesive compositions and composite structures
US4465723A (en) * 1981-11-13 1984-08-14 Firma Carl Freudenberg Fixation insert with improved flash-through safety and method for manufacturing the same
WO1984003919A1 (en) * 1983-04-05 1984-10-11 Dayco Corp Polymeric-coated fabric layer, product utilizing the layer, and method and apparatus for making the same
US4483951A (en) * 1979-06-06 1984-11-20 The Standard Products Company Radiation curable adhesive compositions and composite structures
US4568591A (en) * 1983-04-05 1986-02-04 Dayco Corporation Polymeric-coated fabric layer, product utilizing the layer and method
US4621005A (en) * 1983-04-05 1986-11-04 Dayco Corporation Polymeric-coated fabric layer, product utilizing the layer and method and apparatus for making the same
US4734307A (en) * 1984-12-14 1988-03-29 Phillips Petroleum Company Compositions with adhesion promotor and method for production of flocked articles
US6096382A (en) * 1996-09-02 2000-08-01 L'oreal Method for manufacturing an applicator of a cosmetic powder product
US20020009571A1 (en) * 2000-07-24 2002-01-24 Abrams Louis Brown Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030186019A1 (en) * 2000-07-24 2003-10-02 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030207072A1 (en) * 2000-07-24 2003-11-06 Abrams Louis Brown Co-molded direct flock and flock transfer and methods of making same
US20040055692A1 (en) * 2002-07-03 2004-03-25 Abrams Louis Brown Flocked stretchable design or transfer
US20050135801A1 (en) * 2003-12-18 2005-06-23 Mcgovern Michael R. Cartridge for photographic film product
US20050268407A1 (en) * 2004-05-26 2005-12-08 Abrams Louis B Process for high and medium energy dye printing a flocked article
US20070110949A1 (en) * 2005-11-17 2007-05-17 High Voltage Graphics, Inc. Flocked adhesive article
US7249837B2 (en) 2003-05-12 2007-07-31 Abramek Edward T Printing on flocked paper and films
US7351368B2 (en) 2002-07-03 2008-04-01 High Voltage Graphics, Inc. Flocked articles and methods of making same
US20080095973A1 (en) * 2006-10-17 2008-04-24 High Voltage Graphics, Inc. Laser textured flocked substrate
US7393576B2 (en) 2004-01-16 2008-07-01 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US7413581B2 (en) 2002-07-03 2008-08-19 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US7465485B2 (en) 2003-12-23 2008-12-16 High Voltage Graphics, Inc. Process for dimensionalizing flocked articles or wear, wash and abrasion resistant flocked articles
US7749589B2 (en) 2005-09-20 2010-07-06 High Voltage Graphics, Inc. Flocked elastomeric articles
US7799164B2 (en) 2005-07-28 2010-09-21 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US8007889B2 (en) 2005-04-28 2011-08-30 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
US8206800B2 (en) 2006-11-02 2012-06-26 Louis Brown Abrams Flocked adhesive article having multi-component adhesive film
US8354050B2 (en) 2000-07-24 2013-01-15 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
US9012005B2 (en) 2009-02-16 2015-04-21 High Voltage Graphics, Inc. Flocked stretchable design or transfer including thermoplastic film and method for making the same
US9051693B1 (en) * 2014-01-30 2015-06-09 The Procter & Gamble Company Process for manufacturing absorbent sanitary paper products
US9175436B2 (en) 2010-03-12 2015-11-03 High Voltage Graphics, Inc. Flocked articles having a resistance to splitting and methods for making the same
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1580717A (en) * 1925-04-14 1926-04-13 Sayles Finishing Plants Inc Ornamented fabric and method of ornamenting it
US1645858A (en) * 1924-11-23 1927-10-18 Clifford B Hayes Fabric
US1810328A (en) * 1927-05-03 1931-06-16 Slater & Sons Inc S Art of making pile fabrics
US1989885A (en) * 1932-01-20 1935-02-05 Brown Co Specialty paper
US2368706A (en) * 1943-08-07 1945-02-06 United Merchants & Mfg Multicolor flock printed fabric
US2527501A (en) * 1949-03-28 1950-10-24 Walter R Saks Process of producing flocked articles
US2548872A (en) * 1948-08-10 1951-04-17 Minnesota Mining & Mfg Method of fixing particles to sheet material
US2592602A (en) * 1950-09-20 1952-04-15 Walter R Saks Process of producing flocked articles
US3219507A (en) * 1961-02-20 1965-11-23 Magee Carpet Co Method of applying plastic sheet to pile fabric backing
US3459579A (en) * 1965-04-01 1969-08-05 Kendall & Co Method of producing flocked nonwoven fabric
US3741789A (en) * 1969-05-29 1973-06-26 Bethlehem Steel Corp Method of applying particles to a surface

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1645858A (en) * 1924-11-23 1927-10-18 Clifford B Hayes Fabric
US1580717A (en) * 1925-04-14 1926-04-13 Sayles Finishing Plants Inc Ornamented fabric and method of ornamenting it
US1810328A (en) * 1927-05-03 1931-06-16 Slater & Sons Inc S Art of making pile fabrics
US1989885A (en) * 1932-01-20 1935-02-05 Brown Co Specialty paper
US2368706A (en) * 1943-08-07 1945-02-06 United Merchants & Mfg Multicolor flock printed fabric
US2548872A (en) * 1948-08-10 1951-04-17 Minnesota Mining & Mfg Method of fixing particles to sheet material
US2527501A (en) * 1949-03-28 1950-10-24 Walter R Saks Process of producing flocked articles
US2592602A (en) * 1950-09-20 1952-04-15 Walter R Saks Process of producing flocked articles
US3219507A (en) * 1961-02-20 1965-11-23 Magee Carpet Co Method of applying plastic sheet to pile fabric backing
US3459579A (en) * 1965-04-01 1969-08-05 Kendall & Co Method of producing flocked nonwoven fabric
US3741789A (en) * 1969-05-29 1973-06-26 Bethlehem Steel Corp Method of applying particles to a surface

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100311A (en) * 1974-05-10 1978-07-11 Energy Sciences Inc. Process for curing of adhesives for flocking and texturing on heat-sensitive substrates, by electron-beam radiation
US4308296A (en) * 1976-11-24 1981-12-29 Chitouras Costa G Method of curing particle-coated substrates
US4483951A (en) * 1979-06-06 1984-11-20 The Standard Products Company Radiation curable adhesive compositions and composite structures
US4413019A (en) * 1979-06-06 1983-11-01 The Standard Products Company Radiation curable adhesive compositions and composite structures
FR2479860A1 (en) * 1979-08-09 1981-10-09 Tokyo Horaisha Co PROVISIONALLY FROZEN FIBER SUPPORTED FIBER SHEET AND METHOD OF MANUFACTURING THE SAME
US4238526A (en) * 1979-09-04 1980-12-09 Chitouras Costa G Method of coating objects
WO1981000682A1 (en) * 1979-09-04 1981-03-19 C Chitouras Method of flocking entire surface of a three dimensional object
US4377546A (en) * 1981-08-11 1983-03-22 The United States Of America As Represented By The Secretary Of The Air Force Process for producing aromatic heterocyclic polymer alloys
US4465723A (en) * 1981-11-13 1984-08-14 Firma Carl Freudenberg Fixation insert with improved flash-through safety and method for manufacturing the same
WO1984003919A1 (en) * 1983-04-05 1984-10-11 Dayco Corp Polymeric-coated fabric layer, product utilizing the layer, and method and apparatus for making the same
US4520038A (en) * 1983-04-05 1985-05-28 Dayco Corporation Polymeric-coated fabric layer, and method for making the same
GB2149690A (en) * 1983-04-05 1985-06-19 Dayco Corp Polymeric-coated fabric layer, product utilizing the layer, and method and apparatus for making the same
US4568591A (en) * 1983-04-05 1986-02-04 Dayco Corporation Polymeric-coated fabric layer, product utilizing the layer and method
US4621005A (en) * 1983-04-05 1986-11-04 Dayco Corporation Polymeric-coated fabric layer, product utilizing the layer and method and apparatus for making the same
US4734307A (en) * 1984-12-14 1988-03-29 Phillips Petroleum Company Compositions with adhesion promotor and method for production of flocked articles
US6096382A (en) * 1996-09-02 2000-08-01 L'oreal Method for manufacturing an applicator of a cosmetic powder product
US7344769B1 (en) 2000-07-24 2008-03-18 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the flocked transfer
US7364782B2 (en) 2000-07-24 2008-04-29 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030207072A1 (en) * 2000-07-24 2003-11-06 Abrams Louis Brown Co-molded direct flock and flock transfer and methods of making same
US8354050B2 (en) 2000-07-24 2013-01-15 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US7632371B2 (en) 2000-07-24 2009-12-15 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US20030186019A1 (en) * 2000-07-24 2003-10-02 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7402222B2 (en) * 2000-07-24 2008-07-22 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the flocked transfer
US7390552B2 (en) 2000-07-24 2008-06-24 High Voltage Graphics, Inc. Flocked transfer and article of manufacturing including the flocked transfer
US7338697B2 (en) 2000-07-24 2008-03-04 High Voltage Graphics, Inc. Co-molded direct flock and flock transfer and methods of making same
US20020009571A1 (en) * 2000-07-24 2002-01-24 Abrams Louis Brown Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7381284B2 (en) * 2000-07-24 2008-06-03 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the application of the transfer by thermoplastic polymer film
US7410682B2 (en) 2002-07-03 2008-08-12 High Voltage Graphics, Inc. Flocked stretchable design or transfer
US7351368B2 (en) 2002-07-03 2008-04-01 High Voltage Graphics, Inc. Flocked articles and methods of making same
US20040055692A1 (en) * 2002-07-03 2004-03-25 Abrams Louis Brown Flocked stretchable design or transfer
US7413581B2 (en) 2002-07-03 2008-08-19 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US7249837B2 (en) 2003-05-12 2007-07-31 Abramek Edward T Printing on flocked paper and films
US20050135801A1 (en) * 2003-12-18 2005-06-23 Mcgovern Michael R. Cartridge for photographic film product
US7465485B2 (en) 2003-12-23 2008-12-16 High Voltage Graphics, Inc. Process for dimensionalizing flocked articles or wear, wash and abrasion resistant flocked articles
US7393576B2 (en) 2004-01-16 2008-07-01 High Voltage Graphics, Inc. Process for printing and molding a flocked article
US20050268407A1 (en) * 2004-05-26 2005-12-08 Abrams Louis B Process for high and medium energy dye printing a flocked article
US8007889B2 (en) 2005-04-28 2011-08-30 High Voltage Graphics, Inc. Flocked multi-colored adhesive article with bright lustered flock and methods for making the same
US7799164B2 (en) 2005-07-28 2010-09-21 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
USRE45802E1 (en) 2005-07-28 2015-11-17 High Voltage Graphics, Inc. Flocked articles having noncompatible insert and porous film
US7749589B2 (en) 2005-09-20 2010-07-06 High Voltage Graphics, Inc. Flocked elastomeric articles
US8168262B2 (en) 2005-09-20 2012-05-01 High Voltage Graphics, Inc. Flocked elastomeric articles
US20070110949A1 (en) * 2005-11-17 2007-05-17 High Voltage Graphics, Inc. Flocked adhesive article
US20080095973A1 (en) * 2006-10-17 2008-04-24 High Voltage Graphics, Inc. Laser textured flocked substrate
US8206800B2 (en) 2006-11-02 2012-06-26 Louis Brown Abrams Flocked adhesive article having multi-component adhesive film
US8475905B2 (en) 2007-02-14 2013-07-02 High Voltage Graphics, Inc Sublimation dye printed textile
US9012005B2 (en) 2009-02-16 2015-04-21 High Voltage Graphics, Inc. Flocked stretchable design or transfer including thermoplastic film and method for making the same
US9175436B2 (en) 2010-03-12 2015-11-03 High Voltage Graphics, Inc. Flocked articles having a resistance to splitting and methods for making the same
US9193214B2 (en) 2012-10-12 2015-11-24 High Voltage Graphics, Inc. Flexible heat sealable decorative articles and method for making the same
US9051693B1 (en) * 2014-01-30 2015-06-09 The Procter & Gamble Company Process for manufacturing absorbent sanitary paper products
US9267241B2 (en) * 2014-01-30 2016-02-23 The Procter & Gamble Company Process for manufacturing absorbent sanitary paper products
US9517288B2 (en) 2014-01-30 2016-12-13 The Procter & Gamble Company Process for manufacturing absorbent sanitary paper products

Similar Documents

Publication Publication Date Title
US3903331A (en) Method of making a flocked porous air permeable fabric
US3961116A (en) Novel flocked fabric
US4035532A (en) Transfer flocking and laminates obtained therefrom
US4034134A (en) Laminates and coated substrates
US2813052A (en) Composite moisture-proof plasticized fabric and method of making the same
US2556078A (en) Transfer and method of coating therewith
US3620890A (en) Floor and wall covering and method of making same
US7410682B2 (en) Flocked stretchable design or transfer
US2784630A (en) Method of making flocked fabric and flocked vinyl
US3922410A (en) Process for obtaining flocked fabrics and fabrics obtained therefrom
US3684637A (en) Simulated leather laminate and its preparation
US2631957A (en) Thread-reinforced films and methods of making them
US2593553A (en) Apparatus for producing coated fabrics
US5290594A (en) Method for production of thermoadhesive fabric coverings, thermoadhesive fabric covering
US3704197A (en) Removable floor covering
US3562043A (en) Laminated structure and method of making the same
GB2111859A (en) Fusible interlining with improved freedom from strike-back, and a process for its preparation
US2534113A (en) Method of making nonwoven material
US3014795A (en) Coated abrasive products
US3663344A (en) Orthotropic fiber-reinforced thermoplastic film and method of manufacture
US3518154A (en) Process for making flock decorated materials and product
US4454188A (en) High reflectivity in flooring and other products
US2219853A (en) Production of abrasive material
US3772131A (en) Flocked spunlaced blanket
US4483732A (en) Process for preparing high reflectivity decorative surface coverings