US3900639A - Method for coating surfaces of a workpiece by spraying on a coating substance - Google Patents

Method for coating surfaces of a workpiece by spraying on a coating substance Download PDF

Info

Publication number
US3900639A
US3900639A US410891A US41089173A US3900639A US 3900639 A US3900639 A US 3900639A US 410891 A US410891 A US 410891A US 41089173 A US41089173 A US 41089173A US 3900639 A US3900639 A US 3900639A
Authority
US
United States
Prior art keywords
jet
workpiece
particles
coating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US410891A
Inventor
Richard Lauterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3900639A publication Critical patent/US3900639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • ABSTRACT Foreign Application Priority Data A method and apparatus for pp y a homogeneous NOV 7 972 Germany 2254491 coating of material on a surface of a workpiece characterized by projecting a jet of heated particles of ma- [52] U S Cl 427/34, 1 18/49 2219/76 terial at the surface to be coated and applying a trans- "427/180: 427/22'3f427/348 verse flow of gases to deflect decomposition products [51] Int Cl Bosb 7/l6 5105b 7/20 from the jet to the jet contacting the surface being [58] Field 1 17/93 1 P 1 coated.
  • the deflected decomposition prod- H8/49 5 302 -2l9/;]6 5 7 ucts are caught by a collecting wall or plate and the method and apparatus can include a nozzle directing a [56] References Cited cooling flow 'of gases onto the workpiece to prevent UNITED STATES PATENTS overheating of the coating and the workpiece.
  • the present invention relates to a method and apparatus for applying a homogeneous coating of material on the surface of a workpiece which utilizes a jet of particles heated to an elevated temperature and a transverse gas flow to deflect and remove decomposition products from the jet of particles prior to striking the surface being coated 2.
  • Prior Art Numerous embodiments of devices for coating surfaces of a workpiece by spraying a jet of particles which have been heated to an elevated temperature are known. These devices include autogenous wire spraying (the Schoop method), autogenous powder spraying, arc spraying, detonation spraying and also plasma spraying.
  • a known device for coating a surface by means of arc spraying is disclosed in the US. Pat. No. 3,179,783 and this patent discloses a device in which the coating material is fed into an arc chamber and is melted. This material forms a jet of material which emerges from the nozzle of the spray device at a high temperature.
  • the nozzle is surrounded by a casing and a shielding gas flow is directed transversely to the material jet and is fed into the space surrounded by the casing.
  • the casing terminates close to the workpiece to be coated so that the gas fed into the casing space is discharged between the workpiece and the end edge of the casing. Even those parts of the workpiece which are not currently undergoing coating are thus also cooled.
  • the exposure time which is the time required for the coating of the workpiece, is generally very short and amounts to approximately 1.5 seconds.
  • the spray particle In plasma spraying, the spray particle while in close vicinity to the spray nozzle and during their flight to the workpiece are melted in a period of time of approximately 200 p. seconds and are accelerated to supersonic speed. Within the individual spray particles there is thus a temperature drop with a negative temperature gradient extending from the surface of the particle to the core. To enable the particle to form a homogeneous layer when it hits or strikes the workpiece, it is necessary that the spray particles should at least be softened and thus the temperature of the core of the individual spray particles should therefore correspond approximately to the melting temperature of the material. Taking into account the relatively short time available for heating the particles, the surface of the particles are heated to well above the melting point. Consequently, part of the spray material will vaporize.
  • the spray particles are generally different sizes, the smaller particles are heated more rapidly due to the surface being reduced in accordance with the square of the size and the volume reduced in accordance with the third power of the size. Thus smaller particles will vaporize to a greater degree and thus become even smaller.
  • the overheated surface of the spray particles is also exposed to varying degrees of chemical attack. At the high spraying temperatures, many of the thus formed chemical compounds are volatile and will vaporize from the spray particles. Under the effect of the temperature many spray materials decomposite entirely or in part into various size components.
  • the material having the lower boiling point vaporizes to a greater degree than those with higher melting points and the material possessing the lower boiling point in a mixture is generally overheated and becomes exposed to a greater chemical attack. Therefore, the usual practice is for the material mixtures to contain a particularly endangered component in a quantity which takes into account the expected loss of the component. All of the split or vaporized components are smaller and lighter than the remaining particles of the jet or spray and are often clearly visible as socalled smoke. It must be assumed that this smoke consists for the main part of decomposition products or other chemical compounds. These components which are referred to as decomposition products are carried along with the jet and reach the surface of the workpiece.
  • the area of the workpiece which is to be coated thus becomes polluted with these decomposition products and a micrograph of the workpiece coated in this way will show inclusions which lead to a porous layer construction which disadvantageously affects the stability of the deposited layer.
  • an argon chamber for plasma spraying.
  • the overheated and decomposition products will still reach the surface of the workpiece.
  • the air locking of the workpiece into and out of the argon chamber requires a great deal of time and effort.
  • the present invention is directed to a method and apparatus to eliminate the above-mentioned disadvantages and to improve the spraying, in particular plasma spraying, in such a manner that a satisfactory coating which is clean and a homogeneous layer of material is achieved on the workpiece.
  • the process and apparatus of the present invention accomplishes this'task by carrying out the spraying in a normal atmosphere and by removing the decomposition products from the jet prior to the jet contacting the surface to be coated.
  • the apparatus arranges a nozzle adjacent the workpiece which nozzle directs a flow of gas in a direction extending transversely to the path of the jet to blow or deflect the decomposition particles from the jet.
  • An embodiment of the process and apparatus includes providing collecting means such as a collector plate adjacent to the workpiece which plate collects all of the particles deflected out of the jet.
  • FIG. 1 is a schematic presentation of an apparatus for performing the method of the present invention
  • FIG. 2 is a schematic presentation of an embodiment of the apparatus for performing the present invention
  • FIG? 'l,-the' workpiece 2 which is to be coated with a layer l' e'f-ihaterial is'dir'ectly 'hitby a jet or spray 3 which contains the heatedparticles'o'f material.
  • the spray-par'tiele's of the jet 3 of spray'particles is created ina' spraygun 4', which may include a plasma spraying arra gement-4; and is ejected at a high speed which is in thesupersonic range'and directed toward the workpiece 2iAs' illustrat'ecL'the axis of the jet 3 is at an angle a relative to -a horizontal line 8 which is also perpendicular t'ethc'fplane of thesurface being coated on the work'p iece"2-.
  • Thetransverse gas flow intersects the jet 3 and causes the lighter particles to be'blown' out of the p a'th' 'ofthe 'jet'as illustrated-by broken lines 7 and these lighter
  • the distance of the workpiece 2 from the spray gun 4 isfor example l5 cm and the speed of the material flow or particles inthe'jet 3 is in the order of 450 m/s.
  • the speed of the transverse gas flow is selected to be infa range'of 200 to 450 m/s and is selected in dependence upon the nature 'of the material being utilized for the coating.
  • thespr'ay or jet 3 is in- "tersectedby a transverse flow 6 of gas which is flowing atli'i'gh sp'eed, and the jet'3is deflected.
  • the smaller volume particles such as the decomposition products 1 2 'and from forming a layer thereon.
  • the H embodiment of FIG. 2 includes a flow 9 of cooling gases which is projected from nozzle 9. v onto the workpiece to protect the'workpiece 2 and the'layer 1 from too great a heating.
  • the criterion for a clean separation of the material products from the decomposition products is provided by the difference of the deflection value Y.
  • This value must be greater than the width or spread of the, jet 3 in the close, vicinity of the workpiece 2.
  • An increase speed of the transverse flow 6 of gas will result in an increase angle of deflection and a higher deflection value Y.
  • the flow speed of the transverse flow can be in the subsonic range and be controlled by the gas pressure applied on the nozzle 5. If the nozzle 5 has a Lavel nozzle indicated at 6, the flow speed of the transverse flow 6 can be inthe supersonic range. If the horizontal distance X from the center of the Lave] nozzle 6. is increased, the deflection value Y also increases. This value then increases more rapidly than the width .or spread of the particles in a-jet 3. However, the distance X cannot be increased in an arbitrary fashion. When the spray particles pass through the remainder of the flight path X,
  • FIG. 3 another embodiment, which is similar to that of FIG. 2, is schematically illustrated.
  • the workpiece 2 is covered or preceeded by a diaphragm or collection plate 10'.
  • This diaphragm or plate serves simultaneously to collect the decomposition products deflected out of the spray jet 3 by the transverse flow 6 of gas and provides a particularly suitable arrangement for spraying predetermined contours on the workpiece 2.
  • the width Z of the sprayed layer or coating should be less than the spray width or spread S of the material in the jet 3.
  • the distribution of spray particles in the jet should be sufficiently uniform across the width of the jet 3.
  • the deposition is carried out in a linear fashion.
  • the diaphragm 10' can also be placed on the workpiece, and in such an arrangement, the contour of the coating 1 corresponds to the shape of the opening in the diaphragm 10.
  • a contour template (not illustrated) between the diaphragm l0 and the workpiece 2. It is also possible for the template to be connected to the workpiece 2 and for the diaphragm 10' to be connected to the nozzle 5. If the diaphragm or collector plate oscillates, the deposition is carried out in strips. This type of process may be recommended for coating larger areas. I r
  • FIG. 4 illustrates 'an arrangement of an embodiment for coating round workpieces.
  • the round workpiece for example, is a cylinder 2' which is to be coated with a layer of material 1.
  • the small angle of incidence meansthat at lower gas'speeds for the transverse flow 6 of gas can be utilized to obtain a relatively greater deflection of the decomposition products, from the jet 3, as indicated by the lines 7.
  • the transverse flow of gas also serves as a cooling gas for the workpiece 2'.
  • the rapidity of cooling of the deposited spray layer 1 can be varied by means of varying the width 4' of the transverse flow 6 of gas. If intensive cooling of the sprayed layer 1 is desired. this can be effected by rotating the nozzle 5 in the direction of the arrow d and possibly increasing the gas pressure in the nozzle line 5'.
  • the optimum angle at which the transverse flow 6 of gas meets the spray or jet 3 is dependent upon the speed of the spraying particles in the jet 3 and upon the nature of the material.
  • This angle can be easily determined empirically. It is useful and advantageous to use the same gas or gas mixture for the transverse flow of gas as for the plasma gas. Not only may one use noble gases such as argon but also nitrogen with or without the addition of hydrogen. When spraying the workpiece with a metal oxide layer and the process permits an oxidizing atmosphere, it is also possible to use air.
  • noble gases such as argon but also nitrogen with or without the addition of hydrogen.
  • the present process and apparatus When compared with spraying in an argon chamber in which the noble gas to a very large extent supresses the formation and embedding of oxides in the material flow or jet, the present process and apparatus has special advantages.
  • the material flow or jet is kept clean by having the oxides as well-as the light deocmposition products being blown out or removed by the transverse flow of gas.
  • the process of the present invention is less expensive and particularly well suited for mass production.
  • Another advantage of the process and apparatus of the present invention is that unlike previous processes, it avoids the embedding of the vapors and oxides or combustion products into the layer which is to be constructed or deposited on the workpiece.
  • the transverse flow of gas is produced by a nozzle which is connected to an independent supply of gas or air and is arranged in close vicinity to the workpiece and yet is of sufficient distance therefrom to prevent the particles blown out or deflected from the jet 3 from contacting the workpiece.
  • a diaphragm, collecting wall or collecting plate it is often desirable to place a diaphragm, collecting wall or collecting plate between the transverse flow and the workpiece to collect the particles deflected from the jet 3.
  • a good control and setting of the transverse flow of gas is possible by means of varying the parameters of the flow. For example, its speed, its angle of incidence with the jet 3 and the angle of spread for the flow 6.
  • both the distance of the workpiece and the position of the collector plate or collecting means from the transverse flow of gas along with the structure of the collector plate may be arranged or selected within wide limits to meet the requirements of the particular material being applied by the jet. Even with only slight differences in the volume of the material mixture, it is still possible to achieve an exact separation if one limits the width of the jet and thus accepts a reduction in the degree of deposition.
  • a method of applying a homogeneous coating of material on a surface of a workpiece comprising creating a jet of heated particles of material, directing the jet of particles along a path at the surface to be coated, removing decomposition products from the jet of particles prior to contacting the surface of the workpiece by directing a flow of gas transversely to the path of the jet to deflect the decomposition products from the path of the jet of particles prior to the particles of the jet striking the surface of the workpiece, and collecting the decomposition products deflected from the path of the jet of particles.
  • a method according to claim I which further includes the step of providing a cooling flow on the surface of the workpiece to prevent overheating thereof.

Abstract

A method and apparatus for applying a homogeneous coating of material on a surface of a workpiece characterized by projecting a jet of heated particles of material at the surface to be coated and applying a transverse flow of gases to deflect decomposition products from the jet to the jet contacting the surface being coated. Preferably, the deflected decomposition products are caught by a collecting wall or plate and the method and apparatus can include a nozzle directing a cooling flow of gases onto the workpiece to prevent overheating of the coating and the workpiece.

Description

United States Patent Lauterbach 1 Aug. 19, 1975 [54] METHOD FOR COATING SURFACES ()F A 2,998,922 9/1961 Gibson 219/76 WORKPIECE BY SPRAYING ON A 219/76 unnen COATING SUBSTANCE 3,254,192 /1966 Braucht 219/76 [75] Inventor: Richard Lauterbach, Munich, 5.2 7 10/1968 Hli ka Germany 3,470,347 9/1969 Jackson 117/931 PF 7 Asslgnee: g jz f Beflm & Primary E.\'aminerMichael Sofocleous y Attorney, Agent, or Firm-Hill, Gross, Simpson, Van [22] Filed: Oct. 29, 1973 Santen, Steadman, Chiara & Simpson [21] Appl. No.: 410,891
[57] ABSTRACT Foreign Application Priority Data A method and apparatus for pp y a homogeneous NOV 7 972 Germany 2254491 coating of material on a surface of a workpiece characterized by projecting a jet of heated particles of ma- [52] U S Cl 427/34, 1 18/49 2219/76 terial at the surface to be coated and applying a trans- "427/180: 427/22'3f427/348 verse flow of gases to deflect decomposition products [51] Int Cl Bosb 7/l6 5105b 7/20 from the jet to the jet contacting the surface being [58] Field 1 17/93 1 P 1 coated. Preferably, the deflected decomposition prod- H8/49 5 302 -2l9/;]6 5 7 ucts are caught by a collecting wall or plate and the method and apparatus can include a nozzle directing a [56] References Cited cooling flow 'of gases onto the workpiece to prevent UNITED STATES PATENTS overheating of the coating and the workpiece.
2.570.245 10/1951 Junge 134 37 2 Claims, 4 Drawing Figures PATENTED AUG] 9 I975 SHEET 1 BF 2 PATENTED AUG 1 9 I975 sum 2 OF 2 METHOD FOR COATING SURFACES OF A WORKPIECE BY SPRAYING ON A COATING SUBSTANCE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for applying a homogeneous coating of material on the surface of a workpiece which utilizes a jet of particles heated to an elevated temperature and a transverse gas flow to deflect and remove decomposition products from the jet of particles prior to striking the surface being coated 2. Prior Art Numerous embodiments of devices for coating surfaces of a workpiece by spraying a jet of particles which have been heated to an elevated temperature are known. These devices include autogenous wire spraying (the Schoop method), autogenous powder spraying, arc spraying, detonation spraying and also plasma spraying.
A known device for coating a surface by means of arc spraying is disclosed in the US. Pat. No. 3,179,783 and this patent discloses a device in which the coating material is fed into an arc chamber and is melted. This material forms a jet of material which emerges from the nozzle of the spray device at a high temperature. In this arrangement, the nozzle is surrounded by a casing and a shielding gas flow is directed transversely to the material jet and is fed into the space surrounded by the casing. The casing terminates close to the workpiece to be coated so that the gas fed into the casing space is discharged between the workpiece and the end edge of the casing. Even those parts of the workpiece which are not currently undergoing coating are thus also cooled. This arrangement counteracts direct oxidation of the material contained in the jet of particles. However, the coating of a large area of a workpiece which is arranged at a greater distance from the nozzle of the spray device is difficult. Consequently, in order to protect the material from both oxidation and transformation and in order to achieve as clean as possible deposit on the workpiece, the usual practice is using a chamber filled with inert gases.
The exposure time, which is the time required for the coating of the workpiece, is generally very short and amounts to approximately 1.5 seconds.
In plasma spraying, the spray particle while in close vicinity to the spray nozzle and during their flight to the workpiece are melted in a period of time of approximately 200 p. seconds and are accelerated to supersonic speed. Within the individual spray particles there is thus a temperature drop with a negative temperature gradient extending from the surface of the particle to the core. To enable the particle to form a homogeneous layer when it hits or strikes the workpiece, it is necessary that the spray particles should at least be softened and thus the temperature of the core of the individual spray particles should therefore correspond approximately to the melting temperature of the material. Taking into account the relatively short time available for heating the particles, the surface of the particles are heated to well above the melting point. Consequently, part of the spray material will vaporize. Since the spray particles are generally different sizes, the smaller particles are heated more rapidly due to the surface being reduced in accordance with the square of the size and the volume reduced in accordance with the third power of the size. Thus smaller particles will vaporize to a greater degree and thus become even smaller. Independent on the type of spray process which is employed in the operating data, the overheated surface of the spray particles is also exposed to varying degrees of chemical attack. At the high spraying temperatures, many of the thus formed chemical compounds are volatile and will vaporize from the spray particles. Under the effect of the temperature many spray materials decomposite entirely or in part into various size components. In the spraying of mixtures composed of different materials, the material having the lower boiling point vaporizes to a greater degree than those with higher melting points and the material possessing the lower boiling point in a mixture is generally overheated and becomes exposed to a greater chemical attack. Therefore, the usual practice is for the material mixtures to contain a particularly endangered component in a quantity which takes into account the expected loss of the component. All of the split or vaporized components are smaller and lighter than the remaining particles of the jet or spray and are often clearly visible as socalled smoke. It must be assumed that this smoke consists for the main part of decomposition products or other chemical compounds. These components which are referred to as decomposition products are carried along with the jet and reach the surface of the workpiece. The area of the workpiece which is to be coated thus becomes polluted with these decomposition products and a micrograph of the workpiece coated in this way will show inclusions which lead to a porous layer construction which disadvantageously affects the stability of the deposited layer. As stated above, in order to avoid or to restrict this disadvantage, it is known to use an argon chamber for plasma spraying. However, the overheated and decomposition products will still reach the surface of the workpiece. Also, the air locking of the workpiece into and out of the argon chamber requires a great deal of time and effort.
SUMMARY OF THE INVENTION The present invention is directed to a method and apparatus to eliminate the above-mentioned disadvantages and to improve the spraying, in particular plasma spraying, in such a manner that a satisfactory coating which is clean and a homogeneous layer of material is achieved on the workpiece. The process and apparatus of the present invention accomplishes this'task by carrying out the spraying in a normal atmosphere and by removing the decomposition products from the jet prior to the jet contacting the surface to be coated. To cause removal of the decomposition products from the jet, the apparatus arranges a nozzle adjacent the workpiece which nozzle directs a flow of gas in a direction extending transversely to the path of the jet to blow or deflect the decomposition particles from the jet. An embodiment of the process and apparatus includes providing collecting means such as a collector plate adjacent to the workpiece which plate collects all of the particles deflected out of the jet.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic presentation of an apparatus for performing the method of the present invention;
FIG. 2 is a schematic presentation of an embodiment of the apparatus for performing the present invention;
bodiment fonperforming the method of the present invention.
I oEscRiPTioNp T HEP REFERRED EMBODIMENTS "The principles of the present invention are particularly useful in 'ar'nethod' and apparatus for providing a homogeneous'coating of a material on a-workpiece by directing a jet of heated particles of material at the workpiece and applying a transverse flow'fof gas to the jet to deflect and're'mov'e the decomposition-particles therfrorh'fSince the particle'size and weight of the ox ides vapors, and other decomposition products are less than the heavier spray particles, the principles of the present invention utilize a transverse gas flow to deflect the decompositionproducts fromthe path of the jet which t z ontainsnthe spraying particles and which sprayin'g' particles are only slightly deflected by-the trans verse=gas flowbefore striking the workpiece.
1h FIG? 'l,-the' workpiece 2 which is to be coated with a layer l' e'f-ihaterial is'dir'ectly 'hitby a jet or spray 3 which contains the heatedparticles'o'f material. The spray-par'tiele's of the jet 3 of spray'particles is created ina' spraygun 4', which may include a plasma spraying arra gement-4; and is ejected at a high speed which is in thesupersonic range'and directed toward the workpiece 2iAs' illustrat'ecL'the axis of the jet 3 is at an angle a relative to -a horizontal line 8 which is also perpendicular t'ethc'fplane of thesurface being coated on the work'p iece"2-.'-*Outside of the region of the jet spray 3 and betwe'erithe workpiece 2 and the spray gun 4 is arranged a'nb ae 5 which directs a transverse flow 6 of gas'atthe 'jet =3: Thetransverse gas flow intersects the jet 3 and causes the lighter particles to be'blown' out of the p a'th' 'ofthe 'jet'as illustrated-by broken lines 7 and these lighter particles are conveyed outside of the range or area; of the surface of the workpiece 2 which is to be coated. As illustrated, even the spray particles, whiehai 'e sufficient size, are also slightly deflected. Since the'spray or jet-3 is directed at an angle a in relation'to tlie horizontal line 8, the flight path of the spray particles after the collision with the transverse flow of gas'tt'is virtually horizontal so that the spray particles hit theworkpiece at right angles.
The distance of the workpiece 2 from the spray gun 4isfor example l5 cm and the speed of the material flow or particles inthe'jet 3 is in the order of 450 m/s. The speed of the transverse gas flow is selected to be infa range'of 200 to 450 m/s and is selected in dependence upon the nature 'of the material being utilized for the coating. i
In the embodiment of FIG. 2, thespr'ay or jet 3 is in- "tersectedby a transverse flow 6 of gas which is flowing atli'i'gh sp'eed, and the jet'3is deflected. The smaller volume particles such as the decomposition products 1 2 'and from forming a layer thereon. In addition, the H embodiment of FIG. 2"includes a flow 9 of cooling gases which is projected from nozzle 9. v onto the workpiece to protect the'workpiece 2 and the'layer 1 from too great a heating.
The criterion for a clean separation of the material products from the decomposition products is provided by the difference of the deflection value Y. This value must be greater than the width or spread of the, jet 3 in the close, vicinity of the workpiece 2. An increase speed of the transverse flow 6 of gas will result in an increase angle of deflection and a higher deflection value Y. The flow speed of the transverse flow can be in the subsonic range and be controlled by the gas pressure applied on the nozzle 5. If the nozzle 5 has a Lavel nozzle indicated at 6, the flow speed of the transverse flow 6 can be inthe supersonic range. If the horizontal distance X from the center of the Lave] nozzle 6. is increased, the deflection value Y also increases. This value then increases more rapidly than the width .or spread of the particles in a-jet 3. However, the distance X cannot be increased in an arbitrary fashion. When the spray particles pass through the remainder of the flight path X,
' the spray particles will become cooled and there is also the danger of reoxidation. There are various possibilities of controlling deflection of the decomposition product from the material flow of the jet 3 by means of the transverse flow 6 of gas and by the diaphragm or plate 10. Both the gas speed of the transverse flow 6 of gas, its angle of incident to the line 8 and also the stray width or spread of the jet 3 can be adjusted.
In FIG. 3, another embodiment, which is similar to that of FIG. 2, is schematically illustrated. In this embodiment, the workpiece 2 is covered or preceeded by a diaphragm or collection plate 10'. This diaphragm or plate serves simultaneously to collect the decomposition products deflected out of the spray jet 3 by the transverse flow 6 of gas and provides a particularly suitable arrangement for spraying predetermined contours on the workpiece 2. Nevertheless, it is essential that the width Z of the sprayed layer or coating should be less than the spray width or spread S of the material in the jet 3. It is also necessary that the distribution of spray particles in the jet should be sufficiently uniform across the width of the jet 3. If the spray gun 4 is moved to and fro with the workpiece being held stationary or if the workpiece 2 is oscillated as the gun is held stationary, the deposition is carried out in a linear fashion. The diaphragm 10' can also be placed on the workpiece, and in such an arrangement, the contour of the coating 1 corresponds to the shape of the opening in the diaphragm 10. In order to coat the contours on larger areas, it is desirable to place a contour template (not illustrated) between the diaphragm l0 and the workpiece 2. It is also possible for the template to be connected to the workpiece 2 and for the diaphragm 10' to be connected to the nozzle 5. If the diaphragm or collector plate oscillates, the deposition is carried out in strips. This type of process may be recommended for coating larger areas. I r
FIG. 4 illustrates 'an arrangement of an embodiment for coating round workpieces. The round workpiece, for example, is a cylinder 2' which is to be coated with a layer of material 1. In this case, it is desirable to direct the transverse gas flow towards the spray jet 3 at a smaller angle of incidence b. The small angle of incidence meansthat at lower gas'speeds for the transverse flow 6 of gas can be utilized to obtain a relatively greater deflection of the decomposition products, from the jet 3, as indicated by the lines 7. Here, the transverse flow of gas also serves as a cooling gas for the workpiece 2'. The rapidity of cooling of the deposited spray layer 1 can be varied by means of varying the width 4' of the transverse flow 6 of gas. If intensive cooling of the sprayed layer 1 is desired. this can be effected by rotating the nozzle 5 in the direction of the arrow d and possibly increasing the gas pressure in the nozzle line 5'.
As mentioned hereinabove, the optimum angle at which the transverse flow 6 of gas meets the spray or jet 3 is dependent upon the speed of the spraying particles in the jet 3 and upon the nature of the material.
This angle can be easily determined empirically. It is useful and advantageous to use the same gas or gas mixture for the transverse flow of gas as for the plasma gas. Not only may one use noble gases such as argon but also nitrogen with or without the addition of hydrogen. When spraying the workpiece with a metal oxide layer and the process permits an oxidizing atmosphere, it is also possible to use air.
When compared with spraying in an argon chamber in which the noble gas to a very large extent supresses the formation and embedding of oxides in the material flow or jet, the present process and apparatus has special advantages. For example, the material flow or jet is kept clean by having the oxides as well-as the light deocmposition products being blown out or removed by the transverse flow of gas. Also the process of the present invention is less expensive and particularly well suited for mass production. Another advantage of the process and apparatus of the present invention is that unlike previous processes, it avoids the embedding of the vapors and oxides or combustion products into the layer which is to be constructed or deposited on the workpiece.
As mentioned above, the transverse flow of gas is produced by a nozzle which is connected to an independent supply of gas or air and is arranged in close vicinity to the workpiece and yet is of sufficient distance therefrom to prevent the particles blown out or deflected from the jet 3 from contacting the workpiece. As mentioned above, it is often desirable to place a diaphragm, collecting wall or collecting plate between the transverse flow and the workpiece to collect the particles deflected from the jet 3.
A good control and setting of the transverse flow of gas is possible by means of varying the parameters of the flow. For example, its speed, its angle of incidence with the jet 3 and the angle of spread for the flow 6. In addition, both the distance of the workpiece and the position of the collector plate or collecting means from the transverse flow of gas along with the structure of the collector plate may be arranged or selected within wide limits to meet the requirements of the particular material being applied by the jet. Even with only slight differences in the volume of the material mixture, it is still possible to achieve an exact separation if one limits the width of the jet and thus accepts a reduction in the degree of deposition.
Although various minor modifications might be suggested by those versed in the art, I wish to employ within the scope of the patent granted hereon all such modifications as reasonably and properly come within the scope of my contribution to the art.
I claim:
1. A method of applying a homogeneous coating of material on a surface of a workpiece comprising creating a jet of heated particles of material, directing the jet of particles along a path at the surface to be coated, removing decomposition products from the jet of particles prior to contacting the surface of the workpiece by directing a flow of gas transversely to the path of the jet to deflect the decomposition products from the path of the jet of particles prior to the particles of the jet striking the surface of the workpiece, and collecting the decomposition products deflected from the path of the jet of particles.
2. A method according to claim I, which further includes the step of providing a cooling flow on the surface of the workpiece to prevent overheating thereof.
Notice of Adverse Decision in Interference In Interference No. 99,514, involving Patent N 0. 3,900,639, R. Lauterbach, METHOD FOR COATING SURFACES OF A VORKPIECE BY SPRAYING ON A COATING SUBSTANCE, final judgment adverse to the patentee was rendered Nov. 1, 1977, as to claims 1 and 2.
[Oyficz'al Gazette Febmcwy 14, 1.978.]
Notice of Adverse Decision in Interference In Interference No. 99,514, involving Patent No. 3,900,639, R. Lauterbach, METHOD FOR COATING SURFACES OF A VVORKPIECE BY SPRAYING ON A COATING SUBSTANCE, final judgment adverse to the patentee was rendered Nov. 1, 1977, as to claims 1 and 2.
[Ofiicial Gazette Febmary 14, 1.978.]

Claims (2)

1. A METHOD OF APPLYING A HOMOGENEOUS COATING OF MATERIAL ON A SURFACE OF A WORKPIECE COMPRISING CREATING A JET HEATED PARTICLES OF MATERIAL DIRECTING THE JET OF PARTICLES ALONG A PATH AT THE SURFACE TO BE COATED, REMOVING DECOMPOSITION PRODUCTS FROM THE JET OF PARTICLES PRIOR TO CONTACTING THE SURFACE OF THE WORKPIECE BY DIRECTING A FLOW OF GAS TRANSVERSLY TO THE PATH OF THE JET TO DEFLECT THE DECOMPOSITION PRODUCTS FROM THE PATH OF THE JET OF PARTICLES PRIOR TO THE PARTICLES OF THE JET STRIKIN THE SURFACE OF THE WORKPIECE, AND COLLECTING THE DECOMPOSITION PRODUCTS DEFLECTED FROM THE PATH OF THE JET OF PARTICLES.
2. A method according to claim 1, which further includes the step of providing a cooling flow on the surface of the workpiece to prevent overheating thereof.
US410891A 1972-11-07 1973-10-29 Method for coating surfaces of a workpiece by spraying on a coating substance Expired - Lifetime US3900639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2254491A DE2254491C3 (en) 1972-11-07 1972-11-07 Process for coating surfaces on workpieces by spraying on laminates melted in an arc, as well as an arrangement for carrying out the process

Publications (1)

Publication Number Publication Date
US3900639A true US3900639A (en) 1975-08-19

Family

ID=5861077

Family Applications (1)

Application Number Title Priority Date Filing Date
US410891A Expired - Lifetime US3900639A (en) 1972-11-07 1973-10-29 Method for coating surfaces of a workpiece by spraying on a coating substance

Country Status (7)

Country Link
US (1) US3900639A (en)
DE (1) DE2254491C3 (en)
FR (1) FR2205830A5 (en)
GB (1) GB1448116A (en)
IT (1) IT999101B (en)
NL (1) NL7314616A (en)
SE (1) SE384636B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037074A (en) * 1974-04-22 1977-07-19 Felix Montbrun Apparatus for the continuous application of a metallic coating to a metal strip
US4146654A (en) * 1967-10-11 1979-03-27 Centre National De La Recherche Scientifique Process for making linings for friction operated apparatus
US4386112A (en) * 1981-11-02 1983-05-31 United Technologies Corporation Co-spray abrasive coating
US4481237A (en) * 1981-12-14 1984-11-06 United Technologies Corporation Method of applying ceramic coatings on a metallic substrate
US4603568A (en) * 1985-05-30 1986-08-05 General Electric Company Method of fabricating bimetal variable exhaust nozzle flaps and seals
US4711683A (en) * 1987-03-09 1987-12-08 Paper Converting Machine Company Method and apparatus for making elastic diapers
US4741286A (en) * 1985-05-13 1988-05-03 Onoda Cement Company, Ltd. Single torch-type plasma spray coating method and apparatus therefor
US5100698A (en) * 1989-12-20 1992-03-31 Central Glass Company, Limited Method and apparatus for applying releasing agent to glass plate
DE4139590A1 (en) * 1991-11-30 1993-06-24 Ind Lackieranlagen Schmidt Gmb DEVICE FOR THE EXTERNAL PRESERVATION OF MOTOR VEHICLES
US5486383A (en) * 1994-08-08 1996-01-23 Praxair Technology, Inc. Laminar flow shielding of fluid jet
US5492769A (en) * 1992-09-17 1996-02-20 Board Of Governors Of Wayne State University Method for the production of scratch resistance articles and the scratch resistance articles so produced
US5622750A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Aerosol process for the manufacture of planar waveguides
WO2000037706A1 (en) * 1998-12-18 2000-06-29 Volkswagen Aktiengesellschaft Method for the thermal coating of a surface of an interior space and system for carrying out said method
EP1136583A1 (en) * 2000-03-20 2001-09-26 Sulzer Metco AG Method and apparatus for thermally coating the cylinder surfaces of combustion engines
US6475285B2 (en) * 2000-03-28 2002-11-05 Kabushiki Kaisha Toshiba Deposition apparatus
EP1295648A1 (en) * 2000-06-26 2003-03-26 Abb K.K. Two-tone coating method
US20040094088A1 (en) * 2002-11-20 2004-05-20 Toyota Jidosha Kabushiki Kaisha Thermal spraying device and thermal spraying method
US20040200418A1 (en) * 2003-01-03 2004-10-14 Klaus Hartig Plasma spray systems and methods of uniformly coating rotary cylindrical targets
US20090246398A1 (en) * 2006-08-14 2009-10-01 Nakayama Steel Works ,Ltd. Method and apparatus for forming amorphous coating film
EP3227032A4 (en) * 2014-12-04 2018-08-22 Progressive Surface, Inc. Thermal spray method integrating selected removal of particulates
US10279365B2 (en) 2012-04-27 2019-05-07 Progressive Surface, Inc. Thermal spray method integrating selected removal of particulates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69216637T2 (en) * 1991-11-01 1997-04-24 Opa Overseas Publishers Ass Am METHOD FOR TREATING THE SURFACE OF A WORKPIECE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570245A (en) * 1948-04-02 1951-10-09 Pittsburgh Plate Glass Co Method of spraying transparent coatings
US2998922A (en) * 1958-09-11 1961-09-05 Air Reduction Metal spraying
US3179783A (en) * 1962-06-20 1965-04-20 Giannini Scient Corp Method and apparatus for treating electrically-conductive surfaces to make them hardor corrosion resistant
US3197605A (en) * 1961-02-06 1965-07-27 Soudure Autogene Elect Constricted electric arc apparatus
US3254192A (en) * 1962-11-30 1966-05-31 Theodore C Braucht Welding method and apparatus
US3405247A (en) * 1964-12-03 1968-10-08 Armco Steel Corp Method and apparatus for producing smooth overlays for tool joints
US3470347A (en) * 1968-01-16 1969-09-30 Union Carbide Corp Method for shielding a gas effluent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2570245A (en) * 1948-04-02 1951-10-09 Pittsburgh Plate Glass Co Method of spraying transparent coatings
US2998922A (en) * 1958-09-11 1961-09-05 Air Reduction Metal spraying
US3197605A (en) * 1961-02-06 1965-07-27 Soudure Autogene Elect Constricted electric arc apparatus
US3179783A (en) * 1962-06-20 1965-04-20 Giannini Scient Corp Method and apparatus for treating electrically-conductive surfaces to make them hardor corrosion resistant
US3254192A (en) * 1962-11-30 1966-05-31 Theodore C Braucht Welding method and apparatus
US3405247A (en) * 1964-12-03 1968-10-08 Armco Steel Corp Method and apparatus for producing smooth overlays for tool joints
US3470347A (en) * 1968-01-16 1969-09-30 Union Carbide Corp Method for shielding a gas effluent

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146654A (en) * 1967-10-11 1979-03-27 Centre National De La Recherche Scientifique Process for making linings for friction operated apparatus
US4037074A (en) * 1974-04-22 1977-07-19 Felix Montbrun Apparatus for the continuous application of a metallic coating to a metal strip
US4386112A (en) * 1981-11-02 1983-05-31 United Technologies Corporation Co-spray abrasive coating
US4481237A (en) * 1981-12-14 1984-11-06 United Technologies Corporation Method of applying ceramic coatings on a metallic substrate
US4741286A (en) * 1985-05-13 1988-05-03 Onoda Cement Company, Ltd. Single torch-type plasma spray coating method and apparatus therefor
US4603568A (en) * 1985-05-30 1986-08-05 General Electric Company Method of fabricating bimetal variable exhaust nozzle flaps and seals
US4711683A (en) * 1987-03-09 1987-12-08 Paper Converting Machine Company Method and apparatus for making elastic diapers
US5100698A (en) * 1989-12-20 1992-03-31 Central Glass Company, Limited Method and apparatus for applying releasing agent to glass plate
DE4139590A1 (en) * 1991-11-30 1993-06-24 Ind Lackieranlagen Schmidt Gmb DEVICE FOR THE EXTERNAL PRESERVATION OF MOTOR VEHICLES
US5492769A (en) * 1992-09-17 1996-02-20 Board Of Governors Of Wayne State University Method for the production of scratch resistance articles and the scratch resistance articles so produced
US5486383A (en) * 1994-08-08 1996-01-23 Praxair Technology, Inc. Laminar flow shielding of fluid jet
US5622750A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Aerosol process for the manufacture of planar waveguides
WO2000037706A1 (en) * 1998-12-18 2000-06-29 Volkswagen Aktiengesellschaft Method for the thermal coating of a surface of an interior space and system for carrying out said method
CN1293225C (en) * 1998-12-18 2007-01-03 大众汽车有限公司 Method for thermal coating of surface of interior space and device for carrying out said method
US6503577B2 (en) 2000-03-20 2003-01-07 Sulzer Metco Ag Method of thermally coating a cylinder barrel of a cylinder block of a combustion engine
EP1136583A1 (en) * 2000-03-20 2001-09-26 Sulzer Metco AG Method and apparatus for thermally coating the cylinder surfaces of combustion engines
KR100738790B1 (en) * 2000-03-20 2007-07-12 술처 멧코 아게 A method and an apparatus for thermally coating the cylinder barrels of a combustion engine
US6475285B2 (en) * 2000-03-28 2002-11-05 Kabushiki Kaisha Toshiba Deposition apparatus
EP1295648A1 (en) * 2000-06-26 2003-03-26 Abb K.K. Two-tone coating method
EP1295648A4 (en) * 2000-06-26 2006-06-14 Abb Kk Two-tone coating method
US7081276B2 (en) * 2002-11-20 2006-07-25 Toyota Jidosha Kabushiki Kaisha Method for thermally spraying a film on an inner face of a bore with a spiraling vapor current
US20040094088A1 (en) * 2002-11-20 2004-05-20 Toyota Jidosha Kabushiki Kaisha Thermal spraying device and thermal spraying method
US20040200418A1 (en) * 2003-01-03 2004-10-14 Klaus Hartig Plasma spray systems and methods of uniformly coating rotary cylindrical targets
US20090246398A1 (en) * 2006-08-14 2009-10-01 Nakayama Steel Works ,Ltd. Method and apparatus for forming amorphous coating film
US10279365B2 (en) 2012-04-27 2019-05-07 Progressive Surface, Inc. Thermal spray method integrating selected removal of particulates
EP3227032A4 (en) * 2014-12-04 2018-08-22 Progressive Surface, Inc. Thermal spray method integrating selected removal of particulates

Also Published As

Publication number Publication date
DE2254491A1 (en) 1974-05-22
IT999101B (en) 1976-02-20
GB1448116A (en) 1976-09-02
NL7314616A (en) 1974-05-09
DE2254491C3 (en) 1975-04-17
SE384636B (en) 1976-05-17
FR2205830A5 (en) 1974-05-31
DE2254491B2 (en) 1974-08-22

Similar Documents

Publication Publication Date Title
US3900639A (en) Method for coating surfaces of a workpiece by spraying on a coating substance
US4064295A (en) Spraying atomized particles
US3970249A (en) Spraying atomized particles
US5122632A (en) Device for laser plasma coating
US8021715B2 (en) Cold gas spraying method
US4696855A (en) Multiple port plasma spray apparatus and method for providing sprayed abradable coatings
US4256779A (en) Plasma spray method and apparatus
CA2005532A1 (en) Axial flow laser plasma spraying
US5174826A (en) Laser-assisted chemical vapor deposition
JPH06501131A (en) High-speed arc spraying equipment and spraying method
JPH01215961A (en) Laser thermal spraying method
US3858262A (en) Method of making self-locking internally threaded articles
US3896760A (en) Apparatus for making self-locking internally threaded articles
DE2823817A1 (en) METHOD AND DEVICE FOR THE FORMATION OF METAL OBJECTS BY METAL SPRAYING OF SPRAYED METAL MELT DROPS ON A BASE
US2701775A (en) Method for spraying metal
US4952144A (en) Apparatus for improving quality of metal or ceramic powders produced
US5855642A (en) System and method for producing fine metallic and ceramic powders
JPH09111435A (en) Method for monitoring and controlling process for forming film by thermal spraying
JPH04219161A (en) Device and method for atomizing liquid
JPS6320188B2 (en)
US4570568A (en) Shroud for thermally sprayed workpiece
US3485997A (en) Process and apparatus for the thermal vaporization of mixtures of substances in a vacuum
JP2018508644A (en) Thermal spraying method that integrates selective removal of particles
JP7298403B2 (en) Plasma spray equipment
JP2552492B2 (en) Spray deposit equipment