US3894195A - Method of and apparatus for aiding hearing and the like - Google Patents

Method of and apparatus for aiding hearing and the like Download PDF

Info

Publication number
US3894195A
US3894195A US478462A US47846274A US3894195A US 3894195 A US3894195 A US 3894195A US 478462 A US478462 A US 478462A US 47846274 A US47846274 A US 47846274A US 3894195 A US3894195 A US 3894195A
Authority
US
United States
Prior art keywords
paths
speech
signal
signals
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US478462A
Inventor
Karl D Kryter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US478462A priority Critical patent/US3894195A/en
Priority to DE19752526034 priority patent/DE2526034B2/en
Priority to GB24821/75A priority patent/GB1506295A/en
Priority to FR7518468A priority patent/FR2274271A1/en
Application granted granted Critical
Publication of US3894195A publication Critical patent/US3894195A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/502Customised settings for obtaining desired overall acoustical characteristics using analog signal processing

Definitions

  • noise vs speech signal discrimination is em- Field of Search 107 FD, 107 R, 107 ployed with an optional semi-remote microphone in- 179/1 D, 1 F5 put, and with an optional electronic frequency-shift processing of the signal to prevent or reduce oscillal l References Cited tion due to acoustic airborne and/or vibrational feed- UNITED STATES PATENTS back between the earphone(s) and the micro- 2,112,569 3/1938 Lybarger 179/107 FD p 3,231,686 1/1966 Hueber 179/107 PD 1 l 2 3,243,525 3/1966 Eaton 179/107 FD 2 C Drawmg Flglres MICROPHONES EARPHONES gPTIONL LEFT RIGHT LEFT RIGHT LE RE VART/ TBLE AMPLIIQIIERS j AGC 1A F8 SECTIONI w BROAD BA -200-70001l2 2A
  • the present invention relates to methods of and apparatus fo r electronically aiding hearing or similar applications, being more particularly directed to improving noise vs. speech signal discrimination.
  • sensori-neural hearing loss The most prevalent type of deafness is so-called sensori-neural hearing loss, wherein the inner ear loses some ability to perceive the weaker intensity portions of the speech signal and also loses some ability to make normal discriminations among some frequency components even though of sufficient intensity to be audible to the person with sensori-neutral hearing loss. Usually these losses in hearing ability are greater for the higher sound frequencies, say, 2000 Hertz) than for the lower (below, say 2000 Hertz).
  • the sensori-neural deafened ear moreover, causes the perception of sounds that are very intense as excessively loud. Distortions not formed in the normal inner ear, which contains the sensorineural receptors, moreover, apparently occur in the sensori-neural deafened ear and result in less discrimi nation than normal among the various speech sounds.
  • a hearing aid that sufficiently amplifies all the sounds uniformly or linearly so that the weaker sh component, or phoneme, as it is called, is audible to the sensorineural ear, may also make the ow portion of the word extraordinarily loud and cause distortion in the inner ear, thereby tending to lessen understanding of the speech signal. It is also important to note that these weaker phonemes tend to have durations ranging from about 0.01 to less than 0.5 second. It has been discovered, in accordance with the present invention, that effective use can be made of the relative difference in amplitude of segments of the speech signal and the relatively short duration of the speech segments of phonemes, particularly the less intense phonemes, to produce the improved results herein described.
  • an automatic gain control system that more or less continuously (or too frequently) modifies the degree of gain will tend to introduce distortion and as a result will not always make the speech signal more understandable, as described by E. Trinder, An Attempt to Correct Speech Discrimination Loss in Cochlear Deafness by Graded Instantaneous Compression, Sound, Vol. 5, pp. 62-67, (1972). Conversely, maintaining a given gain for too long a period of time will also degrade the understandability of the speech signal because the gain setting will be inappropriate over significant segments of the speech phonemes wherein the level changes are very rapid.
  • a common problem of hearing aids that are designed to provide large amounts of signal gain for persons with unusually large amounts of hearing loss is that some of the output of the earphones of the hearing aid leaks or feeds back either by air or by mechanical paths, to the microphone of the hearing aid. This feedback causes a cyclic reamplification or oscillation that leads to complete overloading of the hearing aid causing it to squeal and be obnoxious and useless to the user.
  • a procedure for reducing a related type of oscillation, but in the different application and requirements of publicaddress systems operated in a reverberant room, has been described by M. R. Schroeder, Improvement of Acoustic-Feedback Stability by Frequency Shifting, J. Acoust. Soc, 36, 1718-1724, (1964).
  • the airborne signal picked up by the microphone is shifted, by well-known modulation techniques, either upwards or downwards by about 5 to Hz before it is presented to the acoustic output transducers or loudspeakers of the public address system.
  • This shift in frequency is not sufficient significantly to interfere with the audible quality of the signal, particularly if the signal is speech, coming from the loudspeakers but does allow the output signal to reach levels about 10 dB higher without causing feedback oscillation than is possible without the application of the frequency shift processing.
  • This frequency shifting process properly critically adapted, has not heretofore been utilized for the prevention or reduction of either the mechanical linkage or the acoustic airborne feedback that may be present in such hearing aids.
  • the input signal cannot be added to itself following amplification by the hearing aid and feedback, as normally can cause oscillation, because the signal is changed in frequency each time it passes through the hearing aid system and will therefore have a waveform, of feedback, that is not consistently in phase with the input waveform as is required, within limits, to cause oscillation of the system.
  • An object of the present invention accordingly, is to provide a new and improved method of and apparatus for electronic hearing aiding that shall not be so subject to the above-described limitations and disadvantages of prior techniques, but that, to the contrary, significantly increases noise vs. speech signal discrimination, particularly useful for sensori-neural deafness problems and the like.
  • the present invention provides real-time operation with special automatic gain control signal processing for both the overall signal and also for different parts of the speech spectrum in ways that can be adjusted to best suit the needs of individual sensorineural deafened ears that suffer different degrees and patterns, as a function of frequency, of hearing deficiencies.
  • the aid of the invention provides means of inserting one or more fixed increases in linear gain to segments of the speech signal that fall below given levels relative to the gain provided to segments that fall above given levels.
  • the amount of increased gains and the given levels below which they are-to be inserted may be set separately for each of the different parts filtered from the speech spectrum. Further, the invention will automatically discriminatebetween segments.
  • the invention also provides for so-called biear listening where the treatment of the signal for each of the ears of the listener can be somewhat different, and further provides for pick-up, if desired, by two microphones of a stereo signal, in order to. utilize .the information found in so-called phase differences'between speech and other signals as present at two microphones; one placed at the position or pick-up'region'of each ear.
  • the hearing aid of the invention provides for an optional remote microphone that can be used for pick-up of signals at points at a farther-thannormal distance from'the user, i.e. closer to the sound source.
  • the aid of the invention provides for an optional electronic frequency-shift of the signal picked up at the microphone so that the signal output at the earphones is at a somewhat different frequency (about 10 Hz) than the signal picked up by the microphone either by airborne or mechanical agitations.
  • FIG. 1 of which is a block diagram of a preferred apparatus embodying the invention.
  • FIG. 2 is a similar diagram of a suitable NLGC (nonlinear-linear gun control)'apparatus for use in the system of FIG. 1.
  • NLGC nonlinear-linear gun control
  • two microphones are indicated in FIG. 1 as the typical pick-up sources of the signal input, although the system could operate with even but one microphone. While the microphones may be nondirectional, they are preferrably of the directional type,'
  • tional remote microphone may be worn strapped to the users wrist so that it appears as a wrist watch or bracelet and can be placed closer to a desired signal source by movement of his hand and'arm, or it maybe incapsulated in a pen or pencil type case, not shown,
  • the amplifiers, batteries and associated electronics of the apparatus moreover, rnay beenclosed in a case worn in a clothes pocket of the user o'r attached to his or her body or clothing in anyconvenient manner.
  • the major purpose of the AGC circuit is to adjust the over-all speech signal to an intensity level for the filtering and additional automatic gain control processes to follow, such that the subsequent system will not overload, but yet will be at a level adequate to give proper signal transmission.
  • the weaker speech sounds in conversational speech are at a level of about 20 dB re 0.0002 microbar, and the more intense speech sounds in a conversational speech signal are of the order of 60 dB.
  • a dynamic range of about 40 dB is accordingly present in a speech signal uttered at a constant and conversational level of effort.
  • the level of the speech signals may go up to 100 decibels or so.
  • the AGC circuit is adjusted to provide a decrease in gain when the signal envelope is above a specified level (typically 60 dB) for approximately 0.001 seconds. Conversely, whenever the envelope level falls below a specified level (typically 60 dB) for approximately 0.02 seconds, the gain of the system automatically assumes its normal state of gain and treats signals between about 20 to 60 dB input in a substantially linear fashion.
  • the decreases in gain effected by AGC are proportional to the degree to which the speech envelope (averaged over about 0.001 second) exceeds the level equivalent at that point in the system to a speech level of about 50 dB at the input to the microphone(s).
  • AGC adjusts the average gain so that speech at an intensity greater than about 50 dB at the microphone(s) will generally be placed within the optimum operation region of the filters and associated electronic components that follow, as hereinafter described.
  • the signal from AGC may be fed to the frequency shifter section, if used, shown at PS, prior to being fed to Sections 1, 2, 3, and 4 of the hearing aid as shown in FIG. 1.
  • Such a frequency-shifter FS by means of standard RF modulation and demodulation techniques, as of the type disclosed in said Schroeder article, for example, shifts the frequency spectrum of the signal picked up at the microphone by about Hz.
  • the frequency spectrum coming from the earphones of the hearing aid is shifted from its location on the frequency spectrum, from the location it occupied when picked up by the microphone, increasing by about 10 dB the tolerable level of the level of output from the earphones that can be reached before acoustic feedback between the earphones and microphones causes oscillation in the hearing aid amplifiers.
  • this frequency shifting process will also tend significantly to reduce the vibrations that may be set up in the mechanical linkage between the earphone(s) and microphone(s) of the hearing aid, said vibrations, if sufficiently strong, being a sourceof causing oscillation and overload in th hearing aid.
  • Sections 1, 2, 3, and 4 of the hearing aid are fed to and processed by Sections 1, 2, 3, and 4 of the hearing aid, as shown in FIG. 1.
  • Section 1 passes a broad band of frequencies and each of sections 2, 3 and 4 contains a narrow band filter of different adjacent bands, as later explained.
  • Section 1 transmits the broadband signal over the range of about 200 Hz to 7000 Hz to the listener, with adjustment of its level made possible by means of variable gain amplifiers 1A, 1B, LE, and RE.
  • variable gain amplifiers 1A, 1B, LE, and RE are added to this broad-band signal.
  • these sections are to separate or filter the speech or other acoustic signals into relatively narrow bands of frequencies so that the respective bands can be amplitude-processed and gainadjusted in ways that will enhance the understandability of speech and other acoustic signals for persons with sensori-neural deafness.
  • the ear with sensori-neural deafness will usually have a usable dynamic range of but 10 dB or so between levels that are inaudible and levels that overload the ear, as compared with a usable dynamic range of more than 60 dB for the normal ear.
  • the dynamic range may be greater or less, depending on the particular pattern of damage to the sensori-neural receptors in the inner ear.
  • the purpose of the Sections 2, 3, and 4 is to provide the means of processing the different frequency bands of speech to the degree and in the way best suited for the hearing characteristics of a given ear suffering sensori-neural deafness, and to add these specially processed frequency bands to the normal, broadband signal being transmitted by Section 1, as shown in FIG. 1. It is to be understood that for some sensori-neural deaf ears, fewer or more than four such sections of signal processors will be required, or that the bandwidths of one or more of the sections indicated may be changed, and that the non-linear gain control processing to be later described may be inactivated in given sections.
  • the band-pass filter of Section 4 separates the energy in the frequency band 2500 to 7000 Hz from the total spectrum of the signal.
  • the output of this band-pass filter is then passed through a nonlinear-linear compresser gain control (NLGC).
  • NLGC nonlinear-linear compresser gain control
  • the amount of signal compression is set to be suited to the loss in a given ear in dynamic range of hearing ability for sounds in the frequency band 2500 to 7000 Hz.
  • the NLGC operates such that when the signal is, for about 0.005 seconds, below a given level, an additional amount of signal energy is applied to the signal energy in the frequency band 2500 to 7000 Hz.
  • This NLGC circuit is then further amplified in separate split paths containing amplifiers 4A and 48, if necessary, to meet possible differences in sensitivity between the left and right ears of the listener.
  • Sections 2 and 3 are also individually separately adjusted to provide the degree, if any, of signal dynamic range compression best suited for optimizing the reception and understandability of signals, especially speech, as determined by the contributions of the several respective different frequency bands 750-1500 Hz and 1500-2500 Hz.
  • the outputs of these three sections are then split into pairs and combined through resistor networks with the broad-band signal from Section 1 for presentation to the listener, with all the right and left ear paths of the NLGC outputs being connected together, respectively.
  • the NLGC part of the hearing aid may be of the form illustrated in FIG. 2 for operation, for example, in Section 4 of FIG. 1.
  • FIG. 2 when the input signal envelope is between 50 to 60 dB or greater, Gate 1 remains closed and these time segments of the signal pass directly through towards the output, so-labelled, without the emphasis or extra gain available from amplifier B.
  • the signal envelope falls to a value indicating that the input signal is below 50 dB, Gate 1 opens and the signal in Path B (which has been amplified by amplifier B by a given amount relative to the level in Path A) is added to the signal present in Path A, provided that Gate 2 is also open.
  • Gate 2 by means of the attack and release time control 2' is open when the signal envelope is more than the illustrative 50 dB; however, when the signal remains below 50 dB for more than 0.5 sec., Gate 2 closes, thereby preventing further gain-emphasized signal segments coming through Gate 1 from reaching Path A. Accordingly, the extra emphasis or amplification given to the signal by amplifier B is not added to the signal in Path A. Amplifier B is adjustable so that the amount of extra emphasis given to the signal, relative to its level in Path A, can be varied to best meet the needs of different degrees of hearing loss.
  • Rectifier R, amplifier 1" and attack-release time control elements 1 and 2' perform the following functions: rectifier R provides a means of making the negative parts of the signal continuum positive in voltage; and amplifier l is adjustable and provides a means for adjusting the rectified signal continuum level reaching the attack-release time controls 1' and 2. Accordingly, depending on the desires of the user during a given input signal-noise condition, the signal continuum level can be increased or decreased from rectifier, R, so that the attack-release controls 1 and 2', which affect Gates 1 and 2, respectively, and which are set to operate at specified voltages, will be activated with different signal-continuum levels at the input to the microphones.
  • amplifier 1 provides a means of causing the gates to be activated with lesser or greater input signals at the microphone as will be advantageous to persons with different degrees of sensori-neural deafness.
  • the purpose of the described double-gate action is to give the weaker, short duration (less than 0.5 sec) segments of the signal the extra amplification or emphasis relative to the strong intensity segments of the speech signal; but not to give this extra amplification to relatively low intensity background noise which is typically more steady-state than the speech signal.
  • This background noise may continue at a level below, say, 50 dB for much longer duration than 0.5 sec. and is especially objectionable to persons using hearing aids that pro- 'vide automatic gain compression that typically increases the relative intensity of this background noise.
  • Gates 1 and 2 may, for example, be of the Field Effect Transistor (FET) type, described in Electronic Principles by Malvino, McGraw-I-Iill, New York, 1973: attack and release time control circuits 1 and 2 may be of the operational amplifier type with appropriate capacitive and resistive feedback elements, as described in the same publication.
  • FET Field Effect Transistor
  • attack and release time control circuits 1 and 2 may be of the operational amplifier type with appropriate capacitive and resistive feedback elements, as described in the same publication.
  • other types of well-known circuits may be similarly employed, and further modifications, within the spirit and scope of the invention, will suggest themselves to those skilled in this art.
  • a method of aiding hearing that comprises, adjusting the over-all intensity level of speech signals with substantially linear gain over a predetermined range of intensities; applying the adjusted-intensity signals along a plurality of frequency filtering paths, one passing a broad band of the speech signal frequencies, and the others passing successive adjacent narrow bands within said broad band; reducing separately in each of the other paths, the dynamic range of intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the corresponding narrow bands, as distinguished from the more steady state segments of background noise and steady-state signals; and combining the signals from said paths.
  • Hearing aid apparatus having, in combination, microphone pick-up means; automatic gain control means connected with the pick-up means to adjust the overall signal intensity level of speech signals with substantially linear gain over a predetermined range of intensities; a plurality of filter paths connected with the automatic gain control means and comprising a first path with broad band filter means for the speech signal frequencies and a plurality of further paths containing band-pass filters of successive adjacent narrow bands within said broad band; a plurality of speech-noise discrimination means, one connected in each of the plurality of further paths for separately reducing in each path the dynamic range of signal intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the respective narrow bands, as distinguished from the more steady state segments of background noise and steady-state signals; and means for combining the signals from said paths.
  • Apparatus as claimed in claim and in which said combining means comprises pairs of right and left ear paths, each pair split from the output of the broad band filter means and the outputs of the plurality of speechnoise discrimination means, with all right ear paths connected together and all left ear paths connected together.
  • variable gain amplifier means is provided at the output of each of the connected-together right and left ear paths, independently operable with respect to the said separate variable gain amplifier means.
  • each of said speech-noise discrimination means comprises a pair of signal processing paths connected to the corresponding band pass filter means, one of said paths including gating means and attack-release time control means for operating the gating means to apply amplification emphasis along the other processing path for the weaker short-duration segments of the signal relative to the strong intensity segments of the speech signal, but without providing added amplification to relatively low intensity background noise.
  • said microphone pick-up means comprises right and left ear microphones and a remote microphone adjustable to regions closer to the source of speech, with all of the microphones connected to the automatic gain control means.
  • Hearing aid apparatus having, in combination, right and left ear microphone pick-up means, remote microphone means adjustable to regions closer to the source of sound, and common automatic gain control means connected to all of said microphone means to receive the combined inputs thereof.
  • Hearing aid apparatus as claimed in claim 5 and in which frequency shift means is provided connected with the automatic gain control means for shifting the frequency of signals picked up by the microphone pickup means and mechanical vibratory linkages associated therewith, said frequency shift means comprising means for modulating with one frequency and demodulating with a second and different frequency.

Abstract

This disclosure deals with electronically aiding sensori-neural deafness with frequency-segmented, dynamic range-compressed speech signal processing, wherein noise vs. speech signal discrimination is employed with an optional semi-remote microphone input, and with an optional electronic frequency-shift processing of the signal to prevent or reduce oscillation due to acoustic airborne and/or vibrational feedback between the earphone(s) and the microphone(s).

Description

United States Patent Kryter July s, 1975 METHOD OF AND APPARATUS FOR AIDING HEARING AND THE LIKE Primary ExaminerRalph D. Blakeslee Attorney, Agent, or FirmRines and Rines; Shapiro [76] Inventor: Karl D. Kryter, 13725 Robleda Rd.,
Los Altos, Calif. 94022 and Shapm 22 F'] d: 12, 1974 1 June 57 ABSTRACT 21 A 1. N 478 462 1 pp 0 This disclosure deals with electronically aiding sensori-neural deafness with frequency-segmented, dy- [52] US. Cl. 179/107 FD a i ran eompressed peech signal processing,
Int. wherein noise vs speech signal discrimination is em- Field of Search 107 FD, 107 R, 107 ployed with an optional semi-remote microphone in- 179/1 D, 1 F5 put, and with an optional electronic frequency-shift processing of the signal to prevent or reduce oscillal l References Cited tion due to acoustic airborne and/or vibrational feed- UNITED STATES PATENTS back between the earphone(s) and the micro- 2,112,569 3/1938 Lybarger 179/107 FD p 3,231,686 1/1966 Hueber 179/107 PD 1 l 2 3,243,525 3/1966 Eaton 179/107 FD 2 C Drawmg Flglres MICROPHONES EARPHONES gPTIONL LEFT RIGHT LEFT RIGHT LE RE VART/ TBLE AMPLIIQIIERS j AGC 1A F8 SECTIONI w BROAD BA -200-70001l2 2A sEcT|oN2 115%? N 28 7510-1500111 LGC A SECTION3 wa 35 1500-2500111 NLGC M 4A SECTION4 T T'G'EQ 48 2500-7000111 NLGC "ITFIFFHJUL 81975 3, 94 195 MICRO/PQONES EARPHONES 6PTI0NAL LEFT RIGHT LEFT RIGHT RE OTE LE RE VARIABLE GAIN AMPLIFIERS AGC v 1A D E i sEcTIoNI BROAD BAND 1B -2OO-7OOOH2 W 2A SECTION 2 BAND-PASS 2B FILTER NLGC 75O-15OOH2 3A SECTION3 BAND-PASS 3B FILTER NLGC 1500-25OOHz SECTION 4 1: BAND-PASS Lg FILTER NLGC 4B%'\/W,
F NLGC SECTION 4 SECTION4 I l BAND-PASS I FILTER I PATH A I OUTPUT 2500-7000Hz r I ATTACK- ,2 I RELEASE GATE TIME 2 CONTROL i R 1" I fifi REcTIFIER TIME 1 I CONTROL I B y FIg. Z.
METHOD OF AND APPARATUS FOR AIDING HEARING AND THE LIKE The present invention relates to methods of and apparatus fo r electronically aiding hearing or similar applications, being more particularly directed to improving noise vs. speech signal discrimination.
The most prevalent type of deafness is so-called sensori-neural hearing loss, wherein the inner ear loses some ability to perceive the weaker intensity portions of the speech signal and also loses some ability to make normal discriminations among some frequency components even though of sufficient intensity to be audible to the person with sensori-neutral hearing loss. Usually these losses in hearing ability are greater for the higher sound frequencies, say, 2000 Hertz) than for the lower (below, say 2000 Hertz). The sensori-neural deafened ear, moreover, causes the perception of sounds that are very intense as excessively loud. Distortions not formed in the normal inner ear, which contains the sensorineural receptors, moreover, apparently occur in the sensori-neural deafened ear and result in less discrimi nation than normal among the various speech sounds.
There are many electronic hearing aids which provide means for increasing the intensity of the speech signal reaching the inner car so that the weakened sounds are audible to the deafened ear. These hearing aids, however, while of help to persons suffering socalled conductive type deafness, are not very helpful to sensori-neural deafness because'of the aforementioned loss in discrimination ability, and because of the innerear distortions and excessive loudnesses that occur when sound amplification is applied to the strong as well as weak components of the varying intensity speech signal in order that the weaker sounds be made audible to the sensori-neural ear. For example, a word such as show contains the consonant sh, which is much weaker than the vowel sound ow. A hearing aid that sufficiently amplifies all the sounds uniformly or linearly so that the weaker sh component, or phoneme, as it is called, is audible to the sensorineural ear, may also make the ow portion of the word extraordinarily loud and cause distortion in the inner ear, thereby tending to lessen understanding of the speech signal. It is also important to note that these weaker phonemes tend to have durations ranging from about 0.01 to less than 0.5 second. It has been discovered, in accordance with the present invention, that effective use can be made of the relative difference in amplitude of segments of the speech signal and the relatively short duration of the speech segments of phonemes, particularly the less intense phonemes, to produce the improved results herein described.
In attempts to overcome the deficiency of linear-gain hearing aids, automatic non-linear or compression gain control systems have sometimes been used wherein the intensity of the speech signal is averaged for a brief period of time and this information is used automatically to adjust the gain of the amplifier. If the level is too low, the gain of the amplifier is increased by an amount proportional to the degree the average input voltage (over some specified period of time) falls below a specified level. This process is called dynamic range compression; but it is difficult satisfactorily to achieve with speech signals because the signal level changes so quickly from one speech sound to another. Changing the gain without an adequate determination of the average envelope will cause distortion of the signal waveform and thereby degrade its understandability. In brief, an automatic gain control system that more or less continuously (or too frequently) modifies the degree of gain will tend to introduce distortion and as a result will not always make the speech signal more understandable, as described by E. Trinder, An Attempt to Correct Speech Discrimination Loss in Cochlear Deafness by Graded Instantaneous Compression, Sound, Vol. 5, pp. 62-67, (1972). Conversely, maintaining a given gain for too long a period of time will also degrade the understandability of the speech signal because the gain setting will be inappropriate over significant segments of the speech phonemes wherein the level changes are very rapid.
Another shortcoming of automatic compression gain control systems is that during periods of time when there is a pause in the input speech signal, the gain control is progressively increased to a maximum amount and thereby tends to make objectionable to the hearing aid user, the normally low level, or residual, noise present at the input of inherent in the electronics of the hearing aid. It is noted that in the present hearing aid invention, as will be described later, an automatic nonlinear-linear gain control (to be labelled NLGC) device is utilized that has the ability to discriminate to a degree between speech signals and background noise and adjust the system gain appropriately on the basis of this information; i.e., prevent excessive amplification to the weak noise segments.
It might be noted that some reduction in the distortions that occur with automatic compression gain can be reduced to some extent by the application of independent automatic compression gain controls to different portions of the speech spectrum; the amount, if any, for each portion being adjusted to meet the degree and kind of hearing loss experienced by a given ear with a sensori-neural hearing loss. Such automatic compression gain of frequency segment speech signals has been described, for example, by E. Villchur, Signal Processing to Improve Speech Intelligibility in Perspective Deafness, J. Acoust. Soc. Am. 53, 1647-1657, (1973). While this technique does provide improvement in understanding of speech by persons with sensori-neural deafness, it does not provide for the discrimination between weak speech segments and weak noise segments providing increased gain for the speech segments but not the noise segments, as does the present invention.
It is well known that persons wearing hearing aids withmicrophones, either non-directional or so-called directional located on or near the head of the listener, have difficulty in understandidng speech when in a conference or other situation where several speech or other competing auditory signals reach the listener at about the same time. This difficulty can be partly overcome by orienting the listeners microphones, especially if they are of the directional type, as described, for example, in US. Pat. No. 3,770,911, so that they pick up the desired signal to a greater extent that the undesired signals because of acoustical reasons. An additional advantage, however, can be provided if the listener were to place a microphone nearer the source of the desired signal which would increase the intensity of this signal at the microphone pick-up relative to that of the other signals that are present. Under many social circumstances it would be appropriate to accomplish this without obvious and awkward movements on the part of the listener using a hearing aid with such a movable microphone. I
A common problem of hearing aids that are designed to provide large amounts of signal gain for persons with unusually large amounts of hearing loss is that some of the output of the earphones of the hearing aid leaks or feeds back either by air or by mechanical paths, to the microphone of the hearing aid. This feedback causes a cyclic reamplification or oscillation that leads to complete overloading of the hearing aid causing it to squeal and be obnoxious and useless to the user. A procedure for reducing a related type of oscillation, but in the different application and requirements of publicaddress systems operated in a reverberant room, has been described by M. R. Schroeder, Improvement of Acoustic-Feedback Stability by Frequency Shifting, J. Acoust. Soc, 36, 1718-1724, (1964).
In this procedure, the airborne signal picked up by the microphone is shifted, by well-known modulation techniques, either upwards or downwards by about 5 to Hz before it is presented to the acoustic output transducers or loudspeakers of the public address system. This shift in frequency is not sufficient significantly to interfere with the audible quality of the signal, particularly if the signal is speech, coming from the loudspeakers but does allow the output signal to reach levels about 10 dB higher without causing feedback oscillation than is possible without the application of the frequency shift processing. This frequency shifting process, properly critically adapted, has not heretofore been utilized for the prevention or reduction of either the mechanical linkage or the acoustic airborne feedback that may be present in such hearing aids. Indeed, it is to be noted that in earlevel hearing aids wherein the microphone and earphone are mounted in the same case or are mechanically linked through tubes or wires, the oscillation present in high-gain hearing aids is more often caused by the mechanical vibrations than the airborne. It is readily appreciated, however, that shifting the frequency coming from the earphone will tend, to a significant degree, to prevent the vibrations in the mechanical connection between the earphone and microphone from progressively enlarging, that occurs when the gain of the amplifier of the hearing aid is cyclically reapplied to the same input/output frequency. In brief, the input signal cannot be added to itself following amplification by the hearing aid and feedback, as normally can cause oscillation, because the signal is changed in frequency each time it passes through the hearing aid system and will therefore have a waveform, of feedback, that is not consistently in phase with the input waveform as is required, within limits, to cause oscillation of the system.
An object of the present invention, accordingly, is to provide a new and improved method of and apparatus for electronic hearing aiding that shall not be so subject to the above-described limitations and disadvantages of prior techniques, but that, to the contrary, significantly increases noise vs. speech signal discrimination, particularly useful for sensori-neural deafness problems and the like.
In summary, the present invention provides real-time operation with special automatic gain control signal processing for both the overall signal and also for different parts of the speech spectrum in ways that can be adjusted to best suit the needs of individual sensorineural deafened ears that suffer different degrees and patterns, as a function of frequency, of hearing deficiencies. The aid of the invention provides means of inserting one or more fixed increases in linear gain to segments of the speech signal that fall below given levels relative to the gain provided to segments that fall above given levels. The amount of increased gains and the given levels below which they are-to be inserted may be set separately for each of the different parts filtered from the speech spectrum. Further, the invention will automatically discriminatebetween segments. of the signal that constitute speech sounds and thosesegments consisting of background noise and will apply extra gain to the speech semgents, but not to the noise segments. The invention also provides for so-called biear listening where the treatment of the signal for each of the ears of the listener can be somewhat different, and further provides for pick-up, if desired, by two microphones of a stereo signal, in order to. utilize .the information found in so-called phase differences'between speech and other signals as present at two microphones; one placed at the position or pick-up'region'of each ear. Further, the hearing aid of the invention-provides for an optional remote microphone that can be used for pick-up of signals at points at a farther-thannormal distance from'the user, i.e. closer to the sound source. Further, the aid of the invention provides for an optional electronic frequency-shift of the signal picked up at the microphone so that the signal output at the earphones is at a somewhat different frequency (about 10 Hz) than the signal picked up by the microphone either by airborne or mechanical agitations.
The invention will now be described with reference to the accompanying drawing,
FIG. 1 of which is a block diagram of a preferred apparatus embodying the invention; and
FIG. 2 is a similar diagram of a suitable NLGC (nonlinear-linear gun control)'apparatus for use in the system of FIG. 1.
In addition to the optional remote microphone, solabelled, two microphones (left and right) are indicated in FIG. 1 as the typical pick-up sources of the signal input, although the system could operate with even but one microphone. While the microphones may be nondirectional, they are preferrably of the directional type,'
tional remote" microphone may be worn strapped to the users wrist so that it appears as a wrist watch or bracelet and can be placed closer to a desired signal source by movement of his hand and'arm, or it maybe incapsulated in a pen or pencil type case, not shown,
that can'be laid on a conferencetable with a retractable cord extending to the hearing aid amplifier. The amplifiers, batteries and associated electronics of the apparatus; moreover, rnay beenclosed in a case worn in a clothes pocket of the user o'r attached to his or her body or clothing in anyconvenient manner.
The major purpose of the AGC circuit is to adjust the over-all speech signal to an intensity level for the filtering and additional automatic gain control processes to follow, such that the subsequent system will not overload, but yet will be at a level adequate to give proper signal transmission. Generally, at a distance of about three feet from a talker, the weaker speech sounds in conversational speech are at a level of about 20 dB re 0.0002 microbar, and the more intense speech sounds in a conversational speech signal are of the order of 60 dB. A dynamic range of about 40 dB is accordingly present in a speech signal uttered at a constant and conversational level of effort. When the listener is closer to the talker, furthermore, or when the talker uses a higher than normal effort of speaking, the level of the speech signals may go up to 100 decibels or so.
The AGC circuit is adjusted to provide a decrease in gain when the signal envelope is above a specified level (typically 60 dB) for approximately 0.001 seconds. Conversely, whenever the envelope level falls below a specified level (typically 60 dB) for approximately 0.02 seconds, the gain of the system automatically assumes its normal state of gain and treats signals between about 20 to 60 dB input in a substantially linear fashion. The decreases in gain effected by AGC are proportional to the degree to which the speech envelope (averaged over about 0.001 second) exceeds the level equivalent at that point in the system to a speech level of about 50 dB at the input to the microphone(s). Thus, AGC adjusts the average gain so that speech at an intensity greater than about 50 dB at the microphone(s) will generally be placed within the optimum operation region of the filters and associated electronic components that follow, as hereinafter described.
The signal from AGC may be fed to the frequency shifter section, if used, shown at PS, prior to being fed to Sections 1, 2, 3, and 4 of the hearing aid as shown in FIG. 1. Such a frequency-shifter FS, by means of standard RF modulation and demodulation techniques, as of the type disclosed in said Schroeder article, for example, shifts the frequency spectrum of the signal picked up at the microphone by about Hz. Accordingly, the frequency spectrum coming from the earphones of the hearing aid is shifted from its location on the frequency spectrum, from the location it occupied when picked up by the microphone, increasing by about 10 dB the tolerable level of the level of output from the earphones that can be reached before acoustic feedback between the earphones and microphones causes oscillation in the hearing aid amplifiers. It is to be further noted that this frequency shifting process will also tend significantly to reduce the vibrations that may be set up in the mechanical linkage between the earphone(s) and microphone(s) of the hearing aid, said vibrations, if sufficiently strong, being a sourceof causing oscillation and overload in th hearing aid.
The signal from AGC or the optional frequency shifter is fed to and processed by Sections 1, 2, 3, and 4 of the hearing aid, as shown in FIG. 1. Section 1 passes a broad band of frequencies and each of sections 2, 3 and 4 contains a narrow band filter of different adjacent bands, as later explained. Section 1 transmits the broadband signal over the range of about 200 Hz to 7000 Hz to the listener, with adjustment of its level made possible by means of variable gain amplifiers 1A, 1B, LE, and RE. To this broad-band signal are added the outputs of Sections 2, 3, and 4, which have broadly similar functions but are individually adjustable in several regards. The purpose of these sections is to separate or filter the speech or other acoustic signals into relatively narrow bands of frequencies so that the respective bands can be amplitude-processed and gainadjusted in ways that will enhance the understandability of speech and other acoustic signals for persons with sensori-neural deafness. As indicated above, in certain regions, usually the higher frequency regions, the ear with sensori-neural deafness will usually have a usable dynamic range of but 10 dB or so between levels that are inaudible and levels that overload the ear, as compared with a usable dynamic range of more than 60 dB for the normal ear. At other frequency regions, the dynamic range may be greater or less, depending on the particular pattern of damage to the sensori-neural receptors in the inner ear. The purpose of the Sections 2, 3, and 4 is to provide the means of processing the different frequency bands of speech to the degree and in the way best suited for the hearing characteristics of a given ear suffering sensori-neural deafness, and to add these specially processed frequency bands to the normal, broadband signal being transmitted by Section 1, as shown in FIG. 1. It is to be understood that for some sensori-neural deaf ears, fewer or more than four such sections of signal processors will be required, or that the bandwidths of one or more of the sections indicated may be changed, and that the non-linear gain control processing to be later described may be inactivated in given sections.
The description to follow of the functioning of Section 4 of FIG. 1, for example, will suffice to explain also the operation of Sections 2 and 3, except that the frequency-bands, the amplitude levels to which the gain is specially adjusted, and the following gain settings may be at different values for each section.
The band-pass filter of Section 4 separates the energy in the frequency band 2500 to 7000 Hz from the total spectrum of the signal. The output of this band-pass filter is then passed through a nonlinear-linear compresser gain control (NLGC). The amount of signal compression is set to be suited to the loss in a given ear in dynamic range of hearing ability for sounds in the frequency band 2500 to 7000 Hz. The NLGC operates such that when the signal is, for about 0.005 seconds, below a given level, an additional amount of signal energy is applied to the signal energy in the frequency band 2500 to 7000 Hz.
The output of this NLGC circuit is then further amplified in separate split paths containing amplifiers 4A and 48, if necessary, to meet possible differences in sensitivity between the left and right ears of the listener.
Sections 2 and 3 are also individually separately adjusted to provide the degree, if any, of signal dynamic range compression best suited for optimizing the reception and understandability of signals, especially speech, as determined by the contributions of the several respective different frequency bands 750-1500 Hz and 1500-2500 Hz. The outputs of these three sections are then split into pairs and combined through resistor networks with the broad-band signal from Section 1 for presentation to the listener, with all the right and left ear paths of the NLGC outputs being connected together, respectively.
It is to be understood that the specific number of filter sections and the cut-off frequencies given in FIG. 1
are illustrative only, and that greater or fewer sections and different cut-off frequencies may be used in various specific applications of this invention. Further, the use of separate output amplifiers for each of the two ears is often not required, because both ears of a person suffering sensori-neural deafness often have similar characteristics.
In accordance with the present invention, the NLGC part of the hearing aid, with its speech-noise discrimination operation, may be of the form illustrated in FIG. 2 for operation, for example, in Section 4 of FIG. 1. In FIG. 2, when the input signal envelope is between 50 to 60 dB or greater, Gate 1 remains closed and these time segments of the signal pass directly through towards the output, so-labelled, without the emphasis or extra gain available from amplifier B. When the signal envelope falls to a value indicating that the input signal is below 50 dB, Gate 1 opens and the signal in Path B (which has been amplified by amplifier B by a given amount relative to the level in Path A) is added to the signal present in Path A, provided that Gate 2 is also open. Gate 2, by means of the attack and release time control 2' is open when the signal envelope is more than the illustrative 50 dB; however, when the signal remains below 50 dB for more than 0.5 sec., Gate 2 closes, thereby preventing further gain-emphasized signal segments coming through Gate 1 from reaching Path A. Accordingly, the extra emphasis or amplification given to the signal by amplifier B is not added to the signal in Path A. Amplifier B is adjustable so that the amount of extra emphasis given to the signal, relative to its level in Path A, can be varied to best meet the needs of different degrees of hearing loss.
Rectifier R, amplifier 1" and attack-release time control elements 1 and 2' perform the following functions: rectifier R provides a means of making the negative parts of the signal continuum positive in voltage; and amplifier l is adjustable and provides a means for adjusting the rectified signal continuum level reaching the attack-release time controls 1' and 2. Accordingly, depending on the desires of the user during a given input signal-noise condition, the signal continuum level can be increased or decreased from rectifier, R, so that the attack-release controls 1 and 2', which affect Gates 1 and 2, respectively, and which are set to operate at specified voltages, will be activated with different signal-continuum levels at the input to the microphones. Thus, amplifier 1 "provides a means of causing the gates to be activated with lesser or greater input signals at the microphone as will be advantageous to persons with different degrees of sensori-neural deafness.
The purpose of the described double-gate action is to give the weaker, short duration (less than 0.5 sec) segments of the signal the extra amplification or emphasis relative to the strong intensity segments of the speech signal; but not to give this extra amplification to relatively low intensity background noise which is typically more steady-state than the speech signal. This background noise may continue at a level below, say, 50 dB for much longer duration than 0.5 sec. and is especially objectionable to persons using hearing aids that pro- 'vide automatic gain compression that typically increases the relative intensity of this background noise.
It is to be understood that for some types of speech or other signals, the attack and release times for the operation of Gates 1 and 2 may be changed for optimum results from those specified in FIG. 2. It is also to be noted that the NLGC processing system herein described has other possible applications beyond that in hearing aids where it is desirable to provide relative emphasis or de-emphasis to different segments of electronic signals that dynamically vary in intensity in somewhat predictable ways such that its use, while particularly adapted to the present invention, is also applicable in other signal processing systems wherein similar advantages are sought.
Suitable components for the circuit elements are as follows: Gates 1 and 2 may, for example, be of the Field Effect Transistor (FET) type, described in Electronic Principles by Malvino, McGraw-I-Iill, New York, 1973: attack and release time control circuits 1 and 2 may be of the operational amplifier type with appropriate capacitive and resistive feedback elements, as described in the same publication. Clearly, other types of well-known circuits may be similarly employed, and further modifications, within the spirit and scope of the invention, will suggest themselves to those skilled in this art.
What is claimed is:
l. A method of aiding hearing, that comprises, adjusting the over-all intensity level of speech signals with substantially linear gain over a predetermined range of intensities; applying the adjusted-intensity signals along a plurality of frequency filtering paths, one passing a broad band of the speech signal frequencies, and the others passing successive adjacent narrow bands within said broad band; reducing separately in each of the other paths, the dynamic range of intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the corresponding narrow bands, as distinguished from the more steady state segments of background noise and steady-state signals; and combining the signals from said paths.
2. A method as claimed in claim 1 and in which the signals in each of said paths are split and fed along a pair of further paths for right and left ear excitation, with the signal combining step being effectd by combining the right ear further paths and separately combining the left ear further paths.
3. A method as claimed in claim 2 and in which independent level adjustments are effected in each of the further paths prior to such combining.
4. A method as claimed in claim 1 and in which the speech signals are derived from a pair of right and left ear acoustic pick-up regions and a further pick-up region adjustable closer to the source of speech, and then the same are combined prior to said over-all intensity level adjusting step.
5. Hearing aid apparatus having, in combination, microphone pick-up means; automatic gain control means connected with the pick-up means to adjust the overall signal intensity level of speech signals with substantially linear gain over a predetermined range of intensities; a plurality of filter paths connected with the automatic gain control means and comprising a first path with broad band filter means for the speech signal frequencies and a plurality of further paths containing band-pass filters of successive adjacent narrow bands within said broad band; a plurality of speech-noise discrimination means, one connected in each of the plurality of further paths for separately reducing in each path the dynamic range of signal intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the respective narrow bands, as distinguished from the more steady state segments of background noise and steady-state signals; and means for combining the signals from said paths.
6. Apparatus as claimed in claim and in which said combining means comprises pairs of right and left ear paths, each pair split from the output of the broad band filter means and the outputs of the plurality of speechnoise discrimination means, with all right ear paths connected together and all left ear paths connected together.
7. Apparatus as claimed in claim 6 and in which said pairs of paths comprise separate variable gain amplifier means and resistive combining networks.
8. Apparatus as claimed in claim 7 and in which further variable gain amplifier means is provided at the output of each of the connected-together right and left ear paths, independently operable with respect to the said separate variable gain amplifier means.
9. Apparatus as claimed in claim 4 and in which each of said speech-noise discrimination means comprises a pair of signal processing paths connected to the corresponding band pass filter means, one of said paths including gating means and attack-release time control means for operating the gating means to apply amplification emphasis along the other processing path for the weaker short-duration segments of the signal relative to the strong intensity segments of the speech signal, but without providing added amplification to relatively low intensity background noise.
[0. Apparatus as claimed in claim 4 and in which said microphone pick-up means comprises right and left ear microphones and a remote microphone adjustable to regions closer to the source of speech, with all of the microphones connected to the automatic gain control means.
11. Hearing aid apparatus having, in combination, right and left ear microphone pick-up means, remote microphone means adjustable to regions closer to the source of sound, and common automatic gain control means connected to all of said microphone means to receive the combined inputs thereof.
12. Hearing aid apparatus as claimed in claim 5 and in which frequency shift means is provided connected with the automatic gain control means for shifting the frequency of signals picked up by the microphone pickup means and mechanical vibratory linkages associated therewith, said frequency shift means comprising means for modulating with one frequency and demodulating with a second and different frequency.

Claims (12)

1. A method of aiding hearing, that comprises, adjusting the over-all intensity level of speech signals with substantially linear gain over a predetermined range of intensities; applying the adjusted-intensity signals along a plurality of frequency filtering paths, one passing a broad band of the speech signal frequencies, and the others passing successive adjacent narrow bands within said broad band; reducing separately in each of the other paths, the dynamic range of intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the corresponding narrow bandS, as distinguished from the more steady state segments of background noise and steadystate signals; and combining the signals from said paths.
2. A method as claimed in claim 1 and in which the signals in each of said paths are split and fed along a pair of further paths for right and left ear excitation, with the signal combining step being effectd by combining the right ear further paths and separately combining the left ear further paths.
3. A method as claimed in claim 2 and in which independent level adjustments are effected in each of the further paths prior to such combining.
4. A method as claimed in claim 1 and in which the speech signals are derived from a pair of right and left ear acoustic pick-up regions and a further pick-up region adjustable closer to the source of speech, and then the same are combined prior to said over-all intensity level adjusting step.
5. Hearing aid apparatus having, in combination, microphone pick-up means; automatic gain control means connected with the pick-up means to adjust the overall signal intensity level of speech signals with substantially linear gain over a predetermined range of intensities; a plurality of filter paths connected with the automatic gain control means and comprising a first path with broad band filter means for the speech signal frequencies and a plurality of further paths containing band-pass filters of successive adjacent narrow bands within said broad band; a plurality of speech-noise discrimination means, one connected in each of the plurality of further paths for separately reducing in each path the dynamic range of signal intensity levels corresponding to segments of speech signals that vary in intensity for brief moments in the respective narrow bands, as distinguished from the more steady state segments of background noise and steady-state signals; and means for combining the signals from said paths.
6. Apparatus as claimed in claim 5 and in which said combining means comprises pairs of right and left ear paths, each pair split from the output of the broad band filter means and the outputs of the plurality of speech-noise discrimination means, with all right ear paths connected together and all left ear paths connected together.
7. Apparatus as claimed in claim 6 and in which said pairs of paths comprise separate variable gain amplifier means and resistive combining networks.
8. Apparatus as claimed in claim 7 and in which further variable gain amplifier means is provided at the output of each of the connected-together right and left ear paths, independently operable with respect to the said separate variable gain amplifier means.
9. Apparatus as claimed in claim 4 and in which each of said speech-noise discrimination means comprises a pair of signal processing paths connected to the corresponding band pass filter means, one of said paths including gating means and attack-release time control means for operating the gating means to apply amplification emphasis along the other processing path for the weaker short-duration segments of the signal relative to the strong intensity segments of the speech signal, but without providing added amplification to relatively low intensity background noise.
10. Apparatus as claimed in claim 4 and in which said microphone pick-up means comprises right and left ear microphones and a remote microphone adjustable to regions closer to the source of speech, with all of the microphones connected to the automatic gain control means.
11. Hearing aid apparatus having, in combination, right and left ear microphone pick-up means, remote microphone means adjustable to regions closer to the source of sound, and common automatic gain control means connected to all of said microphone means to receive the combined inputs thereof.
12. Hearing aid apparatus as claimed in claim 5 and in which frequency shift means is provided connected with the automatic gain control means for shifting the frequency of signals picked up by the microphone pick-up means aNd mechanical vibratory linkages associated therewith, said frequency shift means comprising means for modulating with one frequency and de-modulating with a second and different frequency.
US478462A 1974-06-12 1974-06-12 Method of and apparatus for aiding hearing and the like Expired - Lifetime US3894195A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US478462A US3894195A (en) 1974-06-12 1974-06-12 Method of and apparatus for aiding hearing and the like
DE19752526034 DE2526034B2 (en) 1974-06-12 1975-06-09 RESOLUTION PROCEDURE AND DEVICE FOR CARRYING OUT THE PROCEDURE
GB24821/75A GB1506295A (en) 1974-06-12 1975-06-10 Method of and apparatus for aiding hearing
FR7518468A FR2274271A1 (en) 1974-06-12 1975-06-12 HEARING CORRECTION PROCESS AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US478462A US3894195A (en) 1974-06-12 1974-06-12 Method of and apparatus for aiding hearing and the like

Publications (1)

Publication Number Publication Date
US3894195A true US3894195A (en) 1975-07-08

Family

ID=23900047

Family Applications (1)

Application Number Title Priority Date Filing Date
US478462A Expired - Lifetime US3894195A (en) 1974-06-12 1974-06-12 Method of and apparatus for aiding hearing and the like

Country Status (4)

Country Link
US (1) US3894195A (en)
DE (1) DE2526034B2 (en)
FR (1) FR2274271A1 (en)
GB (1) GB1506295A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2536078A1 (en) * 1975-08-13 1977-02-17 Bosch Gmbh Robert HEAVY-DUTY DEVICE WITH A SOUND FREQUENCY AMPLIFIER
US4025721A (en) * 1976-05-04 1977-05-24 Biocommunications Research Corporation Method of and means for adaptively filtering near-stationary noise from speech
US4061875A (en) * 1977-02-22 1977-12-06 Stephen Freifeld Audio processor for use in high noise environments
EP0077688A1 (en) * 1981-10-20 1983-04-27 Craigwell Industries Limited Improvements in or relating to hearing aids
DE3229457A1 (en) * 1981-08-07 1983-05-05 Rion K.K., Kokubunji, Tokyo ELECTRICAL CIRCUIT FOR A HIGH AID
US4396806A (en) * 1980-10-20 1983-08-02 Anderson Jared A Hearing aid amplifier
US4479239A (en) * 1983-03-28 1984-10-23 Silver Creek Nurseries, Inc. Sound detecting device
US4484345A (en) * 1983-02-28 1984-11-20 Stearns William P Prosthetic device for optimizing speech understanding through adjustable frequency spectrum responses
US4508940A (en) * 1981-08-06 1985-04-02 Siemens Aktiengesellschaft Device for the compensation of hearing impairments
FR2566658A1 (en) * 1984-06-28 1986-01-03 Inst Nat Sante Rech Med Multichannel auditory prosthesis.
US4622440A (en) * 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
US4630302A (en) * 1985-08-02 1986-12-16 Acousis Company Hearing aid method and apparatus
US4802228A (en) * 1986-10-24 1989-01-31 Bernard Silverstein Amplifier filter system for speech therapy
WO1989004583A1 (en) * 1987-11-12 1989-05-18 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
US4837832A (en) * 1987-10-20 1989-06-06 Sol Fanshel Electronic hearing aid with gain control means for eliminating low frequency noise
FR2629661A1 (en) * 1988-03-31 1989-10-06 Steiner Francois Enhancement to auditory apparatuses by addition of an equalizer
US4918736A (en) * 1984-09-27 1990-04-17 U.S. Philips Corporation Remote control system for hearing aids
US4918737A (en) * 1987-07-07 1990-04-17 Siemens Aktiengesellschaft Hearing aid with wireless remote control
US4996712A (en) * 1986-07-11 1991-02-26 National Research Development Corporation Hearing aids
US5027410A (en) * 1988-11-10 1991-06-25 Wisconsin Alumni Research Foundation Adaptive, programmable signal processing and filtering for hearing aids
US5029217A (en) * 1986-01-21 1991-07-02 Harold Antin Digital hearing enhancement apparatus
US5170434A (en) * 1988-08-30 1992-12-08 Beltone Electronics Corporation Hearing aid with improved noise discrimination
US5343532A (en) * 1992-03-09 1994-08-30 Shugart Iii M Wilbert Hearing aid device
US5420930A (en) * 1992-03-09 1995-05-30 Shugart, Iii; M. Wilbert Hearing aid device
US5434924A (en) * 1987-05-11 1995-07-18 Jay Management Trust Hearing aid employing adjustment of the intensity and the arrival time of sound by electronic or acoustic, passive devices to improve interaural perceptual balance and binaural processing
US5475759A (en) * 1988-03-23 1995-12-12 Central Institute For The Deaf Electronic filters, hearing aids and methods
US5991419A (en) * 1997-04-29 1999-11-23 Beltone Electronics Corporation Bilateral signal processing prosthesis
US20010031053A1 (en) * 1996-06-19 2001-10-18 Feng Albert S. Binaural signal processing techniques
US6353671B1 (en) * 1998-02-05 2002-03-05 Bioinstco Corp. Signal processing circuit and method for increasing speech intelligibility
US6408318B1 (en) 1999-04-05 2002-06-18 Xiaoling Fang Multiple stage decimation filter
EP1226578A1 (en) * 1999-12-31 2002-07-31 Octiv, Inc. Techniques for improving audio clarity and intelligibility at reduced bit rates over a digital network
US6434246B1 (en) * 1995-10-10 2002-08-13 Gn Resound As Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
US20030028385A1 (en) * 2001-06-30 2003-02-06 Athena Christodoulou Audio reproduction and personal audio profile gathering apparatus and method
EP1325601A1 (en) * 2000-09-22 2003-07-09 Octiv, Inc. Digital signal processing techniques for improving audio clarity and intelligibility
US20030230921A1 (en) * 2002-05-10 2003-12-18 George Gifeisman Back support and a device provided therewith
US6795807B1 (en) * 1999-08-17 2004-09-21 David R. Baraff Method and means for creating prosody in speech regeneration for laryngectomees
US20050094827A1 (en) * 2003-08-20 2005-05-05 Phonak Ag Feedback suppression in sound signal processing using frequency translation
US20050213779A1 (en) * 2004-03-26 2005-09-29 Coats Elon R Methods and apparatus for audio signal equalization
US20050226427A1 (en) * 2003-08-20 2005-10-13 Adam Hersbach Audio amplification apparatus
US20050260978A1 (en) * 2001-09-20 2005-11-24 Sound Id Sound enhancement for mobile phones and other products producing personalized audio for users
US7181297B1 (en) 1999-09-28 2007-02-20 Sound Id System and method for delivering customized audio data
US20080082327A1 (en) * 2004-09-17 2008-04-03 Matsushita Electric Industrial Co., Ltd. Sound Processing Apparatus
US20080167863A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Apparatus and method of improving intelligibility of voice signal
US7647119B1 (en) * 2002-02-25 2010-01-12 Advanced Bionics, Llc Distributed compression amplitude mapping for a cochlear stimulation system
US7729775B1 (en) * 2006-03-21 2010-06-01 Advanced Bionics, Llc Spectral contrast enhancement in a cochlear implant speech processor
US20100278356A1 (en) * 2004-04-01 2010-11-04 Phonak Ag Audio amplification apparatus
US20110103605A1 (en) * 2009-10-30 2011-05-05 Etymotic Research, Inc. Electronic earplug
US20120250915A1 (en) * 2010-10-26 2012-10-04 Yoshiaki Takagi Hearing aid device
US20130103396A1 (en) * 2011-10-24 2013-04-25 Brett Anthony Swanson Post-filter common-gain determination
US8892233B1 (en) 2014-01-06 2014-11-18 Alpine Electronics of Silicon Valley, Inc. Methods and devices for creating and modifying sound profiles for audio reproduction devices
US8977376B1 (en) 2014-01-06 2015-03-10 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US9173028B2 (en) 2011-07-14 2015-10-27 Sonova Ag Speech enhancement system and method
US10986454B2 (en) 2014-01-06 2021-04-20 Alpine Electronics of Silicon Valley, Inc. Sound normalization and frequency remapping using haptic feedback
US11244669B2 (en) * 2017-05-18 2022-02-08 Telepathy Labs, Inc. Artificial intelligence-based text-to-speech system and method
EP3614379B1 (en) 2018-08-20 2022-04-20 Mimi Hearing Technologies GmbH Systems and methods for adaption of a telephonic audio signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921746B2 (en) † 2006-11-08 2013-06-12 Siemens Audiologische Technik GmbH Electronic circuit for the adjustment of the output power and / or frequency characteristic of the power amplifier for a hearing aid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2112569A (en) * 1936-06-16 1938-03-29 E A Myers & Sons Method and apparatus for selecting and prescribing audiphones
US3231686A (en) * 1961-06-14 1966-01-25 Maico Electronics Inc Acoustic apparatus
US3243525A (en) * 1962-11-13 1966-03-29 Eaton Arthur Hearing intensifying and directing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2112569A (en) * 1936-06-16 1938-03-29 E A Myers & Sons Method and apparatus for selecting and prescribing audiphones
US3231686A (en) * 1961-06-14 1966-01-25 Maico Electronics Inc Acoustic apparatus
US3243525A (en) * 1962-11-13 1966-03-29 Eaton Arthur Hearing intensifying and directing apparatus

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2536078A1 (en) * 1975-08-13 1977-02-17 Bosch Gmbh Robert HEAVY-DUTY DEVICE WITH A SOUND FREQUENCY AMPLIFIER
US4025721A (en) * 1976-05-04 1977-05-24 Biocommunications Research Corporation Method of and means for adaptively filtering near-stationary noise from speech
US4061875A (en) * 1977-02-22 1977-12-06 Stephen Freifeld Audio processor for use in high noise environments
US4396806A (en) * 1980-10-20 1983-08-02 Anderson Jared A Hearing aid amplifier
US4508940A (en) * 1981-08-06 1985-04-02 Siemens Aktiengesellschaft Device for the compensation of hearing impairments
DE3229457A1 (en) * 1981-08-07 1983-05-05 Rion K.K., Kokubunji, Tokyo ELECTRICAL CIRCUIT FOR A HIGH AID
US4517415A (en) * 1981-10-20 1985-05-14 Reynolds & Laurence Industries Limited Hearing aids
EP0077688A1 (en) * 1981-10-20 1983-04-27 Craigwell Industries Limited Improvements in or relating to hearing aids
US4484345A (en) * 1983-02-28 1984-11-20 Stearns William P Prosthetic device for optimizing speech understanding through adjustable frequency spectrum responses
US4479239A (en) * 1983-03-28 1984-10-23 Silver Creek Nurseries, Inc. Sound detecting device
US4622440A (en) * 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
FR2566658A1 (en) * 1984-06-28 1986-01-03 Inst Nat Sante Rech Med Multichannel auditory prosthesis.
US4918736A (en) * 1984-09-27 1990-04-17 U.S. Philips Corporation Remote control system for hearing aids
US4630302A (en) * 1985-08-02 1986-12-16 Acousis Company Hearing aid method and apparatus
US5029217A (en) * 1986-01-21 1991-07-02 Harold Antin Digital hearing enhancement apparatus
US4996712A (en) * 1986-07-11 1991-02-26 National Research Development Corporation Hearing aids
US4802228A (en) * 1986-10-24 1989-01-31 Bernard Silverstein Amplifier filter system for speech therapy
US5434924A (en) * 1987-05-11 1995-07-18 Jay Management Trust Hearing aid employing adjustment of the intensity and the arrival time of sound by electronic or acoustic, passive devices to improve interaural perceptual balance and binaural processing
US4918737A (en) * 1987-07-07 1990-04-17 Siemens Aktiengesellschaft Hearing aid with wireless remote control
US4837832A (en) * 1987-10-20 1989-06-06 Sol Fanshel Electronic hearing aid with gain control means for eliminating low frequency noise
US4887299A (en) * 1987-11-12 1989-12-12 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
WO1989004583A1 (en) * 1987-11-12 1989-05-18 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
US5475759A (en) * 1988-03-23 1995-12-12 Central Institute For The Deaf Electronic filters, hearing aids and methods
FR2629661A1 (en) * 1988-03-31 1989-10-06 Steiner Francois Enhancement to auditory apparatuses by addition of an equalizer
US5170434A (en) * 1988-08-30 1992-12-08 Beltone Electronics Corporation Hearing aid with improved noise discrimination
US5027410A (en) * 1988-11-10 1991-06-25 Wisconsin Alumni Research Foundation Adaptive, programmable signal processing and filtering for hearing aids
US5420930A (en) * 1992-03-09 1995-05-30 Shugart, Iii; M. Wilbert Hearing aid device
US5343532A (en) * 1992-03-09 1994-08-30 Shugart Iii M Wilbert Hearing aid device
US6434246B1 (en) * 1995-10-10 2002-08-13 Gn Resound As Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
US20010031053A1 (en) * 1996-06-19 2001-10-18 Feng Albert S. Binaural signal processing techniques
US6978159B2 (en) * 1996-06-19 2005-12-20 Board Of Trustees Of The University Of Illinois Binaural signal processing using multiple acoustic sensors and digital filtering
US5991419A (en) * 1997-04-29 1999-11-23 Beltone Electronics Corporation Bilateral signal processing prosthesis
US6353671B1 (en) * 1998-02-05 2002-03-05 Bioinstco Corp. Signal processing circuit and method for increasing speech intelligibility
US6408318B1 (en) 1999-04-05 2002-06-18 Xiaoling Fang Multiple stage decimation filter
US6795807B1 (en) * 1999-08-17 2004-09-21 David R. Baraff Method and means for creating prosody in speech regeneration for laryngectomees
US7181297B1 (en) 1999-09-28 2007-02-20 Sound Id System and method for delivering customized audio data
EP1226578A1 (en) * 1999-12-31 2002-07-31 Octiv, Inc. Techniques for improving audio clarity and intelligibility at reduced bit rates over a digital network
EP1226578A4 (en) * 1999-12-31 2005-09-21 Octiv Inc Techniques for improving audio clarity and intelligibility at reduced bit rates over a digital network
EP1325601A1 (en) * 2000-09-22 2003-07-09 Octiv, Inc. Digital signal processing techniques for improving audio clarity and intelligibility
EP1325601A4 (en) * 2000-12-20 2005-11-09 Octiv Inc Digital signal processing techniques for improving audio clarity and intelligibility
GB2380917A (en) * 2001-06-30 2003-04-16 Hewlett Packard Co An audio player with personalised audio profiles
US20030028385A1 (en) * 2001-06-30 2003-02-06 Athena Christodoulou Audio reproduction and personal audio profile gathering apparatus and method
US7529545B2 (en) 2001-09-20 2009-05-05 Sound Id Sound enhancement for mobile phones and others products producing personalized audio for users
US20050260978A1 (en) * 2001-09-20 2005-11-24 Sound Id Sound enhancement for mobile phones and other products producing personalized audio for users
US7647119B1 (en) * 2002-02-25 2010-01-12 Advanced Bionics, Llc Distributed compression amplitude mapping for a cochlear stimulation system
US20030230921A1 (en) * 2002-05-10 2003-12-18 George Gifeisman Back support and a device provided therewith
US20050094827A1 (en) * 2003-08-20 2005-05-05 Phonak Ag Feedback suppression in sound signal processing using frequency translation
US20050226427A1 (en) * 2003-08-20 2005-10-13 Adam Hersbach Audio amplification apparatus
US7778426B2 (en) 2003-08-20 2010-08-17 Phonak Ag Feedback suppression in sound signal processing using frequency translation
US7756276B2 (en) 2003-08-20 2010-07-13 Phonak Ag Audio amplification apparatus
US20050213779A1 (en) * 2004-03-26 2005-09-29 Coats Elon R Methods and apparatus for audio signal equalization
US8351626B2 (en) 2004-04-01 2013-01-08 Phonak Ag Audio amplification apparatus
US20100278356A1 (en) * 2004-04-01 2010-11-04 Phonak Ag Audio amplification apparatus
US20080082327A1 (en) * 2004-09-17 2008-04-03 Matsushita Electric Industrial Co., Ltd. Sound Processing Apparatus
US7729775B1 (en) * 2006-03-21 2010-06-01 Advanced Bionics, Llc Spectral contrast enhancement in a cochlear implant speech processor
US20100234920A1 (en) * 2006-03-21 2010-09-16 Advanced Bionics, Llc Spectral Contrast Enhancement in a Cochlear Implant Speech Processor
US8170679B2 (en) * 2006-03-21 2012-05-01 Advanced Bionics, Llc Spectral contrast enhancement in a cochlear implant speech processor
US20080167863A1 (en) * 2007-01-05 2008-07-10 Samsung Electronics Co., Ltd. Apparatus and method of improving intelligibility of voice signal
US9099093B2 (en) * 2007-01-05 2015-08-04 Samsung Electronics Co., Ltd. Apparatus and method of improving intelligibility of voice signal
US8649540B2 (en) * 2009-10-30 2014-02-11 Etymotic Research, Inc. Electronic earplug
US20110103605A1 (en) * 2009-10-30 2011-05-05 Etymotic Research, Inc. Electronic earplug
US8565460B2 (en) * 2010-10-26 2013-10-22 Panasonic Corporation Hearing aid device
US20120250915A1 (en) * 2010-10-26 2012-10-04 Yoshiaki Takagi Hearing aid device
US9173028B2 (en) 2011-07-14 2015-10-27 Sonova Ag Speech enhancement system and method
US9166546B2 (en) * 2011-10-24 2015-10-20 Cochlear Limited Post-filter common-gain determination
US9553557B2 (en) 2011-10-24 2017-01-24 Cochlear Limited Post-filter common-gain determination
US20130103396A1 (en) * 2011-10-24 2013-04-25 Brett Anthony Swanson Post-filter common-gain determination
US8891794B1 (en) 2014-01-06 2014-11-18 Alpine Electronics of Silicon Valley, Inc. Methods and devices for creating and modifying sound profiles for audio reproduction devices
US8977376B1 (en) 2014-01-06 2015-03-10 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US8892233B1 (en) 2014-01-06 2014-11-18 Alpine Electronics of Silicon Valley, Inc. Methods and devices for creating and modifying sound profiles for audio reproduction devices
US9729985B2 (en) 2014-01-06 2017-08-08 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US10560792B2 (en) 2014-01-06 2020-02-11 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US10986454B2 (en) 2014-01-06 2021-04-20 Alpine Electronics of Silicon Valley, Inc. Sound normalization and frequency remapping using haptic feedback
US11395078B2 (en) 2014-01-06 2022-07-19 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US11729565B2 (en) 2014-01-06 2023-08-15 Alpine Electronics of Silicon Valley, Inc. Sound normalization and frequency remapping using haptic feedback
US11930329B2 (en) 2014-01-06 2024-03-12 Alpine Electronics of Silicon Valley, Inc. Reproducing audio signals with a haptic apparatus on acoustic headphones and their calibration and measurement
US11244669B2 (en) * 2017-05-18 2022-02-08 Telepathy Labs, Inc. Artificial intelligence-based text-to-speech system and method
US11244670B2 (en) * 2017-05-18 2022-02-08 Telepathy Labs, Inc. Artificial intelligence-based text-to-speech system and method
EP3614379B1 (en) 2018-08-20 2022-04-20 Mimi Hearing Technologies GmbH Systems and methods for adaption of a telephonic audio signal

Also Published As

Publication number Publication date
FR2274271B1 (en) 1979-06-15
GB1506295A (en) 1978-04-05
DE2526034A1 (en) 1976-01-02
DE2526034B2 (en) 1977-03-03
FR2274271A1 (en) 1976-01-09

Similar Documents

Publication Publication Date Title
US3894195A (en) Method of and apparatus for aiding hearing and the like
US4118604A (en) Loudness contour compensated hearing aid having ganged volume, bandpass filter, and compressor control
EP0077688B1 (en) Improvements in or relating to hearing aids
US4630302A (en) Hearing aid method and apparatus
US6647123B2 (en) Signal processing circuit and method for increasing speech intelligibility
US8964997B2 (en) Adapted audio masking
US8085959B2 (en) Hearing compensation system incorporating signal processing techniques
JP3313834B2 (en) Hearing aid
US4996712A (en) Hearing aids
KR102180662B1 (en) Voice intelligibility enhancement system
US20050256594A1 (en) Digital noise filter system and related apparatus and methods
US6704422B1 (en) Method for controlling the directionality of the sound receiving characteristic of a hearing aid a hearing aid for carrying out the method
JP3914768B2 (en) Method for controlling directivity of sound reception characteristics of hearing aid and hearing aid for implementing the method
JPH06189397A (en) Hearing sensation auxiliary equipment with feedback removal function controlled by user
JP3731179B2 (en) hearing aid
Edwards Signal processing techniques for a DSP hearing aid
US20070282392A1 (en) Method and system for providing hearing assistance to a user
Kuk et al. Hearing aid design and fitting solutions for persons with severe-to-profound losses
Killion Compression: distinctions
JP2002062886A (en) Voice receiver with sensitivity adjusting function
JP2000022469A (en) Audio processing unit
RU2726326C1 (en) Method of increasing intelligibility of speech by elderly people when receiving sound programs on headphones
US20230143325A1 (en) Hearing device or system comprising a noise control system
EP1203508B1 (en) A method for controlling the directionality of the sound receiving characteristic of a hearing aid and a hearing aid for carrying out the method
SU288859A1 (en) A way to develop hearing and speech in deaf people