US3881483A - Extracorporeal blood circuit - Google Patents

Extracorporeal blood circuit Download PDF

Info

Publication number
US3881483A
US3881483A US396603A US39660373A US3881483A US 3881483 A US3881483 A US 3881483A US 396603 A US396603 A US 396603A US 39660373 A US39660373 A US 39660373A US 3881483 A US3881483 A US 3881483A
Authority
US
United States
Prior art keywords
pump
blood
inlet
blood circuit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US396603A
Inventor
Andre Sausse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhone Poulenc SA
Original Assignee
Rhone Poulenc SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc SA filed Critical Rhone Poulenc SA
Application granted granted Critical
Publication of US3881483A publication Critical patent/US3881483A/en
Assigned to RHONE-POULENC S.A. reassignment RHONE-POULENC S.A. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RHONE-POULENC S.A.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood

Definitions

  • the present invention relates to an extracorporeal blood circuit connecting a membrane-containing blood oxygenating device to the vascular system of a patient, for assisting or replacing the pulmonary, cardiac or cardiopulmonary system.
  • Extracorporeal blood circuits which util ise two circulating pumps located in series on either side of a membrane-containing blood oxygenator.
  • a pipeline for partially recycling arterial blood through the oxygenator or complex control systems are required in order to maintain a definite pressure in the oxygenator, necessary for keeping the blood in the form of thin films of constant thickness.
  • an extracorporeal blood circuit comprising, a blood oxygenator; a first peristaltic pump or tubular membrane and valve pump, having an inlet connectable to a patients blood circuit and an outlet connected in series with the oxygenator and a second peristaltic pump or tubular membrane and valve pump, having an inlet connected in series with the blood oxygenator and an outlet connectable to said patients blood circuit, the useful internal volume of the body of the first and second pumps, varying substantially proportionally to the pressure of the blood at the inlet, between minimum and maximum values, the maximum useful volume for the first pump and the minimum useful volume of the second pump being reached at a pressure of the blood at the inlet of the respective pump within the range of atmospheric pressure i mm of mercury.
  • FIG. 1 is a schematic view of one embodiment of an extracorporeal blood circuit according to the invention.
  • FIG. 2 shows the characteristic flow rate-pressure curve of a peristaltic pump which can be used in the circuit according to the invention.
  • FIG. 3 shows the combination of the characteristic flow rate/pressure curves of two pumps located on either side of the blood oxygenator.
  • blood oxygenator which has become accepted through use, denotes an exchanger of respiratory gas, that is to say not only an oxygen exchanger, but also an exchanger of carbon dioxide, water vapour and nitrogen and optionally of gases or vapours with medicinal and/or anaesthetic effects, and also possibly a heat exchanger.
  • the extracorporeal blood circuit connects a blood oxygenator l of a type which is in itself known, comprising at least one membrane 2, to the venous-arterial system of a patient.
  • a cannula 3 is introduced, for example, into the inferior vena cava.
  • a cannula which contains a non-occlusive enlargement near its end is preferably used.
  • This enlargement can consist of three radial resilient branches 5 which press against the venous walls and keep them spaced apart locally, which clears the orifice of the cannula.
  • the branches can advantageously become smaller in order to pass through a collateral of smaller size 4 (for example, the femoral vein) sectioned for this purpose.
  • the cannula 3 is connected to the inlet of the blood oxygenator 1 via a flexible tube 7, for example made of silicone elastomer, on which a first pump 6, of the peristaltic type or of the type with a tubular membrane and valves (also called a ventricular pump), is placed.
  • a flexible tube 7 for example made of silicone elastomer, on which a first pump 6, of the peristaltic type or of the type with a tubular membrane and valves (also called a ventricular pump), is placed.
  • a flexible tube 11 also made of silicone elastomer, connects the outlet of the blood oxygenator l to a cannula introduced into an artery 9, or preferably to a flared-out prosthesis 8 sutured to the artery, generally a femoral artery.
  • a second pump 10 also of the peristaltic type or of the type with a tubular membrane and valves, is located on this tube 11.
  • the artery is slit longitudinally and the prosthesis 8 is sutured obliquely onto the lips of the slit, so that it slopes in the direction of preferential flow.
  • the two sides of the prosthesis move apart under the effect of the arterial pressure. After the prosthesis has been removed, the artery is made whole again in accordance with the usual practical procedure.
  • the extracorporeal blood circuit represented by way of example is of the venous-arterial type, it is nec essary to control three different pressures, namely the blood pressure at the inlet of the pump 6, the pressure in the oxygenator and the arterial pressure of the patient, in order to keep them at the desired values.
  • a manometer 17 is placed on the tube 7, immediately upstream of the inlet of the pump 6.
  • this manometer measures the blood pressure through the walls of the flexible tube 7, which reduces the risks of blood coagulation.
  • the manometer it is possible to use, for example, that described in French Pat. No. 7 I /43,88 1.
  • a knowledge of the blood pressure at the inlet of the pump 6 makes it possible to know its flow rate.
  • a manometer 14 makes it possible to check the blood pressure in the oxygenator.
  • a device 21 for taking the arterial pressure of the patient makes it possible to keep the latter at the desired level, by acting, when necessary, either on the volume of blood by means of the bottle 16 and the pump 13, or on the vascular resistance of the patient.
  • the blood must be injected into the patient at a temperature of approximately 37C.
  • means for reheating and checking the temperature of the blood are provided, for example, on the tube 11.
  • the reheating means advantageously consist of a heating element comprising an electrical resistance 18 surrounding the tube 11 or preferably embedded in its wall. This heating element is, for example, of the type described in French Pat. No. 7l/46,408.
  • the probe 19 makes it possible to check (and if necessary to control) the reheating of the blood.
  • the probe 20 makes it possible to avoid overheating the blood locally, which could arise if the blood flow rate were decreased or stopped momentarily.
  • the internal walls, which are in contact with the blood, of the various components forming the circuit carry a smooth organosilicon coating applied in accordance with the process described in German patent application (DOS) No. 2,206,608.
  • DOS German patent application
  • the venous blood flows from the inferior vena cava, where it is at a pressure close to atmospheric pressure, via a cannula 3 and the tube 7 to the first peristaltic pump 6.
  • the latter carries the blood along into the membrane-containing oxygenator 1 at a sufficient pressure to overcome the pressure drops of the apparatus.
  • the compartments of the oxygenator reserved for the blood are kept full and the blood film of substantially constant thickness, the blood pressure being kept within a predetermined range indicated by the manometer 14.
  • the oxygenated blood is recovered at' the outlet of the oxygenator by a second peristaltic pump 10 which brings it to a pressure enabling it to be injected into the arterial system of the patient through the prosthesis 8, after suitable reheating in the tube 11.
  • the average blood flow rate is provided by the veins of the patient. It must be possible for this flow rate to vary in such a way as to prevent any increase in the venous pressure which could cause disturbances for the patient (and especially acute oedema of the lung); in order to prevent this, it is then convenient to increase the flow rate of the pumps 6 and 10, and in the opposite case, to decrease it if the venous pressure became too low, which could lead to the collapse of the veins or venous cavities.
  • pumps are used, the body of which provides an internal volume which varies according to the blood pressure at the inlet, which is not generally the case with pumps of the peristaltic type or of the type with a tubular membrane and valves.
  • pumps are used which provide, within the range of blood pressure at the inlet effectively used, a useful internal volume which is substantially proportional to the blood pressure at the inlet of the pump.
  • Pumps such as those described in British Pat. No. 1,287,836 are preferably employed as peristaltic pumps.
  • the two peristaltic pumps 6 and 10, connected in series, are generally driven synchronously, at one and the same rate or at different rates, in order to provide the same average flow rate.
  • they revolve at rates which are always equal to one another, and to achieve this, they are advantageously mounted on the same drive shaft. These rates can be adjustable, but it is often of value to keep the rate constant.
  • the peristaltic pumps can also be driven at the same rates, each by a separate motor but one which possesses the same rate/voltage characteristics, each motor being supplied by a (fixed or adjustable) common voltage source.
  • pumps with a tubular membrane and valves, containing an inlet valve which is either automatic or preferably controlled.
  • the controlled discharge valve can be of the same type as the inlet valve.
  • These pumps can be connected either to separate pulse generators, synchronised on one and the same frequency, or preferably to a common pulse generator.
  • the peristaltic pumps represented in FIG. 1 advantageously consist of a flexible peristaltic tube made of silicone elastomer stretched between two fixed points and revolving wheels.
  • the peristaltic tube, between the wheels, generally has an elliptical cross-section which is flattened to a greater or lesser extent depending on the pressure at the inlet of the pump.
  • the flow rate is a function of the pressure at the inlet of the pump, which can be seen clearly on the characteristic flow rate/intake pressure curve of such a pump, represented in FIG. 2.
  • the pump provides a flow rate 0,, between two limiting values O and QM; the flow rate Q, being, within this range, substantially proportional to the pressure p,, at the inlet.
  • the useful minimum pressure and the useful maximum pressure at the inlet of the pump will be denoted respectively by p and p
  • Q and Q will be respectively the corresponding useful minimum and useful maximum flow rates.
  • the useful minimum flow rate Q is obtained when the pressure at the inlet is sufficiently low for the tube to collapse and for its opposite walls to press against one another; the cross-section of the tube assumes a dumb-bell shape. Beyond, the cross-section of the tube becomes more flattened out, but under the effect of much lower intake pressures at the entrance of the pump, which corresponds to a rapid change in the slope of the curve.
  • the useful maximum flow rate O is obtained when the pressure at the inlet of the pump is sufficiently high for the tube to assume a circular cross-section. Beyond, the tube can only expand, which requires considerably higher pressures and also corresponds to a rapid change in the slope of the curve.
  • the flow rate of the pump 6 varies for a given level according to the venous pressure. Since the venous pressure at the level of the cannula 3 is close to atmospheric pressure, and since the, pressure of the blood at the inlet of the pump 6 differs therefrom by the pressure drops in the intermediate tube 5, partially compensated for by the difference in level between the cannula 3 and the pump 6, it is generally less than atmospheric pressure. Thus a pump 6 is chosen, the characteristic flow rate/pressure curve of which extends over a region of pressures which are preferably less than atmospheric pressure. The characteristic curve of the pump 6 is shown in FIG. 3.
  • the useful region of the curve is between the points B, and B and the corresponding extreme useful pressures p and p are, for example, in this case, both less than atmospheric pressure (point 0, of abscissa zero).
  • the pressure p like the maximum flow rate, is proportional to the speed at which the pump 6 rotates.
  • the useful maximum pressure p is slightly less than atmospheric pressure, and generally less than 20 mm of mercury and preferably less than 10 mm of mercury below atmospheric pressure. This condition is achieved with a pump, the thinwalled peristaltic tube of which has, at rest, a circular cross-section (between the wheels, if what is involved is a rotating pump with wheels, as represented in FIG.
  • this useful cross-section is the maximum and permits a useful maximum flow rate QM;-
  • the peristaltic tube has a elliptical cross-section, with a surface area less than that of the circular crosssection of the same perimeter, corresponding to a flow rate Q
  • the pressure 2 becomes equal to the useful minimum pressure p the peristaltic tube becomes more flattened and its cross-section becomes practically zero; the flow rate falls to the useful minimum flow rate Q1116.
  • the pump 10 Since the pump 10 is mounted in series with the pump 6, it provides strictly the same average flow rate. The flow rate of the pump 10 is thus laid down by that of the pump 6, which itself depends on the venous pressure.
  • the pumps 6 and 10 are generally located substantially at the same level as the oxygenator.
  • the combination consisting of the pumps 6 and 10 and the oxygenator is generally placed below the patient, at an adjustable level, in order partially to compensate for pressure drops upstream from the pump 6 and thus to adjust the blood flow rate to the desired average value.
  • a blood oxygenator consisting of an alternate stack of membranes and spacers
  • the blood could rupture the membrane or overcome the hydrophobic nature of the microporous membranes and pass through them, for example under a pressure of 800 mm of mercury.
  • the pressure of the blood in the oxygenator can be kept within a chosen range by means of a pump 10, the characteristic flow rate/pressure curve of which extends in a region of pressures which are essentially greater than atmospheric pressure.
  • the characteristic curve of a pump 10 is shown in FIG. 3.
  • the useful region of the curve is between the points C and C and the corresponding useful extreme pressures p and p are, for example, in this case, both greater than atmospheric pressure.
  • the useful minimum pressure p is advantageous for the useful minimum pressure p to be equal to or slightly greater than atmospheric pressure, and generally less than mm of mercury, and preferably less than 10 mm, above atmospheric pressure.
  • This condition is achieved with a pump, the peristaltic tube of which, at rest, has a flattened crosssection; this cross-section is practically the minimum and allows a minimum useful flow rate Q
  • the tube of the pump 10 is quite thin-walled to enable the useful maximum flow rate OM10 to be reached for a useful maximum pressure p generally less than 200 mm of mercury above atmospheric pressure and preferably of the order of 50 mm of mercury.
  • the tube of the pump 10 will have a more or less flattened cross-section, corresponding to pressures, at the outlet of the oxygenator, of between 0 and, for example, 50 mm of mercury above atmospheric pressure.
  • the maximum pressure at the inlet of the oxygenator depends on the pressure drops in the latter, which are generally less than mm of mercury for blood flow rates of the order of 600 millilitres/minute in an oxygenator with a surface area of 0.5 m
  • the first condition is that the useful maximum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is greater than that of the pump 6 placed at the inlet of the oxygenator.
  • the pump 10 can be driven at a speed which is greater, by a fixed percentage, than that of the pump 6. If a peristaltic pump with a rotor is used, it is possible to equip the pump 10 with a rotor of diameter greater than that of the pump 6.
  • the two pumps are equipped with identical rotors revolving at the same speed being mounted on a common shaft and these rotors act on different tubes, the internal perimeter of a cross-section of the tube of the pump 10 being greater than that of a cross-section of the tube of the pump 6.
  • several of these arrangements can be combined with one another.
  • the second condition is that the useful minimum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is less than the useful minimum flow rate capacity of the pump 6 placed at the inlet of the oxygenator.
  • a tube for the pump 10 can be chosen with more flexible walls than those of the tube of the pump 6.
  • the cross-section provided by the flattened tube 10 at a pressure close to atmospheric pressure forms a dumb-bell or cross-section less than that of the tube of the pump 6 for the useful minimum pressure upstream from the latter.
  • a tube is chosen for the pump 10 which is substantially flat at rest and which requires a smaller force to achieve the limiting dumb-bell shape than does the tube of the pump 6 which is circular at rest. It is possible to use a tube with thinner walls for the pump 10 than for the pump 6 and to combine thin walls and flat shape.
  • Peristaltic pumps are generally preferred during cardiac or cardiopulmonary replacements. However, during assistances, there is the danger of competition between the more or less pulsed flow rate of such pumps and that originating from the heart beats of the patient.
  • pumps are generally chosen from amongst membrane pumps adapted for blood flow. They are known by the name of ventricular pumps or pumps with a tubular membrane and valves. Pumps such as those described in French Pat. No. 72/07,863 can advantageously be used.
  • These pumps are equipped with controlled valves upstream and downstream.
  • the maximum volume of the arterial ventricle forming the pump is greater by 50 percent at most and preferably by 20 percent at most than the maximum volume of the venous ventricle forming the pump 6.
  • the generally rigid casings of these pumps are advantageously connected, in opposite phases, to one and the same pulse generator.
  • the start of systole can be induced either by an electrocardiographic signal, or preferably by the passage of the arterial pressure of the patient below a definite threshold.
  • the control of the intake and discharge pressures of either pump can be effected by controlling the pressures of the drive gaseous fluid. This is thus again a method of functioning comparable to that of peristaltic pumps with a flow rate which is a function of the upstream pressure.
  • the pump 6 can be operated so that it functions at its maximum flow rate (it acts as a flow rate limiting device) and the latter is adjusted by controlling the speed of rotation of the pump.
  • the extracorporeal circuit can comprise several auxiliary combinations, arranged in parallel, each consisting of a blood oxygenator located between two pumps 6 and 10.
  • auxiliary combinations are connected by taps 22 and 23 to the main circuit represented in FIG. 1. They can be brought into operation or shortcircuited in order rapidly to meet variable requirements of the patient.
  • the extracorporeal blood circuit according to the invention uses pumps which cause a very small degree of haemolysis and since it avoids any direct recycling of the blood, it can be used advantageously for a long period. Since the pumps are self-regulating, it provides great simplicity, reliability and safety, particularly with respect to injection of air, since the pumps act as bubble traps.
  • the blood oxygenating device If the blood oxygenating device is equipped with microporous membranes and if a gas stream passes through it under a pressure less than atmospheric pressure, it can reabsorb the bubbles introduced accidentally into the blood before the inlet of the oxygenator, and does so the better, the finer are these bubbles.
  • the oxygenator behaves better than the bubble traps usually employed (operating by gravity or by Archimedes thrust), the latter acting the better, the larger are the bubbles; thus, under these preferential conditions, there is no need to place such a bubble trap in the circuit.
  • EXAMPLE 1 The circuit is the same as that represented in FIG. 1, with the exception of the means for driving the pumps 6 and 10.
  • the pumps are in effect driven at speeds which can be adjusted between 0 and 40 revolutions/- minute by direct current motors supplied by a common voltage source.
  • the pumps 6 and 10 are of the type described in British Pat. No. 1,287,836 the peristaltic tubes being made of silicone elastomer.
  • the tube of the pump 6 has an internal diameter of 10 mm and an external diameter of 12.6 mm; the periphery of the threewheel rotor describes a circle of diameter 140 mm.
  • the tube of the pump 10 has an internal diameter of l 1.25 mm and an external diameter of 14.1 mm; the periphery of the rotor describes a circle of diameter 140 mm.
  • the pump 10 is placed at a height of 50 cm above the blood oxygenator.
  • the latter consists of two identical combinations each comprising 16 microporous membranes and seven spacers stacked and clamped between two end plates; it is of the type described in French Pat. No. 1,597,874. Its surface area of exchange is 1 m At constant load, it opposes the blood with a pressure drop of 50 mm of mercury.
  • This circuit was used for cardiopulmonary assistance for a period of 12 hours. At the end of the treatment, it was found that the degree of haemolysis of the blood was less than 0.5 percent.
  • the blood pressure inside the blood oxygenator was kept within the range 50-150 mm of mercury. For an average blood flow rate of 800 millilitres/minute, 40 millilitres/minute of oxygen and 60 millilitres/minute of carbon dioxide were transferred.
  • EXAMPLE 2 The circuit and the pumps 6 and 10 are similar to those of Example 1 and are the same as in FIG. 1.
  • the rotors of the pumps 6 and 10 are mounted on a common shaft driven by a single motor 12 at a speed which can be adjusted between 0 and 40 revolutions/minute.
  • Each rotor comprises three wheels at and the two rotors are 60 apart from one another.
  • the tube of the pump 6 has a circular cross-section at rest.
  • the internal diameter of the tube is 15.8 mm and the external diameter is 20 mm.
  • the tube of the pump is elliptical at rest.
  • the internal long axis and short axis of the ellipse are respectively 24 and 4 mm. When deformed under pressure, this tube assumes a circular cross-section of internal diameter 16.8 mm and of external diameter mm.
  • the useful diameter of the rotors of the pumps 6 and 10 is 190 mm.
  • the oxygenator has a membrane surface area of 3 m This combination is used for subtotal cardiopulmonary replacement on an adult patient for a period of 52 hours.
  • the blood flow rate is adjusted to an average value of 2 litres/minute and average transfers of 130 millilitres/minute of oxygen and l50 millilitres/minute of carbon dioxide are observed.
  • the pressure and haemolysis conditions are the same as in Example 1.
  • a second identical combination is ready for use if the transfers prove to be momentarily insufficient.
  • An extracorporeal blood circuit comprising, in combination:
  • a first peristaltic pump including a variable tube means of a type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
  • a second peristaltic pump including a variable tube means ofa type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
  • An extracorporeal blood circuit comprising, in combination:
  • a first tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure of the pump, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
  • a second tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
  • An extracorporeal blood circuit comprising; in
  • a second peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tube of substantially ellipitical cross-section at rest, the internal perimeter of the tube of the second pump being greater than that of the tube of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure of atmospheric pressure 1": mm of mercury;
  • An extracorporeal blood circuit comprising, in combination:

Abstract

An extracorporeal blood circuit in which a blood oxygenator is placed in series between a first and second pump, the pumps being of the peristaltic or ventricular type, the inlet to the first pump being connected to patient''s vein and the outlet of a second pump to a patient''s artery. The useful internal volume of the body of the first and second pumps varies substantially proportional to the pressure of the blood at the inlet, between minimum and maximum values, the maximum useful volume of the first pump and the minimum useful volume of the second pump being reached at a pressure of the blood at the inlet of the respective pump within a range of atmospheric pressure + OR - 20 mm mercury.

Description

I Umted States Patent 11 1 1111 3,881,483
Sausse 1 May 6, 1975 [54] EXTRACORPOREAL BLOOD CIRCUIT 3,359,910 12/1967 Latham 417/478 X [75] Inventor: Andre Sausse, Sceaux, France Primary Examiner Dalton L. Truluck [73] Assignee: Rhone-Poulenc, S.A., Paris, France Attorney, Agent, or FirmStevens, Davis, Miller & 22 Filed: Sept. 12, 1973 Moshe pp No.1 396,603 57 ABSTRACT An extracorporeal blood circuit in which a blood oxy- [30] Foreign Application Priority Data genator is placed in series between a first and second Sept. 12, 1972 France 72.32286 PuthP, the Pumps hehtg 0f the peristaltic ventricular type, the inlet to the first pump being connected to pa- 52 US. Cl 128/214 R; 23/2585 210/321- and the Outlet of a Sectthd P to 3 P 210/416; 417/2441: tients artery. The useful internal volume of the body 51 Int. Cl A6lm 01/03 of the first and Second Pumps varies Substantially P [58] Field of Search 128/214 R, 214 B, 2142 portional to the pressure of the blood at the inlet, be-
0/321 tween minimum and maximum values, the maximum useful volume of the first pump and the minimum use- [56] References Cited ful volume of the second pump being reached at a pressure of the blood at the inlet of the respective UNITED STATES PATENTS pump within a range of atmospheric pressure 20 2,721,732 10 1955 Melrose 261/83 mm mercury 2,927,582 3/1960 Berkman et a1. 23/2585 3,017,885 1/1962 Robicsek 23/2585 20 Claims, 3 Drawing Figures EXTRACORPOREAL BLOOD CIRCUIT The present invention relates to an extracorporeal blood circuit connecting a membrane-containing blood oxygenating device to the vascular system of a patient, for assisting or replacing the pulmonary, cardiac or cardiopulmonary system.
Extracorporeal blood circuits are known which util ise two circulating pumps located in series on either side of a membrane-containing blood oxygenator. However, either a pipeline for partially recycling arterial blood through the oxygenator or complex control systems are required in order to maintain a definite pressure in the oxygenator, necessary for keeping the blood in the form of thin films of constant thickness.
According to the present invention there is provided an extracorporeal blood circuit comprising, a blood oxygenator; a first peristaltic pump or tubular membrane and valve pump, having an inlet connectable to a patients blood circuit and an outlet connected in series with the oxygenator and a second peristaltic pump or tubular membrane and valve pump, having an inlet connected in series with the blood oxygenator and an outlet connectable to said patients blood circuit, the useful internal volume of the body of the first and second pumps, varying substantially proportionally to the pressure of the blood at the inlet, between minimum and maximum values, the maximum useful volume for the first pump and the minimum useful volume of the second pump being reached at a pressure of the blood at the inlet of the respective pump within the range of atmospheric pressure i mm of mercury.
In order that the present invention will be better un derstood the following description is given, merely by way of example, reference being made to the accompanying drawings, in which:
FIG. 1 is a schematic view of one embodiment of an extracorporeal blood circuit according to the invention;
FIG. 2 shows the characteristic flow rate-pressure curve of a peristaltic pump which can be used in the circuit according to the invention; and
FIG. 3 shows the combination of the characteristic flow rate/pressure curves of two pumps located on either side of the blood oxygenator.
In the present text, the expression blood oxygenator, which has become accepted through use, denotes an exchanger of respiratory gas, that is to say not only an oxygen exchanger, but also an exchanger of carbon dioxide, water vapour and nitrogen and optionally of gases or vapours with medicinal and/or anaesthetic effects, and also possibly a heat exchanger.
Referring to FIG. 1, it is seen that the extracorporeal blood circuit connects a blood oxygenator l of a type which is in itself known, comprising at least one membrane 2, to the venous-arterial system of a patient.
More precisely, a cannula 3 is introduced, for example, into the inferior vena cava. A cannula which contains a non-occlusive enlargement near its end is preferably used. This enlargement can consist of three radial resilient branches 5 which press against the venous walls and keep them spaced apart locally, which clears the orifice of the cannula. Such a cannula prevents obstruction of the vein and the restrictions in flow rate which result therefrom. The branches can advantageously become smaller in order to pass through a collateral of smaller size 4 (for example, the femoral vein) sectioned for this purpose.
The cannula 3 is connected to the inlet of the blood oxygenator 1 via a flexible tube 7, for example made of silicone elastomer, on which a first pump 6, of the peristaltic type or of the type with a tubular membrane and valves (also called a ventricular pump), is placed.
A flexible tube 11, also made of silicone elastomer, connects the outlet of the blood oxygenator l to a cannula introduced into an artery 9, or preferably to a flared-out prosthesis 8 sutured to the artery, generally a femoral artery. A second pump 10, also of the peristaltic type or of the type with a tubular membrane and valves, is located on this tube 11.
Advantageously, the artery is slit longitudinally and the prosthesis 8 is sutured obliquely onto the lips of the slit, so that it slopes in the direction of preferential flow. The two sides of the prosthesis move apart under the effect of the arterial pressure. After the prosthesis has been removed, the artery is made whole again in accordance with the usual practical procedure.
An auxiliary peristaltic pump 13, connected to the intake tube 7 of the pump 6, makes it possible to drain the peripheral end of the vein 4 and to introduce addi tional amounts of blood into the extracorporeal circuit from a blood source such as the bottle 16 in order to compensate for possible blood losses and optionally to introduce medicinal liquids such as heparin.
Since the extracorporeal blood circuit represented by way of example is of the venous-arterial type, it is nec essary to control three different pressures, namely the blood pressure at the inlet of the pump 6, the pressure in the oxygenator and the arterial pressure of the patient, in order to keep them at the desired values.
A manometer 17 is placed on the tube 7, immediately upstream of the inlet of the pump 6. Advantageously, this manometer measures the blood pressure through the walls of the flexible tube 7, which reduces the risks of blood coagulation. As the manometer, it is possible to use, for example, that described in French Pat. No. 7 I /43,88 1. As will be seen from the text which follows, a knowledge of the blood pressure at the inlet of the pump 6 makes it possible to know its flow rate.
A manometer 14 makes it possible to check the blood pressure in the oxygenator. Moreover, a device 21 for taking the arterial pressure of the patient makes it possible to keep the latter at the desired level, by acting, when necessary, either on the volume of blood by means of the bottle 16 and the pump 13, or on the vascular resistance of the patient.
The blood must be injected into the patient at a temperature of approximately 37C. For this purpose, means for reheating and checking the temperature of the blood are provided, for example, on the tube 11. The reheating means advantageously consist of a heating element comprising an electrical resistance 18 surrounding the tube 11 or preferably embedded in its wall. This heating element is, for example, of the type described in French Pat. No. 7l/46,408.
Temperature probes of types which are in themselves known 19 and 20, which are placed respectively downstream from, and at the level of, the heating element 18, are generally used. The probe 19 makes it possible to check (and if necessary to control) the reheating of the blood. The probe 20 makes it possible to avoid overheating the blood locally, which could arise if the blood flow rate were decreased or stopped momentarily.
Advantageously, the internal walls, which are in contact with the blood, of the various components forming the circuit (especially pump bodies, cannulas and connecting tubes) carry a smooth organosilicon coating applied in accordance with the process described in German patent application (DOS) No. 2,206,608.
In operation, the venous blood flows from the inferior vena cava, where it is at a pressure close to atmospheric pressure, via a cannula 3 and the tube 7 to the first peristaltic pump 6. The latter carries the blood along into the membrane-containing oxygenator 1 at a sufficient pressure to overcome the pressure drops of the apparatus. The compartments of the oxygenator reserved for the blood are kept full and the blood film of substantially constant thickness, the blood pressure being kept within a predetermined range indicated by the manometer 14. The oxygenated blood is recovered at' the outlet of the oxygenator by a second peristaltic pump 10 which brings it to a pressure enabling it to be injected into the arterial system of the patient through the prosthesis 8, after suitable reheating in the tube 11.
The average blood flow rate, common to both pumps, is provided by the veins of the patient. It must be possible for this flow rate to vary in such a way as to prevent any increase in the venous pressure which could cause disturbances for the patient (and especially acute oedema of the lung); in order to prevent this, it is then convenient to increase the flow rate of the pumps 6 and 10, and in the opposite case, to decrease it if the venous pressure became too low, which could lead to the collapse of the veins or venous cavities.
For this purpose, pumps are used, the body of which provides an internal volume which varies according to the blood pressure at the inlet, which is not generally the case with pumps of the peristaltic type or of the type with a tubular membrane and valves. According to the invention, pumps are used which provide, within the range of blood pressure at the inlet effectively used, a useful internal volume which is substantially proportional to the blood pressure at the inlet of the pump. Pumps such as those described in British Pat. No. 1,287,836 are preferably employed as peristaltic pumps.
The two peristaltic pumps 6 and 10, connected in series, are generally driven synchronously, at one and the same rate or at different rates, in order to provide the same average flow rate. Preferably, they revolve at rates which are always equal to one another, and to achieve this, they are advantageously mounted on the same drive shaft. These rates can be adjustable, but it is often of value to keep the rate constant.
The peristaltic pumps can also be driven at the same rates, each by a separate motor but one which possesses the same rate/voltage characteristics, each motor being supplied by a (fixed or adjustable) common voltage source.
It is also possible to use pumps with a tubular membrane and valves, containing an inlet valve which is either automatic or preferably controlled. The controlled discharge valve can be of the same type as the inlet valve. These pumps can be connected either to separate pulse generators, synchronised on one and the same frequency, or preferably to a common pulse generator.
The peristaltic pumps represented in FIG. 1 advantageously consist of a flexible peristaltic tube made of silicone elastomer stretched between two fixed points and revolving wheels. The peristaltic tube, between the wheels, generally has an elliptical cross-section which is flattened to a greater or lesser extent depending on the pressure at the inlet of the pump. For a constant speed, the flow rate is a function of the pressure at the inlet of the pump, which can be seen clearly on the characteristic flow rate/intake pressure curve of such a pump, represented in FIG. 2.
It is seen that, for a functioning pressure 17,, between two limiting values p,, and p at the inlet of the pump, the pump provides a flow rate 0,, between two limiting values O and QM; the flow rate Q, being, within this range, substantially proportional to the pressure p,, at the inlet.
In the remainder of the description, the useful minimum pressure and the useful maximum pressure at the inlet of the pump will be denoted respectively by p and p Likewise, Q and Q will be respectively the corresponding useful minimum and useful maximum flow rates.
The useful minimum flow rate Q is obtained when the pressure at the inlet is sufficiently low for the tube to collapse and for its opposite walls to press against one another; the cross-section of the tube assumes a dumb-bell shape. Beyond, the cross-section of the tube becomes more flattened out, but under the effect of much lower intake pressures at the entrance of the pump, which corresponds to a rapid change in the slope of the curve.
The useful maximum flow rate O is obtained when the pressure at the inlet of the pump is sufficiently high for the tube to assume a circular cross-section. Beyond, the tube can only expand, which requires considerably higher pressures and also corresponds to a rapid change in the slope of the curve.
In the extracorporeal blood circuit represented in FIG. 1, the flow rate of the pump 6 varies for a given level according to the venous pressure. Since the venous pressure at the level of the cannula 3 is close to atmospheric pressure, and since the, pressure of the blood at the inlet of the pump 6 differs therefrom by the pressure drops in the intermediate tube 5, partially compensated for by the difference in level between the cannula 3 and the pump 6, it is generally less than atmospheric pressure. Thus a pump 6 is chosen, the characteristic flow rate/pressure curve of which extends over a region of pressures which are preferably less than atmospheric pressure. The characteristic curve of the pump 6 is shown in FIG. 3. The useful region of the curve is between the points B, and B and the corresponding extreme useful pressures p and p are, for example, in this case, both less than atmospheric pressure (point 0, of abscissa zero). The pressure p like the maximum flow rate, is proportional to the speed at which the pump 6 rotates.
It is advantageous for the useful maximum pressure p to be slightly less than atmospheric pressure, and generally less than 20 mm of mercury and preferably less than 10 mm of mercury below atmospheric pressure. This condition is achieved with a pump, the thinwalled peristaltic tube of which has, at rest, a circular cross-section (between the wheels, if what is involved is a rotating pump with wheels, as represented in FIG. 1); this useful cross-section is the maximum and permits a useful maximum flow rate QM;- For a blood pres sure p at the inlet of the pump 6, between p and p and less than atmospheric pressure, the peristaltic tube has a elliptical cross-section, with a surface area less than that of the circular crosssection of the same perimeter, corresponding to a flow rate Q When the pressure 2 becomes equal to the useful minimum pressure p the peristaltic tube becomes more flattened and its cross-section becomes practically zero; the flow rate falls to the useful minimum flow rate Q1116.
Since the pump 10 is mounted in series with the pump 6, it provides strictly the same average flow rate. The flow rate of the pump 10 is thus laid down by that of the pump 6, which itself depends on the venous pressure.
The pumps 6 and 10 are generally located substantially at the same level as the oxygenator. The combination consisting of the pumps 6 and 10 and the oxygenator is generally placed below the patient, at an adjustable level, in order partially to compensate for pressure drops upstream from the pump 6 and thus to adjust the blood flow rate to the desired average value.
It is necessary to keep the pressure of the blood in the oxygenator within a predetermined range of pressures in order to enable the blood film to retain substantially constant thicknesses in contact with the membranes and a controlled pressure gradient across the thickness of the membrane. 1
Thus for a blood oxygenator consisting of an alternate stack of membranes and spacers, it can be decided to keep the relative pressure of the blood in this oxygenator, measured by means of the manometer 14 within a predetermined range, for example, between 0 and 200 mm of mercury.
in fact, if the pressure of oxygen in this oxygenator is kept below atmospheric pressure, the pressure difference between the blood and the oxygen always remains positive, and this makes it possible to use microporous membranes with a high gas flow rate which also enable bubbles to be removed satisfactorily from the blood, even in the case of foam or small bubbles; it forms a safety bubble-remover. The membranes described in French Pat. No. 1,568,130 are very particularly suit able for this purpose. Moreover, by maintaining this positive pressure difference, it is possible to prevent the membranes from sticking to one another by accident, since it is difficult to reverse this sticking.
If, on the other hand, the pressure of the blood were too much greater than that of the oxygen, the blood could rupture the membrane or overcome the hydrophobic nature of the microporous membranes and pass through them, for example under a pressure of 800 mm of mercury.
The pressure of the blood in the oxygenator can be kept within a chosen range by means of a pump 10, the characteristic flow rate/pressure curve of which extends in a region of pressures which are essentially greater than atmospheric pressure. The characteristic curve of a pump 10 is shown in FIG. 3. The useful region of the curve is between the points C and C and the corresponding useful extreme pressures p and p are, for example, in this case, both greater than atmospheric pressure.
It is advantageous for the useful minimum pressure p to be equal to or slightly greater than atmospheric pressure, and generally less than mm of mercury, and preferably less than 10 mm, above atmospheric pressure. This condition is achieved with a pump, the peristaltic tube of which, at rest, has a flattened crosssection; this cross-section is practically the minimum and allows a minimum useful flow rate Q The tube of the pump 10 is quite thin-walled to enable the useful maximum flow rate OM10 to be reached for a useful maximum pressure p generally less than 200 mm of mercury above atmospheric pressure and preferably of the order of 50 mm of mercury. Thus, for any flow rate imposed by the pump 6, the tube of the pump 10 will have a more or less flattened cross-section, corresponding to pressures, at the outlet of the oxygenator, of between 0 and, for example, 50 mm of mercury above atmospheric pressure. The maximum pressure at the inlet of the oxygenator depends on the pressure drops in the latter, which are generally less than mm of mercury for blood flow rates of the order of 600 millilitres/minute in an oxygenator with a surface area of 0.5 m
In order to be certain that the average blood pressure in the oxygenator remains within the desired range, at any instant, it is necessary for two conditions to be realised simultaneously.
The first condition is that the useful maximum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is greater than that of the pump 6 placed at the inlet of the oxygenator.
Since, according to the invention, the pumps 6 and 10 are generally driven synchronously, this condition can be satisfied by selecting from the following means:
The pump 10 can be driven at a speed which is greater, by a fixed percentage, than that of the pump 6. If a peristaltic pump with a rotor is used, it is possible to equip the pump 10 with a rotor of diameter greater than that of the pump 6. Preferably, the two pumps are equipped with identical rotors revolving at the same speed being mounted on a common shaft and these rotors act on different tubes, the internal perimeter of a cross-section of the tube of the pump 10 being greater than that of a cross-section of the tube of the pump 6. Of course, several of these arrangements can be combined with one another.
The second condition is that the useful minimum flow rate capacity of the pump 10 placed at the outlet of the oxygenator is less than the useful minimum flow rate capacity of the pump 6 placed at the inlet of the oxygenator. To achieve this, a tube for the pump 10 can be chosen with more flexible walls than those of the tube of the pump 6. Thus the cross-section provided by the flattened tube 10 at a pressure close to atmospheric pressure forms a dumb-bell or cross-section less than that of the tube of the pump 6 for the useful minimum pressure upstream from the latter. A tube is chosen for the pump 10 which is substantially flat at rest and which requires a smaller force to achieve the limiting dumb-bell shape than does the tube of the pump 6 which is circular at rest. It is possible to use a tube with thinner walls for the pump 10 than for the pump 6 and to combine thin walls and flat shape.
It is thus seen that it is possible, according to the invention, simultaneously to satisfy the two conditions listed above.
In practice, when a stable state is reached and when the flow rate of the extracorporeal circulation is satisfactory, it is advantageous, in order to reduce blood traumas, to decrease the speed of the pump 6 in order to bring its actual flow rate to approximately four-fifths of the maximum flow rate. The readings of the manometer 17 which indicates the actual flow rate, are used for this purpose.
Peristaltic pumps are generally preferred during cardiac or cardiopulmonary replacements. However, during assistances, there is the danger of competition between the more or less pulsed flow rate of such pumps and that originating from the heart beats of the patient.
This is why, if it is desired to take advantage of the diastolic pause in order to inject the blood originating from the extracorporeal circuit and to avoid competition between the latter and the natural heart, it is preferable to resort to pumps, the ejection of which can be synchronised relative to the cardiac cycle. These pumps are generally chosen from amongst membrane pumps adapted for blood flow. They are known by the name of ventricular pumps or pumps with a tubular membrane and valves. Pumps such as those described in French Pat. No. 72/07,863 can advantageously be used.
These pumps are equipped with controlled valves upstream and downstream. The maximum volume of the arterial ventricle forming the pump is greater by 50 percent at most and preferably by 20 percent at most than the maximum volume of the venous ventricle forming the pump 6. The generally rigid casings of these pumps are advantageously connected, in opposite phases, to one and the same pulse generator.
The start of systole can be induced either by an electrocardiographic signal, or preferably by the passage of the arterial pressure of the patient below a definite threshold. The control of the intake and discharge pressures of either pump can be effected by controlling the pressures of the drive gaseous fluid. This is thus again a method of functioning comparable to that of peristaltic pumps with a flow rate which is a function of the upstream pressure.
As with the latter, it is even possible to achieve protection against injections of air by placing them vertically, the blood passing through them in a downwards direction and the air thus being trapped at the level of the inlet valve which may not provide a rigorous seal.
The use of two pumps with a tubular membrane and valves and a fluid pulse generator such as that which is the subject of French Pat. No. 72/06,8 l 2 is particularly advantageous for reviving patients in ambulances or helicopters, because it does not require any electrical energy and can function solely by means of the expansion of the oxygen used for flushing the oxygenator. In this case, the gas monitor can be dispensed with and replaced by a simple open circuit flushing, after expansion for driving the pumps. With a 0.5 in bottle of oxygen, independent operation is satisfactory for minimum weight and bulk.
A combination connected to the venous-arterial system of a patient has been described, but the same combination can be used in venous-venous or arterialvenous extracorporeal circulation. In the latter case, the pump 6 can be operated so that it functions at its maximum flow rate (it acts as a flow rate limiting device) and the latter is adjusted by controlling the speed of rotation of the pump.
The extracorporeal circuit can comprise several auxiliary combinations, arranged in parallel, each consisting of a blood oxygenator located between two pumps 6 and 10. Such auxiliary combinations are connected by taps 22 and 23 to the main circuit represented in FIG. 1. They can be brought into operation or shortcircuited in order rapidly to meet variable requirements of the patient.
Since the extracorporeal blood circuit according to the invention uses pumps which cause a very small degree of haemolysis and since it avoids any direct recycling of the blood, it can be used advantageously for a long period. Since the pumps are self-regulating, it provides great simplicity, reliability and safety, particularly with respect to injection of air, since the pumps act as bubble traps.
If the blood oxygenating device is equipped with microporous membranes and if a gas stream passes through it under a pressure less than atmospheric pressure, it can reabsorb the bubbles introduced accidentally into the blood before the inlet of the oxygenator, and does so the better, the finer are these bubbles. In this function, the oxygenator behaves better than the bubble traps usually employed (operating by gravity or by Archimedes thrust), the latter acting the better, the larger are the bubbles; thus, under these preferential conditions, there is no need to place such a bubble trap in the circuit.
The characteristics and the advantages of the circuit according to the invention will become more apparent from the following examples:
EXAMPLE 1 The circuit is the same as that represented in FIG. 1, with the exception of the means for driving the pumps 6 and 10. The pumps are in effect driven at speeds which can be adjusted between 0 and 40 revolutions/- minute by direct current motors supplied by a common voltage source. The pumps 6 and 10 are of the type described in British Pat. No. 1,287,836 the peristaltic tubes being made of silicone elastomer. The tube of the pump 6 has an internal diameter of 10 mm and an external diameter of 12.6 mm; the periphery of the threewheel rotor describes a circle of diameter 140 mm. The tube of the pump 10 has an internal diameter of l 1.25 mm and an external diameter of 14.1 mm; the periphery of the rotor describes a circle of diameter 140 mm. The pump 10 is placed at a height of 50 cm above the blood oxygenator. The latter consists of two identical combinations each comprising 16 microporous membranes and seven spacers stacked and clamped between two end plates; it is of the type described in French Pat. No. 1,597,874. Its surface area of exchange is 1 m At constant load, it opposes the blood with a pressure drop of 50 mm of mercury.
This circuit was used for cardiopulmonary assistance for a period of 12 hours. At the end of the treatment, it was found that the degree of haemolysis of the blood was less than 0.5 percent. The blood pressure inside the blood oxygenator was kept within the range 50-150 mm of mercury. For an average blood flow rate of 800 millilitres/minute, 40 millilitres/minute of oxygen and 60 millilitres/minute of carbon dioxide were transferred.
EXAMPLE 2 The circuit and the pumps 6 and 10 are similar to those of Example 1 and are the same as in FIG. 1. The rotors of the pumps 6 and 10 are mounted on a common shaft driven by a single motor 12 at a speed which can be adjusted between 0 and 40 revolutions/minute. Each rotor comprises three wheels at and the two rotors are 60 apart from one another.
The tube of the pump 6 has a circular cross-section at rest. The internal diameter of the tube is 15.8 mm and the external diameter is 20 mm. The tube of the pump is elliptical at rest. The internal long axis and short axis of the ellipse are respectively 24 and 4 mm. When deformed under pressure, this tube assumes a circular cross-section of internal diameter 16.8 mm and of external diameter mm. The useful diameter of the rotors of the pumps 6 and 10 is 190 mm. The oxygenator has a membrane surface area of 3 m This combination is used for subtotal cardiopulmonary replacement on an adult patient for a period of 52 hours. The blood flow rate is adjusted to an average value of 2 litres/minute and average transfers of 130 millilitres/minute of oxygen and l50 millilitres/minute of carbon dioxide are observed. The pressure and haemolysis conditions are the same as in Example 1. A second identical combination is ready for use if the transfers prove to be momentarily insufficient.
We claim:
1. An extracorporeal blood circuit comprising, in combination:
a. a blood oxygenator;
b. a first peristaltic pump including a variable tube means of a type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
c. an inlet of said first pump connectable to a patients blood circuit;
d. an outlet of said pump connected in series with said oxygenator;
. a second peristaltic pump including a variable tube means ofa type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
f. an inlet of said second pump connected in series with said blood oxygenator; and
g. an outlet of said second pump connectable to said patients blood circuit.
2. A blood circuit as claimed in claim 1, and further comprising means for driving said first and second pumps synchronously.
3. A blood circuit as claimed in claim 1, wherein the capacity of said first pump reaches a maximum value for a liquid pressure at its inlet which is less than atmospheric pressure.
4. A blood circuit as claimed in claim 1, wherein the capacity of said second pump reaches a minimum value for a liquid pressure at its inlet which is greater than atmospheric pressure.
5. A blood circuit as claimed in claim 1, wherein the useful maximum flow rate capacity of said second pump is greater than the useful maximum flow rate capacity of said first pump.
6. A blood circuit as claimed in claim 1, wherein the useful minimum flow rate capacity of said second pump is less than the useful minimum flow rate capacity of said first pump.
7. A blood circuit as claimed in claim 1, wherein the two pumps further comprising an adjustable speed single motor, a common shaft driven by said motor and identical rotors of said peristaltic pumps mounted on said common shaft.
8. A blood circuit as claimed in claim 1, wherein, in the oxygenator, the blood is separated from the oxygenating gas stream by at least one microporous membrane.
9. A blood circuit as claimed in claim 8, in which the microporous membrane is water-repellent.
10. A blood circuit as claimed in claim 1, wherein the internal wall in contact with the blood of at least one component of the circuit carries a smooth organosilicon coating.
11. A blood circuit as claimed in claim 1, and further comprising at least one cannula connected to the inlet of the first pump for removing the venous blood and a non-occlusive enlargement near its end.
12. A blood circuit as claimed in claim 1, and further comprising a flared-out prosthesis, connected to the outlet of the second pump, and wherein said prosthesis can be stitched to a patients artery.
13. A blood circuit as claimed in claim 1, and further comprising means for reheating the blood and means for sensing the temperature of the blood located at the level of and downstream from the said means for reheating the blood.
14. A blood circuit as claimed in claim 1, and further comprising an auxiliary pump and at least one other source of blood or medicinal liquid connected to the inlet of said first pump by said auxiliary pump.
15. A blood circuit as claimed in claim 1, and further comprising a manometer upstream from said first pump.
16. A blood circuit as claimed in claim 15, wherein said manometer is of the type which measures the pressure across the wall of a flexible tube.
17. A blood circuit as claimed in claim 1, and further comprising a plurality of blood oxygenators connected in parallel and a further one of said first and second pumps connected in series on either side of each blood oxygenator.
18. An extracorporeal blood circuit comprising, in combination:
a. a blood oxygenator;
b. a first tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure of the pump, the maximum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
c. an inlet of said first pump connectable to a patients blood circuit;
d. an outlet of said pump connected in series with said oxygenator;
e. a second tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure i 20 mm of mercury;
f. an inlet of said second pump connected in series with said blood oxygenator; and
g. an outlet of said second pump connectable to a patients blood circuit.
19. An extracorporeal blood circuit comprising; in
combination:
a. a blood oxygenator;
b. a first peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet d. an outlet of said pump connected in series with said oxygenator;
a second peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tube of substantially ellipitical cross-section at rest, the internal perimeter of the tube of the second pump being greater than that of the tube of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure of atmospheric pressure 1": mm of mercury;
an inlet of said second pump connected in series with said blood oxygenator; and
g. an outlet of said second pump connectable to said patients blood circuit.
'20. An extracorporeal blood circuit comprising, in combination:
a. a blood oxygenator;
b. a first tubular membrane and valve pump of a type 12 having a capacity which is variable in proportion to the pump inlet pressure and having a tubular membrane of circular cross-section at rest;
an inlet of said first pump connectable to a patients blood circuit;
d. an outlet of said pump connected in series with said oxygenator;
a second tubular membrane and valve pump of a type having a capacity which is variable in proportion to the pump inlet pressure and the tubular membrane having a substantially elliptical crosssection at rest, the internal perimeter of the tube of the membrane of the second pump being greater than that of the tubular membrane of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure of atmospheric pressure i 20 mm of mercury;
an inlet of said second pump connected in series with said blood oxygenator; and
an outlet of said second pump connectable to said patients blood circuit.

Claims (20)

1. An extracorporeal blood circuit comprising, in combination: a. a blood oxygenator; b. a first peristaltic pump including a variable tube means of a type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the maximum capacity being reached at an inlet pressure of atmospheric pressure + OR - 20 mm of mercury; c. an inlet of said first pump connectable to a patient''s blood circuit; d. an outlet of said pump connected in series with said oxygenator; e. a second peristaltic pump including a variable tube means of a type having a capacity variable between maximum and minimum values in proportion to the pump inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure + OR - 20 mm of mercury; f. an inlet of said second pump connected in series with said blood oxygenator; and g. an outlet of said second pump connectable to said patient''s blood circuit.
2. A blood circuit as claimed in claim 1, and further comprising means for driving said first and second pumps synchronously.
3. A blood circuit as claimed in claim 1, wherein the capacity of said first pump reaches a maximum value for a liquid pressure at its inlet which is less than atmospheric pressure.
4. A blood circuit as claimed in claim 1, wherein the capacity of said second pump reaches a minimum value for a liquid pressure at its inlet which is greater than atmospheric pressure.
5. A blood circuit as claimed in claim 1, wherein the useful maximum flow rate capacity of said second pump is greater than the useful maximum flow rate capacity of said first pump.
6. A blood circuit as claimed in claim 1, wherein the useful minimum flow rate capacity of said second pump is less than the useful minimum flow rate capacity of said first pump.
7. A blood circuit as claimed in claim 1, wherein the two pumps further comprising an adjustable speed single motor, a common shaft driven by said motor and identical rotors of said peristaltic pumps mounted on said common shaft.
8. A blood circuit as claimed in claim 1, wherein, in the oxygenator, the blood is separated from the oxygenating gas stream by at least one microporous membrane.
9. A blood circuit as claimed in claim 8, in which the microporous membrane is water-repellent.
10. A blood circuit as claimed in claim 1, wherein the internal wall in contact with the blood of at least one component of the circuit carries a smooth organosilicon coating.
11. A blood circuit as claimed in claim 1, and further comprising at least one cannula connected to the inlet of the first pump for removing the venous blood and a non-occlusive enlargement near its end.
12. A blood circuit as claimed in claim 1, and further comprising a flared-out prosthesis, connected to the outlet of the second pump, and wherein said prosthesis can be stitched to a patient''s artery.
13. A blood circuit as claimed in claim 1, and further comprising means for reheating the blood and means for sensing the temperature of the blood located at the level of and downstream from the said means for reheating the blood.
14. A blood circuit as claimed in claim 1, and further comprising an auxiliary pump and at least one other source of blood or medicinal liquid connected to the inlet of said first pump by said auxiliary pump.
15. A blood circuit as claimed in claim 1, and further comprising a manometer upstream from said first pump.
16. A blood circuit as claimed in claim 15, wherein said manometer is of the type which measures the pressure across the wall of a flexible tube.
17. A blood circuit as claimed in claim 1, and further comprising a plurality of blood oxygenators connected in parallel and a further one of said first and second pumps connected in series on either side of each blood oxygenator.
18. An extracorporeal blood circuit comprising, in combination: a. a blood oxygenator; b. a first tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure of the pump, the maximum capacity being reached at an inlet pressure of atmospheric pressure + or - 20 mm of mercury; c. an inlet of said first pump connectable to a patient''s blood circuit; d. an outlet of said pump connected in series with said oxygenator; e. a second tubular variable membrane and valve pump of a type having a capacity variable between maximum and minimum values in proportion to the inlet pressure, the minimum capacity being reached at an inlet pressure of atmospheric pressure + or -20 mm of mercury; f. an inlet of said second pump connected in series with said blood oxygenator; and g. an outlet of said second pump connectable to a patient''s blood circuit.
19. An extracorporeal blood circuit comprising; in combination: a. a blood oxygenator; b. a first peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tube of circular cross-section at rest; c. an inlet of said first pump connectable to a patient''s blood circuit; d. an outlet of said pump connected in series with said oxygenator; e. a second peristaltic pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tube of substantially ellipitical cross-section at rest, the internal perimeter of the tube of the second pump being greater than that of the tube of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure Of atmospheric pressure + or - 20 mm of mercury; f. an inlet of said second pump connected in series with said blood oxygenator; and g. an outlet of said second pump connectable to said patient''s blood circuit.
20. An extracorporeal blood circuit comprising, in combination: a. a blood oxygenator; b. a first tubular membrane and valve pump of a type having a capacity which is variable in proportion to the pump inlet pressure and having a tubular membrane of circular cross-section at rest; c. an inlet of said first pump connectable to a patient''s blood circuit; d. an outlet of said pump connected in series with said oxygenator; e. a second tubular membrane and valve pump of a type having a capacity which is variable in proportion to the pump inlet pressure and the tubular membrane having a substantially elliptical cross-section at rest, the internal perimeter of the tube of the membrane of the second pump being greater than that of the tubular membrane of the first pump, so that the maximum capacity of the first pump and the minimum capacity of the second pump is reached at a pump inlet pressure of atmospheric pressure + or - 20 mm of mercury; f. an inlet of said second pump connected in series with said blood oxygenator; and g. an outlet of said second pump connectable to said patient''s blood circuit.
US396603A 1972-09-12 1973-09-12 Extracorporeal blood circuit Expired - Lifetime US3881483A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7232286A FR2198759B1 (en) 1972-09-12 1972-09-12

Publications (1)

Publication Number Publication Date
US3881483A true US3881483A (en) 1975-05-06

Family

ID=9104158

Family Applications (1)

Application Number Title Priority Date Filing Date
US396603A Expired - Lifetime US3881483A (en) 1972-09-12 1973-09-12 Extracorporeal blood circuit

Country Status (20)

Country Link
US (1) US3881483A (en)
JP (2) JPS5330277B2 (en)
BE (1) BE804735A (en)
BR (1) BR7307021D0 (en)
CA (1) CA1028913A (en)
CH (2) CH575764A5 (en)
DD (1) DD107210A5 (en)
DE (2) DE7333119U (en)
DK (1) DK142803B (en)
ES (1) ES418707A1 (en)
FR (1) FR2198759B1 (en)
GB (2) GB1437494A (en)
IE (1) IE40136B1 (en)
IL (1) IL43202A (en)
IT (2) IT1001541B (en)
LU (1) LU68403A1 (en)
NL (1) NL157805B (en)
NO (1) NO133574C (en)
SE (2) SE401091B (en)
ZA (1) ZA737272B (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955557A (en) * 1973-10-01 1976-05-11 Hiroyuki Takagi Blood pump for use in an artificial heart or such purpose
US4083777A (en) * 1976-09-07 1978-04-11 Union Carbide Corporation Portable hemodialysis system
FR2364662A2 (en) * 1976-09-17 1978-04-14 Inst Nat Sante Rech Med Medical instillation and perfusion appts. - including pumps and a receiver with level detectors used to control rate of return drip feed
US4192302A (en) * 1978-09-12 1980-03-11 Boddie Arthur W Hepatic isolation and perfusion circuit assembly
US4490135A (en) * 1982-09-24 1984-12-25 Extracorporeal Medical Specialties, Inc. Single needle alternating blood flow system
US4492531A (en) * 1982-04-30 1985-01-08 Kuraray Co., Ltd. Apparatus for producing a controlled pulsed liquid flow
US4529397A (en) * 1982-02-09 1985-07-16 Sartorius Gmbh Cardioplegic controlling and regulating system
US4540399A (en) * 1983-02-01 1985-09-10 Ken Litzie Emergency bypass system
US4776837A (en) * 1983-06-21 1988-10-11 Kopp Klaus F Single lumen catheter fluid treatment
US4778445A (en) * 1984-07-09 1988-10-18 Minnesota Mining And Manufacturing Company Centrifugal blood pump with backflow detection
US4787883A (en) * 1986-03-10 1988-11-29 Kroyer K K K Extracorporal thermo-therapy device and method for curing diseases
US4828543A (en) * 1986-04-03 1989-05-09 Weiss Paul I Extracorporeal circulation apparatus
US4908014A (en) * 1986-03-10 1990-03-13 Kroyer K K K Extracorporal thermo-therapy device and method for curing diseases
US5254094A (en) * 1989-07-17 1993-10-19 Starkey David L Physiological fluid warmer
US5391142A (en) * 1992-07-29 1995-02-21 Organetics, Ltd. Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition
US5540653A (en) * 1992-10-23 1996-07-30 Datascope Investment Corp. Preassembled bypass circuit
US5827222A (en) * 1990-10-10 1998-10-27 Life Resuscitation Technologies, Inc. Method of treating at least one of brain and associated nervous tissue injury
DE19723671A1 (en) * 1997-06-05 1998-12-10 Stoeckert Instr Gmbh Heart-lung machine with non-linear blood pumps
US5957879A (en) * 1997-01-24 1999-09-28 Heartport, Inc. Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart
WO2000009200A1 (en) 1998-08-12 2000-02-24 Coaxia, Inc. Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures
USRE36774E (en) * 1989-10-01 2000-07-11 Baxter Healthcare Corporation Cylindrical blood heater/oxygenator
USRE37379E1 (en) 1991-02-14 2001-09-18 Wayne State University High pressure gas exchanger
US6312647B1 (en) 1994-12-09 2001-11-06 Wayne State University Method for enriching a fluid with oxygen
US6485450B1 (en) 1998-03-16 2002-11-26 Life Science Holdings, Inc. Brain resuscitation apparatus and method
US6572821B2 (en) * 2000-04-11 2003-06-03 Stöckert Instrumente GmbH Heart-lung machine including compressed fluid actuated control members
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US6602468B2 (en) 1999-09-30 2003-08-05 Therox, Inc. Method of blood oxygenation
US20030204172A1 (en) * 2002-04-25 2003-10-30 Steppe Dennis L. Aspiration system
US20040054348A1 (en) * 2002-09-12 2004-03-18 Michael Hogendijk Catheter having a compliant member configured to regulate aspiration rates
US6736790B2 (en) 1998-02-25 2004-05-18 Denise R. Barbut Method and system for selective or isolated integrate cerebral perfusion and cooling
US20040168934A1 (en) * 2001-07-06 2004-09-02 Lukas Schaupp Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US20090259089A1 (en) * 2008-04-10 2009-10-15 Daniel Gelbart Expandable catheter for delivery of fluids
US20110154888A1 (en) * 2008-09-17 2011-06-30 Arkray, Inc. Analysis device
US20110154910A1 (en) * 2008-09-17 2011-06-30 Arkray, Inc. Analysis device and analysis method
US20110201988A1 (en) * 2008-10-14 2011-08-18 Mattias Holmer Blood treatment apparatus and method
WO2013119482A1 (en) * 2012-02-06 2013-08-15 Michael Friedman Apparatus and methods for controlled delivery of heated fluids to a subject
ITBO20120197A1 (en) * 2012-04-12 2013-10-13 Medical Service S R L EQUIPMENT USED IN MECHANICAL OR ASSISTED VENTILATION PROCEDURES
US20150104329A1 (en) * 2013-10-14 2015-04-16 Elwha, Llc Peristaltic pump systems and methods
US20150104330A1 (en) * 2013-10-14 2015-04-16 Elwha, Llc Peristaltic pump systems and methods
CN105536086A (en) * 2016-02-23 2016-05-04 南京医科大学第一附属医院 Multifunctional ECMO circulating pipeline and method for performing extracorporeal membrane oxygenation by utilizing multifunctional ECMO circulating pipeline
US9561315B1 (en) * 2013-02-19 2017-02-07 Jay Vincelli Miniaturized cardiopulmonary bypass circuit for a mouse model
US10786618B2 (en) 2015-06-01 2020-09-29 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for extracorporeal support
EP3741403A1 (en) 2015-06-01 2020-11-25 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for extracorporeal support
US11147906B2 (en) 2015-11-04 2021-10-19 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for flow stagnation control
US11369726B2 (en) 2015-11-04 2022-06-28 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for providing zones of selective thermal therapy
WO2023083415A1 (en) * 2021-11-09 2023-05-19 Rheinisch Westfälische Technische Hochschule (Rwth) Aachen Device for enriching fluids with enrichment gas, use, method, and enrichment apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287241A2 (en) * 1974-10-09 1976-05-07 Rhone Poulenc Ind Haemodialysis blood circuit - has pipes, pump and accessories forming variable volume blood chamber
DE2754810C3 (en) * 1977-12-09 1980-12-11 Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg, 6380 Bad Homburg Hemofiltration device
DE2754894C2 (en) * 1977-12-09 1983-10-13 Fresenius AG, 6380 Bad Homburg Device for balancing a fluid withdrawn from a patient with a replacement fluid
JPS565698A (en) * 1979-06-27 1981-01-21 Hitachi Ltd Hydroextracting tank in synthetic resin
JPS568098A (en) * 1979-07-02 1981-01-27 Hitachi Ltd Hydroextracting tank in synthetic resin
EP0174478B1 (en) * 1981-09-10 1991-12-11 B. Braun Holding AG Method for the selective extracorporeal precipitation of low density lipoproteins from serum or plasma
FR2519555A1 (en) * 1982-01-11 1983-07-18 Rhone Poulenc Sa APPARATUS AND METHOD FOR ALTERNATIVE PLASMAPHERESE WITH MEMBRANE APPARATUS
US4451562B1 (en) * 1982-04-26 1997-07-29 Cobe Lab Blood oxygenator
FR2548907B1 (en) * 1983-07-13 1985-11-08 Rhone Poulenc Sa PLASMAPHERESE PROCESS AND APPARATUS FOR USE IN PARTICULAR FOR THIS PROCESS
IT8453709V0 (en) * 1984-08-07 1984-08-07 Hospal Dasco Spa PERFECTED TYPE EQUIPMENT FOR THE CIRCULATION OF A LIQUID ALONG A TUBULAR LINE
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
US6723284B1 (en) 1997-04-11 2004-04-20 University Of Pittsburgh Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US6106776A (en) * 1997-04-11 2000-08-22 University Of Pittsburgh Membrane apparatus with enhanced mass transfer via active mixing
US6224829B1 (en) 1998-12-30 2001-05-01 Cadiovention, Inc. Integrated blood oxygenator and pump system having means for reducing fiber breakage
US6428747B1 (en) 1998-12-30 2002-08-06 Cardiovention, Inc. Integrated extracorporeal blood oxygenator, pump and heat exchanger system
US6454999B1 (en) 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
US6379618B1 (en) * 1998-12-30 2002-04-30 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing microbubble generation
DE102019131369A1 (en) * 2019-11-20 2021-05-20 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Oxygenator device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721732A (en) * 1952-01-03 1955-10-25 Nat Res Dev Apparatus for mixing liquids and gases
US2927582A (en) * 1956-03-19 1960-03-08 Research Corp Pump-oxygenator
US3017885A (en) * 1959-03-30 1962-01-23 Robicsek Francis Blood flow meter
US3359910A (en) * 1965-06-10 1967-12-26 Little Inc A Apparatus for programming fluid flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721732A (en) * 1952-01-03 1955-10-25 Nat Res Dev Apparatus for mixing liquids and gases
US2927582A (en) * 1956-03-19 1960-03-08 Research Corp Pump-oxygenator
US3017885A (en) * 1959-03-30 1962-01-23 Robicsek Francis Blood flow meter
US3359910A (en) * 1965-06-10 1967-12-26 Little Inc A Apparatus for programming fluid flow

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955557A (en) * 1973-10-01 1976-05-11 Hiroyuki Takagi Blood pump for use in an artificial heart or such purpose
US4083777A (en) * 1976-09-07 1978-04-11 Union Carbide Corporation Portable hemodialysis system
FR2364662A2 (en) * 1976-09-17 1978-04-14 Inst Nat Sante Rech Med Medical instillation and perfusion appts. - including pumps and a receiver with level detectors used to control rate of return drip feed
US4192302A (en) * 1978-09-12 1980-03-11 Boddie Arthur W Hepatic isolation and perfusion circuit assembly
US4529397A (en) * 1982-02-09 1985-07-16 Sartorius Gmbh Cardioplegic controlling and regulating system
US4492531A (en) * 1982-04-30 1985-01-08 Kuraray Co., Ltd. Apparatus for producing a controlled pulsed liquid flow
US4490135A (en) * 1982-09-24 1984-12-25 Extracorporeal Medical Specialties, Inc. Single needle alternating blood flow system
US4540399A (en) * 1983-02-01 1985-09-10 Ken Litzie Emergency bypass system
US4776837A (en) * 1983-06-21 1988-10-11 Kopp Klaus F Single lumen catheter fluid treatment
US4778445A (en) * 1984-07-09 1988-10-18 Minnesota Mining And Manufacturing Company Centrifugal blood pump with backflow detection
US4787883A (en) * 1986-03-10 1988-11-29 Kroyer K K K Extracorporal thermo-therapy device and method for curing diseases
US4908014A (en) * 1986-03-10 1990-03-13 Kroyer K K K Extracorporal thermo-therapy device and method for curing diseases
US4828543A (en) * 1986-04-03 1989-05-09 Weiss Paul I Extracorporeal circulation apparatus
US5254094A (en) * 1989-07-17 1993-10-19 Starkey David L Physiological fluid warmer
USRE36774E (en) * 1989-10-01 2000-07-11 Baxter Healthcare Corporation Cylindrical blood heater/oxygenator
US5827222A (en) * 1990-10-10 1998-10-27 Life Resuscitation Technologies, Inc. Method of treating at least one of brain and associated nervous tissue injury
USRE37379E1 (en) 1991-02-14 2001-09-18 Wayne State University High pressure gas exchanger
US5391142A (en) * 1992-07-29 1995-02-21 Organetics, Ltd. Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition
US5540653A (en) * 1992-10-23 1996-07-30 Datascope Investment Corp. Preassembled bypass circuit
US6312647B1 (en) 1994-12-09 2001-11-06 Wayne State University Method for enriching a fluid with oxygen
US6443922B1 (en) 1997-01-24 2002-09-03 Heartport, Inc. Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart
US6974434B2 (en) 1997-01-24 2005-12-13 Heartport, Inc. Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart
US5957879A (en) * 1997-01-24 1999-09-28 Heartport, Inc. Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart
US20020176797A1 (en) * 1997-01-24 2002-11-28 Roberts Craig P. Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart
DE19723671C2 (en) * 1997-06-05 2001-07-19 Stoeckert Instr Gmbh Heart-lung machine with more than two blood pumps
DE19723671A1 (en) * 1997-06-05 1998-12-10 Stoeckert Instr Gmbh Heart-lung machine with non-linear blood pumps
US20040138608A1 (en) * 1998-02-25 2004-07-15 Barbut Denise R. Method and system for selective or isolated integrate cerebral perfusion and cooling
US6736790B2 (en) 1998-02-25 2004-05-18 Denise R. Barbut Method and system for selective or isolated integrate cerebral perfusion and cooling
US6485450B1 (en) 1998-03-16 2002-11-26 Life Science Holdings, Inc. Brain resuscitation apparatus and method
WO2000009200A1 (en) 1998-08-12 2000-02-24 Coaxia, Inc. Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures
US6759008B1 (en) 1999-09-30 2004-07-06 Therox, Inc. Apparatus and method for blood oxygenation
US6602468B2 (en) 1999-09-30 2003-08-05 Therox, Inc. Method of blood oxygenation
US6572821B2 (en) * 2000-04-11 2003-06-03 Stöckert Instrumente GmbH Heart-lung machine including compressed fluid actuated control members
US7008535B1 (en) 2000-08-04 2006-03-07 Wayne State University Apparatus for oxygenating wastewater
US7294278B2 (en) 2000-08-04 2007-11-13 Wayne State University Method for oxygenating wastewater
US20040019319A1 (en) * 2001-03-20 2004-01-29 Derek Daw J. Method for enriching a bodily fluid with a gas
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US6974435B2 (en) 2001-03-20 2005-12-13 Therox, Inc Method for enriching a bodily fluid with a gas
US20040168934A1 (en) * 2001-07-06 2004-09-02 Lukas Schaupp Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method
US7022071B2 (en) * 2001-07-06 2006-04-04 Lukas Schaupp Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method
US20030204172A1 (en) * 2002-04-25 2003-10-30 Steppe Dennis L. Aspiration system
US20040054348A1 (en) * 2002-09-12 2004-03-18 Michael Hogendijk Catheter having a compliant member configured to regulate aspiration rates
WO2004024210A3 (en) * 2002-09-12 2004-06-24 Arteria Medical Science Inc Compliant member for catheter to regulate aspiration rates
US6887220B2 (en) * 2002-09-12 2005-05-03 Gore Enterprise Holdings, Inc. Catheter having a compliant member configured to regulate aspiration rates
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US8465467B2 (en) 2006-09-14 2013-06-18 Novartis Ag Method of controlling an irrigation/aspiration system
US20090259089A1 (en) * 2008-04-10 2009-10-15 Daniel Gelbart Expandable catheter for delivery of fluids
US20110154888A1 (en) * 2008-09-17 2011-06-30 Arkray, Inc. Analysis device
US20110154910A1 (en) * 2008-09-17 2011-06-30 Arkray, Inc. Analysis device and analysis method
US8578789B2 (en) * 2008-09-17 2013-11-12 Arkray, Inc. Analysis device and analysis method
US8485999B2 (en) * 2008-10-14 2013-07-16 Gambro Lundia Ab Blood treatment apparatus and method
US20110201988A1 (en) * 2008-10-14 2011-08-18 Mattias Holmer Blood treatment apparatus and method
WO2013119482A1 (en) * 2012-02-06 2013-08-15 Michael Friedman Apparatus and methods for controlled delivery of heated fluids to a subject
ITBO20120197A1 (en) * 2012-04-12 2013-10-13 Medical Service S R L EQUIPMENT USED IN MECHANICAL OR ASSISTED VENTILATION PROCEDURES
US9561315B1 (en) * 2013-02-19 2017-02-07 Jay Vincelli Miniaturized cardiopulmonary bypass circuit for a mouse model
US9541081B2 (en) * 2013-10-14 2017-01-10 Elwha Llc Peristaltic pump systems and methods
US20150104330A1 (en) * 2013-10-14 2015-04-16 Elwha, Llc Peristaltic pump systems and methods
US20150104329A1 (en) * 2013-10-14 2015-04-16 Elwha, Llc Peristaltic pump systems and methods
US9624920B2 (en) * 2013-10-14 2017-04-18 Elwha Llc Peristaltic pump systems and methods
US10786618B2 (en) 2015-06-01 2020-09-29 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for extracorporeal support
EP3741403A1 (en) 2015-06-01 2020-11-25 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for extracorporeal support
US11147906B2 (en) 2015-11-04 2021-10-19 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for flow stagnation control
US11369726B2 (en) 2015-11-04 2022-06-28 Asia Pacific Medical Technology Development Company, Ltd Systems and methods for providing zones of selective thermal therapy
CN105536086A (en) * 2016-02-23 2016-05-04 南京医科大学第一附属医院 Multifunctional ECMO circulating pipeline and method for performing extracorporeal membrane oxygenation by utilizing multifunctional ECMO circulating pipeline
WO2023083415A1 (en) * 2021-11-09 2023-05-19 Rheinisch Westfälische Technische Hochschule (Rwth) Aachen Device for enriching fluids with enrichment gas, use, method, and enrichment apparatus

Also Published As

Publication number Publication date
NL7312213A (en) 1974-03-14
DE2345994C3 (en) 1978-03-09
IL43202A (en) 1977-01-31
DE2345994A1 (en) 1974-03-21
JPS5330277B2 (en) 1978-08-25
GB1437494A (en) 1976-05-26
IT1059535B (en) 1982-06-21
ES418707A1 (en) 1976-02-16
NO133574C (en) 1976-05-26
IE40136L (en) 1974-03-12
JPS52118605A (en) 1977-10-05
IL43202A0 (en) 1973-11-28
DK142803B (en) 1981-02-02
DE2345994B2 (en) 1977-07-21
LU68403A1 (en) 1974-03-14
NO133574B (en) 1976-02-16
CH575764A5 (en) 1976-05-31
GB1437493A (en) 1976-05-26
FR2198759B1 (en) 1976-06-04
DE7333119U (en) 1978-07-06
SE414705B (en) 1980-08-18
DK142803C (en) 1981-09-21
BR7307021D0 (en) 1974-08-29
ZA737272B (en) 1974-08-28
SE401091B (en) 1978-04-24
SE7500214L (en) 1975-01-09
FR2198759A1 (en) 1974-04-05
IE40136B1 (en) 1979-03-28
CA1028913A (en) 1978-04-04
IT1001541B (en) 1976-04-30
CH573051A5 (en) 1976-02-27
DD107210A5 (en) 1974-07-20
JPS6042724B2 (en) 1985-09-25
BE804735A (en) 1974-03-11
JPS4968596A (en) 1974-07-03
NL157805B (en) 1978-09-15

Similar Documents

Publication Publication Date Title
US3881483A (en) Extracorporeal blood circuit
CA1042747A (en) Cardiopulmonary bypass system
US5011469A (en) Peripheral cardiopulmonary bypass and coronary reperfusion system
US4828543A (en) Extracorporeal circulation apparatus
US4650457A (en) Apparatus for extracorporeal lung assist
US5383854A (en) Portable and modular cardiopulmonary bypass apparatus and associated aortic balloon catheter and associated method
EP0283850B1 (en) Device for the extra-corporeal oxygenation of blood and for cardiovascular assistance
US6406267B1 (en) Extracorporeal circulation pump
US3416664A (en) Artificial kidney
US6217826B1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US7122151B2 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US5634892A (en) Extracorporeal membrane oxygenator
JPH09122228A (en) Centrifugal pump driving controller and blood feeding apparatus for extracorporeally circulating blood circuit
CN210020563U (en) Percutaneous left heart auxiliary circulation system
US20040134486A1 (en) Method and apparatus for conducting total liquid ventilation with control of residual volume and ventilation cycle profile
JP2007075541A (en) Extracorporeal circulation assisting device
Galletti Cardiopulmonary bypass: a historical perspective
Sinard et al. Review articles: Extracorporeal membrane oxygenation (ECMO): prolonged bedside cardiopulmonary bypass
JP2888609B2 (en) Blood assist circulator
Phillipp et al. Pumpless extracorporeal lung assist
MXPA04000801A (en) Low flow atrial-arterial shunt for pump-assisted myocardial revascularization without cardiopulmonary bypass.
Galletti et al. Cardiopulmonary bypass: the historical foundation, the future promise
JPH0464706B2 (en)
JPS60236659A (en) Blood external recirculation apparatus
JPS6354392B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: RHONE-POULENC S.A. 69330 MEYZIEU PARIS FRANCE A FR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RHONE-POULENC S.A.;REEL/FRAME:004070/0218

Effective date: 19821201