US3874075A - Method for the production of an inductive component element - Google Patents

Method for the production of an inductive component element Download PDF

Info

Publication number
US3874075A
US3874075A US410237A US41023773A US3874075A US 3874075 A US3874075 A US 3874075A US 410237 A US410237 A US 410237A US 41023773 A US41023773 A US 41023773A US 3874075 A US3874075 A US 3874075A
Authority
US
United States
Prior art keywords
core
portions
layer
metallic layer
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US410237A
Inventor
Hartwig Lohse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3874075A publication Critical patent/US3874075A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • H0lf 7/06 sever selected portions of the metallic layer from [58] Field of Search 29/602, 625, 605; 336/200, other portions thereof to the finally generally helically 336/221, 223, 233, 229; 219/121 L, 121 LM; shaped inductive coil, a layer of insulating material 117/45, 212, 234 being interposed between the metallic layer and the magnetic core if the latter is constructed of a magnetic [56] References Cited material having insufficient insulating properties.
  • the invention is directed to a method of producing an inductive component element, particularly a miniature coil, electrical choke, or transformer.
  • the present invention achieves the desired results by the utilization of a magnetic core of suitable size and shape, at least partially covered with a non-magnetic metallic layer, which, for example, may be readily formed by chemical precipitation, vapor deposition or similar method, with such metallic layer being impacted by a laser beam to partially sever selected portions of the layer from other portions thereof and thereby define a generally helically shaped inductive coil.
  • a non-magnetic metallic layer which, for example, may be readily formed by chemical precipitation, vapor deposition or similar method, with such metallic layer being impacted by a laser beam to partially sever selected portions of the layer from other portions thereof and thereby define a generally helically shaped inductive coil.
  • the metallic layer may be directly applied to such core structure.
  • the core structure may be provided with a suitable layer of organic or inorganic insulating material upon which the metallic layer is subsequently applied.
  • a suitable magnetic core for this purpose may, for example, be in the form of a magnetic ring core, advantageously of rectangular configuration which is covered with a non-magnetic metallic layer and is severed into a coil or winding by means of laser beam incident at an inclination, i.e., an angle less than 90.
  • the mctallically covered ring core comprising longitudinally and transversely extending connecting side portions or sections, can, for example, be impacted by a laser beam, while relative advancing movement is effected therebetween in the direction of the longitudinal portions (y-direction) by an amount equal to a single spiral pitch and can be advanced in a direction of its transverse portions (, ⁇ '-direction) by an amount which is somewhat greater than the width of the longitudinal portions, following which the ring core may be rotated through 180, and the advancing operations repeated, whereby the metallic layer is severed or divided into a helical or coil formation.
  • the laser beam may impact upon the metallic layer at an angle of about 45 with respect to the .ry-plane and at an angle with respect to the .r and y axes in dependence upon-the ring core thickness and the desired spiral pitch.
  • the method of the invention is also suitable for the simultaneous production of a plurality of ring cores, each of which is provided with a helically shaped metallic layer and by means of the method a miniature inductance of extremely small dimensions can be produced, which can be processed either in the form of chips, or, by means of stacking, formed into an assembly of cores to form a unit with relatively high inductivity.
  • Advanta geously, the beginning and end portions of the helical winding of the ring core may be so positioned that a desired series connection of the individual inductances will automatically occur as a result of such stacking or arranging in layers of the individual inductive components.
  • the invention is also applicable to the production of inductances employing rod-shaped magnetic cores which can be rotationally symmetrical or nonsymmetrical, and which can be covered with a nonmagnetic layer and severed or divided into helicalshaped coil by the impact of the laser beam which may be incident at an inclination.
  • the magnetic core and the laser beam may be advantageously rotated relatively to one another and longitudinal advancement effected in longitudinal direction of the core, to provide a coil of desired configuration.
  • the metallic layer applied upon the core can be built-up or reinforced galvanically, i.e., by an electro-plating operation which can take place either prior to or subsequent to the severance or division of the metallic layer into a helically shaped coil.
  • Any necessary balancing or adjustment of the inductance or a component so formed may be readily achieved by the use of generally known soldered areas or sections, by means of which one or more turns of a coil may be short-circuited or left free of solder until the desired inductivity is achieved.
  • assemblies of several rectangularly shaped flat ring cores may be suitably balanced as to inductivity by means of short-circuiting of desired turns by a suitable contact piece or member disposed, for example, in the rectangular opening or perforation of the ring core.
  • a balancing or desire shifting of the inductivity of the magnetic flow in the ring core can also be achieved by the formation of a groove or a notch in a section or portion of a core which does not carry a winding.
  • the groove is created by means of a laser beam, electronic beam, sandblasting, grinding or other suitable method.
  • the groove can extend on one side or on several sides and can reach a defined depth which may even lead to a complete separation thereat.
  • FIG. 1 is a simplified perspective view of an inductive component element constructed in accordance with the present invention, and illustrating in simplified schematic manner the method of production;
  • FIG. 2 is a similar figure illustrating in schematic form the manner in which the method of the invention is applicable to mass production.
  • FIG. 1 there is illustrated a small rectangular plate-like magnetic ring core 1 which is covered with a metallic layer 2 and includes contact areas 3 and 4.
  • the core 1 is suitably advanced by a reciprocating movement in the direction of the arrow B in Y direction by an amount corresponding to the desired spiral pitch, and is suitably advanced by reciprocation in the direction of arrow A, i.e., X direction, by an amount which is somewhat greater than the width of the longitudinal sections or longer leg portions of the ring core.
  • the metallic layer 2 is suitably severed or divided into winding turns 5 under the action of a sharply focused beam 7 of a laser device 8, only schematically represented in these FIGS.
  • the laser beam 7 is preferably inclined to the XY plane at an angle of 45 with the component of the laser beam 7 projected on the XY plane being inclined to the X or Y axes respectively at an angle which is determined by the thickness of the ring core 1 and the desired spiral pitch.
  • the ring core may be rotated 180 and the advancing and severing operations repeated.
  • one or more winding turns of the coil can be short-circuited by a soldered section or area 6, illustrated as disposed on an edge portion of the core, to enable balance or adjustment of the inductivity.
  • Such balancing or adjustment may also be achieved by the utilization of a suitable contact piece or member which bridges portions one or more winding turns of the coil.
  • the invention is applicable to the mass production of inductances.
  • a plurality of ring cores may be fabricated as an integral structure with adjacent cores being separated from one another by respective grooves or notches 10 at which the cores may be broken or separated from one another.
  • the severing or division of the respective metalized areas into respective winding turns 5 may be performed for one side of all of the cores, in a manner previously described, following which the connected cores may be rotated and the operations performed on the opposite sides thereof in the manner previously described.
  • the openings or perforations 11 can also be constructed as so-called breaking slots or the like.
  • a method for the production of an inductive component element comprising the steps of applying a non-magnetic layer to and at least partially covering a magnetic core of rectangular, ring-shaped configuration having generally oppositely disposed faces connected by respective edge portions, and impacting the layer with a laser beam, incident at an angle of less than to partially sever selected portions of the layer from other portions thereof on both the faces and adjoining edge portions, and thereby define a generally helically shaped inductive coil.
  • a method according to claim 1, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core prior to the application of said metallic layer.
  • a method for the production of an inductive component element comprising the steps of applying a non-magnetic metallic layer to and at least partially covering a magnetic core of ring-like configuration, comprising a pair of spaced longitudinally extending side portions connected at their ends by respective transversely extending side portions, impacting the layer with a laser beam to partially sever selected portions of the layer from other portions thereof, while advancing the core in the direction of the longitudinal side portions (Y-direction) by an amount to provide a desired spiral pitch, and reciprocating back and forth in the direction of its transverse side portions (X- direction) by an amount which is greater than the width of the longitudinal side portions, subsequently rotating the ring core 180 about an axis in the X-Y plane, and repeating such advancing and reciprocating steps while impacting the core, whereby the metallic layer is divided into a generally helically shaped inductive coil by the action of said laser beam.
  • a method according to claim 4 comprising impacting the metallic layer with such laser beam at an angle of approximately 45 with respect to the XY- plane and at an angle with respect to the X- or Y-axis, respectively, at an angle determined by the ring core thickness and the desired spiral pitch.
  • a method according to claim 5, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core piror to the application of said metallic layer.

Abstract

A method for producing an inductive component element in which a magnetic core is covered at least partially with a non-magnetic, metallic layer which is thereafter impacted with a laser beam to partially sever selected portions of the metallic layer from other portions thereof to the finally generally helically shaped inductive coil, a layer of insulating material being interposed between the metallic layer and the magnetic core if the latter is constructed of a magnetic material having insufficient insulating properties.

Description

United States Patent 11 1 1111 3,874,075 Lohse Apr. 1, 1975 METHOD FOR THE PRODUCTION OF AN 3,123,787 3/1964 Shifrin 29/602 x INDUCTIVE COMPONENT ELEMENT 3,293,587 12/1966 Robinson 219/121 L 3,319,207 5/1967 Davis 336/229 Inventor: Hartwlg L9hse, Regensburg, 3,530,573 9/1970 Helgeland 219/121 LM Germany 3,534,472 10/1970 De Jong eta] 219/121 LM [73] Assignee: Siemens Aktiengesellschaft, Berlin and Munich, Germany Primary Examiner-Carl E. Hall Attorney, Agent, or Firm-Hill, Gross, Simpson, Van [22] 1973 Santen, Steadman, Chiara & Simpson [21] Appl. No.: 410,237
[30] Foreign Application Priority Data [57] ABSTRACT Oct. 31, 1972 Germany 2253412 A method for producing an inductive component element in which a magnetic core is covered at least par- [52] US. Cl 29/602, 29/625, 117/212, tially with a non-magnetic, metallic layer which is 117/234, 219/121 LM, 336/200, 336/229 thereafter impacted with a laser beam to partially [51] Int. Cl. H0lf 7/06 sever selected portions of the metallic layer from [58] Field of Search 29/602, 625, 605; 336/200, other portions thereof to the finally generally helically 336/221, 223, 233, 229; 219/121 L, 121 LM; shaped inductive coil, a layer of insulating material 117/45, 212, 234 being interposed between the metallic layer and the magnetic core if the latter is constructed of a magnetic [56] References Cited material having insufficient insulating properties. UNITED STATES PATENTS 6 Cl 2 D 1,994,767 3/1935 Heintz 29/602 x rawmg 'gures EATENTED APR 1 I975 SHEET 2 OF 2 METHOD FOR THE PRODUCTION OF AN INDUCTIVE COMPONENT ELEMENT- BACKGROUND OF THE INVENTION The invention is directed to a method of producing an inductive component element, particularly a miniature coil, electrical choke, or transformer.
With the continual demands for reduction in size of electronic components, and miniaturization of equipment, at strong need arises for the production of extremely small inductive elements. It will be apparent that with the greater and greater reduction in size of such components physical winding of such components becomes wholly impractical and the present invention is therefore directed to the problem of achieving a method by means of which inductive component elements of even extremely small dimensions can be produced with relatively simple procedures without the necessity of effecting one or more physical windings on a ring core or similar structure.
SUMMARY OF THE INVENTION The present invention achieves the desired results by the utilization of a magnetic core of suitable size and shape, at least partially covered with a non-magnetic metallic layer, which, for example, may be readily formed by chemical precipitation, vapor deposition or similar method, with such metallic layer being impacted by a laser beam to partially sever selected portions of the layer from other portions thereof and thereby define a generally helically shaped inductive coil.
If the magnetic material employed for the core structure possess adequate insulating characteristics, the metallic layer may be directly applied to such core structure. However, if the insulating characteristics of a magnetic material employed are unsuitable for direct application of the metallic layer thereto, the core structure may be provided with a suitable layer of organic or inorganic insulating material upon which the metallic layer is subsequently applied.
If desired, in the production of transformers, following the formation of a first coil or winding by means of a metallic layer, such coil may have super-imposed thereon an insulating layer upon which a subsequent metallic layer is applied and by means of a laser beam partially divided or severed into one or more additional coils or windings. A suitable magnetic core for this purpose may, for example, be in the form of a magnetic ring core, advantageously of rectangular configuration which is covered with a non-magnetic metallic layer and is severed into a coil or winding by means of laser beam incident at an inclination, i.e., an angle less than 90.
The mctallically covered ring core, comprising longitudinally and transversely extending connecting side portions or sections, can, for example, be impacted by a laser beam, while relative advancing movement is effected therebetween in the direction of the longitudinal portions (y-direction) by an amount equal to a single spiral pitch and can be advanced in a direction of its transverse portions (,\'-direction) by an amount which is somewhat greater than the width of the longitudinal portions, following which the ring core may be rotated through 180, and the advancing operations repeated, whereby the metallic layer is severed or divided into a helical or coil formation.
Advantageously, the laser beam may impact upon the metallic layer at an angle of about 45 with respect to the .ry-plane and at an angle with respect to the .r and y axes in dependence upon-the ring core thickness and the desired spiral pitch.
The method of the invention is also suitable for the simultaneous production of a plurality of ring cores, each of which is provided with a helically shaped metallic layer and by means of the method a miniature inductance of extremely small dimensions can be produced, which can be processed either in the form of chips, or, by means of stacking, formed into an assembly of cores to form a unit with relatively high inductivity. Advanta geously, the beginning and end portions of the helical winding of the ring core may be so positioned that a desired series connection of the individual inductances will automatically occur as a result of such stacking or arranging in layers of the individual inductive components.
The invention is also applicable to the production of inductances employing rod-shaped magnetic cores which can be rotationally symmetrical or nonsymmetrical, and which can be covered with a nonmagnetic layer and severed or divided into helicalshaped coil by the impact of the laser beam which may be incident at an inclination. The magnetic core and the laser beam may be advantageously rotated relatively to one another and longitudinal advancement effected in longitudinal direction of the core, to provide a coil of desired configuration.
In the event the coils or windings of either the rodshaped magnetic cores or the ring cores are to be traversed by greater eurrent intensities, for example, during interference elimination, the metallic layer applied upon the core can be built-up or reinforced galvanically, i.e., by an electro-plating operation which can take place either prior to or subsequent to the severance or division of the metallic layer into a helically shaped coil. Any necessary balancing or adjustment of the inductance or a component so formed may be readily achieved by the use of generally known soldered areas or sections, by means of which one or more turns of a coil may be short-circuited or left free of solder until the desired inductivity is achieved. Likewise, assemblies of several rectangularly shaped flat ring cores may be suitably balanced as to inductivity by means of short-circuiting of desired turns by a suitable contact piece or member disposed, for example, in the rectangular opening or perforation of the ring core.
A balancing or desire shifting of the inductivity of the magnetic flow in the ring core can also be achieved by the formation of a groove or a notch in a section or portion of a core which does not carry a winding. In this case, it is unimportant whether the groove is created by means of a laser beam, electronic beam, sandblasting, grinding or other suitable method. The groove can extend on one side or on several sides and can reach a defined depth which may even lead to a complete separation thereat.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, wherein like reference characters indicate like or corresponding parts:
FIG. 1 is a simplified perspective view of an inductive component element constructed in accordance with the present invention, and illustrating in simplified schematic manner the method of production; and
FIG. 2 is a similar figure illustrating in schematic form the manner in which the method of the invention is applicable to mass production.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring to FIG. 1, there is illustrated a small rectangular plate-like magnetic ring core 1 which is covered with a metallic layer 2 and includes contact areas 3 and 4. The core 1 is suitably advanced by a reciprocating movement in the direction of the arrow B in Y direction by an amount corresponding to the desired spiral pitch, and is suitably advanced by reciprocation in the direction of arrow A, i.e., X direction, by an amount which is somewhat greater than the width of the longitudinal sections or longer leg portions of the ring core. The metallic layer 2 is suitably severed or divided into winding turns 5 under the action of a sharply focused beam 7 of a laser device 8, only schematically represented in these FIGS. The laser beam 7 is preferably inclined to the XY plane at an angle of 45 with the component of the laser beam 7 projected on the XY plane being inclined to the X or Y axes respectively at an angle which is determined by the thickness of the ring core 1 and the desired spiral pitch. After completion of the separating operation of the lateral areas of the metallic layer 2, as illustrated in FIG. 1, the ring core may be rotated 180 and the advancing and severing operations repeated. As illustrated in FIG. 1, one or more winding turns of the coil can be short-circuited by a soldered section or area 6, illustrated as disposed on an edge portion of the core, to enable balance or adjustment of the inductivity. Such balancing or adjustment may also be achieved by the utilization of a suitable contact piece or member which bridges portions one or more winding turns of the coil.
As illustrated in FIG. 2, the invention is applicable to the mass production of inductances. In this case a plurality of ring cores may be fabricated as an integral structure with adjacent cores being separated from one another by respective grooves or notches 10 at which the cores may be broken or separated from one another. The severing or division of the respective metalized areas into respective winding turns 5 may be performed for one side of all of the cores, in a manner previously described, following which the connected cores may be rotated and the operations performed on the opposite sides thereof in the manner previously described. Likewise, the openings or perforations 11 can also be constructed as so-called breaking slots or the like.
It will be appreciated that by the use of the present method, employing a sharply defined laser beam, extremely fine coils or windings can be produced whereby the resulting inductance may have exceedingly small dimensions, and by the use of a stacking operation coils of greater inductivity may be produced.
Having thus described my invention it is obvious that although minor modifications might be suggested by those skilled in the art, it should be understood that I wish to embody within the scope of the patent warranted hereon all such modifications as reasonably come within the scope of my contribution to the art.
I claim as my invention:
1. A method for the production of an inductive component element, comprising the steps of applying a non-magnetic layer to and at least partially covering a magnetic core of rectangular, ring-shaped configuration having generally oppositely disposed faces connected by respective edge portions, and impacting the layer with a laser beam, incident at an angle of less than to partially sever selected portions of the layer from other portions thereof on both the faces and adjoining edge portions, and thereby define a generally helically shaped inductive coil.
2.. A method according to claim 1, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core prior to the application of said metallic layer.
3. A method according to claim 1, wherein a selected base and edge portions are initially impacted, the core rotated through about an axis operative to correspondingly dispose the other face of the core and corresponding edge portions for beam impact, and thereafter impacting the last-mentioned face and edge portions with said laser beam.
4. A method for the production of an inductive component element, comprising the steps of applying a non-magnetic metallic layer to and at least partially covering a magnetic core of ring-like configuration, comprising a pair of spaced longitudinally extending side portions connected at their ends by respective transversely extending side portions, impacting the layer with a laser beam to partially sever selected portions of the layer from other portions thereof, while advancing the core in the direction of the longitudinal side portions (Y-direction) by an amount to provide a desired spiral pitch, and reciprocating back and forth in the direction of its transverse side portions (X- direction) by an amount which is greater than the width of the longitudinal side portions, subsequently rotating the ring core 180 about an axis in the X-Y plane, and repeating such advancing and reciprocating steps while impacting the core, whereby the metallic layer is divided into a generally helically shaped inductive coil by the action of said laser beam.
5. A method according to claim 4, comprising impacting the metallic layer with such laser beam at an angle of approximately 45 with respect to the XY- plane and at an angle with respect to the X- or Y-axis, respectively, at an angle determined by the ring core thickness and the desired spiral pitch.
6. A method according to claim 5, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core piror to the application of said metallic layer.
* =l= l =l

Claims (6)

1. A method for the production of an inductive component element, comprising the steps of applying a non-magnetic layer to and at least partially covering a magnetic core of rectangular, ring-shaped configuration having generally oppositely disposed faces connected by respective edge portions, and impacting the layer with a laser beam, incident at an angle of less than 90*, to partially sever selected portions of the layer from other portions thereof on both the faces and adjoining edge portions, and thereby define a generally helically shaped inductive coil.
2. A method according to claim 1, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core prior to the application of said metallic layer.
3. A method according to claim 1, wherein a selected base and edge portions are initially impacted, the core rotated through 180* about an axis operative to correspondingly dispose the other face of the core and corresponding edge portions for beam impact, and thereafter impacting the last-mentioned face and edge portions with said laser beam.
4. A method for the production of an inductive component element, comprising the steps of applying a non-magnetic metallic layer to and at least partially covering a magnetic core of ring-like configuration, comprising a pair of spaced longitudinally extending side portions connected at their ends by respective transversely extending side portions, impacting the layer with a laser beam to partially sever selected portions of the layer from other portions thereof, while advancing the core in the direction of the longitudinal side portions (Y-direction) by an amount to provide a desired spiral pitch, and reciprocating back and forth in the direction of its transverse side portions (X-direction) by an amount which is greater than the width of the longitudinal side portions, subsequently rotating the ring core 180* about an axis in the X-Y plane, and repeating such advancing and reciprocating steps while impacting the core, whereby the metallic layer is divided into a generally helically shaped inductive coil by the action of said laser beam.
5. A method according to claim 4, comprising impacting the metallic layer with such laser beam at an angle of approximately 45* with respect to the XY-plane and at an angle with respect to the X- or Y-axis, respectively, at an angle determined by the ring core thickness and the desired spiral pitch.
6. A method according to claim 5, comprising the further step of applying an insulating intermediate layer directly upon the magnetic core piror to the application of said metallic layer.
US410237A 1972-10-31 1973-10-26 Method for the production of an inductive component element Expired - Lifetime US3874075A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2253412A DE2253412A1 (en) 1972-10-31 1972-10-31 METHOD OF MANUFACTURING AN INDUCTIVE COMPONENT

Publications (1)

Publication Number Publication Date
US3874075A true US3874075A (en) 1975-04-01

Family

ID=5860541

Family Applications (1)

Application Number Title Priority Date Filing Date
US410237A Expired - Lifetime US3874075A (en) 1972-10-31 1973-10-26 Method for the production of an inductive component element

Country Status (12)

Country Link
US (1) US3874075A (en)
JP (1) JPS4977164A (en)
BE (1) BE806823A (en)
BR (1) BR7308485D0 (en)
CH (1) CH562507A5 (en)
DD (1) DD107167A5 (en)
DE (1) DE2253412A1 (en)
FR (1) FR2204857B3 (en)
GB (1) GB1413735A (en)
IT (1) IT998995B (en)
LU (1) LU68073A1 (en)
NL (1) NL7312724A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150278A (en) * 1975-09-15 1979-04-17 Western Electric Company, Incorporated Methods of tuning inductive device by beam-machine altering a central air gap thereof
US4225633A (en) * 1977-01-06 1980-09-30 Spierings Ferdinand H F G Method of making a line-shaped opening in a coating on a plastics foil
US4267427A (en) * 1977-12-27 1981-05-12 Citizen Watch Co., Ltd. Method of boring a hole through a magnet made of an intermetallic compound
US4486273A (en) * 1983-08-04 1984-12-04 General Motors Corporation Selective plating of dielectric substrates
US4597169A (en) * 1984-06-05 1986-07-01 Standex International Corporation Method of manufacturing a turnable microinductor
US4777465A (en) * 1986-04-28 1988-10-11 Burr-Brown Corporation Square toroid transformer for hybrid integrated circuit
US5886320A (en) * 1996-09-03 1999-03-23 International Business Machines Corporation Laser ablation with transmission matching for promoting energy coupling to a film stack
US6005467A (en) * 1997-02-11 1999-12-21 Pulse Engineering, Inc. Trimmable inductor
US6087921A (en) * 1998-10-06 2000-07-11 Pulse Engineering, Inc. Placement insensitive monolithic inductor and method of manufacturing same
US6201215B1 (en) 1997-09-17 2001-03-13 Vishay Dale Electronics, Inc. Method of making a thick film low value high frequency inductor
US6223419B1 (en) * 1997-02-11 2001-05-01 Pulse Engineering, Inc. Method of manufacture of an improved monolithic inductor
US20030005569A1 (en) * 1998-07-23 2003-01-09 Hiatt Fred C. Ultra-miniature magnetic device
US20060145800A1 (en) * 2004-08-31 2006-07-06 Majid Dadafshar Precision inductive devices and methods
US20070090914A1 (en) * 2004-07-16 2007-04-26 Jayakannan Jayapalan Desing and fabifcation of inductors on a semiconductor substrate
US7489225B2 (en) 2003-11-17 2009-02-10 Pulse Engineering, Inc. Precision inductive devices and methods
US20100188183A1 (en) * 2007-06-12 2010-07-29 Advanced Magnetic Solutions Limited Magnetic Induction Devices And Methods For Producing Them
US11749455B2 (en) 2022-01-10 2023-09-05 Bh Electronics, Inc. Methods of fabricating ultra-miniature laminated magnetic cores and devices

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164508A (en) * 1980-05-22 1981-12-17 Tdk Corp Regulating method for impedance of laminated-core transformer
FR2506504B1 (en) * 1981-05-19 1985-10-11 Europ Composants Electron MAGNETIC CIRCUIT, INDUCTANCE USING SUCH A CIRCUIT, AND METHOD FOR PRODUCING SAID MAGNETIC CIRCUIT
JPS5911610A (en) * 1982-07-13 1984-01-21 Tdk Corp Formation of coil
JPS6120310A (en) * 1984-07-07 1986-01-29 Wacom Co Ltd Cylindrical coil and manufacture thereof
TW342506B (en) * 1996-10-11 1998-10-11 Matsushita Electric Ind Co Ltd Inductance device and wireless terminal equipment
GB2330697B (en) * 1996-10-11 1999-10-13 Matsushita Electric Ind Co Ltd Inductance device and wireless terminal equipement
GB2336473A (en) * 1998-04-15 1999-10-20 Motorola Gmbh An inductor
FR2907589A1 (en) * 2006-10-23 2008-04-25 Commissariat Energie Atomique Integrated micro-induction coil for e.g. power electronics application, has disjointed loops constituting winding around core, where core has four parallel branches that are enclosed by winding and have ends connected by respective bases

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1994767A (en) * 1934-06-27 1935-03-19 Heintz & Kaufman Ltd Method of making inductances
US3123787A (en) * 1964-03-03 Toroidal transformer having a high turns ratio
US3293587A (en) * 1965-10-20 1966-12-20 Sprague Electric Co Electrical resistor and the like
US3319207A (en) * 1963-07-18 1967-05-09 Davis Jesse Grooved toroidal body with metal filling
US3530573A (en) * 1967-02-24 1970-09-29 Sprague Electric Co Machined circuit element process
US3534472A (en) * 1967-05-30 1970-10-20 Philips Corp Method of making an electrical resistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123787A (en) * 1964-03-03 Toroidal transformer having a high turns ratio
US1994767A (en) * 1934-06-27 1935-03-19 Heintz & Kaufman Ltd Method of making inductances
US3319207A (en) * 1963-07-18 1967-05-09 Davis Jesse Grooved toroidal body with metal filling
US3293587A (en) * 1965-10-20 1966-12-20 Sprague Electric Co Electrical resistor and the like
US3530573A (en) * 1967-02-24 1970-09-29 Sprague Electric Co Machined circuit element process
US3534472A (en) * 1967-05-30 1970-10-20 Philips Corp Method of making an electrical resistor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150278A (en) * 1975-09-15 1979-04-17 Western Electric Company, Incorporated Methods of tuning inductive device by beam-machine altering a central air gap thereof
US4225633A (en) * 1977-01-06 1980-09-30 Spierings Ferdinand H F G Method of making a line-shaped opening in a coating on a plastics foil
US4267427A (en) * 1977-12-27 1981-05-12 Citizen Watch Co., Ltd. Method of boring a hole through a magnet made of an intermetallic compound
US4486273A (en) * 1983-08-04 1984-12-04 General Motors Corporation Selective plating of dielectric substrates
US4597169A (en) * 1984-06-05 1986-07-01 Standex International Corporation Method of manufacturing a turnable microinductor
US4777465A (en) * 1986-04-28 1988-10-11 Burr-Brown Corporation Square toroid transformer for hybrid integrated circuit
US4847986A (en) * 1986-07-02 1989-07-18 Burr Brown Corporation Method of making square toroid transformer for hybrid integrated circuit
US5886320A (en) * 1996-09-03 1999-03-23 International Business Machines Corporation Laser ablation with transmission matching for promoting energy coupling to a film stack
US6223419B1 (en) * 1997-02-11 2001-05-01 Pulse Engineering, Inc. Method of manufacture of an improved monolithic inductor
US6005467A (en) * 1997-02-11 1999-12-21 Pulse Engineering, Inc. Trimmable inductor
US6201215B1 (en) 1997-09-17 2001-03-13 Vishay Dale Electronics, Inc. Method of making a thick film low value high frequency inductor
US6215387B1 (en) * 1997-09-17 2001-04-10 Vishay Dale Electronics, Inc. Thick film low value high frequency inductor
US6294756B1 (en) 1997-09-17 2001-09-25 Vishay Dale Electronics, Inc. Thick film low value high frequency inductor, and method of making the same
US6366192B2 (en) 1997-09-17 2002-04-02 Vishay Dale Electronics, Inc. Structure of making a thick film low value high frequency inductor
US6391526B1 (en) 1997-09-17 2002-05-21 Vishay Dale Electronics, Inc. Thick film low value high frequency inductor, and method of making the same
US7107666B2 (en) 1998-07-23 2006-09-19 Bh Electronics Method of manufacturing an ultra-miniature magnetic device
US20030005569A1 (en) * 1998-07-23 2003-01-09 Hiatt Fred C. Ultra-miniature magnetic device
US6087921A (en) * 1998-10-06 2000-07-11 Pulse Engineering, Inc. Placement insensitive monolithic inductor and method of manufacturing same
US7489225B2 (en) 2003-11-17 2009-02-10 Pulse Engineering, Inc. Precision inductive devices and methods
US20070090914A1 (en) * 2004-07-16 2007-04-26 Jayakannan Jayapalan Desing and fabifcation of inductors on a semiconductor substrate
US7272884B2 (en) * 2004-07-16 2007-09-25 Altera Corporation Design and fabrication of inductors on a semiconductor substrate
US20060145800A1 (en) * 2004-08-31 2006-07-06 Majid Dadafshar Precision inductive devices and methods
US7567163B2 (en) 2004-08-31 2009-07-28 Pulse Engineering, Inc. Precision inductive devices and methods
US20100188183A1 (en) * 2007-06-12 2010-07-29 Advanced Magnetic Solutions Limited Magnetic Induction Devices And Methods For Producing Them
US8106739B2 (en) 2007-06-12 2012-01-31 Advanced Magnetic Solutions United Magnetic induction devices and methods for producing them
US11749455B2 (en) 2022-01-10 2023-09-05 Bh Electronics, Inc. Methods of fabricating ultra-miniature laminated magnetic cores and devices

Also Published As

Publication number Publication date
NL7312724A (en) 1974-05-02
IT998995B (en) 1976-02-20
FR2204857A1 (en) 1974-05-24
JPS4977164A (en) 1974-07-25
LU68073A1 (en) 1973-09-26
FR2204857B3 (en) 1976-09-17
DE2253412A1 (en) 1974-05-16
BR7308485D0 (en) 1974-08-22
DD107167A5 (en) 1974-07-12
CH562507A5 (en) 1975-05-30
GB1413735A (en) 1975-11-12
BE806823A (en) 1974-02-15

Similar Documents

Publication Publication Date Title
US3874075A (en) Method for the production of an inductive component element
US6525635B2 (en) Multilayer inductor
DE3536908C2 (en)
US6535094B2 (en) Multilayer inductor
US5239289A (en) Tunable inductor
US6844804B2 (en) Method of manufacturing discrete electronic components
JP2002252116A (en) Laminated electronic component and its manufacturing method
WO2018095757A1 (en) Transformer device, transformer, and process for manufacturing a transformer device
US3769698A (en) Method of manufacturing a photoetched induction coil
US11821090B2 (en) Method of manufacturing ceramic electronic component
DE4222791A1 (en) Coil with metallic core integrated in semiconductor device - uses 3 metallisation layers which are selectively interconnected
JPH05299250A (en) Chip inductor and manufacture thereof
JP4654508B2 (en) Inductor parts
US3561111A (en) Method for making precision, square-wire air core coils
DE2160970A1 (en) Multi-track magnetic head and process for its manufacture
DE1268740B (en) Solenoid
EP0786784A1 (en) Coil and method for the fabrication of coils
JP2002141225A (en) Method of manufacturing laminated electronic component
DE2343539A1 (en) THIN FILM THROTTLE
DE10117290A1 (en) Variable three-port inductor
JPS5928305A (en) Inductance element and manufacture thereof
DE2539795B2 (en) Generator for generating magnetic bubble domains
EP2056309B1 (en) Method for manufacturing a spool and a spool
US20190189325A1 (en) Laminated inductor component
JPH01173611A (en) Manufacture of laminated inductor