US3873784A - Acoustic transducer - Google Patents

Acoustic transducer Download PDF

Info

Publication number
US3873784A
US3873784A US346171A US34617173A US3873784A US 3873784 A US3873784 A US 3873784A US 346171 A US346171 A US 346171A US 34617173 A US34617173 A US 34617173A US 3873784 A US3873784 A US 3873784A
Authority
US
United States
Prior art keywords
electric conductor
conductor means
planar
acoustic transducer
magnetized member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US346171A
Inventor
Antony Z Doschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUDIO ARTS Inc
Original Assignee
AUDIO ARTS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUDIO ARTS Inc filed Critical AUDIO ARTS Inc
Priority to US346171A priority Critical patent/US3873784A/en
Application granted granted Critical
Publication of US3873784A publication Critical patent/US3873784A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction
    • H04R9/047Construction in which the windings of the moving coil lay in the same plane

Definitions

  • pole pieces be positioned adjacent the periphery of the magnetized member to direct and intensify the magnetic field by providing a low reluctance path for the magnetic flux from one pole face of the magnetized member to the conjugate pole face of the i magnetized member.
  • the pole pieces may be made of any magnetically permeable material.
  • the pole pieces are made of material having high magnetic permeability and low magnetic retentivity such as soft" iron and low carbon steel.
  • the pole pieces may be laminated to reduce eddy-current effects.
  • one or two pairs of spaced apart elongated gaps containing substantially linear and symmetrical regions of relatively high flux density are formed between said first pole piece and said second pole piece, depending on the geometry and positioning of the spacer member relative to said first and second pole pieces.
  • the space between the two diaphragms is enclosed or otherwise separated from the exterior ambience by enclosure means.
  • enclosure means This can be done by structural members and/or frame-like supporting members for the diaphragms.
  • Small vent holes should be provided in the enclosure means to permit compensation for changes in atmospheric pressure.
  • larger openings e.g., slots
  • the enclosure means substantially seal-off the volume enclosed by the enclosure means and' the diaphragms from the exterior ambience except for the small vent holes.

Abstract

An acoustic transducer of planar shape. An electric conductor means of a coil, preferably flat spiral or flat helical configuration is operably attached to a diaphragm and positioned in the magnetic field of at least one magnetized member adjacent one of its pole faces. Magnetically conductive pole pieces preferably are positioned adjacent the magnetized member to form a dense elongated region of preferably substantially uniform magnetic flux density in said magnetic field where the electric conductor means is preferably located. Preferably said region in said magnetic field is contained in pairs of spaced apart elongated gaps formed by said pole pieces and one said magnetized member. A second diaphragm is preferably positioned adjacent the opposite pole face of one said magnetized member and preferably driven by a separate electric conductor means and the volume contained between said diaphragms is enclosed.

Description

nited States Patent 11 1 Doschek [451 Mar. 25, 1975 1 1 ACOUSTIC TRANSDUCER [75] Inventor: Antony Z. Doschek, Pittsburgh, Pa.
[73] Assignee: Audio Arts, 1nc., Pittsburgh, Pa.
[22] Filed: Mar. 29, 1973 [21] Appl. No: 346,171
Related US. Application Data [63] Continuation of Ser. No. 887,557, Dec. 23, 1969,
abandoned.
52 UIS.C1. 179/11s.5 PV [51] Int. Cl. H041" 9/00 [58] Field of Search 179/l15.5 R, 115.5 PV, 179/1 15.5 DV,115.5 VC,116, 16 A; 181/31 B [56] References Cited UNITED STATES PATENTS 1,713,006 5/1929 Round 179/1 15.5 R 1,808,149 6/1931 Smith 179/1 15.5 PV 1,862,582 6/1932 Schlenker 181/31 R 3,015,366 1/1962 Bishop 181/31 B 3,141,071 7/1964 Rich 179/1 15.5 PV 3,153,120 10/1964 Brown 181/31 B 3,268,672 8/1966 Roesel, Jr. et a1. 179/1 15.5 R 3,283.086 1l/1966 Evans 179/1 15.5'DV 3,478,167 11/1969 Sorkin 179/16 A 3,491,204 l/l970 Sherno 179/16 A 3,609,253 9/1971 Ashworth 179/1 15.5 R
FOREIGN PATENTS OR APPLICATIONS 1,035,995 7/1966 United Kingdom 179/l15.5 V(' Primary L'.\'umin'cr-William C. Cooper Attorney, Agent, or Firm-Arland T. Stein; Thomas C. Wettach [57] ABSTRACT An acoustic transducer of planar shape. An electric conductor means of a coil, preferably fiat spiral or flat helical configuration is operably attached to a diaphragm and positioned in the magnetic field of at least one magnetized member adjacent one of its pole faces. Magnetically conductive pole pieces preferably are positioned adjacent the magnetized member to form a dense elongated region of preferably substantially uniform magnetic flux density in said magnetic field where the electric conductor means is preferably located. Preferably said region in said magnetic field is contained in pairs of spaced apart elongated gaps formed by said pole pieces and one said magnetized member. A second diaphragm is preferably positioned adjacent the opposite poleface of one said magnetized member and preferably driven by a separate electric conductor means and the volume contained between said diaphragms is enclosed.
58 Claims, 43 Drawing Figures PMENTEUHARZSISYS 73,7 4
SHEET 03 0F 15 4 M w/ga FATENTEU M2 5197s SHEET CE 0F 15' IOO m 2 NW a I 1 o w L 4 FEJENTED I975 3 873 78 sum 1 3 OF 15 Fig.38.
Y 229 22s I 2'9 mwcoumm 335 009 09 on SHEET lSUF 15 mv c uogsgAgp 18d 1 ACOUSTIC TRANSDUCER This application is a continuation of then co-pending, now abandonded, application Ser. No. 887,557, filed Dec. 23, 1969, now abandoned.
This invention relates to an acoustic transducer of a planar shape. It is particularly useful in reproducing speech, music and other sounds with a quality associated with hi-fidelity sound reproduction in an inexpensive, dependable and widely adaptable way.
It is a physical fact that an electric current moving through an electric conductor means in a magnetic field normal to the direction of the lines of magnetic flux produces a force normal to the directions of the electric current and the magnetic flux lines (in accordance with the well-known right-hand rule"). The electromagnetic acoustic transducer applies this principle to convert variations in electric current into corresponding variations in mechanical force and in turn physical displacement variations of a diaphragm, to produce acoustic waves with corresponding variations in frequency and intensity. I. The intcnsityof an acoustic wave is the time average rate at which energy is transported by the acoustic wave per unit area across a surface usually perpendicular. but possibly oblique, to the direction of propagation.
mon conical loudspeaker.
2v The quality of sound reproduction is determined by the accuracy with which the frequencies of sound and their respective intensities can be recreated.
Acoustic transducers of a planar shape and driven by electrostatic forces are broadly old and well known. They have been used side by side in multiples to provide a planar loudspeaker of very large diaphragm area. Such planar acoustic transducers have had inherent operating advantages over the common full range conical loudspeaker: (i) They eliminate perceptible Doppler effect distortion of middle and high frequencies because of the relatively small displacement amplitude of a very large diaphragm at low frequencies. (ii) They do not exhibit the characteristic rim resonance" of conical loudspeakers and therefore provide a smoother transition in reproduction from low-frequency to midfrequency sounds. (iii) They provide low frequency reproduction of greater intensity because of the movement of a relatively very large diaphragm through a comparatively small displacement amplitude to reproduce such low frequencies. But such planar transducers utilizing electrostatic driving means are very expensive to build and sensitive to acoustical overloads and inefficient. Such transducers were not to my knowledge heretofore commercially made with electromagnetic driving means moving the diaphragm.
l have presented one way of overcoming these disadvantages and difficulties in my copending application Ser. No. 784,669, filed Dec. 18, 1969, now US. Pat. No. 3,651,283. The present invention overcomes these disadvantages and difficulties in another way. It makes the use of an acoustic transducer of a planar shape driven by electromagnetic driving forces commercially feasible with sound reproducing apparatus of hi-fidelity grade. Moreover, it provides a versatility and decora- 2 tiveness in the design, application and installation of planar acoustic transducers heretofore unseen in the art, and it makes planar acoustic transducers commercially competitive with conical loudspeakers.
I provide an acoustic transducer of planar shape having at least one electromagnetic driving means and at least one diaphragm operably attached thereto. The electromagnetic driving means is comprised of at least one magnetized member and at least one electric driver means. Each magnetized member creates a magnetic field and has at least one substantially planar pole face. Each electric driver means is comprised of at least one electric conductor means and possibly in addition, a conductor forming means to support the electric conductor means and operably attach it to the diaphragm. Each electric conductor means is substantially in coil form, preferably in flat configuration, and is spaced from one said planar pole face. Each electric conductor means is positioned in the magnetic field of said magnetized member and in some embodiments preferably forms a plane substantially parallel to at least one said planar pole face. At least one essentially nonmagnetic diaphragm, preferably of planar shape, is operably attached to at least one said electric conductor means or conductor forming means, and preferably forms a plane substantially parallel to, and spaced from, at least one said planar pole face.
I prefer that each acoustic transducer unit contain only one magnetized member, although a plurality of magnetized members can be used (see FIGS. 7,83,12,13 and 14). Each magnetized member may be an electromagnet or a permanent magnet. I prefer. however, that each magnetized member be a permanent magnet because of the avoidance of magnetizing coils and additional electric power requirement and because its magnetic field is substantially stable and fixed, i.e., the magnetic field will not fluctuate to any substantial degree during operation of the transducer. Further, the fabrication of permanent magnets is less costly than the fabrication of electromagnets of comparable field strength.
When the magnetized members are permanent magnets the dimensions and shape of the magnetized member are critical with respect to obtaining maximum magnetic efficiency from the magnetized members, but are not limiting except as hereinafter preferred. They will vary with the material used to make magnetized members and the shapes and relations of the other elements of a particular embodiment to the magnetized members. The magnetized members may, for example, be rectilinear or curvilinear in cross-section. I prefer that the magnetized members have a large pole face area to thickness ratio. A large ratio of pole face area to magnet thickness provides for a thinner embodiment of the planar transducer, as well as a. larger area of the diaphragm that can be driven directly by the electric conductor means attached thereto. The ratio cannot however be enlarged without limit because the density of the magnetic field produced will be diminished as the thickness is reduced beyond a point, or as the pole face area is increased beyond a point. The optimum ratio will vary with the material used to make the magnetized members and the shapes and relations of the other elements of the particular embodiment to the magnetized members. Such permanent magnets can, for example, be made of an alloy of iron, nickel, aluminum, or cobalt. I prefer, however, that sintered ferrite material be used because I have found that it can provide a permanent magnet of a given magnetic strength that has a larger pole face area to thickness ratio than most metallic alloys.
1 contemplate that the planar pole faces of the magnetized members be as nearly flat as practicable. The shape of said pole faces may however be varied to produce a stronger and more uniform magnetic field in the region where the electric conductor means is located. Said planar pole face may, for example, be curvilinear in shape. (see FIG. 17). The periphery of the pole faces may be in any advantageous configuration, e.g. circles, elipses, rectangles, irregular curves. l prefer that the configuration of the periphery be a rectangle or the like where the periphery is large for a given surface area. In this way, the reproductive quality of the transducer is improved and the efficiency increased.
The positioning of the electric conductor means relative to the magnetized member is critical but not limiting. The essential feature is that the electric conductor means be positioned in the magnetic field of the magnetizedmember. In addition, the electric conductor means should be positioned in said magnetic field in such a way that the regions of the magnetic field in which the electric conductor means are positioned are substantially uniform and in turn, the forces exerted on the diaphragm are substantially symmetrical with regard to movement of the electric conductor means from a fixed point in opposing directions. In this way, the diaphragm will not pitch or yaw to any significant degree and thereby produce audibly spurious acoustic waves. The symmetry of the positioning can be accomplished by varying the magnetic field, or by varying the number of turns or spacing between turns of the electric conductor means. lf the electric conductor means is positioned in said magnetic field in such a way that the regions in which it is located are not substantially uniform, the support means for the diaphragm should be adjusted, or some other compensating means used so that the diaphragm does not pitch or yaw.
Preferably, the electric conductor means is positioned and moved within regions of said magnetic field that are of substantially constant magnetic flux density. In this way, electric current conducted through said electric conductor means causes responsive and substantially uniform linear forces to be exerted on the diaphragm at any given frequency. 1 have found that (where pole pieces are not used, see infra, p. the electric conductor mmeans should be positioned close to one planar pole face of the magnetized means, yet spaced from it a distance necessary to allow clearance between the planar pole face and the electric conductor means during operation of the transducer.
The electric conductor means can be made by mechanically winding or sewing a coil configuration directly onto a diaphragm, or can be made by mechanically winding a spiral and/or helical coil configuration on a conductor forming means. I prefer that the configuration of the coil be flat. In addition, I prefer that the coil be one continuous winding; it can however be multiple (i.e., discontinuous) and spaced spiral or helical configurations of varied design that are woven into, sewn to, or otherwise fastened to the diaphragm or the conductor forming means.
The electric conductor means is preferably made of material which is highly electrically conductive (i.e., low resistance) but essentially non-magnetizable, such as copper, aluminum and silver wire. Further, I prefer that the electric conductor means be made of conductive pathway patterns such as those formed by printed circuit, printed wiring or pressed wiring methods; use of such manufacturing methods permits the production of low cost and high quality electricl conductor means.
In addition, I contemplate that interlaid with and insulated from the electric conductor means can be magnetically conductive material such as iron or iron alloy. They should be interlaid generally in the plane traversed by the magnetic flux lines through the electric conductor means. By this arrangement, the magnetic lines of flux of the magnetic field created by the magnetized member will tend to concentrate in the region where the electric conductor means is moving and thereby increase the efficiency of the acoustic transducer.
The diaphragm is fastened to said electric conductor means and itself supported so that the electromagnetic driving means displaces the diaphragm when current passes through the electric conductor means. The diaphragm is of an essentially non-magnetizable material such as paper, resins, rubbers, metal foil, plasticized paper, metallic paper or treated or untreated textiles. The diaphragm should be relatively thin and of small mass so that it is very sensitive to displacement by minute electromagnetic driving forces. The surface portions of the diaphragm may be of any suitable shape and may even conform to the decor of the listening room or of sound reproduction system housing in which the acoustic transducer is used.
Preferably, the diaphragm is of a membrane-like shape and is driven over a substantially large portion of its surface area. Such membranous diaphragms are of small mass and low cost and are easily fabricated. 1 prefer that such diaphragms be made of material of long term stability and high flexibility but low elasticity, such as varnished cambric, and be placed under tension over a supporting frame. Such membranous diaphragms permit more accurate response to audio signals than do relatively heavy and relatively stiff speaker cones and do not exhibit the rim resonance" of speaker cones, thereby improving the transition between sounds of differing frequency. They also can be made to generate less harmonic distortion of the sound reproduction than do stiff speaker cones.
The membranous diaphragm can be driven over a substantially large portion of its area by reason of the configuration of the electric conductor means and/or the configuration of conductor forming means and the way they are attached to the diaphragm. Alternatively or supplementally this can be. accomplished by stiffening the diaphragm by painting or spraying the diaphragm over a substantially large portion of its area with materials such as certain epoxy and polyester liquid resins that solidify in place on curing, or by overlaying a portion of the membranous diaphragm with light weight plastic or textile patches. Alternatively the diaphragm can be comprised of two membranes pneumatically sealed around the edges and/or at intermediate points and separated by internal strut members. Preferably the diaphragm is inflated under pressure to a shallow lenticular form either with or without internal strut members. In this way, the membranous diaphragm can be made sufficiently stiff to respond to the forces exerted by the electric conductor means over substantially its entire surface area and still be light and com erted by the electric conductor means. These conditions are compromised when the diaphragm is sprayed or painted with stiffening material or overlaid with stiffening members. In addition, I have found that inflation of the diaphragm increases the efficiency of the transducer.
The diaphragm may be supported by either rigid or flexible means. If rigid support means are used, the diaphragm should be under tension or have adequate compliance to restore itself to its original position when it is displaced by the electromagnetic driving means. If flexible support means are used, the support means should have compliance for returning the diaphragm to its original position when it is displaced by the electromagnetic driving means. I prefer that such support means be structural materials that are essentially non-magnetizable such as wood, molded and/or reinforced plastics, aluminum, brass, etc. Furthermore, I have found that the diaphragm (along with the electric conductor means) can be supported by essentially non-magnetizable, compliant material positioned on any planar pole face of said magnetized member.
The electric conductor means, conductor forming means (if any), and diaphragm is sometimes called the mobile assembly. The mobile assembly as a whole is preferably of small mass, especially where response to a high frequency signal is desired.
I prefer that pole pieces be positioned adjacent the periphery of the magnetized member to direct and intensify the magnetic field by providing a low reluctance path for the magnetic flux from one pole face of the magnetized member to the conjugate pole face of the i magnetized member. The pole pieces may be made of any magnetically permeable material. Preferably the pole pieces are made of material having high magnetic permeability and low magnetic retentivity such as soft" iron and low carbon steel. The pole pieces may be laminated to reduce eddy-current effects. The pole pieces can be of any suitable geometric shape that is appropriate to direct and intensify the magnetic flux of said magnetic field in the region where the electric conductor means is located, and in addition, make said magnetic field preferably substantially symmetrical and preferably uniform in the region where the electric conductor means is located. One form of pole piece can be used that is of a substantially U-shaped and adjoins the opposite pole face from the planar pole face. The pole pieces may be independently supported or may be supported by the magnetized member through spacer members of essentially non-magnetizable material, i.e., any material that is substantially inert to a magnetic field such as plastics and other materials showing high magnetic reluctance.
Preferably the pole pieces are positioned adjacent the periphery of the magnetized member to form pairs of spaced apart elongated gaps with one said magnetized member or other pole pieces, said gaps containing regions of relatively high magnetic flux density. The regions of said magnetic field contained in said gaps preferably approach substantially linear and symmetrical magnetic flux density. And the electric conductor means are positioned and, in operation, moved within said regions of substantially linear and symmetrical magnetic flux density in said gaps. By this arrangement, the forces exerted on the diaphragm by the electric driver means at any given frequency are substantially constant and thereby limit distortion of the audio signal in reproduction.
In addition, said gaps containing the magnetic fields should be adjusted within narrow limits. Said gaps should be as narrow as possible to produce magnetic flux of highest density and to approach a substantially constant magnetic flux density in said gaps. Yet, said gaps should be sufficiently broad so that a slight change of the electric conductor means, the pole pieces, or magnetized member does not cause the electric driver means to bind or scrape in said gaps. In this way, electric current conducted through said electric conductor means causes highly responsive and substantially uniform linear forces to be exerted on the electric driver means positioned in said gaps at any given frequency.
l contemplate, in addition, that a substantial portion of said gaps may be filled with resilient, essentially non-magnetizable material, such as highly compliant rubber or foam resin, to support the electric conductor means, to preserve accurate alignment of the parts, and to improve the ruggedness of the electromagnetic driving means during mounting. Such resilient essentially non-magnetizable material should be thermally conductive to aid in dissipating whatever heat is generated from the passage of electric current through the electric conductor means. By this arrangement, electromagnetic driving means can be made separately as intermediate assemblies, and can be disposed geometri cally or preferably randomly over any mounting surface and covered with a single diaphragm or sections of diaphragm to form an acoustic transducer.
I prefer that the electric conductor means be of a substantially flat, coil configuration. Such electric conductor means can be (i) of a spiral configuration and form a plane that is substantially parallel to the flux lines of said magnetic field in said gaps or (ii) of a helical configuration and substantially perpendicular to flux lines of said magnetic field in said gaps.
The pole pieces can be a first pole piece adjoining a pole face of said magnetized member and a second pole piece of substantially U-shape adjoining the opposite pole face of said magnetized member. The spaced apart elongated gaps containing substantially linear and symmetrical regions of relatively high flux density are thereby formed between said first pole piece and said second pole pieces. in the alternative, the pole pieces can be first pole pieces of magnetically conductive material adjoining both faces of the magnetized member and second pole pieces spaced from the periphery of said magnetized member. Said second pole pieces can be independently supported, or supported by the magnetized member through spacer members of essentially non-magnetized material. By the latter means, one or two pairs of spaced apart elongated gaps containing substantially linear and symmetrical regions of relatively high flux density are formed between said first pole piece and said second pole piece, depending on the geometry and positioning of the spacer member relative to said first and second pole pieces. By these arrangements, where the pole pieces adjoin the pole faces, the magnetic flux density of'regions of the magnetic fields in said gaps are intensified and approach closer uniformity.
I further prefer that the electric conductor means drive two diaphragms positioned substantially parallel to each other on opposite sides of the magnetized member. The electric conductor means can be one means 7 driving both diaphragms (see FIGS. 37, 38 and 39); but for operational purposes, I prefer two separate electric conductor means to drive the diaphragms independently. The electric driver means is preferably substantially symmetrical about the center lines of the magnetized member.
The applications for two-diaphragm planar acoustic transducers are varied. The separate electric conductor means may be driven independently, as in the case of stereophonic audio signals, or they may be driven outof-phase by any phase displacement up to 180". In addition, two diaphragms increase the transient response, the linearity of motion with regard to the amplitude of the audio signal, the damping, and the efficiency of such acoustic transducers.
Furthermore, by this arrangement the effects caused by moving either one of the two electric conductor means through a non-linear region of the magnetic field of the magnetized member can be reduced to a negligible factor because the sound produced is the resultant of both diaphragms. As inferred earlier, herein when the electric conductor means carrying a current is caused to move through regions of varying magnetic flux density, the forces exerted on the diaphragm by the electromagnetic driving means varies and in turn results in the reproduction of distorted sounds; In the acoustic transducer having one diaphragm, I therefore emphasized that the magnetic flux density should be substantially uniform in the region of the magnetic field in which the electric conductor means is moved. However, in the acoustic transducer having two diaphragms and driven by two independent electric conductor means, the electric conductor means can be arranged and driven electrically so that one electric conductor means is moving into a region of high magnetic flux density while the other is moving into a region of low magnetic flux density. In this way, a substantial equality of the resultant forces exerted on the diaphragms are preserved, and in turn the distortion of the sounds reproduced limited, if not eliminated; The concern is therefore not with the uniformity of the regions of the magnetic field through which the electric conductor means move, but rather with the symmetry of the regions of the magnetic field through which the two electric conductor means move.
Preferably, the space between the two diaphragms is enclosed or otherwise separated from the exterior ambience by enclosure means. This can be done by structural members and/or frame-like supporting members for the diaphragms. Small vent holes should be provided in the enclosure means to permit compensation for changes in atmospheric pressure. Further, it may be desirable in some embodiments to provide larger openings, e.g., slots, in the enclosure means to provide partial relief of the air pressure within the volume contained by the enclosure means and diaphragms to improve the acoustic response of the transducer by introducing such acoustic resistance. I prefer however that the enclosure means substantially seal-off the volume enclosed by the enclosure means and' the diaphragms from the exterior ambience except for the small vent holes. By use of the latter arrangement, I have found that when the electromagnetic driving means is operated so that the two diaphragms are motionally in phase, (i.e., when they physically move in the same direction at the same time powered by the same electrical signal), the bass response is improved. On the other hand, when the diaphragms are operated motionally out-of-phase the bass responses are essentially suppressed and the middle frequency and high frequency responses are more prominent. These results are believed due to the volume of air contained by the enclosure means being relatively small compared to the exterior ambience and its compressibility low compared to the compressibility of the exterior ambience. As a result, the entrapped air acts as a substantially stiff medium mechanically linking the internal surfaces of the diaphragms and therby causes each diaphragm to act as a motional control on the other. This allows for an amplification of the response from the diaphragm at low frequencies and a heavy damping of spurious motion of the diaphragms. In addition, it permits compensation for acoustic distortions and imperfections caused by the variations in assembly tolerances of the various elements of the transducer by slightly shifting the phase of motion of the two diaphragms either electrically or mechanically by slightly weighting one of the two diaphragms.
An acoustic transducer installation comprising a number of my two diaphragm acoustic transducers within an enclosure means can be connected electrically so that some of them have their two diaphragms motionally in-phase and are provided with a simple low-pass filter to reproduce principally low frequen cies, while the remaining acoustic transducers of a given array are electrically connected so that their oppositely disposed diaphragms are motionally out-ofphase. By this arrangement favorable differences of overall sound reproduction can be achieved at various frequencies without the use of expensive and complex electrical crossover networks or separate amplifiers. In addition, I have found to my surprise that the two diaphragms can be driven by the separate channels of a stereophonic recording either in-phase or out-of-phase with negligible change in mid-frequency and highfrequency reproduction, and with no perceptible change in low-frequency reproduction. This is unexpected: The effect of reversing the phase relation of the two diaphragms while reproducing a monophonic recording results in cancellation of low frequency sounds and unpleasant distortions of mid-frequency and highfrequency sounds, as would be expected with the small air volume of relatively low compressibility contained between the diaphragms. The stereophonic arrangement however corresponds in effect to an acoustic monopole a condition theretofore not realized in commercial practice to my knowledge.
I contemplate that the total displacement amplitude of the diaphragm of my acoustic transducer be small (e.g., 0.0005 to 0.2500 inch) so that the Doppler-effect distortion (FM modulation) will be small. In application, my acoustic transducers may be assembled in multiples so that a verylarge area of diaphragm exposed to the ambient air of a listening room may be driven uniformly by the electromagnetic driving means. Therefore, the acoustic transducer need not be mounted in a horn or an acoustically sealed or tuned enclosure (as a conical loudspeaker often needs to be) to radiate wide range sound reproduction into a listening area, even though the average intensity of the sound recreated by a given area of the acoustic transducer is low. In addition, my acoustic transducers can be mounted in a stacked array to adapt the assembly for mounting on a wall; this arrangement reduces the effect of the high

Claims (58)

1. A planar acoustic transducer comprising: at least one magnetized member for creating at least one magnetic field, each magnetized member having at least one substantially planar pole face; at least one electric conductor means of substantially coil shape positioned in at least one said magnetic field of at least one magnetized member and positioned substantially parallel to and spaced from at least one said planar pole face; magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing said electric conductor means; at least one diaphragm operably attached to each said electric conductor means and positioned substantially parallel to and spaced from at least one said planar pole face; and means for supporting each said magnetized member, each said diaphragm and each said electric conductor means.
2. A planar acoustic transducer comprising: at least one magnetized member for creating at least one magnetic field, each magnetized member having at least one planar pole face; at least one pole piece of magnetically conductive material positioned adjacent at least one said magnetized member for forming elongated regions of relatively high flux density in at least one said magnetic field; at least one electric conductor means of substantially coil shape positioned in at least one said magnetic field and forming a planar shape substantially parallel to and spaced from at least one said planar pole face; magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing said electric conductor means; at least one planar diaphragm operably attached to at least one said electric conductor means and substantially parallel to and spaced from at least one said planar pole face, and capable of radiating reproduced sound into an ambience in a direction away from said magnetized member and said pole pieces; and means for supporting each said magnetized member, each said diaphragm and each said electric conductor means.
3. A planar acoustic transducer comprising: at least one magnetized member for creating at least one magnetic field, each magnetized member having at least one planar pole face; at least one pole piece of magnetically conductive material substantially U-shaped for forming elongated regions of relatively high flux density in at least one said magnetic field, said pole piece adjoining at least one pole face of said magnetized member conjugate to said planar pole face and extending beyond the conductor means at periphery portions thereof; at least one electric conductor means of substantially coil shape positioned in at least one said magnetic field and forming a planar shape substantially parallel to and spaced from at least one said planar pole face; at least one planar diaphragm operably attached to at least one said electric conductor means and substantially parallel to and spaced from at least one said planar pole face, and capable of radiating reproduced sound into an ambience in a direction away from said magnetized member and said pole pieces; and means for supporting each said magnetized member, each said diaphragm and each said electric conductor means.
4. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field and having at least one substantially planar pole face; pole pieces of magnetically conductive material positioned adjacent the periphery of said magnetized member for forming elongated regions of relatively high flux density in said magnetic field; at least one electric conductor means of substantially coil shape concentrated in said regions of said magnetic field and spaced from each said planar pole face, said electric conductor means being substantially flat and positioned substantially parallel to magnetic flux lines of said magnetic field transversing said electric conductor means; at least one diaphragm operably attached to each said electric conductor means and positioned substantially parallel to and spaced from at least one said planar pole face, and capable of radiating reproduced sound into an ambience in a direction away from said magnetized member and said pole pieces; and means for supporting said magnetized member, said diaphragm and said electric conductor means.
5. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field and having at least one substantially planar pole face; pole pieces of magnetically conductive material positioned adjacent the periphery of said magnetized member for forming elongated regions of relatively high flux density in said magnetic field; at least one electric conductor means of substantially coil shape concentrated in said regions of said magnetic field and spaced from each said planar pole face, said electric conductor means being formed of conductive pathway patterns; magnetically conductive material is interlaid with and insulated from said electric conductor means to be traversed with magnetic flux lines of said magnetic fields traversing said electric conductor means; at least one diaphragm operably attached to each said electric conductor means and positioned substantially parallel to and spaced from at least one said planar pole face, and capable of radiating reproduced sound into an ambience in a direction away from said magnetized member and said pole pieces; and means for supporting said magnetized member, said diaphragm and said electric conductor means.
6. A planar acoustic transducer comprising: at least one magnetized member for creating at least one magnetic field, each magnetized member having two substantially planar pole faces substantially parallel and conjugate to each other; at least one electric conductor means of substantially coil shape positioned substantially parallel to and spaced from each said planar pole face; at least one diaphragm operably attached to each said electric conductor means and positioned substantially parallel to and spaced from each said planar pole face; and means for supporting each said magnetized member, each said diaphragm and each said electric conductor means.
7. A planar acoustic transducer as claimed in claim 6 wherein in addition: at least one enclosure means substantially encloses the volume contained between the diaphragms spaced from the planar pole faces of each magnetized member.
8. A planar acoustic transducer as claimed in claim 6 wherein: said electric conductor means spaced from the planar pole faces of each magnetized member are positioned substantially symmetrically about the center lines of said magnetized member.
9. A planar acoustic transducer as claimed in claim 6 wherein in addition: pole pieces of magnetically conductive material are positioned adjacent at least one said magnetized member to form elongated regions of relatively high flux density in at least one magnetic field; and at least one said conductor means is positioned in said elongated regions.
10. A planar acoustic transducer as claimed in claim 6 wherein: each said diaphragm and said electric conductor means is supported by essentially non-magnetizable and resilient material positioned between said pole faces of each said magnetized membeR and said diaphragms.
11. A planar acoustic transducer as claimed in claim 6 wherein: each said diaphragm is made of at least one membrane.
12. A planar acoustic transducer as claimed in claim 6 wherein: each said conductor means is made of conductive pathway patterns.
13. A planar acoustic transducer as claimed in claim 6 wherein: magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing through said electric conductor means.
14. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field; a first pole piece of magnetically conductive material adjoining a pole face of said magnetized member; a second pole piece of substantially U-shape adjoining the conjugate pole face of said magnetized member and forming pairs of spaced apart elongated gaps with said first pole piece, said gaps containing regions of relatively high flux density in said magnetic field; electric conductor means of substantially coil shape positioned at least partially in said gaps and substantially parallel to magnetic flux lines of said magnetic fields in said gaps; a planar diaphragm operably attached to said electric conductor means; and means for supporting said magnetized member, said pole pieces, said diaphragm and said electric conductor means.
15. A planar acoustic transducer as claimed in claim 14 wherein: magnetically conductive material is interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing through said electric conductor means.
16. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field; pole pieces positioned adjacent the periphery of the magnetized member to form pairs of spaced apart elongated gaps with said magnetized member, said gaps containing regions of relatively high flux density of said magnetic field; at least one electric conductor means of substantially coil shape positioned at least partially in said gaps, each said conductor means being made of conductive pathway patterns; a planar diaphragm operably attached to each said electric conductor means; and means for supporting said magnetized member, each said diaphragm and each said electric conductor means.
17. A planar acoustic transducer as claimed in claim 16 wherein: magnetically conductive material is interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing through said electric conductor means.
18. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field and having a periphery; pole pieces positioned adjacent the periphery of the magnetized member to form pairs of spaced apart elongated gaps with said magnetized member, said gaps containing regions of relatively high flux density of said magnetic field; at least one electric conductor means of substantially coil shape positioned at least partially in said gaps, and substantially parallel to magnetic flux lines of said magnetic field in said gaps; at least two planar diaphragms substantially parallel to each other and operably attached to said electric conductor means; and means for supporting said magnetized member, each said diaphragm and each said electric conductor means.
19. A planar acoustic transducer comprising: a magnetized member for creating a magnetic field and having a periphery; pole pieces of magnetically conductive material adjoining opposed pole faces of said magnetized member; pole pieces positioned adjacent the periphery of the magnetized member to form at least two pairs of spaced apart elongated gaps with said first mentioned pole pieces, said gaps containing regions of relatively high flux density in said magnetic field at least; at least two electric conductor means of substantially coil shape positioned at least partially in said gaps; a planar diaphragm operably attached tO each said electric conductor means; and means for supporting said magnetized member, said pole pieces, said diaphragms and said electric conductor means.
20. A planar acoustic transducer as claimed in claim 19 wherein: said electric conductor means is positioned substantially parallel to magnetic flux lines of said magnetic field in said gaps.
21. A planar acoustic transducer as claimed in claim 19 wherein: said electric conductor means is positioned substantially perpendicular to magnetic flux lines of said magnetic field in said gaps.
22. A planar acoustic transducer as claimed in claim 19 wherein: magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing through said electric conductor means.
23. A planar acoustic transducer as claimed in claim 19 wherein: said electric conductor means are capable of being operated independent of each other.
24. A planar acoustic transducer as claimed in claim 19 wherein: said electric conductor means is comprised of conductive pathway patterns.
25. Electromagnetic driving means for a planar acoustic transducer comprising: a magnetized member for creating a magnetic field; a first pole piece of magnetically conductive material adjoining a pole face of said magnetized member; a second pole piece of substantially U-shape adjoining the opposite pole face of said magnetized member and forming pairs of spaced apart elongated gaps with said first pole pieces, said gaps containing regions of relatively high flux density in said magnetic field; electric conductor means of substantially coil shape positioned at least partially in said gaps and substantially parallel to magnetic flux lines of said magnetic field in said gaps; and means for supporting said electric conductor means.
26. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 25 wherein: magnetically conductive material is interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing through said electric conductor means.
27. Electromagnetic driving means for a planar acoustic transducer comprising: a magnetized member for creating a magnetic field and having a periphery; pole piieces of magnetically conductive material adjoining opposed pole faces of said magnetized member; other pole pieces for forming at least two pairs of spaced apart elongated gaps with said first mentioned pole pieces, said gaps containing regions of relatively high flux density in said magnetic field; and an electric conductor means of substantially coil shape positioned at least partially in one pair of said gaps, and means for supporting each said electric conductor means.
28. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: said electric conductor means is positioned substantially parallel to magnetic flux lines of said magnetic field in said gaps.
29. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: said electric conductor means is positioned substantially perpendicular to magnetic flux lines of said magnetic field in said gaps.
30. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic field traversing through said electric conductor means.
31. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: one said electric conductor means is positioned in each pair of gaps.
32. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: said electric conductor means is made of conductive pathway patterns.
33. Electromagnetic driving means for a planar acoustic transducer as claimed in claim 27 wherein: each said electric conductor means is supported by essentially non-magnetized and resilient material positioned between said magnetized member and said electric conductor means.
34. Electromagnetic driving means for a planar acoustic transducer comprising: a magnetized member for creating a magnetic field; pole pieces positioned adjacent the periphery for forming at least one pair of spaced apart elongated gaps with said magnetized member; said gaps containing regions of relatively high flux density; an electric conductor means of substantially coil shape positioned at least partially in each pair of said gaps and substantially parallel to magnetic flux lines of said magnetic field in said gaps; magnetically conductive material being interlaid with and insulated from said electric conductor means to increase magnetic flux lines of said magnetic fields traversing said electric conductor means; and means for supporting said electric conductor means and said magnetically conductive material.
35. Electromagnetic driving means for a planar acoustic transducer comprising: a magnetized member for creating a magnetic field; pole pieces positioned adjacent the periphery for forming at least one pair of spaced apart elongated gaps with said magnetized member; said gaps containing regions of relatively high flux density; an electric conductor means of substantially coil shape positioned at least partially in each pair of said gaps and substantially parallel to magnetic flux lines of said magnetic field in said gaps; and means for supporting said electric conductor means by essentially non-magnetized and resilient material positioned between said magnetized member and said electric conductor means.
36. An acoustic transducer comprising: at least one electromagnetic driving means; and at least one diaphragm operably attached to each said electromagnetic driving means and driven over a substantially large portion of its surface area by said electromagnetic driving means, each diaphragm being comprised of at least two membranes fastened adjacent their periphery and internally separated by strut members to a shallow lenticular form, whereby the two membranes operate as a low mass, highly responsive single diaphragm unit.
37. An acoustic transducer as claimed in claim 36 wherein: said membranes are fastened at intermediate points over their surface area.
38. An acoustic transducer comprising: at least one electromagnetic driving means; and at least one diaphragm operably attached to each said electromagnetic driving means and driven over a substantially large portion of its surface area by said electromagnetic driving means, each diaphragm being comprised of at least two membranes substantially sealed adjacent their periphery and separated by internal inflation to a shallow lenticular form, whereby the two membranes operate as a single diaphragm unit.
39. An acoustic transducer as claimed in claim 38 wherein: said membranes are fastened at intermediate points over their surface area.
40. A diaphragm for an acoustic transducer comprising: at least two membranes fastened adjacent their periphery; and internal strut members capable of separating said membranes to a shallow lenticular form, whereby the two membranes operate as a low mass, highly responsive single diaphragm unit.
41. A diaphragm for an acoustic transducer as claimed in claim 40 wherein: said membranes are fastened at intermediate points over their surface area.
42. A diaphragm for an acoustic transducer comprising: at least two membranes fastened adjacent their periphery and capable of being internally inflated by pressure, and internal strut members capable of separating said membranes with said internal inflation to a shallow lenticular form, whereby the two membranes operate as a low mass, highly responsive single diaphragm unit.
43. A diaphragm for an acoustic transducer comprising: at least two membranes substantially sealed adjacent their periphery and capable of being internally inflatEd to a shallow lenticular form, whereby the two membranes operate as a single diaphragm unit.
44. A diaphragm for an acoustic transducer as claimed in claim 43 wherein: said membranes are fastened at intermediate points over their surface area.
45. An acoustic transducer comprising: at least one electromagnetic driving means, said electromagnetic means providing at least two independent electric conductor means; and at least one pair of substantially planar diaphragms positioned in substantially parallel array astride said electromagnetic driving means, each said diaphragm of said pair of diaphragms being operably attached for driving by an independent electric conductor means of said electromagnetic driving means.
46. An acoustic transducer as claimed in claim 45 comprising in addition: at least one enclosure means substantially separating the volume contained between at least one said pair of diaphragms from an exterior ambience.
47. An acoustic transducer comprising: at least one electromagnetic driving means; and at least one pair of substantially planar diaphragms operably attached to said electromagnetic driving means, each diaphragm of each pair of diaphragms being positioned substantially parallel to the other diaphragm of said pair of diaphragms and one of said diaphragms of each said pair of diaphragms being stiffened with at least one patch member capable of mechanically shifting the response of said diaphragm from the phase response of the other diaphragm of said pair of diaphragms.
48. An acoustic transducer as claimed in claim 47 wherein: each said patch member is in addition a conductor forming means of electric driver means of said electromagnetic driving means.
49. A method of reproducing a stereophonic audio signal comprising the steps of: forming a pair of diaphragms, each diaphragm of said pair being substantially parallel to the other diaphragm of said pair; and driving said diaphragms of said pair by separate channels of said stereophonic audio signal.
50. An acoustic transducer adapted for mounting on a wall comprising: at least one electromagnetic driving means and; at least three substantially planar diaphragms, each operably attached for driving by said electromagnetic driving means, and positioned substantially parallel to each other.
51. An acoustic transducer adapted for mounting on a wall as claimed in claim 50 wherein: each said diaphragm is made of at least one membrane and the diaphragms are spaced substantially equidistant from each other.
52. A method of reproducing an audio signal comprising the steps of: forming a plurality of spaced pairs of planar diaphragms with the volume contained between each pair of diaphragms substantially enclosed with each diaphragm of said pair substantially parallel to the other diaphragm of said pair; driving at least one of said pairs of diaphragms with said diaphragms motionally in-phase with low frequency audio signals; and driving at least one of said pairs of diagrams with said diaphragms motionally out-of-phase with middle and high frequency audio signals.
53. An electric driver means for a planar acoustic transducer comprising: sections of insulating backing of non-magnetically conductive material; and sections of conductive pathway pattern fixed to said sections of insulating backing and capable of being formed round the periphery of a magnetized member in a singular electric driver means.
54. An electric driver means for a planar acoustic transducer as claimed in claim 53 wherein: each said section of conductive pathway pattern is in substantially spiral coil shape.
55. An electric driver means for a planar acoustic transducer as claimed in claim 53 wherein: said sections of insulating backing are in one contiguous piece and are capable of being formed into a singular electric driver means.
56. A method of making a planar acoustic transducer comprising the steps of: adjoining pole pieces to opposed pole faces of a magnetized member having at leasT one substantially planar pole face; forming substantially spiral coil electric conductor means of a conductive pathway pattern; forming said electric conductor means round the periphery of said magnetized member and spaced from said magnetized member; positioning other pole pieces spaced from said electric conductor means and forming gaps with said first mentioned pole pieces; and operably attaching at least one diaphragm to said electric conductor means.
57. A method of making a planar acoustic transducer as claimed in claim 56 comprising the additional step of: positioning spacers of non-magnetically conductive material through said electric conductor means to adjoin said magnetized member; and said other pole pieces are positioned by adjoining said spacers.
58. A method of making a planar acoustic transducer as claimed in claim 56 comprising the additional step of: interlaying magnetically conductive material with and insulating said magnetically conductive material from said electric conductor means to increase magnetic flux lines of a magnetic field created by said magnetized member and traversing through said electric conductor means.
US346171A 1973-03-29 1973-03-29 Acoustic transducer Expired - Lifetime US3873784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US346171A US3873784A (en) 1973-03-29 1973-03-29 Acoustic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US346171A US3873784A (en) 1973-03-29 1973-03-29 Acoustic transducer

Publications (1)

Publication Number Publication Date
US3873784A true US3873784A (en) 1975-03-25

Family

ID=23358260

Family Applications (1)

Application Number Title Priority Date Filing Date
US346171A Expired - Lifetime US3873784A (en) 1973-03-29 1973-03-29 Acoustic transducer

Country Status (1)

Country Link
US (1) US3873784A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524227A (en) * 1975-06-19 1977-01-13 Matsushita Electric Ind Co Ltd Dynamic type electric sound convertor
FR2335118A1 (en) * 1975-12-11 1977-07-08 Rank Organisation Ltd ELECTRO-ACOUSTIC TRANSDUCER, ESPECIALLY FOR SPEAKER AND EARPHONES
FR2427024A1 (en) * 1978-05-22 1979-12-21 Sony Corp ELECTRO-ACOUSTIC TRANSDUCER SUCH AS LOUDSPEAKER
FR2433882A1 (en) * 1978-08-15 1980-03-14 Sony Corp ELECTRO-ACOUSTIC TRANSDUCER
US4210786A (en) * 1979-01-24 1980-07-01 Magnepan, Incorporated Magnetic field structure for planar speaker
FR2474266A1 (en) * 1980-01-18 1981-07-24 Rigondeau Robert Wide bandpass flat diaphragm loudspeaker drive - uses separate transducers distributed around diaphragm circumference and has printed circuit conductors
US4337379A (en) * 1979-01-16 1982-06-29 Nippon Gakki Seizo Kabushiki Kaisha Planar electrodynamic electroacoustic transducer
US4357498A (en) * 1979-06-30 1982-11-02 Pioneer Electronic Corporation Coaxial type multi-way planar diaphragm loudspeaker system
EP0098895A1 (en) * 1980-09-15 1984-01-25 Robert Warren Necoechea Rigid diaphragm transducer with plural coils
FR2538985A1 (en) * 1983-01-04 1984-07-06 Philips Nv ARRANGEMENT OF SPEAKERS WITH ONE OR MORE FLAT MEMBRANES
EP0113732A1 (en) * 1982-07-19 1984-07-25 CLARKE, Anthony Bernard Electromagnetic-acoustic transducer
EP0118159A1 (en) * 1983-03-08 1984-09-12 Koninklijke Philips Electronics N.V. Ribbon-type transducer with a multi-layer diaphragm
EP0333411A2 (en) * 1988-03-16 1989-09-20 University Of Essex Headphone assemblies
WO1992013430A1 (en) * 1991-01-17 1992-08-06 Adelman Roger A Improved hearing apparatus
FR2687035A1 (en) * 1992-02-05 1993-08-06 Navarron Jean Pierre Device for sound reproduction by movement of a layer of air
US5430805A (en) * 1990-12-27 1995-07-04 Chain Reactions, Inc. Planar electromagnetic transducer
EP0680242A1 (en) * 1994-04-25 1995-11-02 Matsushita Electric Industrial Co., Ltd. Loudspeaker
US5760501A (en) * 1996-03-28 1998-06-02 American Trading And Production Corporation Compression driver motor structure
US5901235A (en) * 1997-09-24 1999-05-04 Eminent Technology, Inc. Enhanced efficiency planar transducers
US6154557A (en) * 1998-05-21 2000-11-28 Sonigistix Corporation Acoustic transducer with selective driving force distribution
US20020051556A1 (en) * 2000-07-31 2002-05-02 Button Douglas J. Loudspeaker coil suspension system
US20020118856A1 (en) * 2001-01-26 2002-08-29 American Technology Corporation Planar-magnetic speakers with secondary magnetic structure
US20020191808A1 (en) * 2001-01-22 2002-12-19 American Technology Corporation Single-ended planar-magnetic speaker
EP1269793A1 (en) * 2000-03-03 2003-01-02 American Technology Corporation Single end planar magnetic speaker
WO2003073787A1 (en) 2002-02-28 2003-09-04 The Furukawa Electric Co., Ltd. Planar speaker
US20030174856A1 (en) * 2002-01-25 2003-09-18 Leif Johannsen Flexible diaphragm with integrated coil
US20050129264A1 (en) * 2003-12-16 2005-06-16 Alps Electric Co., Ltd. System module
US7035422B1 (en) 2000-02-15 2006-04-25 Soundtube Entertainment, Inc. Wearable speaker garments
US7050602B2 (en) * 2000-08-14 2006-05-23 Knowles Electronics Llc. Low capacitance receiver coil
US20060177090A1 (en) * 2005-01-26 2006-08-10 Hans-Juergen Regl Electro-acoustic transducer
US20060251284A1 (en) * 2000-04-12 2006-11-09 David Wiener Backpack with Integrated Speakers
US20060256979A1 (en) * 2003-05-09 2006-11-16 Yamaha Corporation Array speaker system
US20070019831A1 (en) * 2003-06-02 2007-01-25 Yamaha Corporation Array speaker system
US20070030977A1 (en) * 2003-06-02 2007-02-08 Yamaha Corporation Array speaker system
US20080025550A1 (en) * 2006-06-21 2008-01-31 Hans-Juergen Regl Magnetic membrane suspension
US20080044044A1 (en) * 2004-05-14 2008-02-21 Madaffari Peter L Dual Diaphragm Electroacoustic Transducer
US20080087493A1 (en) * 2005-03-09 2008-04-17 The Furukawa Electric Co, Ltd. Diaphragm For Planar Speaker And Planar Speaker
US20100067731A1 (en) * 2007-02-21 2010-03-18 Alcons Audio B.V. Loudspeaker
US20110188699A1 (en) * 2004-03-08 2011-08-04 Kb Seiren, Ltd. Woven or knitted fabric, diaphragm for speaker, and speaker
US20120103097A1 (en) * 2010-10-29 2012-05-03 Borja Lopez Jauregui Flexible EMAT Arrays for Monitoring Corrosion and Defect Propagation in Metal Components and Structures
US20130106205A1 (en) * 2011-10-17 2013-05-02 Marvin L. Clamme Vibration transducer and actuator
US20140105445A1 (en) * 2011-05-11 2014-04-17 Exelway Inc. Flat-panel speaker having a multilayer pcb pattern voice coil film
US8942408B1 (en) 2011-07-22 2015-01-27 James Joseph Croft, III Magnetically one-side driven planar transducer with improved electro-magnetic circuit
US9197965B2 (en) 2013-03-15 2015-11-24 James J. Croft, III Planar-magnetic transducer with improved electro-magnetic circuit
US9872109B2 (en) 2014-12-17 2018-01-16 Knowles Electronics, Llc Shared coil receiver
WO2019184280A1 (en) * 2018-03-26 2019-10-03 Hong Xue A micro planar speaker
US10469954B1 (en) * 2019-01-21 2019-11-05 Zylux Acoustic Corporation Thin speaker with a voice coil having a damper function
RU2717699C1 (en) * 2019-05-08 2020-03-25 Сергей Юрьевич Глазырин Single-manure isodynamic radiator
RU199764U1 (en) * 2020-06-09 2020-09-21 Сергей Юрьевич Глазырин MATRIX Emitter
EP3855762A4 (en) * 2018-09-20 2021-11-17 Changzhou AMT Co., Ltd Horn structure and magnetic circuit system thereof
US20220377452A1 (en) * 2021-05-20 2022-11-24 Guoguang Electric Corp. LTD Micro-speaker
US11528560B2 (en) * 2018-03-12 2022-12-13 Dong-man Kim Hybrid movable coil plate and flat plate-type speaker using same
DE102021106243B4 (en) 2021-03-15 2023-08-10 ITP GmbH Gesellschaft für intelligente textile Produkte Dispensing device with at least one vibration generator
US20240007796A1 (en) * 2019-09-27 2024-01-04 Apple Inc. Dual function transducer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1713006A (en) * 1923-11-29 1929-05-14 Rca Corp Telephone and the like
US1808149A (en) * 1929-04-03 1931-06-02 Smith Morris Electrodynamic speaker
US1862582A (en) * 1928-08-02 1932-06-14 Bell Telephone Labor Inc Acoustic device
US3015366A (en) * 1956-12-14 1962-01-02 George M Bishop Speaker system
US3141071A (en) * 1960-07-18 1964-07-14 Rosen Alfred H Full range electroacoustic transducers
US3153120A (en) * 1961-06-05 1964-10-13 Automatic Canteen Co Stereophonic sound reproduction system
US3268672A (en) * 1962-12-03 1966-08-23 Westinghouse Electric Corp Loudspeaker
US3283086A (en) * 1963-06-17 1966-11-01 Willis F Evans Versatile extensive area sound reproducer or audio transducer
US3478167A (en) * 1965-07-12 1969-11-11 Morris Sorkin Three speaker stereophonic audio system
US3491204A (en) * 1967-05-12 1970-01-20 Stanley A Sherno Sound system circuit and cabinet assembly
US3609253A (en) * 1968-05-03 1971-09-28 William J Ashworth Loudspeaker with improved voice coil suspension

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1713006A (en) * 1923-11-29 1929-05-14 Rca Corp Telephone and the like
US1862582A (en) * 1928-08-02 1932-06-14 Bell Telephone Labor Inc Acoustic device
US1808149A (en) * 1929-04-03 1931-06-02 Smith Morris Electrodynamic speaker
US3015366A (en) * 1956-12-14 1962-01-02 George M Bishop Speaker system
US3141071A (en) * 1960-07-18 1964-07-14 Rosen Alfred H Full range electroacoustic transducers
US3153120A (en) * 1961-06-05 1964-10-13 Automatic Canteen Co Stereophonic sound reproduction system
US3268672A (en) * 1962-12-03 1966-08-23 Westinghouse Electric Corp Loudspeaker
US3283086A (en) * 1963-06-17 1966-11-01 Willis F Evans Versatile extensive area sound reproducer or audio transducer
US3478167A (en) * 1965-07-12 1969-11-11 Morris Sorkin Three speaker stereophonic audio system
US3491204A (en) * 1967-05-12 1970-01-20 Stanley A Sherno Sound system circuit and cabinet assembly
US3609253A (en) * 1968-05-03 1971-09-28 William J Ashworth Loudspeaker with improved voice coil suspension

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636637B2 (en) * 1975-06-19 1981-08-25
JPS524227A (en) * 1975-06-19 1977-01-13 Matsushita Electric Ind Co Ltd Dynamic type electric sound convertor
FR2335118A1 (en) * 1975-12-11 1977-07-08 Rank Organisation Ltd ELECTRO-ACOUSTIC TRANSDUCER, ESPECIALLY FOR SPEAKER AND EARPHONES
FR2427024A1 (en) * 1978-05-22 1979-12-21 Sony Corp ELECTRO-ACOUSTIC TRANSDUCER SUCH AS LOUDSPEAKER
FR2433882A1 (en) * 1978-08-15 1980-03-14 Sony Corp ELECTRO-ACOUSTIC TRANSDUCER
US4276452A (en) * 1978-08-15 1981-06-30 Sony Corporation Membrane type electro-acoustic transducer
US4337379A (en) * 1979-01-16 1982-06-29 Nippon Gakki Seizo Kabushiki Kaisha Planar electrodynamic electroacoustic transducer
DE3024815A1 (en) * 1979-01-24 1982-02-11 Magnepan, Inc., 55110 White Bear Lake, Minn. ACOUSTIC ELECTROMAGNETIC CONVERTER, IN PARTICULAR. LARGE SPEAKER
US4210786A (en) * 1979-01-24 1980-07-01 Magnepan, Incorporated Magnetic field structure for planar speaker
US4357498A (en) * 1979-06-30 1982-11-02 Pioneer Electronic Corporation Coaxial type multi-way planar diaphragm loudspeaker system
FR2474266A1 (en) * 1980-01-18 1981-07-24 Rigondeau Robert Wide bandpass flat diaphragm loudspeaker drive - uses separate transducers distributed around diaphragm circumference and has printed circuit conductors
EP0098895A1 (en) * 1980-09-15 1984-01-25 Robert Warren Necoechea Rigid diaphragm transducer with plural coils
EP0113732A1 (en) * 1982-07-19 1984-07-25 CLARKE, Anthony Bernard Electromagnetic-acoustic transducer
EP0113732A4 (en) * 1982-07-19 1986-02-13 Anthony Bernard Clarke Electromagnetic-acoustic transducer.
FR2538985A1 (en) * 1983-01-04 1984-07-06 Philips Nv ARRANGEMENT OF SPEAKERS WITH ONE OR MORE FLAT MEMBRANES
EP0118159A1 (en) * 1983-03-08 1984-09-12 Koninklijke Philips Electronics N.V. Ribbon-type transducer with a multi-layer diaphragm
US5361304A (en) * 1988-03-16 1994-11-01 University Of Essex Headphone assemblies
EP0333411A2 (en) * 1988-03-16 1989-09-20 University Of Essex Headphone assemblies
EP0333411A3 (en) * 1988-03-16 1991-07-31 University Of Essex Headphone assemblies
US5953438A (en) * 1990-12-27 1999-09-14 Chain Reactions, Inc. Planar electromagnetic transducer
US5430805A (en) * 1990-12-27 1995-07-04 Chain Reactions, Inc. Planar electromagnetic transducer
WO1992013430A1 (en) * 1991-01-17 1992-08-06 Adelman Roger A Improved hearing apparatus
US5390254A (en) * 1991-01-17 1995-02-14 Adelman; Roger A. Hearing apparatus
US6041129A (en) * 1991-01-17 2000-03-21 Adelman; Roger A. Hearing apparatus
FR2687035A1 (en) * 1992-02-05 1993-08-06 Navarron Jean Pierre Device for sound reproduction by movement of a layer of air
EP0680242A1 (en) * 1994-04-25 1995-11-02 Matsushita Electric Industrial Co., Ltd. Loudspeaker
US5664024A (en) * 1994-04-25 1997-09-02 Matsushita Electric Industrial Co., Ltd. Loudspeaker
US5760501A (en) * 1996-03-28 1998-06-02 American Trading And Production Corporation Compression driver motor structure
US5901235A (en) * 1997-09-24 1999-05-04 Eminent Technology, Inc. Enhanced efficiency planar transducers
US6185310B1 (en) 1997-09-24 2001-02-06 Eminent Technology Incorporated Planar magnetic acoustical transducer stamped pole structures
US6154557A (en) * 1998-05-21 2000-11-28 Sonigistix Corporation Acoustic transducer with selective driving force distribution
US7035422B1 (en) 2000-02-15 2006-04-25 Soundtube Entertainment, Inc. Wearable speaker garments
EP1269793A4 (en) * 2000-03-03 2009-03-25 American Tech Corp Single end planar magnetic speaker
EP1269793A1 (en) * 2000-03-03 2003-01-02 American Technology Corporation Single end planar magnetic speaker
US7251342B2 (en) 2000-03-03 2007-07-31 American Technology Corporation Single end planar magnetic speaker
US20030228029A1 (en) * 2000-03-03 2003-12-11 David Graebener Single end planar magnetic speaker
US7440581B2 (en) 2000-04-12 2008-10-21 Soundtube Entertainment, Inc. Backpack with integrated speakers
US20060251284A1 (en) * 2000-04-12 2006-11-09 David Wiener Backpack with Integrated Speakers
US20020051556A1 (en) * 2000-07-31 2002-05-02 Button Douglas J. Loudspeaker coil suspension system
US6801634B2 (en) * 2000-07-31 2004-10-05 Harman International Industries, Inc. Loudspeaker coil suspension system
US7095869B2 (en) 2000-07-31 2006-08-22 Harman International Industries, Inc. Loudspeaker coil suspension system
US20050025331A1 (en) * 2000-07-31 2005-02-03 Button Douglas J. Loudspeaker coil suspension system
US7050602B2 (en) * 2000-08-14 2006-05-23 Knowles Electronics Llc. Low capacitance receiver coil
US20070127767A1 (en) * 2001-01-22 2007-06-07 American Technology Corporation Single-ended planar-magnetic speaker
US20020191808A1 (en) * 2001-01-22 2002-12-19 American Technology Corporation Single-ended planar-magnetic speaker
US7142688B2 (en) 2001-01-22 2006-11-28 American Technology Corporation Single-ended planar-magnetic speaker
US6934402B2 (en) 2001-01-26 2005-08-23 American Technology Corporation Planar-magnetic speakers with secondary magnetic structure
US20090097693A1 (en) * 2001-01-26 2009-04-16 Croft Iii James J Planar-magnetic speakers with secondary magnetic structure
US20020118856A1 (en) * 2001-01-26 2002-08-29 American Technology Corporation Planar-magnetic speakers with secondary magnetic structure
US20060050923A1 (en) * 2001-01-26 2006-03-09 American Technology Corporation Planar-magnetic speakers with secondary magnetic structure
US20030174856A1 (en) * 2002-01-25 2003-09-18 Leif Johannsen Flexible diaphragm with integrated coil
EP1489881A1 (en) * 2002-02-28 2004-12-22 The Furukawa Electric Co., Ltd. Planar speaker
WO2003073787A1 (en) 2002-02-28 2003-09-04 The Furukawa Electric Co., Ltd. Planar speaker
EP1489881A4 (en) * 2002-02-28 2009-06-03 Furukawa Electric Co Ltd Planar speaker
US20060256979A1 (en) * 2003-05-09 2006-11-16 Yamaha Corporation Array speaker system
US20070030977A1 (en) * 2003-06-02 2007-02-08 Yamaha Corporation Array speaker system
US20070019831A1 (en) * 2003-06-02 2007-01-25 Yamaha Corporation Array speaker system
US7519187B2 (en) 2003-06-02 2009-04-14 Yamaha Corporation Array speaker system
US20050129264A1 (en) * 2003-12-16 2005-06-16 Alps Electric Co., Ltd. System module
US20110188699A1 (en) * 2004-03-08 2011-08-04 Kb Seiren, Ltd. Woven or knitted fabric, diaphragm for speaker, and speaker
US20080044044A1 (en) * 2004-05-14 2008-02-21 Madaffari Peter L Dual Diaphragm Electroacoustic Transducer
US7912240B2 (en) 2004-05-14 2011-03-22 Sonion Nederland B.V. Dual diaphragm electroacoustic transducer
US7940952B2 (en) * 2005-01-26 2011-05-10 Harman Becker Automotive Systems Gmbh Electro-acoustic transducer
US20060177090A1 (en) * 2005-01-26 2006-08-10 Hans-Juergen Regl Electro-acoustic transducer
US20080087493A1 (en) * 2005-03-09 2008-04-17 The Furukawa Electric Co, Ltd. Diaphragm For Planar Speaker And Planar Speaker
US8144918B2 (en) * 2005-03-09 2012-03-27 The Furukawa Electric Co., Ltd. Diaphragm for planar speaker and planar speaker
US20080025550A1 (en) * 2006-06-21 2008-01-31 Hans-Juergen Regl Magnetic membrane suspension
US7940953B2 (en) 2006-06-21 2011-05-10 Harman Becker Automotive Systems Gmbh Magnetic membrane suspension
US8335340B2 (en) * 2007-02-21 2012-12-18 Alcons Audio B.V. Loudspeaker
US20100067731A1 (en) * 2007-02-21 2010-03-18 Alcons Audio B.V. Loudspeaker
US20120103097A1 (en) * 2010-10-29 2012-05-03 Borja Lopez Jauregui Flexible EMAT Arrays for Monitoring Corrosion and Defect Propagation in Metal Components and Structures
US20140105445A1 (en) * 2011-05-11 2014-04-17 Exelway Inc. Flat-panel speaker having a multilayer pcb pattern voice coil film
US8953834B2 (en) * 2011-05-11 2015-02-10 Exelway Inc. Flat-panel speaker having a multilayer PCB pattern voice coil film
US8942408B1 (en) 2011-07-22 2015-01-27 James Joseph Croft, III Magnetically one-side driven planar transducer with improved electro-magnetic circuit
US20130106205A1 (en) * 2011-10-17 2013-05-02 Marvin L. Clamme Vibration transducer and actuator
US9331558B2 (en) * 2011-10-17 2016-05-03 The Guitammer Company Vibration transducer and actuator
US9197965B2 (en) 2013-03-15 2015-11-24 James J. Croft, III Planar-magnetic transducer with improved electro-magnetic circuit
US9872109B2 (en) 2014-12-17 2018-01-16 Knowles Electronics, Llc Shared coil receiver
US11528560B2 (en) * 2018-03-12 2022-12-13 Dong-man Kim Hybrid movable coil plate and flat plate-type speaker using same
WO2019184280A1 (en) * 2018-03-26 2019-10-03 Hong Xue A micro planar speaker
EP3855762A4 (en) * 2018-09-20 2021-11-17 Changzhou AMT Co., Ltd Horn structure and magnetic circuit system thereof
JP2022502911A (en) * 2018-09-20 2022-01-11 常州阿木奇声学科技有限公司 Speaker structure and its magnetic circuit system
US11540056B2 (en) 2018-09-20 2022-12-27 Changzhou Amt Co., Ltd Speaker and magnetic circuit system thereof
US10469954B1 (en) * 2019-01-21 2019-11-05 Zylux Acoustic Corporation Thin speaker with a voice coil having a damper function
RU2717699C1 (en) * 2019-05-08 2020-03-25 Сергей Юрьевич Глазырин Single-manure isodynamic radiator
US20240007796A1 (en) * 2019-09-27 2024-01-04 Apple Inc. Dual function transducer
RU199764U1 (en) * 2020-06-09 2020-09-21 Сергей Юрьевич Глазырин MATRIX Emitter
DE102021106243B4 (en) 2021-03-15 2023-08-10 ITP GmbH Gesellschaft für intelligente textile Produkte Dispensing device with at least one vibration generator
US20220377452A1 (en) * 2021-05-20 2022-11-24 Guoguang Electric Corp. LTD Micro-speaker

Similar Documents

Publication Publication Date Title
US3873784A (en) Acoustic transducer
US4037061A (en) Planar pattern voice coil audio transducer
US3651283A (en) Loudspeaker having elongated rectangular moving coil
US4273968A (en) Electroacoustic transducer with magnetic flux directed slantly across a diaphragm
JP3192372B2 (en) Thin electromagnetic transducer
US3997739A (en) Electrodynamic type electroacoustic transducer
US3141071A (en) Full range electroacoustic transducers
US4210786A (en) Magnetic field structure for planar speaker
US3164686A (en) Electrodynamic transducer
US3919498A (en) Electroacoustic transducer
EP1434463A2 (en) Electroacoustic transducer and electronic apparatus with such a transducer
JP2500609Y2 (en) Dynamic Transducer
JPH0198400A (en) Speaker
US4276452A (en) Membrane type electro-acoustic transducer
US20030133587A1 (en) Speaker driver
US6810126B2 (en) Planar magnetic transducer
EP1297720B1 (en) Electroacoustic transducer with replaceable diaphragm
EP1044584B1 (en) Mechanical acoustic crossover network and transducer therefor
JP2000152379A (en) Speaker
EP0077228B1 (en) Electroacoustic transducer
US20060023912A1 (en) Electroacoustic transducer with field replaceable diaphragm carrying two interlaced coils, without manipulating any wires
US4001523A (en) Ribbon loudspeaker
KR101775427B1 (en) Speaker Unit
US1758797A (en) Loud-speaker
US20040042632A1 (en) Directivity control of electro-dynamic loudspeakers