US3871503A - Gasoline dispenser - Google Patents

Gasoline dispenser Download PDF

Info

Publication number
US3871503A
US3871503A US427579A US42757973A US3871503A US 3871503 A US3871503 A US 3871503A US 427579 A US427579 A US 427579A US 42757973 A US42757973 A US 42757973A US 3871503 A US3871503 A US 3871503A
Authority
US
United States
Prior art keywords
change
pulses
fluid
pin
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US427579A
Inventor
Robert C Greenwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAN NOVA
PAN-NOVA Inc
Original Assignee
PAN NOVA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAN NOVA filed Critical PAN NOVA
Priority to US427579A priority Critical patent/US3871503A/en
Priority to CA204,875A priority patent/CA997718A/en
Priority to AU72234/74A priority patent/AU481613B2/en
Priority to US05/516,289 priority patent/US3935435A/en
Priority to JP49126495A priority patent/JPS5096911A/ja
Priority to DE19742455999 priority patent/DE2455999A1/en
Priority to IT54701/74A priority patent/IT1026119B/en
Priority to GB3550875A priority patent/GB1458880A/en
Priority to GB5584274A priority patent/GB1458879A/en
Application granted granted Critical
Publication of US3871503A publication Critical patent/US3871503A/en
Priority to CA255,584A priority patent/CA1021463A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/22Arrangements of indicators or registers
    • B67D7/224Arrangements of indicators or registers involving price indicators
    • B67D7/227Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means
    • B67D7/228Arrangements of indicators or registers involving price indicators using electrical or electro-mechanical means using digital counting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/08Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred
    • B67D7/30Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred with means for predetermining quantity of liquid to be transferred
    • B67D7/305Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred with means for predetermining quantity of liquid to be transferred in function of money to be spent therefor
    • B67D7/307Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred with means for predetermining quantity of liquid to be transferred in function of money to be spent therefor using electrical or electro-mechanical means
    • B67D7/308Arrangements of devices for controlling, indicating, metering or registering quantity or price of liquid transferred with means for predetermining quantity of liquid to be transferred in function of money to be spent therefor using electrical or electro-mechanical means involving digital counting
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F15/00Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity
    • G07F15/04Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity in which the quantity mechanism is set forward automatically by the insertion of a coin

Definitions

  • An automatic dispenser deliver- [56] References Cited ing gasoline to the last full cent when the total amount UNITED STATES PATENTS purchased is taken by the customer. 3,587.808 6/l971 Romanowski 194 13 4 Claims, 10 Drawing Figures mgmggmlgasm 3.871.503
  • a typical gasoline dispenser includes a remotely positioned fluid pump, one or two flow control valves, a hose with nozzle for insertion into the vehicle tank with a flow control on the nozzle, and one or more manually operated switches for starting and stopping the system. Fluid flow through the outlet line is measured, the volume of material dispensed is calculated and displayed, the price or monetary amount of the sale of material is calculated and displayed, and the unit price of the material is displayed.
  • the present invention is directed to automatic fluid dispensers wherein the customer makes an initial deposit, with the dispenser providing payout of change of the customer in the event that the customer does not take all of the fuel initially paid for.
  • the customer may make a deposit by inserting tokens or coins or bills into the dispenser, or by dealing with an attendant who will introduce the deposit data into the system by electrical or mechanical means.
  • the dispensing system of the invention may use a conventional pump, flow meter, valves and nozzle for handling the fluid. dispensed, and conventional coin or token receiving and paying mechanisms, with new and improved computing and control.
  • One important feature of the invention is the provision of separate isolated compartments for the gasoline flow path and for the electronics, with fiber optic lines running between the electronics and the flow meter and nozzle motion detector, eliminating switches and electrical lines in the gasoline handling compartment.
  • Another feature is the increased accuracy of measurement and display, with one embodiment providing for delivery of gasoline to 1/400' of a gallon and display indication to 1/400'" of a gallon.
  • a further feature is a computation and logic system which provides a display of price/gallon, number of gallons dispensed, amount of money or tokens deposited, dollar amount of gasoline delivered, and dollar amount of change due the customer.
  • a further feature is a logic circuit which assures the customer of receiving the correct amount of gasoline to the last half cent.
  • FIG. 1 is a front view of a gasoline dispenser with cover panels removed and incorporating the presently preferred embodiment of the invention
  • FIG. 2 is a block-diagram of the gasoline dispenser of FIG. 1;
  • FIGS. 3a and 3b are an electrical diagram of the price and gallonage logic of FIG. 2;
  • FIG. 4 illustrates the seven segment numerals of the displays of FIG. 2;
  • FIG. 5 illustrates and identifies certain of the logic symbols used in FIGS. 3, 6 and 7;
  • FIGS. 6a and 6b are a diagram of the credit, sale and change logic of FIG. 2;
  • FIGS. 7a and 7b are a diagram of the osscilator, generator, control and resolutionof FIG. 2;
  • FIG. 8 is a timing diagram for the system.
  • the customer removes the nozzle from the nozzle receptacle and places it in the fuel tank and then deposits one or more dollar tokens in the slot of the token acceptor.
  • the word token is used herein but the system is equally applicable with coins or paper money or other items.
  • the deposit may be made by pushing a button or actuating a switch or by remote control, it only being necessary that an electrical signal representing the monetary amount be introduced into the system.
  • the customer then pushes the start button and gasoline is dispensed into the vehicle tank. When all of the gasoline purchased has been delivered, the system shuts off automatically, after which the customer replaces the nozzle and drives away.
  • the automatic shutoff on the nozzle will stop fluid flow.
  • the customer can then replace the nozzle in the nozzle receptacle and change to the exact penny will be delivered to the customer. If for any reason, the customer wants to terminate. gasoline dispensing before receiving all that he has paid, he can push the stop button and replace the nozzle in the receptacle, after which change will be dispensed to the exact penny for the amount of fuel purchased but not delivered.
  • the dispenser illustrated in FIG. 1 has a lower compartment 10 for piping, valves and the like, and an upper compartment 11 for token handling mechanisms and electronics.
  • the side panels are removed, with the internal components shown diagrammatically.
  • the upper compartment 11 is isolated from the lower compartment 10 by the bottom plate of the upper compartment.
  • a motor driven pump 13 provides gasoline through line 14, fluid flow meter 15, fast flow valve 16 and slow flow valve 17, swivel coupling 18 and hose 19 to a nozzle 20.
  • the valves l6, 17 are operated by solenoids 16', 17, respectively.
  • the flow meter 15 may be a conventional fluid flow meter having an output shaft 23 which rotates as a function of fluid flow through the meter.
  • a clear plastic disk 24 having 100 equally spaced black or opaque segments thereon is mounted on the shaft 23.
  • the nozzle 20 rests on a bracket 25 with the end in a receptacle 26.
  • a crank arm 27 pivoted at 28 is rotated clockwise to the position shown in FIG. 1 when the nozzle is returned to the receptacle.
  • a reel 32 with cable 33 may be mounted in the compartment for supporting the hose 19.
  • a light source 35 provides light on fiber optic lines 36, 37, 38 and 39.
  • the line 38 goes directly to a light sensor unit 40 which provides an electrical output signal indicating whether or not the light source 35 is operating.
  • Line 39 goes to a bracket 41 in the lower compartment 10, with another line 42 leading from the bracket 41 to the sensor unit 40.
  • the bracket 41 and disk 24 are positioned so that the opaque segments of the disk interrupt the light path from the light source 35 to the sensor unit 40 as the flow meter shaft 23 rotates.
  • 400 segments pass the light guide per gallon of fluid flow through the flow meter, providing an electrical output of 400 pulses pure gallon.
  • the light source, fiber optic lines, and light sensor may be standard components.
  • Fiber optic line 37 runs into the lower compartment 10 to a bracket (not shown) adjacent the crank arm 27, with another fiber optic line 44 running from the bracket to the sensor unit 40.
  • the nozzle When the nozzle is in the receptacle as shown in FIG. 1, the light path through lines 37, 44 is blocked. When the nozzle is removed from the receptacle, light may pass from the source through lines 37 and 44 to the sensor unit.
  • a token acceptor 46 is mounted in the upper compartment 11 and has its own light sensor 47. Line 36 terminates adjacent the sensor 47 so that the light path from the source 35 to the sensor 47 is interrupted each time a valid token is accepted by the token acceptor 46.
  • the isolation between the compartments 10, 11, with the optical signal coupling from compartment 10 to compartment 11 enables the electrical system to be removed from the hazardous area within the compartment 10 and eliminates the need for explosion proof containers for the metering system.
  • the overall electrical system is illustrated in FIG. 2, with the price and gallonage logic system shown in greater detail in FIGS. 3a and 3b, the credit, sale and change logic system shown in greater detail in FIGS. 6a and 6b, and the control and resolution system with oscillator and generator shown in greater detail in FIGS. 7a and 7b.
  • the price per gallon for gasoline may be set by manually adjustable switches 50, and this price is displayed at the price display 51.
  • Various types of indicators and displays are available and the preferred displays for the present embodiment are liquid crystal displays with 7 segment numerals.
  • the segment identification for a 7 segment numeral is set out in FIG. 4, with the segments identified by the letters a through g and with the decimal point indicated by dp.
  • the system disclosed herein is a decimal system using cents and dollars, and change is made in pennies, nickels and quarters. However it will be readily understood that the system of the invention is equally applicable to other monetary systems and to other coin values. I
  • the displays are at a face of the upper compartment 11, with the price per gallon being displayed in tenths of a cent.
  • the amount of fuel dispensed during a transaction is displayed in hundredths of a gallon at the gallonage display 52.
  • the amount of dollar tokens deposited is displayed in dollars at the deposit display 53.
  • the sale price of the gasoline being dispensed is displayed in dollars and cents at the sale display 54, and the amount of change due to a customer is displayed in dollars and cents at the change display 55.
  • the customer starts fuel flow by pushing start button 58 and may stop fuel flow by stop button 59. Change is paid out to the customer by a change mechanism 60 operating in response to control signals from the control and resolution system.
  • the change mechanism may be a conventional unit, and provides an out of change signal on line 61 to the control and resolution system when the supply of any coin falls below a predetermined limit.
  • Power for operating the valve solenoid and the pump motor are provided by control relays at 62, with the relays being controlled in turn by control signals from the control and resolution system.
  • a bank of accumulators 63 may be used to receive and register signals representing monetary amounts deposited and monetary and volume amounts dispensed to provide various 39.9 cent/gallon, for management and control of a service station utilizing the dispensing system. interconnections between the various components of FIG. 2 are indicated by lines, and corresponding legends are found in FIGS. 3, 6 and 7.
  • Standard logic symbols are used in FIGS. 3, 6 and 7, and are illustrated in FIG. 5.
  • An example of a component for each item is set out in parenthesis adjacent the symbol.
  • 65 is an inverter
  • 66 is a buffer amplifier
  • 67 is a buffer amplifier
  • nand gates 68, 70 and 71 are nor gates, and.
  • the price and gallonage system contains the price computation and display and the gallonage delivered display.
  • Binary coded decimal information from the price setting switches 50 is fed to the liquid crystal display decoder drivers U1, 2 and 3 (4055) and the presettable up/down counters U4, 5 and 6 (4029).
  • the price computation system works as follows: A low signal from the flow meter system on line 75 causes flip flop U21, pin 1 to go high.
  • One four-hundredth of a gallon meter pulses are also fed from U21 to the divide by four counters U25 and 26. This results in one one-hundredth ofa gallon pulses appearing at U26, pin 13 and U25, pin 2.
  • U24 (/2 14518) further divides these pulses by 10 to produce one-tenth gallon pulses for accumulation purposes.
  • U24 and 26 do not reset after each customer transaction so that an accurate accumulation of total dispenser gallonage delivered can be maintained.
  • U25 resets after every transaction so that the gallonage display is an accurate representation of gallonage delivered to the customer.
  • LEDl and LED2 are light emitting diodes positioned adjacent the gallonage display 52 and used for dispenser calibration purposes. They provide a binary indication of zero, one, two and three 400th of a gallon. This results in a gallonage display accuracy of better than 1/400 of a gallon.
  • the table below shows the four states of LEDl and LED2 and what they represent.
  • FIGS. 6a and 6b This logic system contains displays showing dollars deposited, amount of sale, and change due.
  • Computed clocks from the price and gallonage logic of FIGS. 30, 3b are received on line 80, each clock being representative of one four-thousandth of a penny.
  • Counter U9 (14518) divides by 100, U11 (4018) divides by 10 and U12 (4018) divides by 4 resulting in 1 cent pulses at U12, pin 6; however, the first pulse at U12, pin 6 occurs after the first two thousand pulses and every 4,000 thereafter. This results in clocking at the half cent point for a plus or minus half cent accuracy.
  • the output at U12, pin 11 occurs at the 4,000count (full penny) and is used at the end ofa full credit delivery sale to ensure that the full credit sale is delivered.
  • Value counters U3, and 6 also divide by 4,000 to produce 1 cent pulses for the accumulators. A cent pulse is also produced via the divide by 10 counters U4 (4 14518).
  • the value counters do not reset after each transaction and therefore produce an accumulated true price X gallonage dollar value, whereas the sale pulse counter chains are reset after transaction and therefore produce an accumulated sale figure. The difference between the sale and value accumulations is therefore representative of the system inaccuracies due to giving change to the nearest penny.
  • Credit entry is by the use of tokens of one dollar value which are entered via the mechanical token acceptor 46 and if valid, sensed by photo-transistor 47 in conjunction with light source 35 coupled by fiber optic line 36.
  • the accepted token breaks a light beam from light source to sensor. This signal is amplified and shaped by conventional circuits and an accepted token produces a pulse on line 81.
  • a high frequency token pulse is produced by U13 in accordance with HFT3 and HFT4 timing.
  • HFTl through HFT4 are sequential four phase clocks produced in the timing and control system of FIGS, 7a and 7b, these clocks being continu' ously generated in sequence 1 through 4. Therefore, a token is only accepted during the HFT3 and HFT4 periods.
  • U13 switching at this time causes U20, pin 1 to go low and clock U23 (/2 14518) at pin 10, a decimal counter used to store unit dollar credits.
  • U17 (/2 14518) with input at pin 10 is a further decimal counter used to store credits in tens of dollars.
  • credit capability of $99 is displayed via U24 (4055) and U18 (4055) which are liquid crystal display decoder drivers.
  • U14 (4019) is a qud and/or select gate which is used to change the outputs of U17 credit information to U18 from all zeros to all ones to produce leading zero blanking of the display.
  • Dollar credits are also registered by the dollar digits of the change display.
  • the change display during gasoline delivery counts down from the credit value and therefore since tokens must be accepted at any time during delivery, the dollar and tens of dollars display must be capable of counting up and down.
  • U19 sets and places U (4029) and U40 (4029) in the up count state for token deposit.
  • HFT4 U19 resets and returns U45 and U40 to the down count condition.
  • credit information is always entered at a fixed time separate from debit information.
  • Computed penny pulses enter the change display down counters U43 (4029) and U38 (4029) at pins 15, and dollar debit information which appears at U38, pin
  • .7 is timed between HFTl and HFT2 by flip flops U7.
  • Dollar debit information is also produced on line 82 from the timing and control system of FIGS. 7a and 7b. This information is counted by the lower numbered sections of U23 and U17. When the contents of these two counters are equal to that of their higher numbered counterparts, all outputs of exclusiveor gates U 16 (14507) and U22 (14507) are low producing a low in balance signal at line 83. This is used to inform the resolution unit that there are no more full dollar credits on the system.
  • Amount of sale information is displayed via counter/decoders U31, 25, 34, and 28 (4033) and their associated liquid crystal display drivers U32, 33, 26, 27, 35, 36, 29 and 30 (14507).
  • FIG. 2 Four lamps are positioned on the front panel of the dispenser (FIG. 2). These indicate to the customer the state of the dispenser and what to do next. They are labeled as follows: (1) Insert Nozzle, (2) Deposit Tokens, (3) Push Start, and (4) Fill Tank.
  • Insert nozzle This lamp is lit when the dispenser is reset, the nozzle has not been removed from the dispenser and the change mechanism is not out of change.
  • This lamp will light as soon the nozzle is removed from the dispenser provided the dispenser has reset and is not out of change. This lamp will then remain illuminated until the customer has returned the nozzle to the dispenser.
  • Push start This light will come on only if the noz zle has been removed from the dispenser and at least one token deposited.
  • This light will be illuminated if the nozzle has been removed, at least one token depositedand the start button pressed. The light will then go out either when the nozzle is replaced or the customer has no credit remaining.
  • the Push Start light will be re-illuminated. From the time the customer replaces the nozzle to the completion of the reset cycle, the deposit lock-out solenoid in the token acceptor 46 is released to inhibit token acceptance. A token deposited at this time will automatically be returned to the customer. Deposit lock-out is also actuated if the dispenser is out of change.
  • Timing and Control FIGS. 7a and 7b The timing and control system serves several functions, namely: generation of system timing pulses, generation of signals to dispense change, detection of customer actuated switches, generation of signals to cause gasoline flow, generation ofstate of dispenserlamp indications and deposit lock-out signals, and to produce system reset.
  • FIGS. 70 and 8 An oscillator 85 produces a 250 khz master clock square wave (FIG. 8). Master clock pulses are fed to a 4 bit shift register U5 (/2 4015) which in conjunction with its associated gate U6 produces positive going four phase 62.5 khz clocks HFTl through HFT4.
  • U13 (14520) then divides the 62.5 khz clocks by 16 X 16 to produce a frequency of 244 hz at U14 (V2 14520), pin 10.
  • pin 13 the input at pinis further divided by 8 to produce a 30.5 hz strobe which is used to produce the ac waveform necessary to drive the liquid crystal displays.
  • Four gates, U19 are used in parallel to ensure that the strobe is capable of drawing the large currents used.
  • the output at U14, pin 11 is half the frequency of the input of U14, pin 10 which results in a frequency of 122 hz at U7 (/2 4015), pin 9.
  • LFTl through LFT4 are produced by this section of U7 in the same manner as the EFT four phase pulses are produced.
  • FIGS. 7a and 7b In the following explanation of the control and resolution logic it is assumed that change is in the tubes of the change mechanism 60, the customer follows the correct sequence to obtain gasoline, and the dispenser is in the reset state. At this time, the nozzle switch has not been operated and nozzle switch input on line 86 is low. U23, pin 4 and U20, pin 5 are high and U20, pin 3 and U20, pin 6 are also high causing the Insert Nozzle lamp to be illuminated. Actuating the nozzle switch by removing the nozzle from the dispenser causes U23, pins 2 and 5 to go high causing U23, pin 4 and U20, pin 5 to go low, and U23, pin 11 and U20, pin 8 to go high.
  • the resolution unit basically consists of three counters, U17 (4018), a divide by five counter for pennies, U16 (4018), a divide by five counter for nickels, and U15 (4018), a divide by four counter for quarters. These counters were initially set to their zero state by the system reset. The first 1 cent Pulse received on line 89 causes all these counters to go to their maximum counts, 4, 4 and 3 respectively and produces a Debit pulse at line 90 which if only 1 dollar was deposited, will produce a balance signal at line 91 from the Credit, Sale and Change system of FIG. 6. Flow, if allowed by the customer, will now continue until the three counters return to their zero state which will be after the th 1 cent pulse.
  • gate U22 will be enabled by all zero inputs from the counters, resulting in a high signal at U22 output. This will de-actuate the credit latch at U28, pin 9 in conjunction with an I-IFTl clock at pin 8. The I-IFTl timing is necessary to ensure that the deactivation of this latch is not coincident with activation caused by further token deposits.
  • latch U29 is deactivated by the low signal at U29, pin 1 causing a low at U27, pin 12 and resulting in both slow and fast flow being terminated, and the Push Start lamp to be reilluminated. Pressing the Start button again will recommence flow by reactivation of the U29 latch.
  • U10, pin 11 will be low enabling U11 at pin 8 which when a high change pulse at pin 9 occurs will cause the penny change latch U11 to operate and send a penny change pulse signal to the change mechanism via line 93.
  • U11, pin 4 will go low and subtract a penny from u17 at input pin 14. Penny change pulses will continue until U10, pin 11 goes high at which time U11 will be inhibited at pin 8 and U1 enabled at pin 12.
  • pin 4 Upon completion of the final penny change pulse U11, pin 4 will go high enabling U1 at pin 13 which will cause U10, pin to go low and pin 4 to go high if nickel credits remain on the system.
  • Nickel change pulses will then be generated until U10, pin goes high and upon completion of nickel change, gate U2 will be enabled, enabling the quarter change pulse logic. Quarter change pulses will then be generated until U10, pin 3 goes high and there is a dollar balance signal at line 91 to inhibit U8 at pin 8.
  • FIGS. 7 a and 7b Upon completion of change delivery, U22 will be enabled at three inputs causing U22, pin 6 to go high resulting in the deactivation of the dollar credit latch U23. Deactivation of this latch causes U30, pin 5 to go low and U30, pin 4 to go high, removing the reset and enabling the clock enable inputs to u26 (14520) which is a divide by 256 counter. Following 128 LFTl pulses (approximately 4 seconds), U33, pin 11 will go high clocking flip flop U33 and causing U33, pin 12 to go low.
  • U33, pin 12 will return to the high state and clock U33 at pin 3 causing U33, pin 2 to go low and via U32 generating a high at Reset Pulse line 94.
  • This reset pulse at 94 will remain high until U33 is reset by LFT3 at which time U33, pin 2 will return to the high state and terminate the reset pulse.
  • the duration of the reset pulse is approximately 0.065 sec- 0nd and is used to reset the credit and change counting system.
  • U32, pin 11 going high also clocks U31 at pin 11 resulting in pin 12 going low and producing a Reset signal at line 88 which resets all other counting logic in the system.
  • Token deposit which was inhibited during the change and reset cycles is now reenabled at U20, pin 2 by unlocking the nozzle latch at U23, pin 8 from the resetting of flip flop U31 at pin 4.
  • the dispenser is now ready for use by another customer.
  • a power Reset pulse is provided at line 9'7 for initially resetting the system when system power is turned on.
  • a fluid dispensing system the combination of: a first compartment having therein a fluid inlet line, flow control valve means, a flow meter with output shaft, and a fluid outlet line with nozzle interconnected for fluid flow from the inlet to the outlet line; a second compartment having electrical computation, control and display units therein; means for isolating said second compartment from said first compartment; a light source in said second compartment; light detector means in said second compartment; a disk having spaced opaque segments thereon and mounted on said flow meter shaft for rotation;
  • first fiber optic means defining a first light path through said second compartment from said source to said detector means and including means positioning said disk at said first path for opening and closing said first path as said flow meter shaft rotates;
  • a receptacle for said nozzle having a movable member actuated by inserting and removing the nozzle;
  • second fiber optic means defining a second light path through said second compartment from said source to said detector means and including means positioning said member at said second path for opening and closing said second path;
  • said light detector means including means for producing electrical signals corresponding to light path openings or closings.
  • a system as defined in claim 1 including:
  • third fiber optic means defining a third light path from said source to said detector means and including means positioning said guide at said third path for opening or closing said third path as a token passes to said receptacle.
  • a system as defined in claim 2 including fourth fiber optic means defining a fourth light path direct from said source to said detector means.
  • a sale accumulator including means for counting monetary pulses and displaying the count state for indicating the monetary amount of a sale of fluid;
  • a deposit accumulator including means for counting deposit pulses and displaying the count state for indicating the monetary amount deposited by a customer;
  • a change accumulator including means for counting deposit pulses in an upward mode and for counting monetary pulses in a downward mode and for displaying the count state for indicating the monetary amount due to a customer during a transaction;
  • a coin dispenser for dispensing change in a plurality of denominations
  • a change resolution register having a counter for each denomination of change provided by said dispenser

Abstract

An automatic gasoline dispenser receiving tokens from customers and paying out change to the nearest penny for gasoline purchased but not dispensed. A dispenser with an accuracy of one four hundredth of a gallon and indicating volume dispensed to one four hundredth of a gallon. An automatic dispenser delivering gasoline to the last full cent when the total amount purchased is taken by the customer.

Description

Sttes Patent 1191 Unite [11] 3,8715%3 Greenwood Mar. 18, 1975 [54] GASOLINE DISPENSER 3,598,283 8/1971 Krutz 222/37 3,729,996 5/1973 Metz 235/92 FL [75] lnvemo 2 :2?" Greenwmd, Cypress 3,731,777 5/1973 Burke et al. 194/13 [73] Assignee: Pan-Nova, 11113,, S nt F S i Primary E.\'at77iner-Robert B. Reeves Calif. Assistant E.\'aminerH. Grant Skaggs Attorney, Agent, or FirmHarris, Kern, Wallen & [22] FIl6ClI Dec. 26, 1973 Tinsley [21] Appl. No.: 427,579
[57] ABSTRACT 52 US. Cl 194/13, 222/2, 222/22, An automatic gasoline dispenser receiving token-s 235 9 A from customers and paying out change to the nearest 51 Int. Cl. G07f 15/00 P y for gasoline purchased but not dispensed- A [58] Field of Search 194/13, 1 M, 1 N; 222/2, Penser with an accuracy of one four hundredth of 9 222/221 6 37 7 235/92 FL, 9 A, 15134 gallon and indicating volume dispensed to one four hundredth of a gallon. An automatic dispenser deliver- [56] References Cited ing gasoline to the last full cent when the total amount UNITED STATES PATENTS purchased is taken by the customer. 3,587.808 6/l971 Romanowski 194 13 4 Claims, 10 Drawing Figures mgmggmlgasm 3.871.503
SHEET 1 953 figrchi'.
,RZIG 4'.
DISPLAY SEGMENT IDE NT! FICATION bp BACKPLANE MAsTER CLOCK AG 8 Hr-"r n I HFT 2 1 i I HFT a FL HFT 4 L v PATENTEUHAR I 81975 swears mu s. wmzaiu Emma w NUZQIU .10 P30 1 GASOLINE DISPENSER BACKGROUND OF THE INVENTION This invention relates to automatic fluid dispensing systems such as are used in the gasoline pumping installations and at automobile stations. However, it will be readily recognized that the system of the invention can be utilized for dispensing other fluids in other environments.
A typical gasoline dispenser includes a remotely positioned fluid pump, one or two flow control valves, a hose with nozzle for insertion into the vehicle tank with a flow control on the nozzle, and one or more manually operated switches for starting and stopping the system. Fluid flow through the outlet line is measured, the volume of material dispensed is calculated and displayed, the price or monetary amount of the sale of material is calculated and displayed, and the unit price of the material is displayed.
The present invention is directed to automatic fluid dispensers wherein the customer makes an initial deposit, with the dispenser providing payout of change of the customer in the event that the customer does not take all of the fuel initially paid for. The customer may make a deposit by inserting tokens or coins or bills into the dispenser, or by dealing with an attendant who will introduce the deposit data into the system by electrical or mechanical means.
A variety of automatic gasoline dispensers with change making capability are described in the prior art and a number of them have been placed in service. Typical systems are disclosed in the following U.S. patents and the art of record therein: U.S. Pat. Nos. 3,550,743; 3,605,973; 3,666,928; and 3,731,777. The first two patents describe improved electromechanical systems and the latter two patents disclose more advanced solidstate systems. The present invention is a digital solid-state electronic dispensing system that is an improvement on the prior art systems providing increased accuracy, performance and reliability.
SUMMARY OF THE INVENTION The dispensing system of the invention may use a conventional pump, flow meter, valves and nozzle for handling the fluid. dispensed, and conventional coin or token receiving and paying mechanisms, with new and improved computing and control. One important feature of the invention is the provision of separate isolated compartments for the gasoline flow path and for the electronics, with fiber optic lines running between the electronics and the flow meter and nozzle motion detector, eliminating switches and electrical lines in the gasoline handling compartment. Another feature is the increased accuracy of measurement and display, with one embodiment providing for delivery of gasoline to 1/400' of a gallon and display indication to 1/400'" of a gallon. A further feature is a computation and logic system which provides a display of price/gallon, number of gallons dispensed, amount of money or tokens deposited, dollar amount of gasoline delivered, and dollar amount of change due the customer. A further feature is a logic circuit which assures the customer of receiving the correct amount of gasoline to the last half cent.
These and other objects, advantages, features and results will more fully appear in the course of the'following description where a preferred embodiment of thepresent invention is given by way of illustration or example.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a gasoline dispenser with cover panels removed and incorporating the presently preferred embodiment of the invention;
FIG. 2 is a block-diagram of the gasoline dispenser of FIG. 1;
FIGS. 3a and 3b are an electrical diagram of the price and gallonage logic of FIG. 2;
FIG. 4 illustrates the seven segment numerals of the displays of FIG. 2;
FIG. 5 illustrates and identifies certain of the logic symbols used in FIGS. 3, 6 and 7;
FIGS. 6a and 6b are a diagram of the credit, sale and change logic of FIG. 2;
FIGS. 7a and 7b are a diagram of the osscilator, generator, control and resolutionof FIG. 2; and
FIG. 8 is a timing diagram for the system.
DESCRIPTION OF THE PREFERRED EMBODIMENT In the operation of the dispenser illustrated in the drawings, the customer removes the nozzle from the nozzle receptacle and places it in the fuel tank and then deposits one or more dollar tokens in the slot of the token acceptor. The word token is used herein but the system is equally applicable with coins or paper money or other items. In an alternative configuration, the deposit may be made by pushing a button or actuating a switch or by remote control, it only being necessary that an electrical signal representing the monetary amount be introduced into the system. The customer then pushes the start button and gasoline is dispensed into the vehicle tank. When all of the gasoline purchased has been delivered, the system shuts off automatically, after which the customer replaces the nozzle and drives away. If the vehicle tank is filled before all of the gasoline paid for is dispensed, the automatic shutoff on the nozzle will stop fluid flow. The customer can then replace the nozzle in the nozzle receptacle and change to the exact penny will be delivered to the customer. If for any reason, the customer wants to terminate. gasoline dispensing before receiving all that he has paid, he can push the stop button and replace the nozzle in the receptacle, after which change will be dispensed to the exact penny for the amount of fuel purchased but not delivered. The operation of the system as described above is the same as some of the prior art systems, but the internal construction and operation of the present system differs from the prior art systems.
The dispenser illustrated in FIG. 1 has a lower compartment 10 for piping, valves and the like, and an upper compartment 11 for token handling mechanisms and electronics. In the view of FIG. 1, the side panels are removed, with the internal components shown diagrammatically. The upper compartment 11 is isolated from the lower compartment 10 by the bottom plate of the upper compartment.
A motor driven pump 13 provides gasoline through line 14, fluid flow meter 15, fast flow valve 16 and slow flow valve 17, swivel coupling 18 and hose 19 to a nozzle 20. The valves l6, 17 are operated by solenoids 16', 17, respectively. The flow meter 15 may be a conventional fluid flow meter having an output shaft 23 which rotates as a function of fluid flow through the meter. A clear plastic disk 24 having 100 equally spaced black or opaque segments thereon is mounted on the shaft 23. When not in use, the nozzle 20 rests on a bracket 25 with the end in a receptacle 26. A crank arm 27 pivoted at 28 is rotated clockwise to the position shown in FIG. 1 when the nozzle is returned to the receptacle. A reel 32 with cable 33 may be mounted in the compartment for supporting the hose 19.
Signals are transmitted from the compartment 10 to the compartment 11 by an optical system. A light source 35 provides light on fiber optic lines 36, 37, 38 and 39. The line 38 goes directly to a light sensor unit 40 which provides an electrical output signal indicating whether or not the light source 35 is operating. Line 39 goes to a bracket 41 in the lower compartment 10, with another line 42 leading from the bracket 41 to the sensor unit 40. The bracket 41 and disk 24 are positioned so that the opaque segments of the disk interrupt the light path from the light source 35 to the sensor unit 40 as the flow meter shaft 23 rotates. In the particular embodiment disclosed herein, 400 segments pass the light guide per gallon of fluid flow through the flow meter, providing an electrical output of 400 pulses pure gallon. The light source, fiber optic lines, and light sensor may be standard components.
Fiber optic line 37 runs into the lower compartment 10 to a bracket (not shown) adjacent the crank arm 27, with another fiber optic line 44 running from the bracket to the sensor unit 40. When the nozzle is in the receptacle as shown in FIG. 1, the light path through lines 37, 44 is blocked. When the nozzle is removed from the receptacle, light may pass from the source through lines 37 and 44 to the sensor unit. A token acceptor 46 is mounted in the upper compartment 11 and has its own light sensor 47. Line 36 terminates adjacent the sensor 47 so that the light path from the source 35 to the sensor 47 is interrupted each time a valid token is accepted by the token acceptor 46. The isolation between the compartments 10, 11, with the optical signal coupling from compartment 10 to compartment 11 enables the electrical system to be removed from the hazardous area within the compartment 10 and eliminates the need for explosion proof containers for the metering system.
The overall electrical system is illustrated in FIG. 2, with the price and gallonage logic system shown in greater detail in FIGS. 3a and 3b, the credit, sale and change logic system shown in greater detail in FIGS. 6a and 6b, and the control and resolution system with oscillator and generator shown in greater detail in FIGS. 7a and 7b. The price per gallon for gasoline may be set by manually adjustable switches 50, and this price is displayed at the price display 51. Various types of indicators and displays are available and the preferred displays for the present embodiment are liquid crystal displays with 7 segment numerals. The segment identification for a 7 segment numeral is set out in FIG. 4, with the segments identified by the letters a through g and with the decimal point indicated by dp. The system disclosed herein is a decimal system using cents and dollars, and change is made in pennies, nickels and quarters. However it will be readily understood that the system of the invention is equally applicable to other monetary systems and to other coin values. I
The displays are at a face of the upper compartment 11, with the price per gallon being displayed in tenths of a cent. The amount of fuel dispensed during a transaction is displayed in hundredths of a gallon at the gallonage display 52. The amount of dollar tokens deposited is displayed in dollars at the deposit display 53. The sale price of the gasoline being dispensed is displayed in dollars and cents at the sale display 54, and the amount of change due to a customer is displayed in dollars and cents at the change display 55. The customer starts fuel flow by pushing start button 58 and may stop fuel flow by stop button 59. Change is paid out to the customer by a change mechanism 60 operating in response to control signals from the control and resolution system. The change mechanism may be a conventional unit, and provides an out of change signal on line 61 to the control and resolution system when the supply of any coin falls below a predetermined limit. Power for operating the valve solenoid and the pump motor are provided by control relays at 62, with the relays being controlled in turn by control signals from the control and resolution system. A bank of accumulators 63 may be used to receive and register signals representing monetary amounts deposited and monetary and volume amounts dispensed to provide various 39.9 cent/gallon, for management and control of a service station utilizing the dispensing system. interconnections between the various components of FIG. 2 are indicated by lines, and corresponding legends are found in FIGS. 3, 6 and 7.
Standard logic symbols are used in FIGS. 3, 6 and 7, and are illustrated in FIG. 5. An example of a component for each item is set out in parenthesis adjacent the symbol. 65 is an inverter, 66 is a buffer amplifier, 67
and 69 are nand gates, 68, 70 and 71 are nor gates, and.
72 is D flip flop.
Price and Gallonage Logic FIGS. 30 and 3b The price and gallonage system contains the price computation and display and the gallonage delivered display. Binary coded decimal information from the price setting switches 50 is fed to the liquid crystal display decoder drivers U1, 2 and 3 (4055) and the presettable up/down counters U4, 5 and 6 (4029). The price computation system works as follows: A low signal from the flow meter system on line 75 causes flip flop U21, pin 1 to go high. U21, pin 12 will then go low when a 250 khz master clock signal on line 76 goes high, causing gate U22 to be opened at pin 1 in preparation for-the next low going master clock, and releasing the preset enable inputs to U4, 5 and 6, which now contain a count equivalent to the price. Computed clocks are now generated on line 77 until U4, 5 and 6 count down to zero at which time the Carry Out terminal at U4, pin 7 will go low causing U21 flip flops to reset and block the input to gate U22. At this time,
U22, pin 1 going high actuates the preset enable pins of U4, 5 and 6 causing the counters to be reloaded with the price in preparation for the next meter pulse. Therefore, assuming a price of 3 9.9c/ gallon, for every meter pulse of one four-hundredth of a gallon, 399 computer clocks will be generated on line 77.
One four-hundredth of a gallon meter pulses are also fed from U21 to the divide by four counters U25 and 26. This results in one one-hundredth ofa gallon pulses appearing at U26, pin 13 and U25, pin 2. U24 (/2 14518) further divides these pulses by 10 to produce one-tenth gallon pulses for accumulation purposes. U24 and 26 do not reset after each customer transaction so that an accurate accumulation of total dispenser gallonage delivered can be maintained. U25 resets after every transaction so that the gallonage display is an accurate representation of gallonage delivered to the customer.
LEDl and LED2 are light emitting diodes positioned adjacent the gallonage display 52 and used for dispenser calibration purposes. They provide a binary indication of zero, one, two and three 400th of a gallon. This results in a gallonage display accuracy of better than 1/400 of a gallon. The table below shows the four states of LEDl and LED2 and what they represent.
LEDI LED2 GALLONAGE Off Off On Off .0025
Off On .005
On On .0075
Credit, Sale and Change Logic FIGS. 6a and 6b This logic system contains displays showing dollars deposited, amount of sale, and change due.
Computed clocks from the price and gallonage logic of FIGS. 30, 3b are received on line 80, each clock being representative of one four-thousandth of a penny. Counter U9 (14518) divides by 100, U11 (4018) divides by 10 and U12 (4018) divides by 4 resulting in 1 cent pulses at U12, pin 6; however, the first pulse at U12, pin 6 occurs after the first two thousand pulses and every 4,000 thereafter. This results in clocking at the half cent point for a plus or minus half cent accuracy. The output at U12, pin 11 occurs at the 4,000count (full penny) and is used at the end ofa full credit delivery sale to ensure that the full credit sale is delivered. This is accomplished by detecting the last penny of credit in the control and resolution system (FIGS. 7a and 7b) and using this information to activate the flip flops U1 and switch the information at U2 from the half cent to the 1 cent point. Therefore, on a full credit sale the customer receives his full credit gallonage, but on a sale resulting in the delivery of change the amount of change delivered is to the nearest penny, 1*: 4 cent.
Value counters U3, and 6 (same as U9, 11 and 12) also divide by 4,000 to produce 1 cent pulses for the accumulators. A cent pulse is also produced via the divide by 10 counters U4 (4 14518). The value counters do not reset after each transaction and therefore produce an accumulated true price X gallonage dollar value, whereas the sale pulse counter chains are reset after transaction and therefore produce an accumulated sale figure. The difference between the sale and value accumulations is therefore representative of the system inaccuracies due to giving change to the nearest penny.
Credit entry is by the use of tokens of one dollar value which are entered via the mechanical token acceptor 46 and if valid, sensed by photo-transistor 47 in conjunction with light source 35 coupled by fiber optic line 36. The accepted token breaks a light beam from light source to sensor. This signal is amplified and shaped by conventional circuits and an accepted token produces a pulse on line 81. A high frequency token pulse is produced by U13 in accordance with HFT3 and HFT4 timing. HFTl through HFT4 are sequential four phase clocks produced in the timing and control system of FIGS, 7a and 7b, these clocks being continu' ously generated in sequence 1 through 4. Therefore, a token is only accepted during the HFT3 and HFT4 periods. U13 switching at this time causes U20, pin 1 to go low and clock U23 (/2 14518) at pin 10, a decimal counter used to store unit dollar credits. U17 (/2 14518) with input at pin 10 is a further decimal counter used to store credits in tens of dollars. Thus, credit capability of $99 is displayed via U24 (4055) and U18 (4055) which are liquid crystal display decoder drivers. U14 (4019) is a qud and/or select gate which is used to change the outputs of U17 credit information to U18 from all zeros to all ones to produce leading zero blanking of the display. This is accomplished by detecting all zeros at U14, pins 2, 3, 4 and 5 and switching U14 from the and to or state by the detected high at U15, pin 1 and low at U20, pin 4. This causes the output of U14 to switch from normal inputs at pins 6, 2, 15 and 4 to the VDD inputs at pins 1, 3, 5 and 7.
Dollar credits are also registered by the dollar digits of the change display. The change display during gasoline delivery counts down from the credit value and therefore since tokens must be accepted at any time during delivery, the dollar and tens of dollars display must be capable of counting up and down. This is accomplished by flip flop U19 which changes state at HFTZ and HFT4. At l-IFT2, U19 sets and places U (4029) and U40 (4029) in the up count state for token deposit. At HFT4, U19 resets and returns U45 and U40 to the down count condition. Thus credit information is always entered at a fixed time separate from debit information.
Computed penny pulses enter the change display down counters U43 (4029) and U38 (4029) at pins 15, and dollar debit information which appears at U38, pin
.7 is timed between HFTl and HFT2 by flip flops U7.
Dollar debit information is also produced on line 82 from the timing and control system of FIGS. 7a and 7b. This information is counted by the lower numbered sections of U23 and U17. When the contents of these two counters are equal to that of their higher numbered counterparts, all outputs of exclusiveor gates U 16 (14507) and U22 (14507) are low producing a low in balance signal at line 83. This is used to inform the resolution unit that there are no more full dollar credits on the system.
Amount of sale information is displayed via counter/decoders U31, 25, 34, and 28 (4033) and their associated liquid crystal display drivers U32, 33, 26, 27, 35, 36, 29 and 30 (14507).
Lamp indications FIG. 7a
Four lamps are positioned on the front panel of the dispenser (FIG. 2). These indicate to the customer the state of the dispenser and what to do next. They are labeled as follows: (1) Insert Nozzle, (2) Deposit Tokens, (3) Push Start, and (4) Fill Tank.
The criteria for illumination of these lamps are:
Insert nozzle: This lamp is lit when the dispenser is reset, the nozzle has not been removed from the dispenser and the change mechanism is not out of change.
Deposit tokens: This lamp will light as soon the nozzle is removed from the dispenser provided the dispenser has reset and is not out of change. This lamp will then remain illuminated until the customer has returned the nozzle to the dispenser. I
Push start: This light will come on only if the noz zle has been removed from the dispenser and at least one token deposited.
Fill tank: This light will be illuminated if the nozzle has been removed, at least one token depositedand the start button pressed. The light will then go out either when the nozzle is replaced or the customer has no credit remaining.
If during delivery the customer presses the Stop button, the Push Start light will be re-illuminated. From the time the customer replaces the nozzle to the completion of the reset cycle, the deposit lock-out solenoid in the token acceptor 46 is released to inhibit token acceptance. A token deposited at this time will automatically be returned to the customer. Deposit lock-out is also actuated if the dispenser is out of change.
Timing and Control FIGS. 7a and 7b The timing and control system serves several functions, namely: generation of system timing pulses, generation of signals to dispense change, detection of customer actuated switches, generation of signals to cause gasoline flow, generation ofstate of dispenserlamp indications and deposit lock-out signals, and to produce system reset.
Timing Generation FIGS. 70 and 8 An oscillator 85 produces a 250 khz master clock square wave (FIG. 8). Master clock pulses are fed to a 4 bit shift register U5 (/2 4015) which in conjunction with its associated gate U6 produces positive going four phase 62.5 khz clocks HFTl through HFT4.
These clocks are used to control the dollar credit and debit timing. U13 (14520) then divides the 62.5 khz clocks by 16 X 16 to produce a frequency of 244 hz at U14 (V2 14520), pin 10. At U14, pin 13 the input at pinis further divided by 8 to produce a 30.5 hz strobe which is used to produce the ac waveform necessary to drive the liquid crystal displays. Four gates, U19, are used in parallel to ensure that the strobe is capable of drawing the large currents used. The output at U14, pin 11 is half the frequency of the input of U14, pin 10 which results in a frequency of 122 hz at U7 (/2 4015), pin 9. LFTl through LFT4 are produced by this section of U7 in the same manner as the EFT four phase pulses are produced.
Control and Resolution Logic FIGS. 7a and 7b In the following explanation of the control and resolution logic it is assumed that change is in the tubes of the change mechanism 60, the customer follows the correct sequence to obtain gasoline, and the dispenser is in the reset state. At this time, the nozzle switch has not been operated and nozzle switch input on line 86 is low. U23, pin 4 and U20, pin 5 are high and U20, pin 3 and U20, pin 6 are also high causing the Insert Nozzle lamp to be illuminated. Actuating the nozzle switch by removing the nozzle from the dispenser causes U23, pins 2 and 5 to go high causing U23, pin 4 and U20, pin 5 to go low, and U23, pin 11 and U20, pin 8 to go high. This extinguishes the Insert Hose and illuminates the 8 Deposit Token lights. Upon deposit of a token the Credit input on line 87 will pulse low causing U28, pin 3 to switch to the high state enabling gate U27 to go low at pin 6 and illuminate the Push Start lamp. At this time, the Reset signal at line 88 is removed by resetting U31 at pin 10 and gate U27 is enabled at pin 11 in preparation to commence flow when the Start button is pressed. Pressing the Start button actuates gate U27 at pin 12 and results in both the slow and fast flow valves being actuated. Flow will now commence as soon as the customer operates the nozzle.
Resolution Circuit FIGS. 7a and 7b The resolution unit basically consists of three counters, U17 (4018), a divide by five counter for pennies, U16 (4018), a divide by five counter for nickels, and U15 (4018), a divide by four counter for quarters. These counters were initially set to their zero state by the system reset. The first 1 cent Pulse received on line 89 causes all these counters to go to their maximum counts, 4, 4 and 3 respectively and produces a Debit pulse at line 90 which if only 1 dollar was deposited, will produce a balance signal at line 91 from the Credit, Sale and Change system of FIG. 6. Flow, if allowed by the customer, will now continue until the three counters return to their zero state which will be after the th 1 cent pulse. At this time, gate U22 will be enabled by all zero inputs from the counters, resulting in a high signal at U22 output. This will de-actuate the credit latch at U28, pin 9 in conjunction with an I-IFTl clock at pin 8. The I-IFTl timing is necessary to ensure that the deactivation of this latch is not coincident with activation caused by further token deposits.
Fast flow shut off occurs at a programmed point 4 cent or '9 cent prior to the end of full credits. The outputs of ul6 are connected to program points, one of which is connected to the input of U30 at pin 9. Pin 8 of U9 will go low when the programmed point is reached. This causes U29, pin 8 to go low and stop fast flow.
Deactuation of the credit latch U28 at pin 6 causes U27, pin 11 to go low thus extinguishing the Fill Tank light and terminating slow flow. If another token is now deposited both slow flow and fast flow will be actuated.
If, at any point during flow, the customer presses the Stop button, latch U29 is deactivated by the low signal at U29, pin 1 causing a low at U27, pin 12 and resulting in both slow and fast flow being terminated, and the Push Start lamp to be reilluminated. Pressing the Start button again will recommence flow by reactivation of the U29 latch.
Change Cycle FIGS. 7a and 7b If the customer returns the nozzle to the dispenser with credits remaining on the system, a change cycle is initiated. Nozzle latch U23 will be deactivated upon return of the nozzle and u23, pin 9 will go high. U23, pin 10 will go low and lock latch U23 at pin 1 such that removal of the nozzle from the dispenser will not reactivate the latch. U25 (14520), a divide by 256 counter, will be enabled by the low at pin 1 and will count up until pin 14 goes high which will occur at a count of 128 LFT2 pulses, which is approximately 4.2 seconds after replacing the nozzle. At this time U25 will cease to count and remain locked with pin 9 being inhibited by the high at pin 14. U14 (V2 14520) is now enabled at pin 1 and change pulses at a rate of 2 per second are generated at output pin 5. Change will now be delivered to the customer in sequence, pennies, nickels, and quarters according to the credit remaining in the system.
lf penny credits are remaining in U17, U10, pin 11 will be low enabling U11 at pin 8 which when a high change pulse at pin 9 occurs will cause the penny change latch U11 to operate and send a penny change pulse signal to the change mechanism via line 93. U11, pin 4 will go low and subtract a penny from u17 at input pin 14. Penny change pulses will continue until U10, pin 11 goes high at which time U11 will be inhibited at pin 8 and U1 enabled at pin 12. Upon completion of the final penny change pulse U11, pin 4 will go high enabling U1 at pin 13 which will cause U10, pin to go low and pin 4 to go high if nickel credits remain on the system. Nickel change pulses will then be generated until U10, pin goes high and upon completion of nickel change, gate U2 will be enabled, enabling the quarter change pulse logic. Quarter change pulses will then be generated until U10, pin 3 goes high and there is a dollar balance signal at line 91 to inhibit U8 at pin 8.
Reset Cycle FIGS. 7 a and 7b Upon completion of change delivery, U22 will be enabled at three inputs causing U22, pin 6 to go high resulting in the deactivation of the dollar credit latch U23. Deactivation of this latch causes U30, pin 5 to go low and U30, pin 4 to go high, removing the reset and enabling the clock enable inputs to u26 (14520) which is a divide by 256 counter. Following 128 LFTl pulses (approximately 4 seconds), U33, pin 11 will go high clocking flip flop U33 and causing U33, pin 12 to go low. Four seconds later, U33, pin 12 will return to the high state and clock U33 at pin 3 causing U33, pin 2 to go low and via U32 generating a high at Reset Pulse line 94. This reset pulse at 94 will remain high until U33 is reset by LFT3 at which time U33, pin 2 will return to the high state and terminate the reset pulse. The duration of the reset pulse is approximately 0.065 sec- 0nd and is used to reset the credit and change counting system. U32, pin 11 going high also clocks U31 at pin 11 resulting in pin 12 going low and producing a Reset signal at line 88 which resets all other counting logic in the system. Token deposit which was inhibited during the change and reset cycles is now reenabled at U20, pin 2 by unlocking the nozzle latch at U23, pin 8 from the resetting of flip flop U31 at pin 4. The dispenser is now ready for use by another customer. A power Reset pulse is provided at line 9'7 for initially resetting the system when system power is turned on.
I claim: 1. In a fluid dispensing system, the combination of: a first compartment having therein a fluid inlet line, flow control valve means, a flow meter with output shaft, and a fluid outlet line with nozzle interconnected for fluid flow from the inlet to the outlet line; a second compartment having electrical computation, control and display units therein; means for isolating said second compartment from said first compartment; a light source in said second compartment; light detector means in said second compartment; a disk having spaced opaque segments thereon and mounted on said flow meter shaft for rotation;
first fiber optic means defining a first light path through said second compartment from said source to said detector means and including means positioning said disk at said first path for opening and closing said first path as said flow meter shaft rotates;
a receptacle for said nozzle having a movable member actuated by inserting and removing the nozzle; and
second fiber optic means defining a second light path through said second compartment from said source to said detector means and including means positioning said member at said second path for opening and closing said second path;
said light detector means including means for producing electrical signals corresponding to light path openings or closings.
2. A system as defined in claim 1 including:
an acceptor for receiving a token and having a guide for directing the token to a receptacle; and
third fiber optic means defining a third light path from said source to said detector means and including means positioning said guide at said third path for opening or closing said third path as a token passes to said receptacle.
3. A system as defined in claim 2 including fourth fiber optic means defining a fourth light path direct from said source to said detector means.
4. In a fluid dispensing system having a fluid flow meter, the combination of:
means for generating a flow signal varying as a function of fluid dispensed through the flow meter;
price means for generating a unit price signal for the fluid;
computer means having said flow signal and said unit price signal as inputs and providing as an output, monetary pulses as a function of fluid dispensed;
a sale accumulator including means for counting monetary pulses and displaying the count state for indicating the monetary amount of a sale of fluid;
a deposit accumulator including means for counting deposit pulses and displaying the count state for indicating the monetary amount deposited by a customer;
means for generating deposit pulses;
a change accumulator including means for counting deposit pulses in an upward mode and for counting monetary pulses in a downward mode and for displaying the count state for indicating the monetary amount due to a customer during a transaction;
means for connecting flow and unit price signals to said computer means, and for connecting monetary pulses to said sale and change accumulators, and for connecting deposit pulses to said deposit and change accumulators;
a coin dispenser for dispensing change in a plurality of denominations;
a change resolution register having a counter for each denomination of change provided by said dispenser;
means for setting a first count state in each counter of said change resolution register;
means for connecting monetary pulses to said change resolution register for actuating said counters;
means for generating change pulses when a customer terminates fluid flow through the flow meter;
means for connecting change pulses to said change resolution register for actuating said counters; and means for connecting the counter outputs to said coin dispenser in controlling relation for dispensing change as a function of the count state of the counters when the customer terminated fluid flow.

Claims (4)

1. In a fluid dispensing system, the combination of: a first compartment having therein a fluid inlet line, flow control valve means, a flow meter with output shaft, and a fluid outlet line with nozzle interconnected for fluid flow from the inlet to the outlet line; a second compartment having electrical computation, control and display units therein; means for isolating said second compartment from said first compartment; a light source in said second compartment; light detector means in said second compartment; a disk having spaced opaque segments thereon and mounted on said flow meter shaft for rotation; first fiber optic means defining a first light path through said second compartment fRom said source to said detector means and including means positioning said disk at said first path for opening and closing said first path as said flow meter shaft rotates; a receptacle for said nozzle having a movable member actuated by inserting and removing the nozzle; and second fiber optic means defining a second light path through said second compartment from said source to said detector means and including means positioning said member at said second path for opening and closing said second path; said light detector means including means for producing electrical signals corresponding to light path openings or closings.
2. A system as defined in claim 1 including: an acceptor for receiving a token and having a guide for directing the token to a receptacle; and third fiber optic means defining a third light path from said source to said detector means and including means positioning said guide at said third path for opening or closing said third path as a token passes to said receptacle.
3. A system as defined in claim 2 including fourth fiber optic means defining a fourth light path direct from said source to said detector means.
4. In a fluid dispensing system having a fluid flow meter, the combination of: means for generating a flow signal varying as a function of fluid dispensed through the flow meter; price means for generating a unit price signal for the fluid; computer means having said flow signal and said unit price signal as inputs and providing as an output, monetary pulses as a function of fluid dispensed; a sale accumulator including means for counting monetary pulses and displaying the count state for indicating the monetary amount of a sale of fluid; a deposit accumulator including means for counting deposit pulses and displaying the count state for indicating the monetary amount deposited by a customer; means for generating deposit pulses; a change accumulator including means for counting deposit pulses in an upward mode and for counting monetary pulses in a downward mode and for displaying the count state for indicating the monetary amount due to a customer during a transaction; means for connecting flow and unit price signals to said computer means, and for connecting monetary pulses to said sale and change accumulators, and for connecting deposit pulses to said deposit and change accumulators; a coin dispenser for dispensing change in a plurality of denominations; a change resolution register having a counter for each denomination of change provided by said dispenser; means for setting a first count state in each counter of said change resolution register; means for connecting monetary pulses to said change resolution register for actuating said counters; means for generating change pulses when a customer terminates fluid flow through the flow meter; means for connecting change pulses to said change resolution register for actuating said counters; and means for connecting the counter outputs to said coin dispenser in controlling relation for dispensing change as a function of the count state of the counters when the customer terminated fluid flow.
US427579A 1973-12-26 1973-12-26 Gasoline dispenser Expired - Lifetime US3871503A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US427579A US3871503A (en) 1973-12-26 1973-12-26 Gasoline dispenser
CA204,875A CA997718A (en) 1973-12-26 1974-07-16 Gasoline dispenser
AU72234/74A AU481613B2 (en) 1973-12-26 1974-08-12 Gasoline dispenser
US05/516,289 US3935435A (en) 1973-12-26 1974-10-21 Gasoline dispenser
JP49126495A JPS5096911A (en) 1973-12-26 1974-11-01
DE19742455999 DE2455999A1 (en) 1973-12-26 1974-11-27 PETROL DISPENSER
IT54701/74A IT1026119B (en) 1973-12-26 1974-12-20 FLUID DISTRIBUTOR PLANT
GB3550875A GB1458880A (en) 1973-12-26 1974-12-24 Fluid dispensing system and calculator
GB5584274A GB1458879A (en) 1973-12-26 1974-12-24 Fluid dispensing apparatus
CA255,584A CA1021463A (en) 1973-12-26 1976-06-24 Gasoline dispenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US427579A US3871503A (en) 1973-12-26 1973-12-26 Gasoline dispenser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/516,289 Division US3935435A (en) 1973-12-26 1974-10-21 Gasoline dispenser

Publications (1)

Publication Number Publication Date
US3871503A true US3871503A (en) 1975-03-18

Family

ID=23695456

Family Applications (1)

Application Number Title Priority Date Filing Date
US427579A Expired - Lifetime US3871503A (en) 1973-12-26 1973-12-26 Gasoline dispenser

Country Status (6)

Country Link
US (1) US3871503A (en)
JP (1) JPS5096911A (en)
CA (1) CA997718A (en)
DE (1) DE2455999A1 (en)
GB (2) GB1458880A (en)
IT (1) IT1026119B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024377A2 (en) * 1979-08-20 1981-03-04 Gilbarco Aust. Ltd. Device for controlling, indicating and metering quantity and price of transferred liquid
US4986445A (en) * 1989-12-04 1991-01-22 Gilbarco Inc. Gasoline dispenser with valve control through an air gap
WO1996003340A1 (en) * 1994-07-22 1996-02-08 Gilbarco Inc. Temperature compensating fuel dispenser
US6230939B1 (en) 1999-05-21 2001-05-15 Clean Shield Enterprises, Inc. Windshield washer fluid dispensing system
WO2008110821A1 (en) * 2007-03-14 2008-09-18 Manjit Singh Dosanjh Method and apparatus for dispensing fuel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587808A (en) * 1969-01-17 1971-06-28 Bowser Inc Fluid pump having pulsing means and money accumulator
US3598283A (en) * 1969-04-14 1971-08-10 Gulf Research Development Co Gasoline pump computer
US3729996A (en) * 1971-09-16 1973-05-01 Conoflow Corp Averaging digital rate indicator
US3731777A (en) * 1971-07-26 1973-05-08 Pan Nova Coin operated fluid dispenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587808A (en) * 1969-01-17 1971-06-28 Bowser Inc Fluid pump having pulsing means and money accumulator
US3598283A (en) * 1969-04-14 1971-08-10 Gulf Research Development Co Gasoline pump computer
US3731777A (en) * 1971-07-26 1973-05-08 Pan Nova Coin operated fluid dispenser
US3729996A (en) * 1971-09-16 1973-05-01 Conoflow Corp Averaging digital rate indicator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024377A2 (en) * 1979-08-20 1981-03-04 Gilbarco Aust. Ltd. Device for controlling, indicating and metering quantity and price of transferred liquid
EP0024377A3 (en) * 1979-08-20 1982-12-01 Gilbarco Aust. Ltd. Device for controlling, indicating and metering quantity and price of transferred liquid
US4986445A (en) * 1989-12-04 1991-01-22 Gilbarco Inc. Gasoline dispenser with valve control through an air gap
WO1996003340A1 (en) * 1994-07-22 1996-02-08 Gilbarco Inc. Temperature compensating fuel dispenser
US5557084A (en) * 1994-07-22 1996-09-17 Gilbarco Inc. Temperature compensating fuel dispenser
US6230939B1 (en) 1999-05-21 2001-05-15 Clean Shield Enterprises, Inc. Windshield washer fluid dispensing system
WO2008110821A1 (en) * 2007-03-14 2008-09-18 Manjit Singh Dosanjh Method and apparatus for dispensing fuel

Also Published As

Publication number Publication date
JPS5096911A (en) 1975-08-01
GB1458879A (en) 1976-12-15
DE2455999A1 (en) 1975-07-03
GB1458880A (en) 1976-12-15
AU7223474A (en) 1976-02-12
CA997718A (en) 1976-09-28
IT1026119B (en) 1978-09-20

Similar Documents

Publication Publication Date Title
US3935435A (en) Gasoline dispenser
US3731777A (en) Coin operated fluid dispenser
US3852576A (en) Premium allocation device
US3895738A (en) Gasoline dispensing system
US3984032A (en) Liquid fuel dispensing system
US3685692A (en) Automatic beverage dispenser with key control
US3254749A (en) Automatic self-service mechanisms for dispensing merchandise, for example, fuel and/or oil and grease for motor vehicles
GB1456531A (en) Vending machine
US3670924A (en) Vending system using a value storing key
US3871503A (en) Gasoline dispenser
US4074356A (en) Fluid delivery control and registration system
US3402851A (en) Remote controlled dispensing system
US3845848A (en) Bill accepting motor fuel dispensing apparatus
US3448895A (en) Pre-set automatic dispensing system
US4087858A (en) Accounting and cash-transfer system for filling stations having metered pumps
US3786960A (en) Transmitter-operated fuel-dispensing system
CA2310885A1 (en) Coin ramp sensor for vending machines
US3570644A (en) Money-operated liquid dispensing apparatus
US3921854A (en) Remote control console for a plurality of automatic gasoline dispensers
US3448843A (en) Fluid dispenser having multiple signal generators
US3285381A (en) Currency controlled gasoline dispenser
US3550743A (en) Coin-actuated fluid-dispensing system
US3605973A (en) Coin-actuated fluid-dispensing system with separate registers for coins received and fluid dispensed
GB2117954A (en) Change dispensing machine
US3233712A (en) Currency-operated gas pump