US3868924A - Apparatus for indiffusing dopants into semiconductor material - Google Patents

Apparatus for indiffusing dopants into semiconductor material Download PDF

Info

Publication number
US3868924A
US3868924A US295173A US29517372A US3868924A US 3868924 A US3868924 A US 3868924A US 295173 A US295173 A US 295173A US 29517372 A US29517372 A US 29517372A US 3868924 A US3868924 A US 3868924A
Authority
US
United States
Prior art keywords
tube
semiconductor material
silicon
heatable
indiffusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US295173A
Inventor
Konrad Reuschel
Wolfgang Keller
Arno Kersting
Reimer Emeis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19691933128 external-priority patent/DE1933128C3/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to US295173A priority Critical patent/US3868924A/en
Priority to US05/525,176 priority patent/US4020791A/en
Application granted granted Critical
Publication of US3868924A publication Critical patent/US3868924A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/10Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/12Heating of the reaction chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S118/00Coating apparatus
    • Y10S118/90Semiconductor vapor doping

Definitions

  • the apparatus comprises a heatable tube of the same semiconductor material, the wall of which is from 0.5 to 20 mm thick and is gas-tight under reaction conditions.
  • Heating means include an induction -coi1 spaced from the heatable tube and a relatively narrow graphite ring fixed about the tube to accelerate such heating.
  • a known apparatus for indiffusing dopants into a semiconductor material comprises a scalable graphite tube wherein both wafers of the semiconductor material to be coated, and the dopant substance are accommodated.
  • the graphite tube is connected to voltage and heated to diffusion temperature.
  • the heated graphite tube is surrounded by a quartz tube, through which an inert gas is passed. This inert gas cools the quartz tube and thus prevents impurities in the atmosphere from contacting the semiconductor material to be coated.
  • this apparatus is relatively expensive, however. Moreover, the semiconductor material must not come into contact with the graphite tube since, at the diffusion temperatures the carbon reacts undesirably with the semiconductor material. Hence, the graphite tube is provided with special holders, which prevent the semiconductor wafers and the graphite tube from contacting each other.
  • quartz tubes or quartz ampules which are heated in a diffusion furnace.
  • the use of quartz tubes or ampules entails similarly, the problem of preventing the semiconductor wafers from contacting the quartz.
  • a support disc is usually provided between to semiconductor wafers in such a quartz tube. The semiconductor wafers are so pressed in between the support disc that they do not contact the quartz tube at any point along its circumference.
  • the use of a plurality of such support discs naturally results in less semiconductor wafers being doped during one operating process.
  • the use of quartz tubes also has the disadvantage that the diffusion temperature is limited to approximately l,200 C. since at this temperature, quartz softens.
  • the supporting discs prevent the quartz tube from compressing the wafers to be diffused and from damaging them when the quartz tube, following diffusion, is removed.
  • the diffusion speed is relatively low at l,200 C.
  • the use of quartz tubes moreover, demands special diffusion furnaces, since neither direct heating nor induction heating is applicable.
  • Our invention is to devise an arrangement of the aforedescribed type, which makes such a vacuum chamber superfluous, thus simplifying the apparatus.
  • Our invention starts with apparatus for the indiffusion of dopants into a semiconductor material provided with a heatable tube consisting of the same semiconductor material.
  • the invention is characterized by the fact that the wall of the tube is 0.5 to 20 mm thick and therefore virtually gas-tight under the indiffusion conditions.
  • the tube is preferably a bored out rod of a crystalline semiconductor material. it may also consist, however, of semiconductor material precipitated through thermal dissociation of a gaseous compound of the semiconductor material, on a heated carrier body, with the carrier body being removed following precipitation of the semiconductor material.
  • the tube itself constitutes the heating body.
  • its ends may be provided with electrodes or they may be enclosed by an induction coil.
  • an induction coil To facilitate the heating up of the tube, during induction heating, a ring of material with good conductance properties may be placed upon the tube.
  • the tube may be sealed on both sides for carrying out the diffusion process.
  • the dopant and the semiconductor material are placed into the interior of the tube, prior to the sealing thereof,
  • the tube may also be open on both sides, and the dopant together with an inert carrier gas, traversing the tube.
  • FIG. 1 shows a longitudinal section through a first embodiment of the invention
  • FIG. 2 shows a longitudinal section through another embodiment of the invention.
  • FIG. 1 has, primarily, a tube 1 of a crystalline semiconductor material, for example silicon which may have a wall thickness of about 0.5 to 20 mm.
  • a ground section 2 is provided at its left end, of the tube 1 with ground stopper 3, e.g., of quartz fitted thereinto.
  • the stopper 3 has an opening 4 to the interior 5 of the tube 1.
  • the right side of the tube 1 has a ground section 7 with a stopper 6 hermetically fitted thereinto.
  • the stopper 6 has an opening 8, which connects to the interior 5 of the tube.
  • the interior 5 of the tube 1 contains semiconductor wafers ll, e.g., of silicon, which are held in their position by two support discs 9 and 10.
  • the support discs are preferably of the same semiconductor material as discs 11, but may be of another material such as ceramic.
  • the tube 1 is provided in the vicinity of its ends, with two annular electrodes 12 and 13, which have leads 14 or 15 connected to a voltage source (not shown in detail).
  • the diffusion process is effected by first of all arranging the semiconductor wafers 11 between support discs 9 and 10, in the interior of the tube 1. Thereafter, stoppers 3 and 6 are gas-tightly placed in the tube and the nipples 4 or 8 of stoppers 3 and 6 respectively are connected to the dopant source.
  • the other nipple serves as the waste outlet.
  • the doping substance is preferably carried by an inert gas, e.g., argon, through the interior of the tube. If n-doping is desired, a preferred substance is phosphorus in the form of P 0 PC];, or (PNCI PH is also a suitable dopant.
  • the carrier gas may be a noble gas such as argon or helium or another inert gas.
  • a voltage source is applied to the tube 1 via both electrodes 12 and 13 and both leads l4 and 15.
  • the voltage is such that the current required for heating-up tube 1 flows.
  • the voltage also depends on the conductivity of the semiconductor material.
  • the voltage required for starting the heating-up process can be relatively low.
  • the conductivity of the tube then becomes independent of the doping of the semiconductor material and is essentially determined by the dimensions of the tube.
  • the tube is preferably of the same semiconductor material, as wafers-ll.
  • a tube of crystalline silicon is employed. Such a tube can be created by drilling out a rod of crystalline silicon.
  • the tube may also comprise silicon which is precipitated through thermal dissociation of a gaseous compound of the silicon, on a heated carrier body, with the carrier body being removed following the precipitation of the silicon. Contrary to layers of sintered silicon, this precipitated layer of crystalline silicon, is highly gas-impermeable, at an appropriate wall thickness.
  • a silicon tube has the further advantage that it is heatable to much higher temperatures than quartz, without the resulting loss of its mechanical stability and its gas impermeability, as in the case of the former.
  • this means that the diffusion process may be fundamentally accelerated compared to a diffusion in a quartz tube or a quartz ampule. Since the semiconductor wafers 1, in this instance the silicon wafers, do notenter into a chemical reaction with the silicon of the tube 1, the latter may be seated directly on the wall of the tube 1. It is sufficient, therefore, to provide only two support discs, as holders for the wafers.
  • FIG. 2 shows another embodiment according to the invention.
  • This arrangement is essentially a tube 18, consisting of an homogenous, crystalline semiconductor material, for example silicon.
  • the tube 18 is gastightly sealed with two lids l9 and 20, which consist of the same semiconductor material.
  • the tube 18 is surrounded by induction coil 21.
  • a ring 22 of a material with good conductance properties, such as graphite, is seated upon the tube 18.
  • the interior of the tube 18 is provided with two support discs 23 and 24, with semiconductor wafers 25, for example of silicon arranged therebetween.
  • a boat 26 holding the dopant is in the interior of the tube. This boat consists preferably of the same material as the tube 18.
  • lid 20 is placed upon the tube and welded gas-tightly to the tube 18, in a vacuum or protective gas, with the aid of high-frequency energy.
  • boat 26, the support discs 23 and 24 and the semiconductor wafers 25, are placed into the tube interior.
  • lid 19 is placed upon the tube and is welded gas-tightly with the tube 18 in a vacuum or in protective gas with the aid of high-frequency energy.
  • a high-frequency voltage is applied to the induction heating zone, starting from the zone of the tube adjacent to the graphite ring, expands across the entire length of the tube. The'temperature of the tube is determined thereby, by the high-frequency current.
  • Embodiments other than those shown in FIGS. 1 and 2 are feasible. It is possible, for example, to use the resistance heat shown in FIG. 1 in a completely closed tube according to FIG. 2. Conversely, an open tube of a compound of the dopant, passed by a carrier gas, according to FIG. 1, may also be heated by an induction heat, according to FIG. 2.
  • the invention is not limited to a device for the diffusion of wafers comprising silicon, with tubes made of silicon. It is also possible to use tubes of for example, silicon carbide, tungsten carbide, titanium carbide, indium phosphide, gallium arsenide, boron nitride of germanium.
  • Apparatus for indiffusing dopants into a semiconductor material which comprises a heatable tube of the same semiconductor material in which the semiconductor material is accommodated and in which the doping substance is found, the wall of the tube is from 0.5 to 20 mm thick, is virtually gas-tight under diffusion conditions, a relatively narrow high conductivity ring is on said heatable tube, and an induction coil surrounds the circumference of said heatable tube.
  • the tube is of a semiconductor material selected from silicon, germanium, silicon carbide, tungsten carbide, titanium carbide, indium phosphide, gallium arsenide and boron nitride.
  • each end of said tube is covered with a lid of the same semiconductor material as said tube.
  • each of said stoppers being formed with an opening, the opening in one of said stoppers serving for the introduction of doping substance.

Abstract

Apparatus for indiffusing dopant into a semiconductor material. The apparatus comprises a heatable tube of the same semiconductor material, the wall of which is from 0.5 to 20 mm thick and is gas-tight under reaction conditions. Heating means include an induction coil spaced from the heatable tube and a relatively narrow graphite ring fixed about the tube to accelerate such heating.

Description

United States Patent 11 1 Reuschel et al.
APPARATUS FOR INDIFFUSING DOPANTS INTO SEMICONDUCTOR MATERIAL Inventors: Konrad Reuschel, Vaterstetten;
Wolfgang Keller, Pretzfeld; Arno Kersting, Erlangen; Reimer Emeis, Ebermannstadt, all of Germany Assignee: Siemens Aktiengesellschaft,
Berlin/Munich, Germany Filed: Oct. 5, 1972 Appl. No.: 295,173
Related U.S. Application Data Continuation of Ser. No. 50,087, June 26, 1970, abandoned.
Foreign Application Priority Data June 30, 1969 Germany 1933128 u.s. c1 118/49, 13/26, 219/1049 Int. Cl. C23c 13/08 Field of Search 118/48-49.5;
1111 3,868,924 Mar. 4, 1975 Primary E.\'aminerMorris 'Kaplan Attorney, Agent, or FirmHerbert L. Lerner ABSTRACT Apparatus for indiffusing dopant into a semiconductor 'material. The apparatus comprises a heatable tube of the same semiconductor material, the wall of which is from 0.5 to 20 mm thick and is gas-tight under reaction conditions. Heating means include an induction -coi1 spaced from the heatable tube and a relatively narrow graphite ring fixed about the tube to accelerate such heating.
4 Claims, 2 Drawing Figures APPARATUS FOR INDIFFUSING DOPANTS INTO SEMICONDUCTOR MATERIAL This is a continuation, of application Ser. No. 50,087, filed June 26, l970, and now abandoned.
A known apparatus for indiffusing dopants into a semiconductor material comprises a scalable graphite tube wherein both wafers of the semiconductor material to be coated, and the dopant substance are accommodated. To effect diffusion, the graphite tube is connected to voltage and heated to diffusion temperature. The heated graphite tube is surrounded by a quartz tube, through which an inert gas is passed. This inert gas cools the quartz tube and thus prevents impurities in the atmosphere from contacting the semiconductor material to be coated.
The construction of this apparatus is relatively expensive, however. Moreover, the semiconductor material must not come into contact with the graphite tube since, at the diffusion temperatures the carbon reacts undesirably with the semiconductor material. Hence, the graphite tube is provided with special holders, which prevent the semiconductor wafers and the graphite tube from contacting each other.
It is also known to diffuse dopants into a semiconductor material by utilization of quartz tubes or quartz ampules which are heated in a diffusion furnace. The use of quartz tubes or ampules entails similarly, the problem of preventing the semiconductor wafers from contacting the quartz. To this end, a support disc is usually provided between to semiconductor wafers in such a quartz tube. The semiconductor wafers are so pressed in between the support disc that they do not contact the quartz tube at any point along its circumference. The use of a plurality of such support discs naturally results in less semiconductor wafers being doped during one operating process. The use of quartz tubes also has the disadvantage that the diffusion temperature is limited to approximately l,200 C. since at this temperature, quartz softens. The supporting discs prevent the quartz tube from compressing the wafers to be diffused and from damaging them when the quartz tube, following diffusion, is removed. The diffusion speed is relatively low at l,200 C. The use of quartz tubes, moreover, demands special diffusion furnaces, since neither direct heating nor induction heating is applicable.
it had also been suggested to provide a heatable tube of the same semiconductor material, instead of a quartz or graphite tube, for diffusion to take place. This type of tube can withstand higher temperatures than a tube of quartz or graphite for example, thus allowing the diffusion process to be accelerated. Furthermore, the material to be coated may come into contact with the tubular wall without producing adverse results. The semiconductor tube of the prior art, is installed into a vacuum chamber, wherein the tube is heated to effect diffusion.
Our invention is to devise an arrangement of the aforedescribed type, which makes such a vacuum chamber superfluous, thus simplifying the apparatus. Our invention starts with apparatus for the indiffusion of dopants into a semiconductor material provided with a heatable tube consisting of the same semiconductor material. The invention is characterized by the fact that the wall of the tube is 0.5 to 20 mm thick and therefore virtually gas-tight under the indiffusion conditions. The tube is preferably a bored out rod of a crystalline semiconductor material. it may also consist, however, of semiconductor material precipitated through thermal dissociation of a gaseous compound of the semiconductor material, on a heated carrier body, with the carrier body being removed following precipitation of the semiconductor material.
' Preferably, the tube itself constitutes the heating body. For this purpose, its ends may be provided with electrodes or they may be enclosed by an induction coil. To facilitate the heating up of the tube, during induction heating, a ring of material with good conductance properties may be placed upon the tube. The tube may be sealed on both sides for carrying out the diffusion process. The dopant and the semiconductor material are placed into the interior of the tube, prior to the sealing thereof, However, the tube may also be open on both sides, and the dopant together with an inert carrier gas, traversing the tube.
The invention further illustrated by the drawing, in which:
FIG. 1 shows a longitudinal section through a first embodiment of the invention; and
FIG. 2 shows a longitudinal section through another embodiment of the invention.
The arrangement of FIG. 1 has, primarily, a tube 1 of a crystalline semiconductor material, for example silicon which may have a wall thickness of about 0.5 to 20 mm. A ground section 2 is provided at its left end, of the tube 1 with ground stopper 3, e.g., of quartz fitted thereinto. The stopper 3 has an opening 4 to the interior 5 of the tube 1. The right side of the tube 1 has a ground section 7 with a stopper 6 hermetically fitted thereinto. The stopper 6 has an opening 8, which connects to the interior 5 of the tube. The interior 5 of the tube 1 contains semiconductor wafers ll, e.g., of silicon, which are held in their position by two support discs 9 and 10. The support discs are preferably of the same semiconductor material as discs 11, but may be of another material such as ceramic. The tube 1 is provided in the vicinity of its ends, with two annular electrodes 12 and 13, which have leads 14 or 15 connected to a voltage source (not shown in detail).
The diffusion process is effected by first of all arranging the semiconductor wafers 11 between support discs 9 and 10, in the interior of the tube 1. Thereafter, stoppers 3 and 6 are gas-tightly placed in the tube and the nipples 4 or 8 of stoppers 3 and 6 respectively are connected to the dopant source. The other nipple serves as the waste outlet. The doping substance is preferably carried by an inert gas, e.g., argon, through the interior of the tube. If n-doping is desired, a preferred substance is phosphorus in the form of P 0 PC];, or (PNCI PH is also a suitable dopant. The carrier gas may be a noble gas such as argon or helium or another inert gas.
To obtain required diffusion temperature, a voltage source is applied to the tube 1 via both electrodes 12 and 13 and both leads l4 and 15. The voltage is such that the current required for heating-up tube 1 flows. In addition to being dependent upon the dimensions of the tube, the voltage also depends on the conductivity of the semiconductor material.
If a highly-doped semiconductor material, which is relatively easy to produce, is used for the tube, the voltage required for starting the heating-up process, can be relatively low. When a certain heating-up temperature is attained, the conductivity of the tube then becomes independent of the doping of the semiconductor material and is essentially determined by the dimensions of the tube.
The tube is preferably of the same semiconductor material, as wafers-ll. For example, when the wafers 11 comprise silicon, a tube of crystalline silicon is employed. Such a tube can be created by drilling out a rod of crystalline silicon. The tube may also comprise silicon which is precipitated through thermal dissociation of a gaseous compound of the silicon, on a heated carrier body, with the carrier body being removed following the precipitation of the silicon. Contrary to layers of sintered silicon, this precipitated layer of crystalline silicon, is highly gas-impermeable, at an appropriate wall thickness. Thus, for example, in a tube having a wall thickness of 2 mm, a tubular length of 150 mm and an inner diameter of 20 mm, a leakage rate of only 3-I0' Torr liter/s, was established. Satisfactory results were obtained even at a wall thickness of about 0.5 mm. The upper limit is about mm since no further improvements can be obtained above this limit.
The use of a silicon tube has the further advantage that it is heatable to much higher temperatures than quartz, without the resulting loss of its mechanical stability and its gas impermeability, as in the case of the former. In practice this means that the diffusion process may be fundamentally accelerated compared to a diffusion in a quartz tube or a quartz ampule. Since the semiconductor wafers 1, in this instance the silicon wafers, do notenter into a chemical reaction with the silicon of the tube 1, the latter may be seated directly on the wall of the tube 1. It is sufficient, therefore, to provide only two support discs, as holders for the wafers.
FIG. 2 shows another embodiment according to the invention. This arrangement is essentially a tube 18, consisting of an homogenous, crystalline semiconductor material, for example silicon. The tube 18 is gastightly sealed with two lids l9 and 20, which consist of the same semiconductor material. The tube 18 is surrounded by induction coil 21. A ring 22 of a material with good conductance properties, such as graphite, is seated upon the tube 18. The interior of the tube 18 is provided with two support discs 23 and 24, with semiconductor wafers 25, for example of silicon arranged therebetween. A boat 26 holding the dopant is in the interior of the tube. This boat consists preferably of the same material as the tube 18.
Firstly, the lid 20 is placed upon the tube and welded gas-tightly to the tube 18, in a vacuum or protective gas, with the aid of high-frequency energy. Thereafter, the boat 26, the support discs 23 and 24 and the semiconductor wafers 25, are placed into the tube interior. Finally, lid 19 is placed upon the tube and is welded gas-tightly with the tube 18 in a vacuum or in protective gas with the aid of high-frequency energy. Thereafter, a high-frequency voltage is applied to the induction heating zone, starting from the zone of the tube adjacent to the graphite ring, expands across the entire length of the tube. The'temperature of the tube is determined thereby, by the high-frequency current.
The same advantage as for embodiment according to FIG. 1 therefore applies for the embodiment according to FIG. 2. Here too, a considerably higher diffusion temperature and thus a higher diffusion-speed can be obtained than for example, in a quartz ampule. The semiconductor wafers 25, for example of silicon, may be seated without difficulty on the wall of the tube 18 when the tube also consists of silicon, for instance. No chemical reaction occurs then between the silicon wafers and the tubular wall.
Embodiments other than those shown in FIGS. 1 and 2 are feasible. It is possible, for example, to use the resistance heat shown in FIG. 1 in a completely closed tube according to FIG. 2. Conversely, an open tube of a compound of the dopant, passed by a carrier gas, according to FIG. 1, may also be heated by an induction heat, according to FIG. 2. The invention is not limited to a device for the diffusion of wafers comprising silicon, with tubes made of silicon. It is also possible to use tubes of for example, silicon carbide, tungsten carbide, titanium carbide, indium phosphide, gallium arsenide, boron nitride of germanium.
We claim:
1. Apparatus for indiffusing dopants into a semiconductor material which comprises a heatable tube of the same semiconductor material in which the semiconductor material is accommodated and in which the doping substance is found, the wall of the tube is from 0.5 to 20 mm thick, is virtually gas-tight under diffusion conditions, a relatively narrow high conductivity ring is on said heatable tube, and an induction coil surrounds the circumference of said heatable tube.
2. The apparatus of claim 1, wherein the tube is of a semiconductor material selected from silicon, germanium, silicon carbide, tungsten carbide, titanium carbide, indium phosphide, gallium arsenide and boron nitride.
3. The apparatus of claim 2, wherein each end of said tube is covered with a lid of the same semiconductor material as said tube.
4. The apparatus of claim 2 including stopper closing each end of said tube, each of said stoppers, being formed with an opening, the opening in one of said stoppers serving for the introduction of doping substance.

Claims (4)

1. APPARATUS FOR INDIFFUSING DOPANTS INTO A SEMICONDUCTOR MATERIAL WHICH COMPRISES A HEATABLE TUBE OF THE SAME SEMICONDUCTOR MATERIAL IN WHICH THE SEMICONDUCTOR MATERIAL IS ACCOMMODATED AND IN WHICH THE DOPING SUBSTRATE IS FOUND, THE WALL OF THE TUBE IS FROM 0.5 MM THICK, IS VIRTUALLY GAS-TIGHT UNDER DIFFUSION CONDITIONS, A RELATIVELY NARROW HIGH CONDUCTIVITY RING IS ON SAID HEATABLE TUBE, AND AN INDUCTION COIL SURROUNDS THE CIRCUMFERENCE OF SAID HEATABLE TUBE.
2. The apparatus of claim 1, wherein the tube is of a semiconductor material selected from silicon, germanium, silicon carbide, tungsten carbide, titanium carbide, indium phosphide, gallium arsenide and boron nitride.
3. The apparatus of claim 2, wherein each end of said tube is covered with a lid of the same semiconductor material as said tube.
4. The apparatus of claim 2 including stopper closing each end of said tube, each of said stoppers, being formed with an opening, the opening in one of said stoppers serving for the introduction of doping substance.
US295173A 1969-06-30 1972-10-05 Apparatus for indiffusing dopants into semiconductor material Expired - Lifetime US3868924A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US295173A US3868924A (en) 1969-06-30 1972-10-05 Apparatus for indiffusing dopants into semiconductor material
US05/525,176 US4020791A (en) 1969-06-30 1974-11-19 Apparatus for indiffusing dopants into semiconductor material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19691933128 DE1933128C3 (en) 1969-06-30 1969-06-30 Tube for diffusing dopants into semiconductor bodies
US5008770A 1970-06-26 1970-06-26
US295173A US3868924A (en) 1969-06-30 1972-10-05 Apparatus for indiffusing dopants into semiconductor material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US5008770A Continuation 1969-06-30 1970-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/525,176 Division US4020791A (en) 1969-06-30 1974-11-19 Apparatus for indiffusing dopants into semiconductor material

Publications (1)

Publication Number Publication Date
US3868924A true US3868924A (en) 1975-03-04

Family

ID=27182016

Family Applications (1)

Application Number Title Priority Date Filing Date
US295173A Expired - Lifetime US3868924A (en) 1969-06-30 1972-10-05 Apparatus for indiffusing dopants into semiconductor material

Country Status (1)

Country Link
US (1) US3868924A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263336A (en) * 1979-11-23 1981-04-21 Motorola, Inc. Reduced pressure induction heated reactor and method
EP0355658A2 (en) * 1988-08-15 1990-02-28 Shin-Etsu Chemical Co., Ltd. Semiconductor diffusion furnace inner tube
US5645744A (en) * 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5728309A (en) * 1991-04-05 1998-03-17 The Boeing Company Method for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5808281A (en) * 1991-04-05 1998-09-15 The Boeing Company Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals
US20080127894A1 (en) * 2001-10-30 2008-06-05 Joseph John Sumakeris Housing assembly for an induction heating device including liner or susceptor coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936246A (en) * 1958-03-26 1960-05-10 Gen Electric Burn-resistant phosphors and the method of preparation thereof
US2948635A (en) * 1959-01-12 1960-08-09 Gen Electric Phosphor evaporation method and apparatus
US3099579A (en) * 1960-09-09 1963-07-30 Bell Telephone Labor Inc Growing and determining epitaxial layer thickness
US3293074A (en) * 1963-11-05 1966-12-20 Siemens Ag Method and apparatus for growing monocrystalline layers on monocrystalline substrates of semiconductor material
US3492969A (en) * 1966-02-25 1970-02-03 Siemens Ag Apparatus for indiffusing impurity in semiconductor members

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936246A (en) * 1958-03-26 1960-05-10 Gen Electric Burn-resistant phosphors and the method of preparation thereof
US2948635A (en) * 1959-01-12 1960-08-09 Gen Electric Phosphor evaporation method and apparatus
US3099579A (en) * 1960-09-09 1963-07-30 Bell Telephone Labor Inc Growing and determining epitaxial layer thickness
US3293074A (en) * 1963-11-05 1966-12-20 Siemens Ag Method and apparatus for growing monocrystalline layers on monocrystalline substrates of semiconductor material
US3492969A (en) * 1966-02-25 1970-02-03 Siemens Ag Apparatus for indiffusing impurity in semiconductor members

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263336A (en) * 1979-11-23 1981-04-21 Motorola, Inc. Reduced pressure induction heated reactor and method
EP0355658A2 (en) * 1988-08-15 1990-02-28 Shin-Etsu Chemical Co., Ltd. Semiconductor diffusion furnace inner tube
EP0355658A3 (en) * 1988-08-15 1990-11-22 Shin-Etsu Chemical Co., Ltd. Semiconductor diffusion furnace inner tube
US5645744A (en) * 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5728309A (en) * 1991-04-05 1998-03-17 The Boeing Company Method for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5808281A (en) * 1991-04-05 1998-09-15 The Boeing Company Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals
US20080127894A1 (en) * 2001-10-30 2008-06-05 Joseph John Sumakeris Housing assembly for an induction heating device including liner or susceptor coating
US7390367B1 (en) * 2001-10-30 2008-06-24 Cree, Inc. Housing assembly for an induction heating device including liner or susceptor coating
US20090136686A1 (en) * 2001-10-30 2009-05-28 Cree, Inc. Methods for Controllably Induction Heating an Article
US9155131B2 (en) 2001-10-30 2015-10-06 Cree, Inc. Methods for controllably induction heating an article

Similar Documents

Publication Publication Date Title
US4263336A (en) Reduced pressure induction heated reactor and method
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
US4293589A (en) Process for high pressure oxidation of silicon
US4760244A (en) Apparatus for the treatment of semiconductor materials
US5155062A (en) Method for silicon carbide chemical vapor deposition using levitated wafer system
US4020791A (en) Apparatus for indiffusing dopants into semiconductor material
US3492969A (en) Apparatus for indiffusing impurity in semiconductor members
US3868924A (en) Apparatus for indiffusing dopants into semiconductor material
US3705567A (en) Device for indiffussing dopants into semiconductor wafers
JP2001518706A (en) Method for thermally recovering silicon carbide semiconductor doped by implantation
US2845374A (en) Semiconductor unit and method of making same
JP3689069B2 (en) SiC wafer oxidation system
US3188373A (en) Device for zone melting
US3589953A (en) Vapor diffusion system for semiconductors
US3974561A (en) Method of producing directly heatable hollow semiconductor bodies
US3658032A (en) Reactor for the formation of material on a substrate
US3962670A (en) Heatable hollow semiconductor
US3477959A (en) Method and apparatus for producing doped,monocrystalline semiconductor materials
US3235418A (en) Method for producing crystalline layers of high-boiling substances from the gaseous phase
US3377216A (en) Method for indiffusion of foreign material into a monocrystalline semiconductor member
JPS6224630A (en) Formation of thermal oxidation film and device therefor
US3392193A (en) Gallium arsenide semiconductor doped with chromium and a shallow acceptor impurity
JP3240180B2 (en) Heat treatment equipment
US3275557A (en) Method of making mercury-doped germanium semiconductor crystals
JP3240187B2 (en) Heat treatment method and vertical heat treatment apparatus used therefor