US3868313A - Cathodic protection - Google Patents

Cathodic protection Download PDF

Info

Publication number
US3868313A
US3868313A US334317A US33431773A US3868313A US 3868313 A US3868313 A US 3868313A US 334317 A US334317 A US 334317A US 33431773 A US33431773 A US 33431773A US 3868313 A US3868313 A US 3868313A
Authority
US
United States
Prior art keywords
cathodic protection
coating
paint
protection system
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US334317A
Inventor
Philip James Gay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BC PRODUCTS INTERNATIONAL Inc A CORP OF NEW YORK
Original Assignee
Philip James Gay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB877172A external-priority patent/GB1324676A/en
Application filed by Philip James Gay filed Critical Philip James Gay
Application granted granted Critical
Publication of US3868313A publication Critical patent/US3868313A/en
Assigned to BC PRODUCTS INTERNATIONAL, INC., A CORP. OF NEW YORK reassignment BC PRODUCTS INTERNATIONAL, INC., A CORP. OF NEW YORK ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GAY, PHILIP, J.,
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions

Definitions

  • the system comprises an electrically insulating coating on the metal substrate and an electrically con- [56] References cued ducting coating applied over the insulating coating, a
  • the anodic current isreduced and the cathodic current increased.
  • the corrosion current of the couple can be reduced to zero if the cathode is polarized down to the unpolarized potential of the anode.
  • a supply of electrons to protect a corroding metal can be provided from a DC. source, the negative terminal of which is joined to the metal to be protected and the positive terminal to an anode, for example, scrap iron or graphite, located adjacent the metal to be protected and in a conducting medium.
  • a DC. source the negative terminal of which is joined to the metal to be protected and the positive terminal to an anode, for example, scrap iron or graphite, located adjacent the metal to be protected and in a conducting medium.
  • cathodic protection systems One disadvantage with known cathodic protection systems is that the anodes must be immersed or buried in a conducting electrolytic medium and there must be a continuous conducting medium between the anodes and the metal to be protected.
  • the known systems cannot, therefore, be applied to metal exposed to an air environment, such as structural steelwork for buildings.
  • a further disadvantage is that the anodes are of small size in relation to the metal to be protected, and in many cases are somewhat remote. Much of the driving potential is, therefore, absorbed in overcoming the resistance of the medium which, in the case of land based structures, can vary widely. Current distribution at the metal surface is, therefore, variable. Generally the greatest current density appears at the parts of the metal nearest to the anodes. Moreover there is always danger from interference by and with other metal structures and considerable study has to be made to overcome such interference. So important is this matter, particularly with pipelines in industrial areas, that it is sometimes deemed necessary to provide strip anodes of aluminium or other metal in an adjacent trench alongside pipelines.
  • a cathodic protection system whichcomprises a metal to be protected, an electrically non-conductive coating applied over the metal, an electrically-conductive coating applied over the non-conductive coating such that the metal and the electrically-conductive coating are electrically insulated one from the other, a source of DC. voltage being applied between the metal and the electrically-conductive coating such that the electrically-conductive coating is anodic with respect to the metal.
  • a permanent impressed current electrode is applied close to all parts of'the steel surface.
  • any part of the steel is subjected to corrosive influences as by damage to the protective coating or by its saturation with aggressive aqueous solutions that part of the anode closest to the point of potential corrosion becomes effective.
  • the resistance of the circuit is independent of the resistance of the surrounding medium except at the immediate point of damage since virtually the whole of the impressed current is carried by the conductive paint layer. It is, therefore, not necessary to apply excessive potential to overcome the resistance of the surrounding medium.
  • the anode and cathodic steel are so close that sufficient electrolyte to maintain the protective current can be supplied by a film of condensed moisture, or by rain or condensed water droplets.
  • the system operates with equal effect when the conducting medium at the point of damage is damp soil or aqueous solution such as seawater in bulk.
  • the system is effective for underwater protection, underground protection and overground protection. Because of the continuous close proximity between anode and cathode there is no requirement for long throw (the distance over which current from the anodes is effective) to give protection, and the system is effective on the insides of water carrying pipes.
  • the metal such as steel to be protected is first prepared and coated according to a known method typically by blast cleaning through the impact of high velocity grit, abrasive slag or shot to remove mill scale, rust etc., or by chemically pickling using an inhibited acid solution or other chemical process. Alternatively the metal may be cleaned by manual means to the required standard. After cleaning the metal'may be further chemically treated as by a phosphate or chromate dip. Following the prescribed treatment the metal is coated with an electrically insulating type material. Apart from this, there is no limitation beyond the normal known requirements of metal protection.
  • Suitable coating materials are bituminous compositions, many types of paints, particularly, though not necessarily, those based on epoxy resins or chlorinated rubber, natural'and synthetic rubber, polyvinyl chloride, and other synthetic resins, and certain wrapping materials.
  • the above-mentioned protective coating which may be a single or multiple application is then overcoated with an electrically-conductive paint.
  • the coating must be applied in such a way that it is not in direct contact with the steel to be protected, and should cover either the whole surface to be protected or such part as is deemed necessary to give the required protection.
  • the conductive paint thickness is such as to produce the required conductivity of the surface. In general, low resistivity is desirable for protecting large areas or long lengths, but very low resistivity is not always necessary nor economically suitable.
  • a resistivity of not more than 200 ohms per square i.e. per square measuring one foot by one foot
  • resistivity of below 20 ohms per foot square gives more control of the process.
  • the conductive paints need to be durable in the conditions of use and particular types must be used with this in view so that sometimes it is necessary to sacrifice a measure of conductivity to maintain durability.
  • Certain metal pigmented paints are suitable for use with the present invention, though the selection of a particular type will depend upon the conditions to which the system is to be exposed. Non-metallic conductive paints are preferred to avoid loss of anode and of conductivity.
  • .plasticiser such as cereclor S52 and 60 percent by weight of an aromatic hydrocarbon solvent having a boiling range of 165 to 185C, such as shellsol A; 3 to 4 percent by weight of a dispersible gas carbon black pigment such as carbon black XC 72; 0.2 to 0.25 percent by weight of an N-alkyltrimethylene diamine such as duomeen TDO; and 26 to 30 percent by weight of the aromatic solvent.
  • a dispersible gas carbon black pigment such as carbon black XC 72
  • an N-alkyltrimethylene diamine such as duomeen TDO
  • 26 to 30 percent by weight of the aromatic solvent to percent by weight graphite is then added and fully dispersed by furthergrinding.
  • the composition is then thinned to the required consistency with more of the aromatic solvent.
  • the electrical resistivity of a coating of chlorinated rubber paint depends on the carbon content in the dried film. At 33 percent by volume of pigment in the dried film, the resistivity is 10 to 12 ohms per foot square at 50 microns film thickness.
  • a typical epoxy ester paint is' formed by mixing 0.02 grms rosaniline base (an amine dyestuff base) with 18.3 grms of a 60 percent by weight solution of a linseed oil fatty acidester of epoxy resin and warming the mixture to 100C, 6 to 8 grms of carbon black XC 72, to 35 grms of white spirit and to grms xylol are then added and the whole is ground in a pebble mill for at least 24 hours, 12 to 16 grms ofacoarse pigment grade lamellar graphite such as graphite foliac X1204 is then added and the mixture is further ground until the graphite is fully dispersed.
  • An epoxy ester paint having apigment content of percent by volume in a dried film has an electrical resistivity of 7 ohms per foot square at microns film thickness.
  • Chemically cured pitch epoxy paint is formed in two packs, pack A typically being formed by grinding together 3 to 4 percent by weight of carbon black XC72, 15 to 20 percent by weight of a coarse pigment grade lamellar graphite such as graphite 1525, 18 to 25 percent by weight of a 5 to 1 by weight mixture of xylol and N-butanol, and a medium which comprises 14.3
  • an epoxy resin such as epikote resin 1001, having an epoxy equivalent 450 to 525,
  • an epoxy resin such as epikote resin 828, having an epoxy equivalent of 175 to 210, 40 to 50 percent by weight of a coal tar pitch, such as orgol pitch which has viscosity of approximately 100 poise at 155C, 20 to 25 percent by weight xylol, and 3 to 6 percent by weight of N-butanol.
  • Pack B comprises 93.5 percent by weight of a 50 percent by weight solution of beckalide resin (a polyamide resin of amine number 140 to 150) in a solvent such as 5 to l by weight xylol and N-butanol or 4 to l by weight xylol and propanol, and 6.5 percent by weight of a curing agent such as curing agent K54 which is 2:4:6 tris(- dimethylaminomethyl)phenol.
  • Pack B is added to pack A in a ratio to give optimum reaction with the epoxy resin.
  • the electrical resistivity of such a paint is 300 ohms per foot square at 50 microns dry film thickness and 80 ohms per foot square at 125 microns dry film 4 thickness, at 42.5 percent by volume pigment content in the dried film.
  • a sufficient pigment content must be used to give a sufficiently low electrical resistivity.
  • the lower limit of resistivity for a given film thickness is determined by a fall off in durability of the film at pigment contents in excess of 50 percent by volume in the dried film.
  • the useful range of dry film resistivity is in the order of l to 1,000 ohms per foot square.
  • connection with the conductive paint coating may be made either by (a) connecting the supply cables to bus-bars which are held in close electrical contact with the paint coating while it is still tacky and bolted to the structure with insulated bolts, washers and sleeves or (b) by welding or soldering connecting cables to metal foil embedded in the coating while it is wet, or (c) by embedding connecting cables in a suitable conductive mastic adhering to the paint coating.
  • the electrically-conductive paint coating may be further overcoated with decorative paint as required for special effects, though'such over-coating is not necessary for protection.
  • the anodic electrically-conductive paint coat acts as the middle layer of a sandwich.
  • the cathodic protection system does not operate and no current is consumed.
  • the electrically conductive coating op erates as anode when wet, and so prevents corrosion.
  • the anode coating itself is non-corrodible and so is not wasted. A single droplet of water falling on a crack in the protective coating system or on edges where the coating may have broken down, will provide the electrolyte for the current, and protect the wet area which would normally corrode.
  • Composition 1 Chlorinated Rubber Paint Medium 39.7% Carbon Black XC72 3.6% Duomeen TDO 0.2% Shellsol A 27.9% Grind all the above in a pebble mill for 24 hours.
  • This paint has a resistance of 10 to 12 ohms per foot square when applied at 50 microns dry film thickness and 4 to 5 ohms'per foot square when applied at 125 microns dry film thickness. It is suitable for use in continuous immersion or atmosphere exposure.
  • Composition 2 Epoxy Ester Paint Rosaline base 0.02 grms mixed with a 60% solution of Epoxy Ester in white spirit 18.3 grms and warmed to 100C Carbon Black XC72 6.9 grms White Spirit 29.0 grms Xylol 32.0 grms are added and the mixture is ground together in a pebble mill for at least 24 hours Graphite Foliac X2104 13.8 grms is then added and the mixutre further ground until the Graphite is dispersed.
  • This paint has a resistance of approximately 7 ohms per foot square when applied at a dry film thickness of 50 microns. It is suitable for use on metal frequently wet but not for continuous immersion.
  • Composition 3 Chemically Cured Pitch Epoxy Paint This paint consists of two packs. Pack A, this base paint, is made as follows:
  • EXAMPLE 1 A steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard SlS.05.59.00.l967 Sa2 /z and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer. Two or three coats of a non-metal-pigmented chemically cured epoxy enamel were applied to the primed surface at such thickness that the metal was fully covered and electrically insulated. One good coat of electrically conductive chlorinated rubber paint was then applied at 50 microns dry film thickness. A second coat of the conductive paint was then over a band onto which a bus-bar was fitted.
  • an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer.
  • Two or three coats of a non-metal-pigmented chemically cured epoxy enamel were applied to the primed surface at such thickness that the metal was fully covered and electrically insulated.
  • One good coat of electrically conductive chlorinated rubber paint was then applied at 50 micron
  • Fabric or metal foil was embedded into the paint and laid in-contact with the bus-bar, the bus-bar and fabric or foil then being overpainted with the conductive EXAMPLE 2
  • a steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard SlS.05.59.00. 1967 Sa 2 /2 and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer.
  • An alkali resisting blast primer such as a chemically cured epoxy resin based blast primer.
  • Two or three coats of non-metalpigmented chlorinated rubber paint were applied so that the metal was fully covered and electrically insulated.
  • One good coat of electrically conductive chlorinated rubber paint was then applied at 50 microns dry film thickness.
  • a second coat of the conductive paint was applied over a band onto which a bus-bar was fitted.
  • Fabric or metal foil was embedded into the paint and laid in contact with the bus-bar, the bus-bar and fabric or foil thenbeing overpainted with the conductive paint.
  • the bus-bar and the steel structure were then connected across a DC. electrical supply with the conductive paint coating anodic with respect to the steel structure.
  • EXAMPLE 3 A steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard 515.05.59.00. 1967 Sa 2 /2 and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer. Oleo resin varnish based primers and undercoats, not metal-pigmented. were applied so that the metal surface was fully covered and electrically insulated. One or two good coats of electrically conductive epoxy ester paint were then applied to give a minimum dry film thickness of conductive paint of 50 EXAMPLE 4 thickness. A second coat of the conductive paint was applied over a band onto which a bus-bar was fitted.
  • an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer.
  • Oleo resin varnish based primers and undercoats, not metal-pigmented. were applied so that the metal surface was fully covered and electrically insulated.
  • One or two good coats of electrically conductive epoxy ester paint were then applied to give a minimum dry film
  • Fabric or metal foil was embedded into the paint and laid in contact with the bus-bar the bus-bar and fabric or foil then being overpainted with the conductive paint.
  • a decorative paint was applied over that part of the surface not to be immersed in water, completely covering the conductive paint and the bus-bar, but leaving terminals on the bus-bar clean for electrical connections.
  • the bus-bar and the steel structure were then connected across a D.C. electrical supply with the conductive paint coating anodic with respect to the steel structure.
  • the drawings show asteel sheet 10 which has been provided with a cathodic protection system in accordance with the invention.
  • the surface of the sheet 10 intended to be exposed to a corrosive environment has a first coating 12 of electrically insulating paint and a second, overlying coating 14 of electrically conducting paint.
  • An electrically conducting bus-bar 16 is fixed to the sheet 10 so as to be in intimate electrically conducting contact with the conducting layer l4.
  • a further coating 18 of electrically conducting paint is applied over the bus-bar l6 and the adjacent region of the coating 14, a layer of sheet material such as fabric or foil being embedded in the coating 18.
  • the bus-bar 16 is secured to the steel sheet 10 by bolts 20 and nuts 22 which are electrically insulated from the sheet 10 by insulating sleeves 24 and insulating washers 26 respectively.
  • the nut and bolt assemblies are protected at their exposed ends by an electrically insulating covering 28 ofa material such as mastic or an epoxy resin.
  • a D.C. electrical supply (not shown) is applied across the bus-bar l6 and steel sheet 10 with the busbar anodic with respect to the steel sheet. Electrical connection is made to the bus-bar 16 by way of a connector 30 and to the steel sheet by, for example, welding or mechanical means;
  • the system thus provides an anode which is normally insulated from but is disposed very close to the entire surface of a cathodic substrate. Cathodic protection of the substrate only becomes effective when the insulation between the anode and the substrate breaks down owing, for example, to physical damage or pore form ation.
  • an anode for providing cathodic protection is immediately available at any point on the protected substrate surface when required. As the insulating layer between the anode and the substrate is very thin, even moisture condensation from the atmosphere can be sufficient to provide the necessary electrolyte link between the anode and substrate.
  • a cathodic protection system comprising a metal to be protected, an electrically non-conductive coating applied in fluid form over the metal, an electrically conductive coating applied in fluid form over the nonconductive coating, said conductive coating being rendered electrically conductive by the incorporation of elemental carbon therein, such that the metal and electrically conductive coating are electrically insulated one from the other, a source of D.C. voltage being connected between the metal and the electrically conductive coating such that the electrically conductive coating is anodic with respect to the metal.
  • a cathodic protection system according to claim 1, wherein said conductive coating is a paint composition
  • a cathodic protection system according to claim 2 in which the electrically conductive coating has a resistivity of up to 1,000 ohms/ft. sq.
  • a cathodic protection system according to claim 2 wherein the conductive paint composition is a carbon-containing chlorinated rubber paint.
  • a cathodic protection system according to claim 2 wherein the conductive paint composition is a carhon-containing epoxy ester paint.
  • a cathodic protection system in which the conductive paint composition is a carhon-containing chemically cured pitch epoxy paint.
  • a cathodic protection system according to claim 1 wherein there is another coating over the electrically conductive coating.
  • a cathodic protection system according to claim 1 in which the D.C. voltage source is of sufficient size to provide sufficient voltage to liberate chlorine from sea water.
  • a cathodic protection system according to claim 9 wherein the D.C. voltage source is of a size sufficient to provide at least 1.4 volts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A cathodic protection system for a metal substrate has an anode which is normally electrically insulated from the substrate but which is disposed very close to the substrate. Cathodic protection only becomes effective when the electrical insulation breaks down and the metal substrate would otherwise be subject to corrosion. The system comprises an electrically insulating coating on the metal substrate and an electrically conducting coating applied over the insulating coating, a D.C. voltage being applied between the metal substrate and the conductive coating. The conductive coating or the insulating coating or both may be paint, the conductive layer being rendered conductive by the incorporation of an electrically conductive material such as elemental carbon.

Description

United States Patent 1 1111 3,868,313 Gay Feb. 25, 1975 [54] CATHODIC PROTECTION 3,623,968 11/1971 Bohne 204/197 3,798,142 3 1974 E 2 4 196 [76] Inventor: Philip James Gay, 91 Newland Park, vans 0 I Yorkshlre England Primary Examiner-T. Tung [22] Filed: Feb. 21, 1973 Attorney, Agent, or Firm-Hall and Myers 21 A l. No.1334 317 1 pp 57 ABSTRACT A cathodic protection system for a metal substrate has [30] Forelgn Apphcamm r Data an anode which is normally electrically insulated from Feb. 25, 1972 Great Britain 8771/72 the Substrate but which is disposed very close to the substrate. Cathodic protection only becomes effective [52] US. Cl. 204/196, 204/147 when the electrical insulation breaks down and the [51] I111. Cl. C23f 13/00 metal substrate would Otherwise be Subject to Corro [58] held of Search 204/147, 197 sion. The system comprises an electrically insulating coating on the metal substrate and an electrically con- [56] References cued ducting coating applied over the insulating coating, a
UNITED STATES PATENTS DC. voltage being applied between the metal sub- 1,867,984 7/1932 Pistor 204 147 strate and th onductiv oating. The conductive 2,491,225 12/1949 Stearns 204/147 coating or the insulating coating or both may be paint, 3. 5 5 9 ll urn 0 /l96 the conductive layer being rendered conductive by the 204/197 incorporation of an electrically conductive material 3,354,063 11/1967 Shutt 204/148 such as elemental carbon 3,497,434 2/1970 Littauer 204/196 3,498,898 3/1970 Bogart et a1. 204/196 10 Claims, 2 Drawing Figures 30 l2 l4 2O l CATHODIC PROTECTION The present invention relates to a cathodic protection system for the protection of metals such as the steel framework of buildings, ships or pipelines.
The phenomenon of cathodic protection has been known and applied industrially for many years. In a simple form, an iron/copper couple is immersed in a sodium chloride solution and an auxiliary anode is provided in electrical contact with the couple. The auxiliary anode is capable of readily providing a supply of electrons. The dissolution of the iron is reduced and the rate of hydroxyl ion production at the copper raised, so that the potentials of both the anode and the cathode are lowered.
By impressing an external cathodic current on the v couple, the anodic current isreduced and the cathodic current increased. The corrosion current of the couple can be reduced to zero if the cathode is polarized down to the unpolarized potential of the anode.
A supply of electrons to protect a corroding metal can be provided from a DC. source, the negative terminal of which is joined to the metal to be protected and the positive terminal to an anode, for example, scrap iron or graphite, located adjacent the metal to be protected and in a conducting medium.
One disadvantage with known cathodic protection systems is that the anodes must be immersed or buried in a conducting electrolytic medium and there must be a continuous conducting medium between the anodes and the metal to be protected. The known systems cannot, therefore, be applied to metal exposed to an air environment, such as structural steelwork for buildings.
A further disadvantage is that the anodes are of small size in relation to the metal to be protected, and in many cases are somewhat remote. Much of the driving potential is, therefore, absorbed in overcoming the resistance of the medium which, in the case of land based structures, can vary widely. Current distribution at the metal surface is, therefore, variable. Generally the greatest current density appears at the parts of the metal nearest to the anodes. Moreover there is always danger from interference by and with other metal structures and considerable study has to be made to overcome such interference. So important is this matter, particularly with pipelines in industrial areas, that it is sometimes deemed necessary to provide strip anodes of aluminium or other metal in an adjacent trench alongside pipelines.
According to the present invention there is provided a cathodic protection system whichcomprises a metal to be protected, an electrically non-conductive coating applied over the metal, an electrically-conductive coating applied over the non-conductive coating such that the metal and the electrically-conductive coating are electrically insulated one from the other, a source of DC. voltage being applied between the metal and the electrically-conductive coating such that the electrically-conductive coating is anodic with respect to the metal.
Hence, a permanent impressed current electrode is applied close to all parts of'the steel surface. Where any part of the steel is subjected to corrosive influences as by damage to the protective coating or by its saturation with aggressive aqueous solutions that part of the anode closest to the point of potential corrosion becomes effective. Thus the resistance of the circuit is independent of the resistance of the surrounding medium except at the immediate point of damage since virtually the whole of the impressed current is carried by the conductive paint layer. It is, therefore, not necessary to apply excessive potential to overcome the resistance of the surrounding medium.
The anode and cathodic steel are so close that sufficient electrolyte to maintain the protective current can be supplied by a film of condensed moisture, or by rain or condensed water droplets. On the other hand the system operates with equal effect when the conducting medium at the point of damage is damp soil or aqueous solution such as seawater in bulk. Thus the system is effective for underwater protection, underground protection and overground protection. Because of the continuous close proximity between anode and cathode there is no requirement for long throw (the distance over which current from the anodes is effective) to give protection, and the system is effective on the insides of water carrying pipes.
The invention will now be described further by way of example.
The metal such as steel to be protected is first prepared and coated according to a known method typically by blast cleaning through the impact of high velocity grit, abrasive slag or shot to remove mill scale, rust etc., or by chemically pickling using an inhibited acid solution or other chemical process. Alternatively the metal may be cleaned by manual means to the required standard. After cleaning the metal'may be further chemically treated as by a phosphate or chromate dip. Following the prescribed treatment the metal is coated with an electrically insulating type material. Apart from this, there is no limitation beyond the normal known requirements of metal protection. Suitable coating materials are bituminous compositions, many types of paints, particularly, though not necessarily, those based on epoxy resins or chlorinated rubber, natural'and synthetic rubber, polyvinyl chloride, and other synthetic resins, and certain wrapping materials. The above-mentioned protective coating, which may be a single or multiple application is then overcoated with an electrically-conductive paint. The coating must be applied in such a way that it is not in direct contact with the steel to be protected, and should cover either the whole surface to be protected or such part as is deemed necessary to give the required protection. The conductive paint thickness is such as to produce the required conductivity of the surface. In general, low resistivity is desirable for protecting large areas or long lengths, but very low resistivity is not always necessary nor economically suitable. For many purposes a resistivity of not more than 200 ohms per square (i.e. per square measuring one foot by one foot) is adequate but resistivity of below 20 ohms per foot square gives more control of the process. The conductive paints need to be durable in the conditions of use and particular types must be used with this in view so that sometimes it is necessary to sacrifice a measure of conductivity to maintain durability.
Certain metal pigmented paints are suitable for use with the present invention, though the selection of a particular type will depend upon the conditions to which the system is to be exposed. Non-metallic conductive paints are preferred to avoid loss of anode and of conductivity.
.plasticiser such as cereclor S52 and 60 percent by weight of an aromatic hydrocarbon solvent having a boiling range of 165 to 185C, such as shellsol A; 3 to 4 percent by weight of a dispersible gas carbon black pigment such as carbon black XC 72; 0.2 to 0.25 percent by weight of an N-alkyltrimethylene diamine such as duomeen TDO; and 26 to 30 percent by weight of the aromatic solvent. to percent by weight graphite is then added and fully dispersed by furthergrinding. The composition is then thinned to the required consistency with more of the aromatic solvent.
The electrical resistivity of a coating of chlorinated rubber paint depends on the carbon content in the dried film. At 33 percent by volume of pigment in the dried film, the resistivity is 10 to 12 ohms per foot square at 50 microns film thickness.
A typical epoxy ester paint is' formed by mixing 0.02 grms rosaniline base (an amine dyestuff base) with 18.3 grms of a 60 percent by weight solution of a linseed oil fatty acidester of epoxy resin and warming the mixture to 100C, 6 to 8 grms of carbon black XC 72, to 35 grms of white spirit and to grms xylol are then added and the whole is ground in a pebble mill for at least 24 hours, 12 to 16 grms ofacoarse pigment grade lamellar graphite such as graphite foliac X1204 is then added and the mixture is further ground until the graphite is fully dispersed. An epoxy ester paint having apigment content of percent by volume in a dried film has an electrical resistivity of 7 ohms per foot square at microns film thickness.
Chemically cured pitch epoxy paint is formed in two packs, pack A typically being formed by grinding together 3 to 4 percent by weight of carbon black XC72, 15 to 20 percent by weight of a coarse pigment grade lamellar graphite such as graphite 1525, 18 to 25 percent by weight of a 5 to 1 by weight mixture of xylol and N-butanol, and a medium which comprises 14.3
percent by weight of an epoxy resin, such as epikote resin 1001, having an epoxy equivalent 450 to 525,
. 14.3 percent by weight of an epoxy resin, such as epikote resin 828, having an epoxy equivalent of 175 to 210, 40 to 50 percent by weight ofa coal tar pitch, such as orgol pitch which has viscosity of approximately 100 poise at 155C, 20 to 25 percent by weight xylol, and 3 to 6 percent by weight of N-butanol. Pack B comprises 93.5 percent by weight of a 50 percent by weight solution of beckalide resin (a polyamide resin of amine number 140 to 150) in a solvent such as 5 to l by weight xylol and N-butanol or 4 to l by weight xylol and propanol, and 6.5 percent by weight of a curing agent such as curing agent K54 which is 2:4:6 tris(- dimethylaminomethyl)phenol. Pack B is added to pack A in a ratio to give optimum reaction with the epoxy resin. The electrical resistivity of such a paint is 300 ohms per foot square at 50 microns dry film thickness and 80 ohms per foot square at 125 microns dry film 4 thickness, at 42.5 percent by volume pigment content in the dried film.
In each case, a sufficient pigment content must be used to give a sufficiently low electrical resistivity. The lower limit of resistivity for a given film thickness is determined by a fall off in durability of the film at pigment contents in excess of 50 percent by volume in the dried film. The useful range of dry film resistivity is in the order of l to 1,000 ohms per foot square.
Electrical connections for a directcurrent supply usually of l-2 volts, are made with the steel as for normal cathodic protection systems, and with the conductive paint coating. Connection with the conductive paint coating may be made either by (a) connecting the supply cables to bus-bars which are held in close electrical contact with the paint coating while it is still tacky and bolted to the structure with insulated bolts, washers and sleeves or (b) by welding or soldering connecting cables to metal foil embedded in the coating while it is wet, or (c) by embedding connecting cables in a suitable conductive mastic adhering to the paint coating. It is desirable in order to make use of the maximum conductive area of the paint coating, to use a linear contact such as a bus-bar rather than a point contact with the conductive paint. The electrical connections are such that the layer of conductive paint is anodic with respect to the metal. Monitoring and control are the-same as for normal cathodic protection systerns.
If required, the electrically-conductive paint coating may be further overcoated with decorative paint as required for special effects, though'such over-coating is not necessary for protection. In such cases the anodic electrically-conductive paint coat acts as the middle layer of a sandwich.
While the protective coatings are intact or in such a condition that they are not electrically-conductive when wet, the cathodic protection system does not operate and no current is consumed. When there is breakdown of the coating, or'metal is exposed, or the coating develops pores, the electrically conductive coating op erates as anode when wet, and so prevents corrosion. The anode coating itself is non-corrodible and so is not wasted. A single droplet of water falling on a crack in the protective coating system or on edges where the coating may have broken down, will provide the electrolyte for the current, and protect the wet area which would normally corrode. Thus it is not necessary to have a bulk of electrolyte for the system to be effective, and it would accordinglyafford cathodic protection against corrosion on aerial exposure as well as in immersed or buried conditions. Even when overcoated with decorative paint the exposed edge of the conductive paint is sufficient to act as an effective anode at crakcs in the film.
It has been found that when immersed in salt water under conditions of electrolysis at a potential difference of approximately 1.4 volts or greater chlorine is produced over the surface of the anodic paint coating in quantity dependent upon the current flowing. The quantity of chlorine produced can be controlled electrically and can be seen visually by bleaching action on dyestuffs placed on the surface. This offers a means of sterilising the painted surface and keeping it free from many living organisms without releasing quantities of dangerous or unpleasant materials into the environment.
The invention is further described, by way of example, with reference to the following specific compositions, and Examples, and with reference to the accompanying drawings, in which:
Composition 1 Chlorinated Rubber Paint Medium 39.7% Carbon Black XC72 3.6% Duomeen TDO 0.2% Shellsol A 27.9% Grind all the above in a pebble mill for 24 hours. Add
Graphite 17.9% and grind in the pebble mill until fully dispersed and thin with Shellsol A 10.7% The medium consists of:
Alloprene R20 30% Cereclor S52 Shellsol A 60% All percentages are by weight.
This paint has a resistance of 10 to 12 ohms per foot square when applied at 50 microns dry film thickness and 4 to 5 ohms'per foot square when applied at 125 microns dry film thickness. It is suitable for use in continuous immersion or atmosphere exposure.
Composition 2 Epoxy Ester Paint Rosaline base 0.02 grms mixed with a 60% solution of Epoxy Ester in white spirit 18.3 grms and warmed to 100C Carbon Black XC72 6.9 grms White Spirit 29.0 grms Xylol 32.0 grms are added and the mixture is ground together in a pebble mill for at least 24 hours Graphite Foliac X2104 13.8 grms is then added and the mixutre further ground until the Graphite is dispersed.
This paint has a resistance of approximately 7 ohms per foot square when applied at a dry film thickness of 50 microns. It is suitable for use on metal frequently wet but not for continuous immersion.
Composition 3 Chemically Cured Pitch Epoxy Paint This paint consists of two packs. Pack A, this base paint, is made as follows:
-Continued Composition 3 Chemically Cured Pitch Epoxy Paint Xylol To 93.6 grms of the above base paint, Pack A, is added 6.4 grms of Reactor, and after thorough mixing the paint is used immediately. The Reactor consists o Beckalide Resin 50% solution Curing Agent K54 .This paint has a resistance of 300 ohms per foot square when applied at 50 microns dry film thickness and ohms per foot square when applied at microns dry film thickness.
EXAMPLE 1 A steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard SlS.05.59.00.l967 Sa2 /z and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer. Two or three coats of a non-metal-pigmented chemically cured epoxy enamel were applied to the primed surface at such thickness that the metal was fully covered and electrically insulated. One good coat of electrically conductive chlorinated rubber paint was then applied at 50 microns dry film thickness. A second coat of the conductive paint was then over a band onto which a bus-bar was fitted. Fabric or metal foil was embedded into the paint and laid in-contact with the bus-bar, the bus-bar and fabric or foil then being overpainted with the conductive EXAMPLE 2 A steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard SlS.05.59.00. 1967 Sa 2 /2 and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer. Two or three coats of non-metalpigmented chlorinated rubber paint were applied so that the metal was fully covered and electrically insulated. One good coat of electrically conductive chlorinated rubber paint was then applied at 50 microns dry film thickness. A second coat of the conductive paint was applied over a band onto which a bus-bar was fitted. Fabric or metal foil was embedded into the paint and laid in contact with the bus-bar, the bus-bar and fabric or foil thenbeing overpainted with the conductive paint. The bus-bar and the steel structure were then connected across a DC. electrical supply with the conductive paint coating anodic with respect to the steel structure.
EXAMPLE 3 A steel structure was blast-cleaned to B.S. 4232 second quality or Swedish Standard 515.05.59.00. 1967 Sa 2 /2 and the cleaned surface primed with an alkali resisting blast primer such as a chemically cured epoxy resin based blast primer. Oleo resin varnish based primers and undercoats, not metal-pigmented. were applied so that the metal surface was fully covered and electrically insulated. One or two good coats of electrically conductive epoxy ester paint were then applied to give a minimum dry film thickness of conductive paint of 50 EXAMPLE 4 thickness. A second coat of the conductive paint was applied over a band onto which a bus-bar was fitted. Fabric or metal foil was embedded into the paint and laid in contact with the bus-bar the bus-bar and fabric or foil then being overpainted with the conductive paint. A decorative paint was applied over that part of the surface not to be immersed in water, completely covering the conductive paint and the bus-bar, but leaving terminals on the bus-bar clean for electrical connections. The bus-bar and the steel structure were then connected across a D.C. electrical supply with the conductive paint coating anodic with respect to the steel structure.
The drawings show asteel sheet 10 which has been provided with a cathodic protection system in accordance with the invention. The surface of the sheet 10 intended to be exposed to a corrosive environment, has a first coating 12 of electrically insulating paint and a second, overlying coating 14 of electrically conducting paint. An electrically conducting bus-bar 16 is fixed to the sheet 10 so as to be in intimate electrically conducting contact with the conducting layer l4.'A further coating 18 of electrically conducting paint is applied over the bus-bar l6 and the adjacent region of the coating 14, a layer of sheet material such as fabric or foil being embedded in the coating 18.
The bus-bar 16 is secured to the steel sheet 10 by bolts 20 and nuts 22 which are electrically insulated from the sheet 10 by insulating sleeves 24 and insulating washers 26 respectively. The nut and bolt assemblies are protected at their exposed ends by an electrically insulating covering 28 ofa material such as mastic or an epoxy resin.
A D.C. electrical supply (not shown) is applied across the bus-bar l6 and steel sheet 10 with the busbar anodic with respect to the steel sheet. Electrical connection is made to the bus-bar 16 by way of a connector 30 and to the steel sheet by, for example, welding or mechanical means;
The system thus provides an anode which is normally insulated from but is disposed very close to the entire surface of a cathodic substrate. Cathodic protection of the substrate only becomes effective when the insulation between the anode and the substrate breaks down owing, for example, to physical damage or pore form ation. By virtue of the invention, an anode for providing cathodic protection is immediately available at any point on the protected substrate surface when required. As the insulating layer between the anode and the substrate is very thin, even moisture condensation from the atmosphere can be sufficient to provide the necessary electrolyte link between the anode and substrate.
I claim:
l. A cathodic protection system comprising a metal to be protected, an electrically non-conductive coating applied in fluid form over the metal, an electrically conductive coating applied in fluid form over the nonconductive coating, said conductive coating being rendered electrically conductive by the incorporation of elemental carbon therein, such that the metal and electrically conductive coating are electrically insulated one from the other, a source of D.C. voltage being connected between the metal and the electrically conductive coating such that the electrically conductive coating is anodic with respect to the metal.
2. A cathodic protection system according to claim 1, wherein said conductive coating is a paint composition,
3. A cathodic protection system according to claim 2 in which the electrically conductive coating has a resistivity of up to 1,000 ohms/ft. sq.
4. A cathodic protection system according to claim 2 wherein the carbon content is up to 50 percent by volume of dried coating.
5. A cathodic protection system according to claim 2 wherein the conductive paint composition is a carbon-containing chlorinated rubber paint.
6. A cathodic protection system according to claim 2 wherein the conductive paint composition is a carhon-containing epoxy ester paint.
7. A cathodic protection system according to claim 2 in which the conductive paint composition is a carhon-containing chemically cured pitch epoxy paint.
8. A cathodic protection system according to claim 1 wherein there is another coating over the electrically conductive coating.
9. A cathodic protection system according to claim 1 in which the D.C. voltage source is of sufficient size to provide sufficient voltage to liberate chlorine from sea water.
10. A cathodic protection system according to claim 9 wherein the D.C. voltage source is of a size sufficient to provide at least 1.4 volts.

Claims (10)

1. A CATHODIC PROTECTION SYSTEM COMPRISING A METAL TO BE PROTECTED, AN ELECTRICALLY NON-CONDUCTIVE COATING APPLIED IN FLUID FORM OVER THE METAL, AN ELECTRICALLY CONDUCTIVE COATING APPLLIED IN FLUID FORM OVER THE NON-CONDUCTIVE COATING, SAID CONDUCTIVE COATING BEING RENDERED ELECTRICALLY CONDUCTIVE BY THE INCORPORATION OF ELEMENTAL CARBON THEREIN, SUCH THAT THE METAL AND ELECTRICALLY CONDUCTIVE COATING ARE ELECTRICALLY INSULATED ONE FROM THE OTHER, A SOURD OF D.C. VOLTAGE BEING CONNECTED BETWEEN THE METAL AND THE ELECTRICALLY CONDUCTIVE 11COATING SUCH THAT THE ELECTRICALLY CONDUCTIVE COATING IS ANODIC WITH RESPECT TO THE METAL.
2. A cathodic protection system according to claim 1, wherein said conductive coating is a paint composition.
3. A cathodic protection system according to claim 2 in which the electrically conductive coating has a resistivity of up to 1, 000 ohms/ft. sq.
4. A cathodic protection system according to claim 2 wherein the carbon content is up to 50 percent by volume of dried coating.
5. A cathodic protection system according to claim 2 wherein the conductive paint composition is a carbon-containing chlorinated rubber paint.
6. A cathodic protection system according to claim 2 wherein the conductive paint composition is a carbon-containing epoxy ester paint.
7. A cathodic protection system according to claim 2 in which the conductive paint composition is a carbon-containing chemically cured pitch epoxy paint.
8. A cathodic protection system according to claim 1 wherein there is another coating over the electrically conductive coating.
9. A cathodic protection system according to claim 1 in which the D.C. voltage source is of sufficient size to provide sufficient voltage to liberate chlorine from sea water.
10. A cathodic protection system according to claim 9 wherein the D.C. voltage source is of a size sufficient to provide at least 1.4 volts.
US334317A 1972-02-25 1973-02-21 Cathodic protection Expired - Lifetime US3868313A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB877172A GB1324676A (en) 1971-03-18 1972-02-25 Derivatives of 1,7,7-trimethyl-2-norbornane-2-spiro-1,3-dioxolane their process of preparation and their therapeutic application

Publications (1)

Publication Number Publication Date
US3868313A true US3868313A (en) 1975-02-25

Family

ID=9858967

Family Applications (1)

Application Number Title Priority Date Filing Date
US334317A Expired - Lifetime US3868313A (en) 1972-02-25 1973-02-21 Cathodic protection

Country Status (1)

Country Link
US (1) US3868313A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226694A (en) * 1976-08-16 1980-10-07 Texas Instruments Incorporated Cathodic protection system for a motor vehicle
US4287034A (en) * 1979-11-09 1981-09-01 Raychem Corporation Protecting metal substrates from corrosion
US4312723A (en) * 1980-06-09 1982-01-26 The Dow Chemical Company Corrosion resistant electrolytic cell
US4463054A (en) * 1982-09-17 1984-07-31 A. Schulman, Inc. Plastic-metal laminate, process, and composition
US4473450A (en) * 1983-04-15 1984-09-25 Raychem Corporation Electrochemical method and apparatus
US4502929A (en) * 1981-06-12 1985-03-05 Raychem Corporation Corrosion protection method
US4615684A (en) * 1983-07-28 1986-10-07 Sanshin Kogyo Kabushiki Kaisha Device for precluding electrolytic corrosion of a marine propulsion apparatus
US4647353A (en) * 1986-01-10 1987-03-03 Mccready David Cathodic protection system
US4767512A (en) * 1986-12-03 1988-08-30 George Cowatch Process and apparatus for preventing oxidation of metal by capactive coupling
US4806272A (en) * 1985-07-19 1989-02-21 Acheson Industries, Inc. Conductive cathodic protection compositions and methods
US4812212A (en) * 1987-09-08 1989-03-14 Harco Technologies Corporation Apparatus for cathodically protecting reinforcing members and method for installing same
US4818437A (en) * 1985-07-19 1989-04-04 Acheson Industries, Inc. Conductive coatings and foams for anti-static protection, energy absorption, and electromagnetic compatability
US4818438A (en) * 1985-07-19 1989-04-04 Acheson Industries, Inc. Conductive coating for elongated conductors
US4855027A (en) * 1986-01-10 1989-08-08 Mccready David F Carbosil anodes
US4880517A (en) * 1984-10-01 1989-11-14 Eltech Systems Corporation Catalytic polymer electrode for cathodic protection and cathodic protection system comprising same
US4921588A (en) * 1986-01-10 1990-05-01 Mccready David F Cathodic protection using carbosil anodes
US4957612A (en) * 1987-02-09 1990-09-18 Raychem Corporation Electrodes for use in electrochemical processes
US4990231A (en) * 1981-06-12 1991-02-05 Raychem Corporation Corrosion protection system
US5068023A (en) * 1987-06-24 1991-11-26 Tapio Toivanen Electrode arrangement
US5340455A (en) * 1993-01-22 1994-08-23 Corrpro Companies, Inc. Cathodic protection system for above-ground storage tank bottoms and method of installing
US6319080B1 (en) 1997-04-07 2001-11-20 Sanshin Kogyo Kabushiki Kaisha Outboard motor cooling and anode system
WO2002039008A1 (en) * 2000-11-10 2002-05-16 Coflexip Cathodic protective device for flexible pipes
US6514401B2 (en) * 2001-05-02 2003-02-04 Taiwan Power Company Anti-biofouling system
US6524965B2 (en) * 2001-05-11 2003-02-25 Macronix International Co., Ltd. Cleaning method for semiconductor manufacturing process to prevent metal corrosion
US20110100802A1 (en) * 2008-03-31 2011-05-05 Michael Steven Georgia Polymeric, Non-Corrosive Cathodic Protection Anode
US20120000769A1 (en) * 2001-12-08 2012-01-05 Sika Technology Ag Electrode structure for protection of structural bodies
US9145704B2 (en) 2013-02-18 2015-09-29 Corrosion Y Protección Ingenierí S C Anti-vandalism shielded facility for the injection of inhibitor fluids and other chemicals associated to pipeline transport of hydrocarbon and other valuable fluids
WO2016203368A1 (en) * 2015-06-15 2016-12-22 Hashemi Farzad Cathodic protection of metal substrates
US9689075B2 (en) 2013-12-09 2017-06-27 Corrosión y Protección Ingeniería S.C. Cathodic protection device with joining mechanisms and articulated bars
US11840767B2 (en) * 2017-05-01 2023-12-12 Copsys Technologies Inc. Cathodic protection of metal substrates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867984A (en) * 1931-02-27 1932-07-19 Adolph F Pistor Pipe-line covering
US2491225A (en) * 1944-10-16 1949-12-13 Dick E Stearns Method of protecting subterranean metallic structures
US3151050A (en) * 1963-02-15 1964-09-29 David K Wilburn Laminated anti-corrosive paint system
US3332867A (en) * 1963-10-03 1967-07-25 Walter L Miller Conductive adhesive bonding of a galvanic anode to a hull
US3354063A (en) * 1966-05-09 1967-11-21 George T Shutt Method and system for protecting corrosible metallic structures
US3497434A (en) * 1967-07-20 1970-02-24 Lockheed Aircraft Corp Method for preventing fouling of metal in a marine environment
US3498898A (en) * 1967-07-25 1970-03-03 Ford Motor Co Method for providing corrosion protection for automobile bodies
US3623968A (en) * 1968-01-02 1971-11-30 Tapecoat Co Inc The Sacrificial anode and pipe protected thereby
US3798142A (en) * 1969-08-28 1974-03-19 Courtaulds Ltd Corrosion protection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867984A (en) * 1931-02-27 1932-07-19 Adolph F Pistor Pipe-line covering
US2491225A (en) * 1944-10-16 1949-12-13 Dick E Stearns Method of protecting subterranean metallic structures
US3151050A (en) * 1963-02-15 1964-09-29 David K Wilburn Laminated anti-corrosive paint system
US3332867A (en) * 1963-10-03 1967-07-25 Walter L Miller Conductive adhesive bonding of a galvanic anode to a hull
US3354063A (en) * 1966-05-09 1967-11-21 George T Shutt Method and system for protecting corrosible metallic structures
US3497434A (en) * 1967-07-20 1970-02-24 Lockheed Aircraft Corp Method for preventing fouling of metal in a marine environment
US3498898A (en) * 1967-07-25 1970-03-03 Ford Motor Co Method for providing corrosion protection for automobile bodies
US3623968A (en) * 1968-01-02 1971-11-30 Tapecoat Co Inc The Sacrificial anode and pipe protected thereby
US3798142A (en) * 1969-08-28 1974-03-19 Courtaulds Ltd Corrosion protection

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226694A (en) * 1976-08-16 1980-10-07 Texas Instruments Incorporated Cathodic protection system for a motor vehicle
US4287034A (en) * 1979-11-09 1981-09-01 Raychem Corporation Protecting metal substrates from corrosion
US4312723A (en) * 1980-06-09 1982-01-26 The Dow Chemical Company Corrosion resistant electrolytic cell
US4502929A (en) * 1981-06-12 1985-03-05 Raychem Corporation Corrosion protection method
US4990231A (en) * 1981-06-12 1991-02-05 Raychem Corporation Corrosion protection system
US4463054A (en) * 1982-09-17 1984-07-31 A. Schulman, Inc. Plastic-metal laminate, process, and composition
US4473450A (en) * 1983-04-15 1984-09-25 Raychem Corporation Electrochemical method and apparatus
US4615684A (en) * 1983-07-28 1986-10-07 Sanshin Kogyo Kabushiki Kaisha Device for precluding electrolytic corrosion of a marine propulsion apparatus
US4880517A (en) * 1984-10-01 1989-11-14 Eltech Systems Corporation Catalytic polymer electrode for cathodic protection and cathodic protection system comprising same
US4818437A (en) * 1985-07-19 1989-04-04 Acheson Industries, Inc. Conductive coatings and foams for anti-static protection, energy absorption, and electromagnetic compatability
US4806272A (en) * 1985-07-19 1989-02-21 Acheson Industries, Inc. Conductive cathodic protection compositions and methods
US4818438A (en) * 1985-07-19 1989-04-04 Acheson Industries, Inc. Conductive coating for elongated conductors
WO1987004191A1 (en) * 1986-01-10 1987-07-16 Mccready David F Cathodic protection system
US4921588A (en) * 1986-01-10 1990-05-01 Mccready David F Cathodic protection using carbosil anodes
US4855027A (en) * 1986-01-10 1989-08-08 Mccready David F Carbosil anodes
US4647353A (en) * 1986-01-10 1987-03-03 Mccready David Cathodic protection system
US4767512A (en) * 1986-12-03 1988-08-30 George Cowatch Process and apparatus for preventing oxidation of metal by capactive coupling
US4957612A (en) * 1987-02-09 1990-09-18 Raychem Corporation Electrodes for use in electrochemical processes
US5068023A (en) * 1987-06-24 1991-11-26 Tapio Toivanen Electrode arrangement
US4812212A (en) * 1987-09-08 1989-03-14 Harco Technologies Corporation Apparatus for cathodically protecting reinforcing members and method for installing same
US5340455A (en) * 1993-01-22 1994-08-23 Corrpro Companies, Inc. Cathodic protection system for above-ground storage tank bottoms and method of installing
US6319080B1 (en) 1997-04-07 2001-11-20 Sanshin Kogyo Kabushiki Kaisha Outboard motor cooling and anode system
US6858117B2 (en) 2000-11-10 2005-02-22 Coflexip Cathodic protection device for flexible pipes
FR2816691A1 (en) * 2000-11-10 2002-05-17 Coflexip Cathodic protection unit, for subsea flexible pipe, comprises anode located remotely from pipe terminations, with connections to reinforcing wires in pipe
US20030140977A1 (en) * 2000-11-10 2003-07-31 Hugues Berton Cathodic protection device for flexible pipes
WO2002039008A1 (en) * 2000-11-10 2002-05-16 Coflexip Cathodic protective device for flexible pipes
US6514401B2 (en) * 2001-05-02 2003-02-04 Taiwan Power Company Anti-biofouling system
US6524965B2 (en) * 2001-05-11 2003-02-25 Macronix International Co., Ltd. Cleaning method for semiconductor manufacturing process to prevent metal corrosion
US20120000769A1 (en) * 2001-12-08 2012-01-05 Sika Technology Ag Electrode structure for protection of structural bodies
US8557102B2 (en) * 2001-12-08 2013-10-15 Sika Technology Ag Electrode structure for protection of structural bodies
US20110100802A1 (en) * 2008-03-31 2011-05-05 Michael Steven Georgia Polymeric, Non-Corrosive Cathodic Protection Anode
US8329004B2 (en) 2008-03-31 2012-12-11 Aep & T, Llc Polymeric, non-corrosive cathodic protection anode
US9145704B2 (en) 2013-02-18 2015-09-29 Corrosion Y Protección Ingenierí S C Anti-vandalism shielded facility for the injection of inhibitor fluids and other chemicals associated to pipeline transport of hydrocarbon and other valuable fluids
US9689075B2 (en) 2013-12-09 2017-06-27 Corrosión y Protección Ingeniería S.C. Cathodic protection device with joining mechanisms and articulated bars
WO2016203368A1 (en) * 2015-06-15 2016-12-22 Hashemi Farzad Cathodic protection of metal substrates
US20180187314A1 (en) * 2015-06-15 2018-07-05 Farzad HASHEMI Cathodic protection of metal substrates
US11840767B2 (en) * 2017-05-01 2023-12-12 Copsys Technologies Inc. Cathodic protection of metal substrates

Similar Documents

Publication Publication Date Title
US3868313A (en) Cathodic protection
KR850000619B1 (en) Marine fouling control
US3151050A (en) Laminated anti-corrosive paint system
US3354063A (en) Method and system for protecting corrosible metallic structures
US5478451A (en) Method and apparatus for preventing corrosion of metal structures
GB2140456A (en) Cathodic protection
US6402933B1 (en) Method and system of preventing corrosion of conductive structures
CA2921415C (en) Corrosion protection of buried metallic conductors
US6562201B2 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
US2856342A (en) Anti-corrosion anode
US5341562A (en) Method for preventing corrosion of a reinforced concrete structure
US6325915B1 (en) Method and system of preventing corrosion of conductive structures
AU2002348505A1 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
US6551491B2 (en) Method and system of preventing corrosion of conductive structures
CA2106012A1 (en) Method for preventing corrosion of a reinforced concrete structure
EP3702417B1 (en) A method for reducing galvanic pitting in transportation and storage tanks of marine vessel
US20040134795A1 (en) System and method for protecting metals
DE2309171A1 (en) CATHODIC PROTECTIVE CIRCUIT OR -ARRANGEMENT
JPS63101464A (en) Electrically conductive coating film for use in electrolysis of sea water
US3725225A (en) Cathodic protection method
AU2005227402B2 (en) Semiconductive polymeric system, devices incorporating the same, and its use in controlling corrosion
KR960014753B1 (en) High weather-resistant anti-corrosive paints
Shreir CATHODIC PROTECTION—1
AF The compatibility of paints with cathodic protection
Streed et al. Compatibility of Some Underwater Coating Systems With Cathodic Protection—A Preliminary Study

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: BC PRODUCTS INTERNATIONAL, INC., 40 VALLEY VIEW CH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GAY, PHILIP, J.,;REEL/FRAME:004925/0382

Effective date: 19880621

Owner name: BC PRODUCTS INTERNATIONAL, INC., A CORP. OF NEW YO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAY, PHILIP, J.,;REEL/FRAME:004925/0382

Effective date: 19880621