US3867950A - Fixed rate rechargeable cardiac pacemaker - Google Patents

Fixed rate rechargeable cardiac pacemaker Download PDF

Info

Publication number
US3867950A
US3867950A US154492A US15449271A US3867950A US 3867950 A US3867950 A US 3867950A US 154492 A US154492 A US 154492A US 15449271 A US15449271 A US 15449271A US 3867950 A US3867950 A US 3867950A
Authority
US
United States
Prior art keywords
output
capacitor
battery
pulse
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US154492A
Inventor
Robert E Fischell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Priority to US154492A priority Critical patent/US3867950A/en
Priority to CA144,810A priority patent/CA991273A/en
Application granted granted Critical
Publication of US3867950A publication Critical patent/US3867950A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/3655Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body or blood temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source

Definitions

  • ABSTRACT An improved fixed-rate cardiac pacer or stimulator adapted for human implantation which utilizes, as its power source, a single, rechargeable cell battery which is recharged through the patient's skin by magnetic induction.
  • the rechargeable battery supplies operating energy to transistorized pulse generating circuitry which is of simplified and fail-safe design effective to produce periodic heart stimulating output pulses at a controlled pulse rate.
  • the electronic pulse generating circuitry is purposely designed such that the output pulse rate varies as a function of the battery voltage and also as a function of body temperature.
  • the mechanical design of the rechargeable pacer or stimulator is compact in order to reduce volume and weight of the device; it is constructed of materials making it more acceptable to human implantation; and, it is hermetically sealed to prevent the infusion of body fluids and at the same time provide shielding against electromagnetic interference.
  • Electrodes sewn onto the exterior wall of the heart. This required an open chest operation with considerable hazard to the patient.
  • the electrode leads were routed under the skin and connected to a pulse generator which was buried under the skin, usually in the upper abdomen. The requirement'for this major surgery with its attendant high risk was eliminated by the development of an endocardial electrode which could be inserted into the heart through a vein without requiring a major operation.
  • the pulse generator would typically be placed in the upper left portion of the chest under the skin and outside the rib cage.
  • a catheter wire would be inserted into a small vein and extended into the heart, where the electrodes at the end of the catheter would finally be wedged into the heart muscle at the bottom of the right ventricle.
  • the catheter would then be tied in place at the vein where it entered the venous system with a permanent suture.
  • the electrical pulses from the pulse generator, transmitted through the insulated catheter wire and emanating from the electrodes firmly wedged against the inner (endocardial) surface of the right ventricle, would cause the heart to beat at arate determined by the pulse generator frequency.
  • a major advance in the field of cardiac pacing was thus recently attained by the utilization of a small, longlife secondary (i.e. rechargeable) single cell battery to replace the more bulky primary m ulticell unit for sup- I plying the operating energy to the transistorized pulse generating circuitry.
  • a small, longlife secondary (i.e. rechargeable) single cell battery to replace the more bulky primary m ulticell unit for sup- I plying the operating energy to the transistorized pulse generating circuitry.
  • a single cell nickelcadmium battery has previously been suggested for such pacer application and has been found to be an excellent rechargeable power, source for this purpose.
  • the presently preferred embodiment of the proposed cardiac pacer constituting the present invention utilizes such a single Ni-Cd, cell.
  • Another advantage of such a secondary cell is that it can be recharged without mechanically penetrating the skin. This is obviously desirable from the standpoint of reducing infection possibilities.
  • a single cell rechargeable nickel-cadmium battery is utilized to energize simplified and fail-safe pulse generator circuitry which produces output heart stimulating pulses at a fixed or controlled pulse rate.
  • a modified version of the pacer its flexibility is increased by-incorporating the capability of remotely selecting between a plurality of output pulsing rates. The shape of these output pulses is chosen so that the desired triggering of the heart can be accomplished while preventing any net ion flow in the blood near the catheter electrodes.
  • the external charger utilizes an ultrasonic frequency (eg 25 kilohertz) selected to avoid both the undesirable heating of the skin which has been'found to take place when radio frequency (RF) energy is used and the irritating vibrationswhich the patient may experience at the lower (audible) frequencies.
  • RF radio frequency
  • the use of frequencies below the ultrasonic range is also undesirable in that larger components are required to receive the inductively coupled energy.
  • the charging energy which is coupled to the input transformer is then full-wave rectified, filtered and applied to the single cell battery through a simple field effect transistor FET) current limiting circuit which prevents the *battery charge current from exceeding a preselected value which can becontinuously applied without damage to either the Ni-Cd cell or the remaining pacer circuitry.
  • FET field effect transistor
  • the actual pulse'generating circuitry of the proposed pacer comprises a simple, two transistor relaxation oscillator type circuit, employing regenerative feedback between the transistors so that'the output pulses have' fast rise and fall times.
  • the rate at which theoutput pulses are generated is purposely allowed to vary as a increasing body temperature and thereby more accurately simulates the natural functioning of the heart in the human body.
  • the output step-up transformer which couples the generated pulses to the catheter' is designed to prevent unwanted signals from appearing on the catheter wires, for, example, A.C. noise which may be present especialy during the recharging operation and/or steady DC. in the event of transistor failure in the pulse generator. Either type of signal, if it reaches the heart, could cause fatal ventricular fibril lation.
  • the proposed cardiac pacer also has a much improvedmechanical design, when compared with currently available pacers.
  • the proposed pacer is more suitable for human implantation in that it is provided with a metallic coating or housing which acts not only to hermetically seal or protect the electronic components against infusion of body fluids but comparatively quite rugged.
  • one object of the present invention is to provide an improved rechargeable, fixed-rate cardiac pacer or stimulator.
  • Another object of the present invention is to provide an improved fixed-rate cardiac pacer or stimulator which utilizes a single cell rechargeable battery as the power source for transistorized pulse generating circuitry to produce output heart stimulating pulses.
  • Another object of the present invention is to provide a cardiac pacer or stimulator wherein the pulse generating circuitry is of a failsafe design.
  • Another object of the present invention is to provide a cardiac pacer or stimulator wherein the output pulse rate is permitted to vary as a function of battery voltage.
  • Another object of the present invention is to provide a cardiac pacer or stimulator wherein the output pulse rate increases with increasing body temperature so as to more accurately simulate the natural functioning'of the heart.
  • Another object of the present invention is to provide an improved implantable cardiac pacer or stimulator wherein any one of a plurality of output pulse rates is selectable remotely.
  • Another object of the present invention is to provide a cardiac pacer or stimulator which is hermetically sealed against the outside environment and is shielded against electromagnetic interference.
  • FIG. 1 is a diagram of circuitry constituting one embodiment of the proposedrechargeablefixed-ratecardiac pacer or stimulator;
  • FIG. 2 is a waveform diagram showing a typical output voltage pulse produced by the pacer embodiment of FIG. 1;
  • FIG. '3 is a circuit diagram illustrating one modification of the rechargeable cardiac pacer of FIG. 1 whereby the output pulsing rate is remotely controllable;
  • FIG. 4 is a graph showing battery charge current as a function of the separation distance between the charging head and the input transformer
  • FIG. Si is a graph illustrating the variation in pulse rate with pacer temperature
  • FIG. 6 is a graph illustrating the dependence of pulse rate on battery or cell voltage
  • FIG. 7 is a graph illustrating the output pulse rate as a function of charging current
  • FIG. 8 is a top view of a cardiac pacer structure embodying the present invention.
  • FIG. 9 is a sectional view taken along the line 9-9 in FIG. 8 and viewed in the direction of the arrows;
  • FIG. 10 is an enlarged end view of the catheter connection assembly
  • FIG. 11 is a top view of the cardiac pacer unit shown in FIG. 8 with certain parts removed in order to illustrate in more detail the interior electronic components of the pacer and the manner of connecting the catheters to the pacer body;
  • FIG. 12 is an enlarged side view partially in section of a catheter connecting assembly.
  • the presently preferred embodiment of the proposed cardiac pacer basically comprises: a rechargeable, single cell nickelcadmium battery 15 and pulse generator circuitry formed of transistor pair 16-17 which is powered by the Ni-Cd cell 15 to generate output heart stimulating pulses at the desired pulsing rate.
  • the battery or cell 15 might produce a nominal 1.25 volts and be rated at 200 milliamp-hours.
  • the single cell construction for battery 15 is preferable to a multicell design in that the single cell provides the highest ratio of active chemical materials volume to case volume and also a higher degree of reliability.
  • the pulse generating circuit comprising transistor pair 16 and 17 is connected essentially in the form of a relaxation type oscillator circuit. More specifically, the base of the PNP transistor 16 is connected through resistor 18 to the collector of the other transistor 17 which is of NPN type; the emitter of transistor 16 is connected to the positive terminal of the Ni-Cd cell 15; and, the collector of transistor 16 is connected, on the one hand, to the base of transistor 17 through resistor 19 and series capacitor 20 and, on the other hand, to one end of the primary winding of a suitable 1:4 step-up output transformer 21. The other end of the primary winding is connected to the emitter of transistor 17 and the negative terminal of cell 15.
  • the base of the transistor 17 is also connected through a relatively large value resistor 22 to the left-hand end of a small value resistor 23 (e.g. 3 ohms) which at its opposite end, is connected to the positive terminal of cell 15.
  • the secondary winding of the output transformer 21 is connected by means of a suitable connector unit designated as 24 to a catheter 25 of conventional design such as the Medtronic No. 5816 catheter which terminates in a bipolar elec- I trode 26.
  • the output transformer 21 has been illustrated as an iron core transformer and that its primary and secondary windings are D.C. isolated from one another, for reasons to be described in more detail hereinafter.
  • a capacitor 27 is connected across the lower ends of the primary and secondary windings of the output transformer 21 for the purpose of preventing undesirable A.C. noise from appearing on the catheter 25, for example during recharging of the Ni-Cdcell 15.
  • the capacitor 20 thus charges towards the supply voltage represented by the Ni-Cd cell 15 until the voltage at the base of transistor 17 reaches a predetermined threshold level (e.g. 0.7 volts) at which time the transistor 17 begins conduction.
  • a predetermined threshold level e.g. 0.7 volts
  • the flow of collector current in the transistor 17 draws base current at transistor 16 through resistor 18 and thereby turns transistor 16 on.
  • the collector voltage for transistor 16 immediately rises (output pulse has fast rise time) to a voltage level only slightly less than the Ni-Cd cell voltage.
  • This rise in the collector voltage for transistor 16 causes the capacitor 20 to begin charging in an opposite direction so that the value of the voltage on the base of transistor 17 eventually is reduced below a second preselected threshold level (e.g. 0.6 volts) at which time the transistor 17 is turned off and this, in turn, regeneratively cuts off the other transistor 16 (output pulse has fast fall time).
  • the circuitry is thus once again returned to its initial condition wherein the collector of transistor 16 is essentially at the voltage level of the negative terminal of the Ni-Cd cell 15.
  • the capacitor 20 would begin charging towards the supply voltage, as previously discussed, with the time constant determined primarily by resistor 22 and capacitor 20.
  • a series of positive-going trigger pulses appear across the secondary of output transformer 21, each being approximately 4 volts in amplitude and hav ing a pulse width of approximately 1 millisecond, as shown in the typical waveform of FIG. 2.
  • the action of the output transformer 21 causes the output pulses to have a negative going portion of approximately the same area as the positive-going heart triggering pulse portion. This is quite desirable since it accomplishes the desired triggering of the heart while preventing any net ion flow in the blood near the bipolar electrodes 26.
  • the necessary periodic recharging of the illustrated Ni-Cd cell 15 is accomplished by utilizing an external charger unit 28 of any conventional design operating at an ultrasonic charging frequency of approximately 25 kilohertz (kHz) and being equipped with a suitable charging head 29 capable of coupling the ultrasonic frequency charging energy through the patients skin 30, by magnetic induction.
  • the charger 28 might, for example, first convert the 60 Hz line power to D.C. and then invert it to the desired 25 kHz for more efficient chargmg.
  • the Ni-Cd cell obtains its 25 kHz charging energy input by means of magnetic induction coupling between the charging head 29 and an input transformer 31 positioned adjacent the patients skin 30.
  • the input transformer 3l- is formed of a thin sheet or core of suitable ferrite material around which is wrapped many turns of copper wire.
  • a conventional diode full-wave rectifier bridge circuit 32 which converts the periodic input charging energy into a DC. charging current.
  • a suitable filter capacitor 33 is connectedacross the output full-wave rectifier circuit 32 (points Y and Z in FIG. 1) to remove any undesired ripple in the rectifier output.
  • the drain (D) element of an N-channel type field effect transistor 34 is also connected to point Z and the gate (G) and source (S) elements of the field effect transistor 34 are tied together and connected to the negative terminal of the Ni-Cd cell 15. In this manner, the FET 34 acts in a well-known manner to limit the charging current to the cell 15 to a level (e.g.
  • a small value (e.g. 3 ohm) resistor 23 is connected in series in the charging circuit to the Ni-Cd cell 15, between the positive terminal of the cell and one side of the resistor 22 (point Y in FIG. 1).
  • the purpose of this resistor 23 is to develop a voltage drop during charging which, in effect, increases the rate at which capacitor charges to the conducting threshold level of transistor 17; i.e. it decreases the interpulse period and thus increases the output pulse rate r from the pulsegenerating circuitry. This enables the patient and/or the attending physician to detect that the recharging operating is properly taking place, by merely monitoring the resultant increase in pulse rate.
  • FIG. 7 of the drawings illustrates the increased pulse rate experienced in one practical application of the proposed pacer as a function of battery charge current.
  • the output pulse rate from the pulse generator circuitry is also temperature dependent. This enables the output pulse rate to provide an indication of the patients body temperature; i.e., if the patient has a high temperature, the output pulse rate will increase, thus simulating natural heart functioning.
  • the output pulse rate from pulse generator circuitry of FIG. 1 temperature dependent
  • the presently preferred method of accomplishing this is by utilizing a charging capacitor, at 20, having a high temperature coefficient.
  • a commercially available barium titanate ceramic capacitor has proven satisfactory for this purpose.
  • pacemaker circuitry is worthy of notes; namely, there is also a dependence between the ouput pulse rate andthe voltage of battery or cell 15 as indicated in FIG. 6; This results from the fact that the charging rate of capacitor 20 varies directly, as previously discussed, with the existing battery voltage and this therefore allows a monitoring physician to obtain a indication of the battery voltage by means of the detected pulse rate of the patient.
  • the normal operating range for battery voltage is from 1.35 volts immediately after being charged to 1.2 volts after one week of discharge. During this period the patients pulse rate will decrease from approximately 76 to approximately 74 beats per minute. If, on the other hand, a patient observes a pulse rate of pulse beats per minute or less in less than one week after charging, it is indicative of potential cell failure and could be cause for pacer replacement.
  • the output pulsing rate produced by the pulse generating circuitry of FIG. 1 depends primarily upon the RC. charging time constant represented by resistor 22 and capacitor 20.
  • the single resistor 22 is replaced by a plurality of resistors 22a, b and 0 shown connected in series between circuit points X and Y which correspond to similarly desig-.
  • a pair of minature magnetic latching relays 35 and 36 are associated with resistors 22b and 0 respectively and selectively control whether the resistors 22b and c either are shorted out or add to the series resistance between circuit points X and Y in FIG. 3.
  • each latching relay has an associated pair of control windings represented, for example, at 35a and b-which, when energized, actuate the relay contact element'to its closed and open-circuit positions respectively.
  • the associated resistor 22b In the closed contact position, the associated resistor 22b is short-circuited; whereas, in the open contact position, resistor 22b adds to the series resistance between points X and Y, in the charging circuit for capacitor 20.
  • Each of the magnetic latching relays 35 and 36 is capable of retaining or latching its contact element in the last operating position to which it has been'actuated until the other winding of the relay is energized to actuate the contact element to its opposite position.
  • the selective energization of the control winding pairs 35a-b and36a-b for the latching relays 35 and 36 is preferably controlled by reed switches 37, 38, 39 and 40 which are each connected in'parallel to circuit point Y in FIG. 3 and in series with one of the control windings. Actuation of these reed switches is accomplished, in FIG. 3, by means of selectively energizable external coils 41-44, one of which is associated with a different reed switch 3740. For example, as represented in FIG.
  • FIGS. 8 through 12 of the drawings The mechanical structure of one embodiment of the proposed fixed-rate rechargeable cardiac pacer is illustrated in FIGS. 8 through 12 of the drawings. Before describing these. structural details, however, one method of forming the assembled pacer structure should be noted. More specifically,-the initial step in fabricating the illustrated embodiment is to dip or otherwise coat the assembled electronic components, including the output transformer and the printed circuit boards (together with their interconnected bulk components), in a suitable silicon rubber such as the wellknown Silastic compound. Thisinitial rather soft coating protects the electronic components against the stressing associated with a harder encapsulation such as epoxy.
  • the second step utilized in fabricating the illustrated pacer of FIGS. 8 through 12 is to pot the Ni-Cd battery and the electronic components with such a hard encapsulation, in order to improve mechanical strength.
  • a metal housing is then placed around the unit to hermetically seal it against body fluids, as well as to provide a shielding against electromagnetic interference.
  • this metal housing can be attained by an 8-10 mils gold plating operation or by performing the epoxy potting in a pre-form metal (e;g. nickel) can and then welding on metallic cover to complete the hermetic seal.
  • the next step in pacer unit fabrication is to connect the assembled catheter-across the secondary of the output transformer and the input transformer to the input of the electronic circuitry (see FIG. 1).
  • a second hard epoxy potting is then employed, if necessary, to obtain the'desired pacemaker body configuration and finally, a so-called conformal coating" of a suitable medical Silasticis applied tomake the pacer more compatible with living tissue.
  • thepacer body which results from the foregoing fabrication method is designated at 45.
  • the input transformer 31 (see FIG. 1) formed of a thin, oblong sheet 46 of suitable ferrite material and a winding 47 of copper wire.
  • the input transformer 31' is generally covered, in the completely fabricated pacemaker unit, by the second epoxy coating and the final conformal coating.
  • these final two coatings have been omitted at the top of the unit shown in FIG. 8.
  • catheter connector assemblies 48 and 49 Extending from the illustrated right-hand end of the pacer body 45 are two catheter connector assemblies 48 and 49; one for each of the two illustrated catheter lead-in wires 25a and 25b which branch out from the main body of the catheter 25, as best shown in FIG, 11.
  • the connector assemblies 48 and 49 correspond collectively to the unit 24 in FIG. 1.
  • one form of catheter suitable for use with the proposed pacer is the type known as Medtronic No.
  • the catheter lead-ins 25a and b each contain a single wire coaxially located within an insulating silicon rubber body (see cross-sectional view of FIG. 10).
  • a first member 50 formed of a suitable high dielectric strength plastic such as that manufactured under the tradename Kel-f, contains a suitable female electrical connection member 51 implanted at its left-hand end in FIG. 7 to receive the prong or tip 52 at the end of the catheter wire, when in assembled position.
  • On the outer periphery of the connector member 50 are formed three closely spaced notches 53, 54 and 55. Two of these notches 53 and 54 are for the purpose of facilitating anchoring of the catheter connector assembly to the pacemaker body during fabrication; whereas, the third groove 55 is adapted to be engaged by an inwardly extending flange 56 formed on the inside of the silicon rubber sleeve 57.
  • the inside of the plastic connector member 51 is contoured so as to facilitate insertion of the prong 52 at the end of the catheter lead-in 2511 or been inserted to the proper depth within the connector assembly.
  • Sleeve member 57 is provided with a peripheral groove 57a adjacent its right-hand end to accommodate a suture which secures the sleeve 57 to the catheter lead-in.
  • An enlarged cross-sectional view of the assembled catheter connector assembly is shown in FIG. l0.
  • the completed catheter connector assemblies 48 and 49 mounted against the concave sides of the preliminary body 59 during fabrication of the pacer.
  • this preliminary body is molded around the nickel-cadmium cell 15, the output transformer-21 and two printed circuit boards (and the associated circuit components) 60, by utilizing a suitable epoxy potting compound and an appropriate mold.
  • the electronic components implanted within preliminary body 59 would preferably have'been previously dipped in a suitable Silastic compound, in order to protect the components against the stresses associated with hard (epoxy) encapsulation.
  • the preliminary body 59 would, during fabrication, be appropriately metal plated with 8 10 mils of gold, for example.
  • the epoxy potting can be performed in a metallic (e.g. nickel) can and the top subsequently welded on to form the seal/shield.
  • the preliminary epoxy body 59 is formed with a cutout section on either side (for example, cut-out portion 61) each of which is provided with a pair of electrical connector pins 62.
  • Two of these connecting pins 62, on opposite sides of body 59, are connected to the lead out wires from the catheter connector assemblies, such as is typically illustrated at 63 in FIG. 12 extending through Silastic end cap 64; whereas, the other two connector pins 62 are connected to the ends of the input transformer coil wire which are designated at 65 in FIG. 8.
  • the connector pins 62 should be electrically insulated from the metallic plating which applied to the preliminary body 59 as previously discussed. This can be accomplished, for example, by
  • the input transformer coil 47 is also formed of suitably insulated wire
  • this composite structure is then placed in another mold and more epoxy potting compound added to attain the desired pacer body configuration (see reference numeral 45 in FIGS. 8 and 9). Finally, the so-called conformal coating is applied to the unit to make it more suitable for implantation; i.e., so that the unit will not irritate the body tissues.
  • a cardiac pacer adapted to be implanted in the body of a patient and'comprising, in combination a DC. voltage supply,
  • pulse generating circuit means connected to said voltage supply for gene rating output heart stimulating pulses at a predetermined rate
  • catheter means equipped with electrode means for applying said output heart stimulating pulses to the patients heart, I i
  • an output transformer having primary and secondary windings which are D.C. isolated from one another,
  • said primary winding being connected to receive the output heart stimulating pulses generated by said pulse generating circuit means
  • D.C.'vol'tage supply is a rechargeable battery and further including,
  • recharging means including means for couplin charging energy through the patients skin to the rechargeable battery by magnetic induction.
  • a magnetic, charging head connected to receive the output charging energy of said source and transmit said energy through the patients skin
  • aferrite core input inductive coupling means for receiving said transmitted energy following passage through the patients skin
  • rectifier means connecting electrically said inductive coupling means to said battery.
  • said pulse generating circuit means includes temperature sensitive circuit means selected to control said output pulse rate to vary in direct proportion with ambient temperture and thereby simulate natural heart beat variation as a function of temperature.
  • timing circuit formed of a resistor and a serially connected capacitor to determine said output pulse rate
  • a cardiac pacer adapted to be implanted in the body of a patient and comprising, in combination, a rechargeable, single cell battery," pulse generating means connected to receive operating voltage from said battery for generating output heart stimulating pulses at a predetermined rate and including a timing circuit which determines said output pulse rate, said timing circuit including a resistance means and a serially connected charging capacitor having a high temperature coefficient effective to cause said output pulse rate to vary directly as a function of the pacers ambient temperature, said timing circuit being operably connected to said battery to cause the charging rate of said capacitor and the output pulse rate to vary directly as a function of battery voltage, control means for controlling externally of the patients body the resistance value of said resistance means to selectively vary'said output pulse rate, catheter means equipped with electrode means for applying said output heart stimulating pulses to the patients heart, t an output transformer having a primary winding connected to receive the output pulses generated by said pulse generating means and a secondary winding which is
  • said first epoxy body being provided with a plurality I of electrical connector means mounted thereon and insulated from-said metallic housing, certain of said electrical connector means connecting the secondary winding of said output transformer to said catheter means,
  • an input inductive coupling means mounted on said pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate
  • catheter means equipped with electrode means connected to receive and apply said output heart stimulating pulses to the patients heart
  • said pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply,
  • said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing voltage level of said supply
  • said pulse generating circuit means including means responsive to the voltage charged on said capacitor and render effective to generate an output pulse each time said capacitor has charged to a preselected threshold voltage
  • said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage
  • said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply'and simulates natural heart beat variation as a function of the patients internal temperature.
  • An implantable cardiac pacer adapted to be recharged from an external energy source and comprising, .in combination,
  • pulse generating circuitry means connected to receive operating voltage from said battery for generating. output pulses
  • pulse applying means equipped with electrode means adapted to apply pulses to the patients heart
  • an output transformer having primary and secondary windings connected to receive said output pulses from said pulse generating circuitry and couple them to said pulse applying means
  • an inductive coupling means disposed external to said metallic housing for receiving recharging energy from said external source
  • rectifier means operably connected between said inductive coupling means and said rechargeable battery, and I a plurality of electrical connector means mounted in and extending through and insulated'from said metallic housing,
  • the implantable cardiac pacer specified in claim 8 further including a molded, encapsulating body of potting material disposed within said metallic housing and surrounding said battery, said pulse generating circuitry and said output transformer.
  • said inductive coupling means includes a ferrite core and an energizable coil of insulated wire wound around said core and having its ends connected electrically by said others of said plurality of electrical connector means and said rectifier means to said battery,
  • said pulse applying means is a catheter means
  • the respective configurations of said input inductive coupling means and said metallically housed molded body being substantially similar to permit said input inductive coupling means to be mounted in juxtaposition against said metallically housed body, and further including a second molded, encapsulating body of potting material surrounding said metallically housed body, said input inductive coupling means, and said catheter means adjacent the connection of said catheter means to the electrical connector means provided on said metallically housed body.
  • the implantable cardiac 11 further including,
  • an external charger operating at a predetermined ultrasonic frequency for coupling periodic charging energy to said input inductive coupling by magnetic induction
  • said rectifier means operably connected between said input inductive coupling means and said battery converts said periodic charging energy into direct current charging energy
  • said ferrite core is of a flat, substantially rectangular configuration and is mounted flat against the flattened top surface of said metallically housed body
  • said catheter means comprises an insulative body containing a pair of wires terminating, at one end, at electrode means and branching out, at the other end, as two individual insulated wires, and
  • a pair of connector assemblies each adapted to be connected at the branched end of one of said two insulated wires and having a substantially cylindrical shape configured to mate with the concave side surfaces of said metallically housed body
  • said second body of potting material surrounding at least a portion of said connector assembly pair to anchor said catheter means.
  • implantable cardiac pacer specified in claim 11 further including a coating of medical Silastic material encapsulating said second body of potting material pacer specified in claim for making said pacer unit compatible with the patients body tissue.
  • a cardiac pacer adapted to be implanted in a patient and comprising, in combination,
  • transistorized pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate and including a pair of transistors each having collector, emitter and base elements and regenerative feedback circuit means interconnecting the collector, emitter and base elements of said transistor pair, and I catheter means equipped with electrode means connected to receive and apply said output heart stimulating. pulses to the patients heart, said pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply, said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing I voltage level of said supply,
  • one side of said charging capacitor being connected to the base element of one of said transistors to effect conduction in said one transistor and cause said pulse generating circuit means to generate an output pulse each time said capacitor has been charged to a preselected threshold voltage
  • said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage
  • said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply and simulates natural heart beat variation as a function of the patients internal temperature.

Abstract

An improved fixed-rate cardiac pacer or stimulator adapted for human implantation which utilizes, as its power source, a single, rechargeable cell battery which is recharged through the patient''s skin by magnetic induction. The rechargeable battery supplies operating energy to transistorized pulse generating circuitry which is of simplified and fail-safe design effective to produce periodic heart stimulating output pulses at a controlled pulse rate. The electronic pulse generating circuitry is purposely designed such that the output pulse rate varies as a function of the battery voltage and also as a function of body temperature. The mechanical design of the rechargeable pacer or stimulator is compact in order to reduce volume and weight of the device; it is constructed of materials making it more acceptable to human implantation; and, it is hermetically sealed to prevent the infusion of body fluids and at the same time provide shielding against electromagnetic interference.

Description

United States Patent 1191 Fischell FIXED RATE RECHARGEABLE CARDIAC PACEMAKER [75] Inventor: Robert E. Fischell, Silver Spring,
[73] Assignee: The Johns Hopkins University,
Baltimore, Md.
221 Filed: June 18,1971
21 Appl. No.: 154,492
[52] US. Cl. 128/419 P [51] Int. Cl A6ln 1/36 [58] Field of Search..... 128/419 P, 419 R, 421-423,
A 128/2.1R,2P,2H
[56] References Cited UNITED STATES PATENTS 3,231,834 l/1966 Watanabe 128/2.1 R
3,311,111 3/1967 Bowers 128/419 P 3,345,990 10/1967 Berkovitz 128/419 P 3,348,548 10/1967 Chandack 128/419 P 3,454,012 7/1969 Raddi 128/419 P 3,474,353 10/1969 Keller, Jr 128/419 P 3,478,746 11/1969 Greatbatch 128/419 P 3,486,506 12/1969- Auphan 128/419 P 3,523,539 8/1970 Lavezzo et a1. 128/419 P 3,638,656 2/1972 Grandjean et al 128/419 P 3,690,325 9/1972 Kenny 128/419 P FORElGN PATENTS OR APPLICATIONS 87,174 5/1966 France 128/419 P EXTERNAL CHARGER (25 KH 1451 Feb. 25, 1975 OTHER PUBLICATIONS Davies, Journal of the British Institute of Radio Engineers", Vol. 24, No. 6, Dec. 1962, pp. 453-456.
Primary Examiner-William E. Kamm Attorney, Agent, or Firm-Robert E. Archibald; John S. Lacey [57] ABSTRACT An improved fixed-rate cardiac pacer or stimulator adapted for human implantation which utilizes, as its power source, a single, rechargeable cell battery which is recharged through the patient's skin by magnetic induction. The rechargeable battery supplies operating energy to transistorized pulse generating circuitry which is of simplified and fail-safe design effective to produce periodic heart stimulating output pulses at a controlled pulse rate. The electronic pulse generating circuitry is purposely designed such that the output pulse rate varies as a function of the battery voltage and also as a function of body temperature. The mechanical design of the rechargeable pacer or stimulator is compact in order to reduce volume and weight of the device; it is constructed of materials making it more acceptable to human implantation; and, it is hermetically sealed to prevent the infusion of body fluids and at the same time provide shielding against electromagnetic interference.
15 Claims, 12 Drawing Figures CATHETER PATENTEDFEBZSW 3,867, 950
sumlp g EXTERNAL CHARGER (25 KHZ) P 9}? cArggrzR o o 30 2s 3 F I 6. 1 2.0- (D E g |.0-
L FI6.2 3 Mamba SKIN 30 r-O 1| H; 36 FIG 3 l I as 229 T0 ENERGY i wo/ c W36, 7
SOURCE E 9 :I fim-35a l I .J 35 INVENTOR. L l ROBERT E. FISCHELL w BY raw; v 229 8 i X ATTORNEY PATENTED 73 867, 950
sum 2 gr 4 TEMPERATURE (F) F I G. 54
CHARGE CURRENT (MO) O O O 7 w u b m w L? 6 4 2 O 4 P52. mm zi cwm mmoz m 9 a 2 NEE 51 L2 L3 BATTERY VOLTAGE (VOLT) 0 O 0 O O 5 4 3 2 I 2 5 muhh m 0-5 .PZwmmDO moms-6 l0 SEPARATION DISTANCE (INCHES) F l G. 4
INVENTOR. ROBERT EZFISFCHELL BY MM.
ATTORNE? FIG. 6
PATENIED 3. 867, 950
I T 2M aua ii fei J INVENTOR. ROBERT E. FISCHELL BY j, A
ATTORNEY PATENTED 3 867, 950
sum u p g PRELIMINARY BODY 59 (WITH METALLIC PLATING) CATHETER CONNECTOR ASSEMBLY v A I f 53 |o I |o l 57g INVENTOR. ROBERT E. FISCHELL ATTORNEY FIXED RATE RECHARGEABLE CARDIAC PACEMAKER BACKGROUND OF THE INVENTION its normal rate.
At best, such a condition would very seriously restrict a persons physical activitiesand at worst could result in an insufficient blood flow capable of causing failure of the kidneys, liver and other vital organs. This has led to the development of electronic pulse generators or so-called cardiac pacemakers which can be implanted in the body to artificially stimulate the heart to beat at a normal rate.
Early implantable pacing systems used electrodes sewn onto the exterior wall of the heart. This required an open chest operation with considerable hazard to the patient. The electrode leads were routed under the skin and connected to a pulse generator which was buried under the skin, usually in the upper abdomen. The requirement'for this major surgery with its attendant high risk was eliminated by the development of an endocardial electrode which could be inserted into the heart through a vein without requiring a major operation. When using an endocardial electrode, the pulse generator would typically be placed in the upper left portion of the chest under the skin and outside the rib cage. In this region a catheter wire would be inserted into a small vein and extended into the heart, where the electrodes at the end of the catheter would finally be wedged into the heart muscle at the bottom of the right ventricle. The catheter would then be tied in place at the vein where it entered the venous system with a permanent suture. The electrical pulses from the pulse generator, transmitted through the insulated catheter wire and emanating from the electrodes firmly wedged against the inner (endocardial) surface of the right ventricle, would cause the heart to beat at arate determined by the pulse generator frequency.
Early cardiac pacer or stimulator applications also encountered problems of catheter breakage, especially when the pulse generator was located in the abdominal region. With the trend toward use of endocardial catheters, but more importantly, with the development of new alloys and the coil-spring electrode catheter, the
. problem of electrode breakage has been greatly reduced. Moreover, there have been essentially no problems of blood clotting around the endocardial catheters. Currently available electrode catheters are therefore generally considered satisfactory'for management of pacing problems.
On the other hand, most of the previously proposed cardiac pacer or stimulator do suffer from two major draw-backs; i.e., the relatively short operating lifetime for the currently used power sources and the size and weight of the pulse generator circuitry. More specifically, many of the existing implantable pulse generators are powered by mercury cells which cannot be recharged and therefore have a relatively short operating life span. This, in turn, requires that a person with such an implantable pacer or stimulator be hospitalized periodically (approximately every 18 months), in order to have the old unit removed by opening the pocket under the skin where the pulse generator was placed and have a new generator connected to the catheter and sewn into the pocket. Obviously, there is some risk of infection in this repeated pulse generator change and this risk is greatly increased where, as here, a pocket has been created in the body tissues and a foreign body inserted therein. Moreover, many patients abhor the thought of such recurring operations. In particular, it is often noted that many cardiac patients are understandably more fearful of surgical procedures than people with normal heart function and some patients have, in fact, refused the benefits of implanted pacing systems because of this dread of recurring surgery. Any pacing system that does not require re-entering the body after the initial implantation would thus be of great benefit.
The size and weight of most currently available pulse generators is also a problem, especially in small children who need heart pacing as a result of cardiac surgery and in elderly patients where the weight of the pulse generator has sometimes caused it to slowly slide down between the layers of tissue and exert excessive pull on the catheter and its connected electrode. The limiting factor in reducing the size and weight of the pulse generator is the power source. Unfortunately, no other primary cells available today can appreciably improve upon the weight/volume requirements of the currently used mercury cells.
A major advance in the field of cardiac pacing was thus recently attained by the utilization of a small, longlife secondary (i.e. rechargeable) single cell battery to replace the more bulky primary m ulticell unit for sup- I plying the operating energy to the transistorized pulse generating circuitry. For example, a single cell nickelcadmium battery has previously been suggested for such pacer application and has been found to be an excellent rechargeable power, source for this purpose. In fact, the presently preferred embodiment of the proposed cardiac pacer constituting the present invention utilizes such a single Ni-Cd, cell. Another advantage of such a secondary cell is that it can be recharged without mechanically penetrating the skin. This is obviously desirable from the standpoint of reducing infection possibilities.
On the other hand, there is still considerable need for improvement in currently available cardiac pacers; both the permanently implantable type which utilizes the rechargeable or secondary battery power supply and the type which needs to be periodically replaced. For example, the pulse generating circuitry is often quite complex and requires an excessive number of bulkelectronic components. Moreover, the pulse generating circuitry of previously proposed pacers generally lacks a fail-safe design andcan therefore cause very serious problems for the patient if it malfunctions. With regard to the rechargeable pacers, in particular, full advantage has not yet been taken of their permanently implantable nature, especially form the standpoints of: more completely simulating natural heart functioning; better utilization of the patients pulse rate to monitor the operating condition of the pacer; mechanically designing the pacer to make it better suited for human implantation; and, making the pacer more flexible by providing for remote or external adjustment of the pacing rate.
SUMMARY OF THE INVENTION In view of the foregoing, it is proposed in accordance with the present invention to provide an improved rechargeable, fixed-rate cardiac pacer or stimulator which overcomes these previously mentioned deficiencies of currently available pacers. More specifically, in the preferred or illustrated embodiment, a single cell rechargeable nickel-cadmium battery is utilized to energize simplified and fail-safe pulse generator circuitry which produces output heart stimulating pulses at a fixed or controlled pulse rate. In a modified version of the pacer, its flexibility is increased by-incorporating the capability of remotely selecting between a plurality of output pulsing rates. The shape of these output pulses is chosen so that the desired triggering of the heart can be accomplished while preventing any net ion flow in the blood near the catheter electrodes.
Energy for recharging the single Ni-Cd cell is coupled through the patients skin by magnetic induction betweenan external charginghead and a ferrite core input transformer disposed just under the skin. The external charger utilizes an ultrasonic frequency (eg 25 kilohertz) selected to avoid both the undesirable heating of the skin which has been'found to take place when radio frequency (RF) energy is used and the irritating vibrationswhich the patient may experience at the lower (audible) frequencies. The use of frequencies below the ultrasonic range is also undesirable in that larger components are required to receive the inductively coupled energy. In the proposed pacer, the charging energy which is coupled to the input transformer is then full-wave rectified, filtered and applied to the single cell battery through a simple field effect transistor FET) current limiting circuit which prevents the *battery charge current from exceeding a preselected value which can becontinuously applied without damage to either the Ni-Cd cell or the remaining pacer circuitry.
The actual pulse'generating circuitry of the proposed pacer comprises a simple, two transistor relaxation oscillator type circuit, employing regenerative feedback between the transistors so that'the output pulses have' fast rise and fall times..The rate at which theoutput pulses are generatedis purposely allowed to vary as a increasing body temperature and thereby more accurately simulates the natural functioning of the heart in the human body. Finally, the output step-up transformer which couples the generated pulses to the catheter'is designed to prevent unwanted signals from appearing on the catheter wires, for, example, A.C. noise which may be present especialy during the recharging operation and/or steady DC. in the event of transistor failure in the pulse generator. Either type of signal, if it reaches the heart, could cause fatal ventricular fibril lation.
'The proposed cardiac pacer also has a much improvedmechanical design, when compared with currently available pacers. Specifically, the proposed pacer is more suitable for human implantation in that it is provided with a metallic coating or housing which acts not only to hermetically seal or protect the electronic components against infusion of body fluids but comparatively quite rugged.
In view of the above, one object of the present invention is to provide an improved rechargeable, fixed-rate cardiac pacer or stimulator.
Another object of the present invention is to provide an improved fixed-rate cardiac pacer or stimulator which utilizes a single cell rechargeable battery as the power source for transistorized pulse generating circuitry to produce output heart stimulating pulses.
Another object of the present invention is to provide a cardiac pacer or stimulator wherein the pulse generating circuitry is of a failsafe design.
Another object of the present invention is to provide a cardiac pacer or stimulator wherein the output pulse rate is permitted to vary as a function of battery voltage.
Another object of the present invention is to provide a cardiac pacer or stimulator wherein the output pulse rate increases with increasing body temperature so as to more accurately simulate the natural functioning'of the heart.
Another object of the present invention is to provide an improved implantable cardiac pacer or stimulator wherein any one of a plurality of output pulse rates is selectable remotely.
Another object of the present invention is to provide a cardiac pacer or stimulator which is hermetically sealed against the outside environment and is shielded against electromagnetic interference.
Other objects, purposes and characteristic features of the present invention will in part be pointed out as the description of the invention progresses and in part be obvious from the accompanying drawings wherein:
FIG. 1 is a diagram of circuitry constituting one embodiment of the proposedrechargeablefixed-ratecardiac pacer or stimulator;
FIG. 2 is a waveform diagram showing a typical output voltage pulse produced by the pacer embodiment of FIG. 1;
FIG. '3 is a circuit diagram illustrating one modification of the rechargeable cardiac pacer of FIG. 1 whereby the output pulsing rate is remotely controllable;
FIG. 4 is a graph showing battery charge current as a function of the separation distance between the charging head and the input transformer;
FIG. Sis a graph illustrating the variation in pulse rate with pacer temperature;
FIG. 6 is a graph illustrating the dependence of pulse rate on battery or cell voltage; 1 i
FIG. 7 is a graph illustrating the output pulse rate as a function of charging current; I
FIG. 8 is a top view of a cardiac pacer structure embodying the present invention;
FIG. 9 is a sectional view taken along the line 9-9 in FIG. 8 and viewed in the direction of the arrows;
FIG. 10 is an enlarged end view of the catheter connection assembly;
FIG. 11 is a top view of the cardiac pacer unit shown in FIG. 8 with certain parts removed in order to illustrate in more detail the interior electronic components of the pacer and the manner of connecting the catheters to the pacer body; and
- FIG. 12 is an enlarged side view partially in section of a catheter connecting assembly.
As illustrated in FIG. 1 of the drawings, the presently preferred embodiment of the proposed cardiac pacer basically comprises: a rechargeable, single cell nickelcadmium battery 15 and pulse generator circuitry formed of transistor pair 16-17 which is powered by the Ni-Cd cell 15 to generate output heart stimulating pulses at the desired pulsing rate. By way of example, the battery or cell 15 might produce a nominal 1.25 volts and be rated at 200 milliamp-hours. The single cell construction for battery 15 is preferable to a multicell design in that the single cell provides the highest ratio of active chemical materials volume to case volume and also a higher degree of reliability. Moreover, in the multi-cell battery, complete discharge can result in permanent damage to that cell in the series string that has the least capacity; whereas, with a single cell even though it may be accidentally completely discharged, it can be readily recharged with no damage whatsoever. The single Ni-Cd cell is also readily recharged by magnetic induction without penetration of the patients skin.
The pulse generating circuit comprising transistor pair 16 and 17 is connected essentially in the form of a relaxation type oscillator circuit. More specifically, the base of the PNP transistor 16 is connected through resistor 18 to the collector of the other transistor 17 which is of NPN type; the emitter of transistor 16 is connected to the positive terminal of the Ni-Cd cell 15; and, the collector of transistor 16 is connected, on the one hand, to the base of transistor 17 through resistor 19 and series capacitor 20 and, on the other hand, to one end of the primary winding of a suitable 1:4 step-up output transformer 21. The other end of the primary winding is connected to the emitter of transistor 17 and the negative terminal of cell 15. The base of the transistor 17 is also connected through a relatively large value resistor 22 to the left-hand end of a small value resistor 23 (e.g. 3 ohms) which at its opposite end, is connected to the positive terminal of cell 15. The secondary winding of the output transformer 21 is connected by means of a suitable connector unit designated as 24 to a catheter 25 of conventional design such as the Medtronic No. 5816 catheter which terminates in a bipolar elec- I trode 26. It should be noted that the output transformer 21 has been illustrated as an iron core transformer and that its primary and secondary windings are D.C. isolated from one another, for reasons to be described in more detail hereinafter. On the other hand, a capacitor 27 is connected across the lower ends of the primary and secondary windings of the output transformer 21 for the purpose of preventing undesirable A.C. noise from appearing on the catheter 25, for example during recharging of the Ni-Cdcell 15.
- Having described how the pulse generating circuitry of FIG. 1 is connected, attention will now be directed to the operation of this circuitry during generation of the output heart stimulating pulses. Assuming, for example, that both of the transistors 16 and 17 are initially cut-off and capacitor 20 is discharged. It will be noted that a charging circuit for capacitor 20 exists between the opposite terminals of the Ni-Cd cell 15, through resistors 19, 22 and 23 and the primary winding of the output transformer 21. The resistor 22 has a value (e.g. 1.2 megohms) which is very much greater than any of the other resistor values in this charging circuit so that the rate at which capacitor 20 now charges is predominately controlled by the value of resistor 22. As will be explained in more detail hereinafter, the RC timing circuit thus formed by capacitor 20 and resistor 22 determines essentially the interpulse period for the pulse generator circuitry and therefore the rate at which the heart is stimulated (i.e. patients pulse rate).
The capacitor 20 thus charges towards the supply voltage represented by the Ni-Cd cell 15 until the voltage at the base of transistor 17 reaches a predetermined threshold level (e.g. 0.7 volts) at which time the transistor 17 begins conduction. The flow of collector current in the transistor 17 draws base current at transistor 16 through resistor 18 and thereby turns transistor 16 on. As a result of regenerative feedback between transistors 16 and 17, the collector voltage for transistor 16 immediately rises (output pulse has fast rise time) to a voltage level only slightly less than the Ni-Cd cell voltage.
This rise in the collector voltage for transistor 16 causes the capacitor 20 to begin charging in an opposite direction so that the value of the voltage on the base of transistor 17 eventually is reduced below a second preselected threshold level (e.g. 0.6 volts) at which time the transistor 17 is turned off and this, in turn, regeneratively cuts off the other transistor 16 (output pulse has fast fall time). The circuitry is thus once again returned to its initial condition wherein the collector of transistor 16 is essentially at the voltage level of the negative terminal of the Ni-Cd cell 15. Once again therefore, the capacitor 20 would begin charging towards the supply voltage, as previously discussed, with the time constant determined primarily by resistor 22 and capacitor 20.
As a result of this operation of the pulse generating circuitry, a series of positive-going trigger pulses appear across the secondary of output transformer 21, each being approximately 4 volts in amplitude and hav ing a pulse width of approximately 1 millisecond, as shown in the typical waveform of FIG. 2. The action of the output transformer 21 causes the output pulses to have a negative going portion of approximately the same area as the positive-going heart triggering pulse portion. This is quite desirable since it accomplishes the desired triggering of the heart while preventing any net ion flow in the blood near the bipolar electrodes 26.
In accordance with the present invention, the necessary periodic recharging of the illustrated Ni-Cd cell 15 is accomplished by utilizing an external charger unit 28 of any conventional design operating at an ultrasonic charging frequency of approximately 25 kilohertz (kHz) and being equipped with a suitable charging head 29 capable of coupling the ultrasonic frequency charging energy through the patients skin 30, by magnetic induction. The charger 28 might, for example, first convert the 60 Hz line power to D.C. and then invert it to the desired 25 kHz for more efficient chargmg.
It should be noted that in the past there have been several unsuccessful attempts to use inductively rechargeable pacemakers which have failed primarily because of the attempted use of an R.F. frequency for coupling energy into the pacer or stimulator through the patients skin. Specifically, the R.F. energy has caused considerable heating of the skin resulting primarily as a result of absorption of the relatively high frequency electromagnet waves into the conducting tissue of the, skin. By'utilizing a lower, ultrasonic frequency such as 25 kHz, it is possible to couple more than enough energy to recharge the single Ni-Cd cell in a short period of time and without this undesirable heating of the skin. On the other hand, frequencies below ultrasonic are undesirable in that they require much larger components to receive the inductively coupled energy and also result in pyschologically undesirable vibrations that may be detectable by the patients'ear or by the nerves surrounding the pacer.
The Ni-Cd cell obtains its 25 kHz charging energy input by means of magnetic induction coupling between the charging head 29 and an input transformer 31 positioned adjacent the patients skin 30. The input transformer 3l-is formed of a thin sheet or core of suitable ferrite material around which is wrapped many turns of copper wire.
Across the output of the input transformer 31 is connected a conventional diode full-wave rectifier bridge circuit 32 which converts the periodic input charging energy into a DC. charging current. A suitable filter capacitor 33 is connectedacross the output full-wave rectifier circuit 32 (points Y and Z in FIG. 1) to remove any undesired ripple in the rectifier output. The drain (D) element of an N-channel type field effect transistor 34 is also connected to point Z and the gate (G) and source (S) elements of the field effect transistor 34 are tied together and connected to the negative terminal of the Ni-Cd cell 15. In this manner, the FET 34 acts in a well-known manner to limit the charging current to the cell 15 to a level (e.g. 40 milliamps) at which the cell '15 can be continuously charged without damage to the cell or the pulse generator circuitry. As noted in FIG. 4 of the drawings, in one practical application of the present invention it was observed that the necessary charging-current value of 40 ma. could be supplied even though the distance between the patients skin 30 and the external charger 28 varied between 0.5 inch' and about 1.2 inches. The fall-off in charging current at a distance less than 0.75 inch is apparently a result of heating of the current limiting field effect transistor 34, causing an increase in its ohmic resistance.
As mentioned previously, a small value (e.g. 3 ohm) resistor 23 is connected in series in the charging circuit to the Ni-Cd cell 15, between the positive terminal of the cell and one side of the resistor 22 (point Y in FIG. 1). The purpose of this resistor 23 is to develop a voltage drop during charging which, in effect, increases the rate at which capacitor charges to the conducting threshold level of transistor 17; i.e. it decreases the interpulse period and thus increases the output pulse rate r from the pulsegenerating circuitry. This enables the patient and/or the attending physician to detect that the recharging operating is properly taking place, by merely monitoring the resultant increase in pulse rate. FIG. 7 of the drawings illustrates the increased pulse rate experienced in one practical application of the proposed pacer as a function of battery charge current.
As shown in FIG. 5, another desirable and novel feature of the proposed cardiac pacer is that the output pulse rate from the pulse generator circuitry is also temperature dependent. This enables the output pulse rate to provide an indication of the patients body temperature; i.e., if the patient has a high temperature, the output pulse rate will increase, thus simulating natural heart functioning. Although there are obviously many ways of rendering the output pulse rate from pulse generator circuitry of FIG. 1 .temperature dependent, the presently preferred method of accomplishing this is by utilizing a charging capacitor, at 20, having a high temperature coefficient. A commercially available barium titanate ceramic capacitor has proven satisfactory for this purpose.
One further aspect of the illustrated pacemaker circuitry is worthy of notes; namely, there is also a dependence between the ouput pulse rate andthe voltage of battery or cell 15 as indicated in FIG. 6; This results from the fact that the charging rate of capacitor 20 varies directly, as previously discussed, with the existing battery voltage and this therefore allows a monitoring physician to obtain a indication of the battery voltage by means of the detected pulse rate of the patient. For example, in one practical application, the normal operating range for battery voltage is from 1.35 volts immediately after being charged to 1.2 volts after one week of discharge. During this period the patients pulse rate will decrease from approximately 76 to approximately 74 beats per minute. If, on the other hand, a patient observes a pulse rate of pulse beats per minute or less in less than one week after charging, it is indicative of potential cell failure and could be cause for pacer replacement.
As previously discussed, the output pulsing rate produced by the pulse generating circuitry of FIG. 1 depends primarily upon the RC. charging time constant represented by resistor 22 and capacitor 20. In the modification shown in FIG. 3 of the drawings, the single resistor 22 is replaced by a plurality of resistors 22a, b and 0 shown connected in series between circuit points X and Y which correspond to similarly desig-.
nated circuit points in FIG. 1. A pair of minature magnetic latching relays 35 and 36, of well-known design, are associated with resistors 22b and 0 respectively and selectively control whether the resistors 22b and c either are shorted out or add to the series resistance between circuit points X and Y in FIG. 3.
More specifically, each latching relay has an associated pair of control windings represented, for example, at 35a and b-which, when energized, actuate the relay contact element'to its closed and open-circuit positions respectively. In the closed contact position, the associated resistor 22b is short-circuited; whereas, in the open contact position, resistor 22b adds to the series resistance between points X and Y, in the charging circuit for capacitor 20. Each of the magnetic latching relays 35 and 36 is capable of retaining or latching its contact element in the last operating position to which it has been'actuated until the other winding of the relay is energized to actuate the contact element to its opposite position.
The selective energization of the control winding pairs 35a-b and36a-b for the latching relays 35 and 36 is preferably controlled by reed switches 37, 38, 39 and 40 which are each connected in'parallel to circuit point Y in FIG. 3 and in series with one of the control windings. Actuation of these reed switches is accomplished, in FIG. 3, by means of selectively energizable external coils 41-44, one of which is associated with a different reed switch 3740. For example, as represented in FIG. 3 by the dotted line, selective 'energization of coil 44 (by a suitable source, not shown) causes reed switch 40- to close and therebyenergi ze control winding 35b by connecting it across circuit points Y and Z, at the out- 9 put of the full-wave rectifier (see FIG. 1). The contact element of latching relay 35 would therefore be moved to its lower or open position and thus connect resistor 22b in series in the charging circuit (points X and Y) for the timing capacitor 20 and thus cause an associated decrease in the output pulse rate from the pulse generating circuitry of the pacer. In FIG. 3, it should be noted that a total of four different pulse rate values may be remotely or externally selected in the foregoing manner.
The mechanical structure of one embodiment of the proposed fixed-rate rechargeable cardiac pacer is illustrated in FIGS. 8 through 12 of the drawings. Before describing these. structural details, however, one method of forming the assembled pacer structure should be noted. More specifically,-the initial step in fabricating the illustrated embodiment is to dip or otherwise coat the assembled electronic components, including the output transformer and the printed circuit boards (together with their interconnected bulk components), in a suitable silicon rubber such as the wellknown Silastic compound. Thisinitial rather soft coating protects the electronic components against the stressing associated with a harder encapsulation such as epoxy. The second step utilized in fabricating the illustrated pacer of FIGS. 8 through 12 is to pot the Ni-Cd battery and the electronic components with such a hard encapsulation, in order to improve mechanical strength. Subsequently, a metal housing is then placed around the unit to hermetically seal it against body fluids, as well as to provide a shielding against electromagnetic interference. By way of example, this metal housing can be attained by an 8-10 mils gold plating operation or by performing the epoxy potting in a pre-form metal (e;g. nickel) can and then welding on metallic cover to complete the hermetic seal. In either event, the next step in pacer unit fabrication is to connect the assembled catheter-across the secondary of the output transformer and the input transformer to the input of the electronic circuitry (see FIG. 1). A second hard epoxy potting is then employed, if necessary, to obtain the'desired pacemaker body configuration and finally, a so-called conformal coating" of a suitable medical Silasticis applied tomake the pacer more compatible with living tissue.
In the illustrated embodiment of FIG. 8, thepacer body which results from the foregoing fabrication method is designated at 45. Mounted on top of the body 45 is the input transformer 31 (see FIG. 1) formed of a thin, oblong sheet 46 of suitable ferrite material and a winding 47 of copper wire. It should be noted here that the input transformer 31' is generally covered, in the completely fabricated pacemaker unit, by the second epoxy coating and the final conformal coating. However, in order to more clearly illustrate the details of the input transformer 3l, these final two coatings have been omitted at the top of the unit shown in FIG. 8.
Extending from the illustrated right-hand end of the pacer body 45 are two catheter connector assemblies 48 and 49; one for each of the two illustrated catheter lead-in wires 25a and 25b which branch out from the main body of the catheter 25, as best shown in FIG, 11. The connector assemblies 48 and 49 correspond collectively to the unit 24 in FIG. 1. As mentioned previously, one form of catheter suitable for use with the proposed pacer is the type known as Medtronic No.
5816. The catheter lead-ins 25a and b each contain a single wire coaxially located within an insulating silicon rubber body (see cross-sectional view of FIG. 10).
The details of the catheter connection assembly are best illustrated in FIG. 7 of the drawings. A first member 50, formed of a suitable high dielectric strength plastic such as that manufactured under the tradename Kel-f, contains a suitable female electrical connection member 51 implanted at its left-hand end in FIG. 7 to receive the prong or tip 52 at the end of the catheter wire, when in assembled position. On the outer periphery of the connector member 50 are formed three closely spaced notches 53, 54 and 55. Two of these notches 53 and 54 are for the purpose of facilitating anchoring of the catheter connector assembly to the pacemaker body during fabrication; whereas, the third groove 55 is adapted to be engaged by an inwardly extending flange 56 formed on the inside of the silicon rubber sleeve 57. The inside of the plastic connector member 51 is contoured so as to facilitate insertion of the prong 52 at the end of the catheter lead-in 2511 or been inserted to the proper depth within the connector assembly. Sleeve member 57 is provided with a peripheral groove 57a adjacent its right-hand end to accommodate a suture which secures the sleeve 57 to the catheter lead-in. An enlarged cross-sectional view of the assembled catheter connector assembly is shown in FIG. l0.
As is best shown in FIGS. 9 and 11, the completed catheter connector assemblies 48 and 49 mounted against the concave sides of the preliminary body 59 during fabrication of the pacer. As previously mentioned, this preliminary body is molded around the nickel-cadmium cell 15, the output transformer-21 and two printed circuit boards (and the associated circuit components) 60, by utilizing a suitable epoxy potting compound and an appropriate mold. As also discussed,
the electronic components implanted within preliminary body 59 would preferably have'been previously dipped in a suitable Silastic compound, in order to protect the components against the stresses associated with hard (epoxy) encapsulation. In order to obtain the desired combination hermetic seal/electromagnetic shield for the pacemaker, the preliminary body 59 would, during fabrication, be appropriately metal plated with 8 10 mils of gold, for example. As an alternative, the epoxy potting can be performed in a metallic (e.g. nickel) can and the top subsequently welded on to form the seal/shield.
The preliminary epoxy body 59 is formed with a cutout section on either side (for example, cut-out portion 61) each of which is provided with a pair of electrical connector pins 62. Two of these connecting pins 62, on opposite sides of body 59, are connected to the lead out wires from the catheter connector assemblies, such as is typically illustrated at 63 in FIG. 12 extending through Silastic end cap 64; whereas, the other two connector pins 62 are connected to the ends of the input transformer coil wire which are designated at 65 in FIG. 8. Obviously, the connector pins 62 should be electrically insulated from the metallic plating which applied to the preliminary body 59 as previously discussed. This can be accomplished, for example, by
properly masking the connector pin 62 (and-the immediately adjacent surface of body 59 if necessary) before the gold platingis applied. Similarly, the input transformer coil 47. is also formed of suitably insulated wire,
as shown.
As previously mentioned, after the ends of catheter 25 and input transformer3l have been properly positioned on the preliminary body 59 and properly connected electrically to the connector pins 62, this composite structure is then placed in another mold and more epoxy potting compound added to attain the desired pacer body configuration (see reference numeral 45 in FIGS. 8 and 9). Finally, the so-called conformal coating is applied to the unit to make it more suitable for implantation; i.e., so that the unit will not irritate the body tissues.
Various other modifications, adaptations and alterations are of course possible in-light of the above teachings. Therefore, it should be understood at this time that within the scope of theappended claimsthe invention may be practiced otherwise thanas specifically described. i
What is claimedv is:
l. A cardiac pacer adapted to be implanted in the body of a patient and'comprising, in combination a DC. voltage supply,
pulse generating circuit means connected to said voltage supply for gene rating output heart stimulating pulses at a predetermined rate,
catheter means equipped with electrode means for applying said output heart stimulating pulses to the patients heart, I i
an output transformer having primary and secondary windings which are D.C. isolated from one another,
said primary winding being connected to receive the output heart stimulating pulses generated by said pulse generating circuit means,
' said secon'darywinding being'connected to apply said output heart stimulating pulses to said catheter means, and. i
filter capacitor means connected between the primaryand secondary windingsofsaid output transformer forupreventing periodic signal noise from appearing at said catheter means.v i
2. Theimplantable cardiac pacer specified in claim 1 wherein said D.C.'vol'tage supply is a rechargeable battery and further including,
recharging means including means for couplin charging energy through the patients skin to the rechargeable battery by magnetic induction.
3. The implantable cardiac pacer specified in claim 2 wherein I 4 v I said rechargeable battery is a single nickel-cadmium cell, and f said recharging means includes a source of output charging energy operating at a preselected ultrasonic frequency of substantially 25 kilohertz,
a magnetic, charging head connected to receive the output charging energy of said source and transmit said energy through the patients skin,
aferrite core input inductive coupling means for receiving said transmitted energy following passage through the patients skin, and
rectifier means connecting electrically said inductive coupling means to said battery.
4. The cardiac pacer specified in claim 1 wherein said pulse generating circuit means includes temperature sensitive circuit means selected to control said output pulse rate to vary in direct proportion with ambient temperture and thereby simulate natural heart beat variation as a function of temperature.
5. The cardiac pacer specified in claim lwherein said pulse generating circuit means includes,
a timing circuit formed of a resistor and a serially connected capacitor to determine said output pulse rate,
said capacitor having a high temperature coefficient effective to cause said output pulse rate to increase with increasing ambient temperature. 6. A cardiac pacer adapted to be implanted in the body of a patient and comprising, in combination, a rechargeable, single cell battery," pulse generating means connected to receive operating voltage from said battery for generating output heart stimulating pulses at a predetermined rate and including a timing circuit which determines said output pulse rate, said timing circuit including a resistance means and a serially connected charging capacitor having a high temperature coefficient effective to cause said output pulse rate to vary directly as a function of the pacers ambient temperature, said timing circuit being operably connected to said battery to cause the charging rate of said capacitor and the output pulse rate to vary directly as a function of battery voltage, control means for controlling externally of the patients body the resistance value of said resistance means to selectively vary'said output pulse rate, catheter means equipped with electrode means for applying said output heart stimulating pulses to the patients heart, t an output transformer having a primary winding connected to receive the output pulses generated by said pulse generating means and a secondary winding which is D. C."isolated from said primary winding and which is connected to apply said output pulses to said catheter means, v a first molded, encapsulating unitary body of epoxy surrounding said battery, said'pulse generating cir cuitryand said output transformer,
ametallic housing formed around the exterior surface of said first epoxy body, said first epoxy body being provided with a plurality I of electrical connector means mounted thereon and insulated from-said metallic housing, certain of said electrical connector means connecting the secondary winding of said output transformer to said catheter means,
an input inductive coupling means mounted on said pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate, and
catheter means equipped with electrode means connected to receive and apply said output heart stimulating pulses to the patients heart,
said pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply,
said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing voltage level of said supply,
said pulse generating circuit means including means responsive to the voltage charged on said capacitor and render effective to generate an output pulse each time said capacitor has charged to a preselected threshold voltage,
said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage,
said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply'and simulates natural heart beat variation as a function of the patients internal temperature.
8. An implantable cardiac pacer adapted to be recharged from an external energy source and comprising, .in combination,
a rechargeable battery,
pulse generating circuitry means connected to receive operating voltage from said battery for generating. output pulses,
pulse applying means equipped with electrode means adapted to apply pulses to the patients heart,
an output transformer having primary and secondary windings connected to receive said output pulses from said pulse generating circuitry and couple them to said pulse applying means,
a metallic housing forming a hermetic seal around said battery, said pulse generating circuitry and said output'transformer,
an inductive coupling means disposed external to said metallic housing for receiving recharging energy from said external source,
rectifier means operably connected between said inductive coupling means and said rechargeable battery, and I a plurality of electrical connector means mounted in and extending through and insulated'from said metallic housing,
certain of said plurality of electrical connector means connecting the secondary winding of said output transformer to said pulse applying means,
LII
others of said plurality of electrical connector means connecting said inductive coupling means electrically to said rechargeable battery via said rectifier means.
9. The implantable cardiac pacer specified in claim 8 further including a molded, encapsulating body of potting material disposed within said metallic housing and surrounding said battery, said pulse generating circuitry and said output transformer.
10. The implantable cardiac pacer specified in claim 9 wherein said metallic housing is formed by gold plating and said potting material is epoxy.
11. The implantable cardiac pacer specified in claim 9 wherein said inductive coupling means includes a ferrite core and an energizable coil of insulated wire wound around said core and having its ends connected electrically by said others of said plurality of electrical connector means and said rectifier means to said battery,
said pulse applying means is a catheter means,
the respective configurations of said input inductive coupling means and said metallically housed molded body being substantially similar to permit said input inductive coupling means to be mounted in juxtaposition against said metallically housed body, and further including a second molded, encapsulating body of potting material surrounding said metallically housed body, said input inductive coupling means, and said catheter means adjacent the connection of said catheter means to the electrical connector means provided on said metallically housed body.
12. The implantable cardiac 11 further including,
an external charger operating at a predetermined ultrasonic frequency for coupling periodic charging energy to said input inductive coupling by magnetic induction, and wherein said rectifier means operably connected between said input inductive coupling means and said battery converts said periodic charging energy into direct current charging energy.
13. The implantable pacer specified in claim ll wherein said metallically housed body has a substantially rectangular configuration with substantially flat top and bottom surfaces and concave side surfaces,
said ferrite core is of a flat, substantially rectangular configuration and is mounted flat against the flattened top surface of said metallically housed body,
and
said catheter means comprises an insulative body containing a pair of wires terminating, at one end, at electrode means and branching out, at the other end, as two individual insulated wires, and
a pair of connector assemblies, each adapted to be connected at the branched end of one of said two insulated wires and having a substantially cylindrical shape configured to mate with the concave side surfaces of said metallically housed body,
said second body of potting material surrounding at least a portion of said connector assembly pair to anchor said catheter means.
14. The implantable cardiac pacer specified in claim 11 further including a coating of medical Silastic material encapsulating said second body of potting material pacer specified in claim for making said pacer unit compatible with the patients body tissue.
15. A cardiac pacer adapted to be implanted in a patient and comprising, in combination,
a DC. voltage supply, transistorized pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate and including a pair of transistors each having collector, emitter and base elements and regenerative feedback circuit means interconnecting the collector, emitter and base elements of said transistor pair, and I catheter means equipped with electrode means connected to receive and apply said output heart stimulating. pulses to the patients heart, said pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply, said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing I voltage level of said supply,
one side of said charging capacitor being connected to the base element of one of said transistors to effect conduction in said one transistor and cause said pulse generating circuit means to generate an output pulse each time said capacitor has been charged to a preselected threshold voltage,
said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage,
said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply and simulates natural heart beat variation as a function of the patients internal temperature.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 7, Dated 25, 1975 Inventor(s) Robert E. Fisohell It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
At Column 1, immediately following the title of the invention, the following paragraph should be added:
-- Theinvention described herein was made in the course of work under a grant or award from the Department oi Health, Education and Welfare.
Signed and sealed this 29th day of April 1975.
'(sEAL) Attest:
C MARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks FORM P0-1050 (10-69) uscoMM-oc 60376-969 0.5, GOVERNMENT PRINTING OFFICE: e 9. 9
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 5, Dated Inventor(s) Robert E. Fischell It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
At Column 1, immediately following the title of the invention, the following paragraph should be added:
-- Theinvention described herein'was made in the course of work under a grant or award from the Department of Health, Education and Welfare.
Signed and sealed this 29th day of April 1975.
(SEAL) Attest:
C. MARSHALL DANN RUTH C. MASON Conunissioner of Patents Attesting Officer and Trademarks FORM PO-WSO (10-69) uscoMM-oc scan-P09 us covenmum rmmms omzcz; 930

Claims (15)

1. A cardiac pacer adapted to be implanted in the body of a patient and comprising, in combination a D.C. voltage supply, pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate, catheter means equipped with electrode means for applying said output heart stimulating pulses to the patient''s heart, an output transformer having primary and secondary windings which are D.C. isolated from one another, said primary winding being connected to receive the output heart stimulating pulses generated by said pulse generating circuit means, said secondary winding being connected to apply said output heart stimulating pulses to said catheter means, and filter capacitor means connected between the primary and secondary windings of said output transformer for preventing periodic signal noise from appearing at said catheter means.
2. The implantable cardiac pacer specified in claim 1 wherein said D.C. voltage supply is a rechargeable battery and further including, recharging means including means for coupling charging energy through the patient''s skin to the rechargeable battery by magnetic induction.
3. The implantable cardiac pacer specified in claim 2 wherein said rechargeable battery is a single nickel-cadmium cell, and said recharging means includes a source of output charging energy operating at a preselected ultrasonic frequency of substantially 25 kilohertz, a magnetic charging head connected to receive the output charging energy of said source and transmit said energy through the patient''s skin, a ferrite core input inductive coupling means for receiving said transmitted energy folloWing passage through the patient''s skin, and rectifier means connecting electrically said inductive coupling means to said battery.
4. The cardiac pacer specified in claim 1 wherein said pulse generating circuit means includes temperature sensitive circuit means selected to control said output pulse rate to vary in direct proportion with ambient temperture and thereby simulate natural heart beat variation as a function of temperature.
5. The cardiac pacer specified in claim 1 wherein said pulse generating circuit means includes, a timing circuit formed of a resistor and a serially connected capacitor to determine said output pulse rate, said capacitor having a high temperature coefficient effective to cause said output pulse rate to increase with increasing ambient temperature.
6. A cardiac pacer adapted to be implanted in the body of a patient and comprising, in combination, a rechargeable, single cell battery, pulse generating means connected to receive operating voltage from said battery for generating output heart stimulating pulses at a predetermined rate and including a timing circuit which determines said output pulse rate, said timing circuit including a resistance means and a serially connected charging capacitor having a high temperature coefficient effective to cause said output pulse rate to vary directly as a function of the pacer''s ambient temperature, said timing circuit being operably connected to said battery to cause the charging rate of said capacitor and the output pulse rate to vary directly as a function of battery voltage, control means for controlling externally of the patient''s body the resistance value of said resistance means to selectively vary said output pulse rate, catheter means equipped with electrode means for applying said output heart stimulating pulses to the patient''s heart, an output transformer having a primary winding connected to receive the output pulses generated by said pulse generating means and a secondary winding which is D.C. isolated from said primary winding and which is connected to apply said output pulses to said catheter means, a first molded, encapsulating unitary body of epoxy surrounding said battery, said pulse generating circuitry and said output transformer, a metallic housing formed around the exterior surface of said first epoxy body, said first epoxy body being provided with a plurality of electrical connector means mounted thereon and insulated from said metallic housing, certain of said electrical connector means connecting the secondary winding of said output transformer to said catheter means, an input inductive coupling means mounted on said metallically housed first epoxy body external to said metallic housing and being formed of a ferrite core and an energizable coil of insulated wire wound around said core and having its wire ends connected by others of the electrical connector means provided on said epoxy body to supply charging energy to said battery, a second molded, encapsulating body of epoxy surrounding said metallically housed first epoxy body, said input inductive coupling means and said catheter means adjacent the connection of said catheter means to said electrical connector means, and external charging means including a source of charging energy operating at a predetermined ultrasonic frequency of substantially twenty-five kilohertz and a charging head means connected to couple said charging energy to said input inductive coupling means by magnetic induction through the patient''s skin.
7. A cardiac pacer adapted to be implanted in a patient and comprising, in combination, a D.C. voltage supply, pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate, and catheter means equipped with electrode means connected to receive and apply said output heart stimulating pulses to the patient''s heart, SAID pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply, said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing voltage level of said supply, said pulse generating circuit means including means responsive to the voltage charged on said capacitor and render effective to generate an output pulse each time said capacitor has charged to a preselected threshold voltage, said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage, said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply and simulates natural heart beat variation as a function of the patient''s internal temperature.
8. An implantable cardiac pacer adapted to be recharged from an external energy source and comprising, in combination, a rechargeable battery, pulse generating circuitry means connected to receive operating voltage from said battery for generating output pulses, pulse applying means equipped with electrode means adapted to apply pulses to the patient''s heart, an output transformer having primary and secondary windings connected to receive said output pulses from said pulse generating circuitry and couple them to said pulse applying means, a metallic housing forming a hermetic seal around said battery, said pulse generating circuitry and said output transformer, an inductive coupling means disposed external to said metallic housing for receiving recharging energy from said external source, rectifier means operably connected between said inductive coupling means and said rechargeable battery, and a plurality of electrical connector means mounted in and extending through and insulated from said metallic housing, certain of said plurality of electrical connector means connecting the secondary winding of said output transformer to said pulse applying means, others of said plurality of electrical connector means connecting said inductive coupling means electrically to said rechargeable battery via said rectifier means.
9. The implantable cardiac pacer specified in claim 8 further including a molded, encapsulating body of potting material disposed within said metallic housing and surrounding said battery, said pulse generating circuitry and said output transformer.
10. The implantable cardiac pacer specified in claim 9 wherein said metallic housing is formed by gold plating and said potting material is epoxy.
11. The implantable cardiac pacer specified in claim 9 wherein said inductive coupling means includes a ferrite core and an energizable coil of insulated wire wound around said core and having its ends connected electrically by said others of said plurality of electrical connector means and said rectifier means to said battery, said pulse applying means is a catheter means, the respective configurations of said input inductive coupling means and said metallically housed molded body being substantially similar to permit said input inductive coupling means to be mounted in juxtaposition against said metallically housed body, and further including a second molded, encapsulating body of potting material surrounding said metallically housed body, said input inductive coupling means, and said catheter means adjacent the connection of said catheter means to the electrical connector means provided on said metallically housed body.
12. The implantable cardiac pacer specified in claim 11 further including, an external charger operating at a predetermined ultrasonic frequency for coupling periodic charging enErgy to said input inductive coupling by magnetic induction, and wherein said rectifier means operably connected between said input inductive coupling means and said battery converts said periodic charging energy into direct current charging energy.
13. The implantable pacer specified in claim 11 wherein said metallically housed body has a substantially rectangular configuration with substantially flat top and bottom surfaces and concave side surfaces, said ferrite core is of a flat, substantially rectangular configuration and is mounted flat against the flattened top surface of said metallically housed body, and said catheter means comprises an insulative body containing a pair of wires terminating, at one end, at electrode means and branching out, at the other end, as two individual insulated wires, and a pair of connector assemblies, each adapted to be connected at the branched end of one of said two insulated wires and having a substantially cylindrical shape configured to mate with the concave side surfaces of said metallically housed body, said second body of potting material surrounding at least a portion of said connector assembly pair to anchor said catheter means.
14. The implantable cardiac pacer specified in claim 11 further including a coating of medical Silastic material encapsulating said second body of potting material for making said pacer unit compatible with the patient''s body tissue.
15. A cardiac pacer adapted to be implanted in a patient and comprising, in combination, a D.C. voltage supply, transistorized pulse generating circuit means connected to said voltage supply for generating output heart stimulating pulses at a predetermined rate and including a pair of transistors each having collector, emitter and base elements and regenerative feedback circuit means interconnecting the collector, emitter and base elements of said transistor pair, and catheter means equipped with electrode means connected to receive and apply said output heart stimulating pulses to the patient''s heart, said pulse generating circuit means including a timing circuit to determine said output pulse rate and comprising a resistor and capacitor connected serially with said voltage supply, said capacitor being charged repetitively from said voltage supply at a rate dependent on the existing voltage level of said supply, one side of said charging capacitor being connected to the base element of one of said transistors to effect conduction in said one transistor and cause said pulse generating circuit means to generate an output pulse each time said capacitor has been charged to a preselected threshold voltage, said output pulse rate being dependent upon the time required by said capacitor to charge to said preselected threshold voltage, said capacitor having a high temperature coefficient selected to control the rate at which said capacitor charges to said preselected threshold voltage to also vary in direct proportion with ambient temperature whereby said output pulse rate is dependent upon the existing voltage level of said voltage supply and simulates natural heart beat variation as a function of the patient''s internal temperature.
US154492A 1971-06-18 1971-06-18 Fixed rate rechargeable cardiac pacemaker Expired - Lifetime US3867950A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US154492A US3867950A (en) 1971-06-18 1971-06-18 Fixed rate rechargeable cardiac pacemaker
CA144,810A CA991273A (en) 1971-06-18 1972-06-15 Fixed rate rechargeable cardiac pacemaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US154492A US3867950A (en) 1971-06-18 1971-06-18 Fixed rate rechargeable cardiac pacemaker

Publications (1)

Publication Number Publication Date
US3867950A true US3867950A (en) 1975-02-25

Family

ID=22551557

Family Applications (1)

Application Number Title Priority Date Filing Date
US154492A Expired - Lifetime US3867950A (en) 1971-06-18 1971-06-18 Fixed rate rechargeable cardiac pacemaker

Country Status (2)

Country Link
US (1) US3867950A (en)
CA (1) CA991273A (en)

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987799A (en) * 1973-07-12 1976-10-26 Coratomic Inc. Heart pacer
DE2616297A1 (en) * 1975-04-17 1976-10-28 Univ Johns Hopkins RECHARGEABLE BODY TISSUE STIMULATOR
DE2703628A1 (en) * 1976-01-29 1977-08-04 Pacesetter Syst IMPLANTABLE LIVING TISSUE STIMULATOR
US4105037A (en) * 1977-05-06 1978-08-08 Biotronik Mess- Und Therapiegerate Gmbh & Co. Releasable electrical connecting means for the electrode terminal of an implantable artificial cardiac pacemaker
DE2720011A1 (en) * 1976-01-29 1978-11-16 Pacesetter Syst Implantable living tissue stimulator - includes coil for current induced by external alternating magnetic field and has hermetic metal container
USRE30028E (en) * 1973-07-12 1979-06-12 Coratomic, Inc. Heart pacer
US4186246A (en) * 1978-08-11 1980-01-29 General Electric Company Hermetically sealed electrochemical storage cell
US4262414A (en) * 1978-08-11 1981-04-21 General Electric Company Method for manufacturing a hermetically sealed electrochemical storage cell
US4288733A (en) * 1979-10-17 1981-09-08 Black & Decker Inc. Battery charger system and method adapted for use in a sterilized environment
US4361153A (en) * 1980-05-27 1982-11-30 Cordis Corporation Implant telemetry system
US4379988A (en) * 1981-01-19 1983-04-12 Patricio Mattatall Molded hearing aid and battery charger
EP0096464A1 (en) * 1982-05-19 1983-12-21 Purdue Research Foundation Exercise responsive cardiac pacemaker
US4431001A (en) * 1980-09-17 1984-02-14 Crafon Medical Ab Stimulator system
FR2550095A1 (en) * 1983-08-02 1985-02-08 Brehier Jacques METHOD FOR CONTROLLING A HEART STIMULATOR AND PROBE FOR CARRYING OUT THE METHOD
US4543954A (en) * 1982-05-19 1985-10-01 Purdue Research Foundation Exercise responsive cardiac pacemaker
US4543955A (en) * 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
US4549547A (en) * 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
US4688573A (en) * 1984-05-24 1987-08-25 Intermedics, Inc. Temperature driven rate responsive cardiac pacemaker
US4719920A (en) * 1985-11-25 1988-01-19 Intermedics, Inc. Exercise-responsive rate-adaptive cardiac pacemaker
US4782836A (en) * 1984-05-24 1988-11-08 Intermedics, Inc. Rate adaptive cardiac pacemaker responsive to patient activity and temperature
US4846180A (en) * 1986-10-13 1989-07-11 Compagnie Financiere St.-Nicolas Adjustable implantable heart stimulator and method of use
US5005574A (en) * 1989-11-28 1991-04-09 Medical Engineering And Development Institute, Inc. Temperature-based, rate-modulated cardiac therapy apparatus and method
US5081988A (en) * 1982-05-19 1992-01-21 Purdue Research Foundation Exercise responive cardiac pacemaker
WO1992012563A1 (en) * 1990-12-31 1992-07-23 Motorola, Inc. Integral battery charging and supply regulation circuit
US5142215A (en) * 1990-12-17 1992-08-25 Ncr Corporation Low impedance regulator for a battery with reverse overcharge protection
US5153378A (en) * 1991-05-10 1992-10-06 Garvy Jr John W Personal space shielding apparatus
US5284151A (en) * 1990-11-30 1994-02-08 Terumo Kabushiki Kaisha Electrocardiograph system
US5327065A (en) * 1992-01-22 1994-07-05 Hughes Aircraft Company Hand-held inductive charger having concentric windings
US5411537A (en) * 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5486200A (en) * 1994-04-28 1996-01-23 Medtronic, Inc. Automatic postmortem deactivation of implantable device
US5690693A (en) * 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device
US5702431A (en) * 1995-06-07 1997-12-30 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
US5713939A (en) * 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
US5749909A (en) * 1996-11-07 1998-05-12 Sulzer Intermedics Inc. Transcutaneous energy coupling using piezoelectric device
US5814087A (en) * 1996-12-18 1998-09-29 Medtronic, Inc. Rate responsive pacemaker adapted to adjust lower rate limit according to monitored patient blood temperature
US5895980A (en) * 1996-12-30 1999-04-20 Medical Pacing Concepts, Ltd. Shielded pacemaker enclosure
WO2000024456A1 (en) 1998-10-27 2000-05-04 Phillips Richard P Transcutaneous energy transmission system with full wave class e rectifier
US6080155A (en) * 1988-06-13 2000-06-27 Michelson; Gary Karlin Method of inserting and preloading spinal implants
US6096038A (en) * 1988-06-13 2000-08-01 Michelson; Gary Karlin Apparatus for inserting spinal implants
US6112116A (en) * 1999-02-22 2000-08-29 Cathco, Inc. Implantable responsive system for sensing and treating acute myocardial infarction
US6120502A (en) * 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6149650A (en) * 1988-06-13 2000-11-21 Michelson; Gary Karlin Threaded spinal implant
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US6224595B1 (en) 1995-02-17 2001-05-01 Sofamor Danek Holdings, Inc. Method for inserting a spinal implant
US6243608B1 (en) * 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US6272379B1 (en) 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6275681B1 (en) 1998-04-16 2001-08-14 Motorola, Inc. Wireless electrostatic charging and communicating system
US6366815B1 (en) * 1997-01-13 2002-04-02 Neurodan A /S Implantable nerve stimulator electrode
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US20020091390A1 (en) * 1995-02-27 2002-07-11 Michelson Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US6436098B1 (en) 1993-06-10 2002-08-20 Sofamor Danek Holdings, Inc. Method for inserting spinal implants and for securing a guard to the spine
US20020138144A1 (en) * 1995-02-17 2002-09-26 Michelson Gary Karlin Threaded frusto-conical interbody spinal fusion implants
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US20030136417A1 (en) * 2002-01-22 2003-07-24 Michael Fonseca Implantable wireless sensor
US20030158553A1 (en) * 1988-06-13 2003-08-21 Michelson Gary Karlin Instrumentation for the surgical correction of spinal disease
US6654638B1 (en) * 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
US6659959B2 (en) 1999-03-05 2003-12-09 Transoma Medical, Inc. Catheter with physiological sensor
US6666875B1 (en) * 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
GB2400907A (en) * 2003-04-25 2004-10-27 D4 Technology Ltd Electro-optical pulse rate monitor with data transfer between monitor and external device via the optical sensor
US20050015014A1 (en) * 2002-01-22 2005-01-20 Michael Fonseca Implantable wireless sensor for pressure measurement within the heart
US20050102006A1 (en) * 2003-09-25 2005-05-12 Whitehurst Todd K. Skull-mounted electrical stimulation system
US20050113886A1 (en) * 2003-11-24 2005-05-26 Fischell David R. Implantable medical system with long range telemetry
US20050165489A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US20050182330A1 (en) * 1997-10-14 2005-08-18 Transoma Medical, Inc. Devices, systems and methods for endocardial pressure measurement
US20050187482A1 (en) * 2003-09-16 2005-08-25 O'brien David Implantable wireless sensor
EP1609502A1 (en) * 2004-06-24 2005-12-28 Ethicon Endo-Surgery Primary coil with ferrite core for transcutaneous energy transfer
US20050288741A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
US20050288740A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous telemetry to implanted medical device
US20060064135A1 (en) * 1997-10-14 2006-03-23 Transoma Medical, Inc. Implantable pressure sensor with pacing capability
US7025727B2 (en) 1997-10-14 2006-04-11 Transoma Medical, Inc. Pressure measurement device
US20060084992A1 (en) * 1988-06-13 2006-04-20 Michelson Gary K Tubular member having a passage and opposed bone contacting extensions
US20060122658A1 (en) * 2004-12-03 2006-06-08 Kronich Christine G Laser ribbon bond pad array connector
US20060177956A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Method of manufacturing a hermetic chamber with electrical feedthroughs
US20060200031A1 (en) * 2005-03-03 2006-09-07 Jason White Apparatus and method for sensor deployment and fixation
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US20060247737A1 (en) * 2005-04-29 2006-11-02 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US20060265020A1 (en) * 2002-09-20 2006-11-23 Fischell David R Physician's programmer for implantable devices having cardiac diagnostic and patient alerting capabilities
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
US20060287700A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method and apparatus for delivering an implantable wireless sensor for in vivo pressure measurement
US20060287602A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Implantable wireless sensor for in vivo pressure measurement
US20070016089A1 (en) * 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US20070096715A1 (en) * 2004-11-01 2007-05-03 Cardiomems, Inc. Communicating with an Implanted Wireless Sensor
US20070129768A1 (en) * 2005-12-07 2007-06-07 Advanced Bionics Corporation Battery Protection and Zero-Volt Battery Recovery System for an Implantable Medical Device
US20070208263A1 (en) * 2006-03-01 2007-09-06 Michael Sasha John Systems and methods of medical monitoring according to patient state
US20070247138A1 (en) * 2004-11-01 2007-10-25 Miller Donald J Communicating with an implanted wireless sensor
US7291149B1 (en) 1995-06-07 2007-11-06 Warsaw Orthopedic, Inc. Method for inserting interbody spinal fusion implants
US7295878B1 (en) 1999-07-30 2007-11-13 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
US20070299474A1 (en) * 2004-09-29 2007-12-27 Koninklijke Philips Electronics N.V. High-Voltage Module for an External Defibrillator
US20080188763A1 (en) * 2006-03-01 2008-08-07 Michael Sasha John System and methods for sliding-scale cardiac event detection
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US20090005770A1 (en) * 2007-04-19 2009-01-01 Medtronic, Inc. Controlling temperature during recharge for treatment of condition
US20090171404A1 (en) * 2006-03-17 2009-07-02 Leland Standford Junior University Energy generating systems for implanted medical devices
US7623929B1 (en) * 2002-08-30 2009-11-24 Advanced Bionics, Llc Current sensing coil for cochlear implant data detection
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US20100058583A1 (en) * 2005-06-21 2010-03-11 Florent Cros Method of manufacturing implantable wireless sensor for in vivo pressure measurement
EP2204217A1 (en) * 2002-01-29 2010-07-07 Medtronic, Inc. Method and apparatus for shielding against mri disturbances
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US20110074336A1 (en) * 2009-09-25 2011-03-31 John Boyd Miller Apparatus with a capacitive ceramic-based electrical energy storage unit (eesu) with on-board electrical energy generation and with interface for external electrical energy transfer
US20110080134A1 (en) * 2009-10-01 2011-04-07 John Boyd Miller Apparatus with electric element sourced by a capacitive ceramic-based electrical energy storage unit (eesu) with storage charging from on-board electrical energy generation and external interface
US20110084652A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US20110084752A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Systems and Methods for Maintaining a Drive Signal to a Resonant Circuit at a Resonant Frequency
US20110084654A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US20110086256A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Rechargeable Battery Assemblies and Methods of Constructing Rechargeable Battery Assemblies
US20110084653A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8002701B2 (en) 2006-03-10 2011-08-23 Angel Medical Systems, Inc. Medical alarm and communication system and methods
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8021307B2 (en) 2005-03-03 2011-09-20 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US20120191152A1 (en) * 2011-01-21 2012-07-26 Nader Kameli Implantable cardiac devices and methods
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8620447B2 (en) 2011-04-14 2013-12-31 Abiomed Inc. Transcutaneous energy transfer coil with integrated radio frequency antenna
US8766788B2 (en) 2010-12-20 2014-07-01 Abiomed, Inc. Transcutaneous energy transfer system with vibration inducing warning circuitry
WO2014036184A3 (en) * 2012-08-29 2014-07-31 University Of Southern California Monitoring and controlling charge rate and level of battery in inductively-charged pulse generating device
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US8933585B2 (en) 2013-04-30 2015-01-13 Utilidata, Inc. Metering optimal sampling
US8954165B2 (en) 2012-01-25 2015-02-10 Nevro Corporation Lead anchors and associated systems and methods
US8989867B2 (en) 2011-07-14 2015-03-24 Cyberonics, Inc. Implantable nerve wrap for nerve stimulation configured for far field radiative powering
US9002468B2 (en) 2011-12-16 2015-04-07 Abiomed, Inc. Automatic power regulation for transcutaneous energy transfer charging system
US9002449B2 (en) 2011-01-21 2015-04-07 Neurocardiac Innovations, Llc Implantable cardiac devices and methods
US9002469B2 (en) 2010-12-20 2015-04-07 Abiomed, Inc. Transcutaneous energy transfer system with multiple secondary coils
US9078613B2 (en) 2007-08-23 2015-07-14 Purdue Research Foundation Intra-occular pressure sensor
US9101768B2 (en) 2013-03-15 2015-08-11 Globus Medical, Inc. Spinal cord stimulator system
US9216296B2 (en) 2011-01-21 2015-12-22 Neurocardiac Innovations, Llc Implantable medical device capable of preserving battery energy to extend its operating life
US9220826B2 (en) 2010-12-20 2015-12-29 Abiomed, Inc. Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
US9345883B2 (en) 2014-02-14 2016-05-24 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9492678B2 (en) 2011-07-14 2016-11-15 Cyberonics, Inc. Far field radiative powering of implantable medical therapy delivery devices
US9522282B2 (en) 2012-03-29 2016-12-20 Cyberonics, Inc. Powering multiple implantable medical therapy delivery devices using far field radiative powering at multiple frequencies
US9675809B2 (en) 2011-07-14 2017-06-13 Cyberonics, Inc. Circuit, system and method for far-field radiative powering of an implantable medical device
US9821112B2 (en) 2003-10-02 2017-11-21 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
US9833624B2 (en) 2014-05-15 2017-12-05 Pacesetter, Inc. System and method for rate modulated cardiac therapy utilizing a temperature senor
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US9907972B2 (en) 2011-01-21 2018-03-06 Neurocardiac Innovations, Llc Implantable cardiac devices and methods with body orientation unit
US10500394B1 (en) 2011-10-11 2019-12-10 A-Hamid Hakki Pacemaker system equipped with a flexible intercostal generator
EP3817185A1 (en) 2019-11-04 2021-05-05 Celtro GmbH Energy generation from tiny sources
US11464964B2 (en) * 2018-08-03 2022-10-11 Brown University Neural interrogation platform

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231834A (en) * 1961-10-06 1966-01-25 Nippon Electric Co Telemetering capsule for physiological measurements
US3311111A (en) * 1964-08-11 1967-03-28 Gen Electric Controllable electric body tissue stimulators
US3345990A (en) * 1964-06-19 1967-10-10 American Optical Corp Heart-beat pacing apparatus
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3454012A (en) * 1966-11-17 1969-07-08 Esb Inc Rechargeable heart stimulator
US3474353A (en) * 1968-01-04 1969-10-21 Cordis Corp Multivibrator having pulse rate responsive to battery voltage
US3478746A (en) * 1965-05-12 1969-11-18 Medtronic Inc Cardiac implantable demand pacemaker
US3486506A (en) * 1965-10-13 1969-12-30 Philips Corp Heart-actuated,spring driven cardiac stimulator
US3523539A (en) * 1968-02-26 1970-08-11 Hewlett Packard Co Demand cardiac pacemaker and method
US3638656A (en) * 1968-08-26 1972-02-01 Liechti Ag Fred Method and apparatus for monitoring and stimulating the activity of the heart
US3690325A (en) * 1969-11-03 1972-09-12 Devices Ltd Implantable electric device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231834A (en) * 1961-10-06 1966-01-25 Nippon Electric Co Telemetering capsule for physiological measurements
US3345990A (en) * 1964-06-19 1967-10-10 American Optical Corp Heart-beat pacing apparatus
US3311111A (en) * 1964-08-11 1967-03-28 Gen Electric Controllable electric body tissue stimulators
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3478746A (en) * 1965-05-12 1969-11-18 Medtronic Inc Cardiac implantable demand pacemaker
US3486506A (en) * 1965-10-13 1969-12-30 Philips Corp Heart-actuated,spring driven cardiac stimulator
US3454012A (en) * 1966-11-17 1969-07-08 Esb Inc Rechargeable heart stimulator
US3474353A (en) * 1968-01-04 1969-10-21 Cordis Corp Multivibrator having pulse rate responsive to battery voltage
US3523539A (en) * 1968-02-26 1970-08-11 Hewlett Packard Co Demand cardiac pacemaker and method
US3638656A (en) * 1968-08-26 1972-02-01 Liechti Ag Fred Method and apparatus for monitoring and stimulating the activity of the heart
US3690325A (en) * 1969-11-03 1972-09-12 Devices Ltd Implantable electric device

Cited By (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987799A (en) * 1973-07-12 1976-10-26 Coratomic Inc. Heart pacer
USRE30028E (en) * 1973-07-12 1979-06-12 Coratomic, Inc. Heart pacer
DE2616297A1 (en) * 1975-04-17 1976-10-28 Univ Johns Hopkins RECHARGEABLE BODY TISSUE STIMULATOR
DE2703628A1 (en) * 1976-01-29 1977-08-04 Pacesetter Syst IMPLANTABLE LIVING TISSUE STIMULATOR
DE2720011A1 (en) * 1976-01-29 1978-11-16 Pacesetter Syst Implantable living tissue stimulator - includes coil for current induced by external alternating magnetic field and has hermetic metal container
US4105037A (en) * 1977-05-06 1978-08-08 Biotronik Mess- Und Therapiegerate Gmbh & Co. Releasable electrical connecting means for the electrode terminal of an implantable artificial cardiac pacemaker
US4186246A (en) * 1978-08-11 1980-01-29 General Electric Company Hermetically sealed electrochemical storage cell
US4262414A (en) * 1978-08-11 1981-04-21 General Electric Company Method for manufacturing a hermetically sealed electrochemical storage cell
US4288733A (en) * 1979-10-17 1981-09-08 Black & Decker Inc. Battery charger system and method adapted for use in a sterilized environment
US4361153A (en) * 1980-05-27 1982-11-30 Cordis Corporation Implant telemetry system
US4431001A (en) * 1980-09-17 1984-02-14 Crafon Medical Ab Stimulator system
US4379988A (en) * 1981-01-19 1983-04-12 Patricio Mattatall Molded hearing aid and battery charger
US5081988A (en) * 1982-05-19 1992-01-21 Purdue Research Foundation Exercise responive cardiac pacemaker
US4436092A (en) 1982-05-19 1984-03-13 Purdue Research Foundation Exercise responsive cardiac pacemaker
EP0096464A1 (en) * 1982-05-19 1983-12-21 Purdue Research Foundation Exercise responsive cardiac pacemaker
US4543954A (en) * 1982-05-19 1985-10-01 Purdue Research Foundation Exercise responsive cardiac pacemaker
US4549547A (en) * 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
US4543955A (en) * 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
FR2550095A1 (en) * 1983-08-02 1985-02-08 Brehier Jacques METHOD FOR CONTROLLING A HEART STIMULATOR AND PROBE FOR CARRYING OUT THE METHOD
EP0133828A1 (en) * 1983-08-02 1985-03-06 BIOVALLEES Société Anonyme: Method of controlling a cardiac pacemaker
US4688573A (en) * 1984-05-24 1987-08-25 Intermedics, Inc. Temperature driven rate responsive cardiac pacemaker
US4782836A (en) * 1984-05-24 1988-11-08 Intermedics, Inc. Rate adaptive cardiac pacemaker responsive to patient activity and temperature
US4719920A (en) * 1985-11-25 1988-01-19 Intermedics, Inc. Exercise-responsive rate-adaptive cardiac pacemaker
US4846180A (en) * 1986-10-13 1989-07-11 Compagnie Financiere St.-Nicolas Adjustable implantable heart stimulator and method of use
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US20060200138A1 (en) * 1988-06-13 2006-09-07 Sdgi Holdings, Inc. Surgical instrument for distracting a spinal disc space
US7686805B2 (en) 1988-06-13 2010-03-30 Warsaw Orthopedic, Inc. Methods for distraction of a disc space
US8066705B2 (en) 1988-06-13 2011-11-29 Warsaw Orthopedic, Inc. Instrumentation for the endoscopic correction of spinal disease
US6270498B1 (en) 1988-06-13 2001-08-07 Gary Karlin Michelson Apparatus for inserting spinal implants
US8353909B2 (en) 1988-06-13 2013-01-15 Warsaw Orthopedic, Inc. Surgical instrument for distracting a spinal disc space
US6264656B1 (en) 1988-06-13 2001-07-24 Gary Karlin Michelson Threaded spinal implant
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US20030158553A1 (en) * 1988-06-13 2003-08-21 Michelson Gary Karlin Instrumentation for the surgical correction of spinal disease
US7722619B2 (en) 1988-06-13 2010-05-25 Warsaw Orthopedic, Inc. Method of maintaining distraction of a spinal disc space
US7569054B2 (en) 1988-06-13 2009-08-04 Warsaw Orthopedic, Inc. Tubular member having a passage and opposed bone contacting extensions
US8734447B1 (en) 1988-06-13 2014-05-27 Warsaw Orthopedic, Inc. Apparatus and method of inserting spinal implants
US6923810B1 (en) 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US20060084992A1 (en) * 1988-06-13 2006-04-20 Michelson Gary K Tubular member having a passage and opposed bone contacting extensions
US8251997B2 (en) 1988-06-13 2012-08-28 Warsaw Orthopedic, Inc. Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
US6080155A (en) * 1988-06-13 2000-06-27 Michelson; Gary Karlin Method of inserting and preloading spinal implants
US6096038A (en) * 1988-06-13 2000-08-01 Michelson; Gary Karlin Apparatus for inserting spinal implants
US7914530B2 (en) 1988-06-13 2011-03-29 Warsaw Orthopedic, Inc. Tissue dilator and method for performing a spinal procedure
US6120502A (en) * 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US6149650A (en) * 1988-06-13 2000-11-21 Michelson; Gary Karlin Threaded spinal implant
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US8758344B2 (en) 1988-06-13 2014-06-24 Warsaw Orthopedic, Inc. Spinal implant and instruments
US5005574A (en) * 1989-11-28 1991-04-09 Medical Engineering And Development Institute, Inc. Temperature-based, rate-modulated cardiac therapy apparatus and method
US5284151A (en) * 1990-11-30 1994-02-08 Terumo Kabushiki Kaisha Electrocardiograph system
US5142215A (en) * 1990-12-17 1992-08-25 Ncr Corporation Low impedance regulator for a battery with reverse overcharge protection
WO1992012563A1 (en) * 1990-12-31 1992-07-23 Motorola, Inc. Integral battery charging and supply regulation circuit
US5218284A (en) * 1990-12-31 1993-06-08 Motorola, Inc. Integral battery charging and supply regulation circuit
US5153378A (en) * 1991-05-10 1992-10-06 Garvy Jr John W Personal space shielding apparatus
US5327065A (en) * 1992-01-22 1994-07-05 Hughes Aircraft Company Hand-held inductive charger having concentric windings
US7326214B2 (en) 1993-06-10 2008-02-05 Warsaw Orthopedic, Inc. Bone cutting device having a cutting edge with a non-extending center
US20060058793A1 (en) * 1993-06-10 2006-03-16 Karlin Technology, Inc. Distractor for use in spinal surgery
US7993347B1 (en) 1993-06-10 2011-08-09 Warsaw Orthopedic, Inc. Guard for use in performing human interbody spinal surgery
US7399303B2 (en) 1993-06-10 2008-07-15 Warsaw Orthopedic, Inc. Bone cutting device and method for use thereof
US20080287955A1 (en) * 1993-06-10 2008-11-20 Karlin Technology, Inc. Distractor for use in spinal surgery and method of use thereof
US6436098B1 (en) 1993-06-10 2002-08-20 Sofamor Danek Holdings, Inc. Method for inserting spinal implants and for securing a guard to the spine
US20060142762A1 (en) * 1993-06-10 2006-06-29 Michelson Gary K Apparatus and method for sequential distraction
US7887565B2 (en) 1993-06-10 2011-02-15 Warsaw Orthopedic, Inc. Apparatus and method for sequential distraction
US20020198532A1 (en) * 1993-06-10 2002-12-26 Sofamor Danek Holdings, Inc. Apparatus and method of inserting spinal implants
US7264622B2 (en) 1993-06-10 2007-09-04 Warsaw Orthopedic, Inc. System for radial bone displacement
US20060036247A1 (en) * 1993-06-10 2006-02-16 Karlin Technology, Inc. Distractor for use in spinal surgery
US20040034358A1 (en) * 1993-06-10 2004-02-19 Sofamor Danek Holdings, Inc. Bone cutting device and method for use thereof
US20030153916A1 (en) * 1993-06-10 2003-08-14 Sofamor Danek Holdings, Inc. Method of inserting spinal implants with the use of imaging
US20040068259A1 (en) * 1993-06-10 2004-04-08 Karlin Technology, Inc. Distractor for use in spinal surgery
US6875213B2 (en) 1993-06-10 2005-04-05 Sdgi Holdings, Inc. Method of inserting spinal implants with the use of imaging
US20040073217A1 (en) * 1993-06-10 2004-04-15 Karlin Technology, Inc. Osteogenic packing device and method
US5411537A (en) * 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5486200A (en) * 1994-04-28 1996-01-23 Medtronic, Inc. Automatic postmortem deactivation of implantable device
US8206387B2 (en) 1994-05-27 2012-06-26 Michelson Gary K Interbody spinal implant inductively coupled to an external power supply
US20090088857A1 (en) * 1994-05-27 2009-04-02 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US7455672B2 (en) 1994-05-27 2008-11-25 Gary Karlin Michelson Method for the delivery of electrical current to promote bone growth between adjacent bone masses
US20040024400A1 (en) * 1994-05-27 2004-02-05 Michelson Gary Karlin Method for the delivery of electrical current to promote bone growth between adjacent bone masses
US6605089B1 (en) 1994-05-27 2003-08-12 Gary Karlin Michelson Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US7935116B2 (en) 1994-05-27 2011-05-03 Gary Karlin Michelson Implant for the delivery of electrical current to promote bone growth between adjacent bone masses
US20020138144A1 (en) * 1995-02-17 2002-09-26 Michelson Gary Karlin Threaded frusto-conical interbody spinal fusion implants
US6224595B1 (en) 1995-02-17 2001-05-01 Sofamor Danek Holdings, Inc. Method for inserting a spinal implant
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US20020091390A1 (en) * 1995-02-27 2002-07-11 Michelson Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US7207991B2 (en) 1995-02-27 2007-04-24 Warsaw Orthopedic, Inc. Method for the endoscopic correction of spinal disease
US7431722B1 (en) 1995-02-27 2008-10-07 Warsaw Orthopedic, Inc. Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US20050165399A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US8409292B2 (en) 1995-06-07 2013-04-02 Warsaw Orthopedic, Inc. Spinal fusion implant
US20050165489A1 (en) * 1995-06-07 2005-07-28 Michelson Gary K. Frusto-conical spinal implant
US7691148B2 (en) 1995-06-07 2010-04-06 Warsaw Orthopedic, Inc. Frusto-conical spinal implant
US7828800B2 (en) 1995-06-07 2010-11-09 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US7291149B1 (en) 1995-06-07 2007-11-06 Warsaw Orthopedic, Inc. Method for inserting interbody spinal fusion implants
US8057475B2 (en) 1995-06-07 2011-11-15 Warsaw Orthopedic, Inc. Threaded interbody spinal fusion implant
US8226652B2 (en) 1995-06-07 2012-07-24 Warsaw Orthopedic, Inc. Threaded frusto-conical spinal implants
US5702431A (en) * 1995-06-07 1997-12-30 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
US7942933B2 (en) 1995-06-07 2011-05-17 Warsaw Orthopedic, Inc. Frusto-conical spinal implant
US8679118B2 (en) 1995-06-07 2014-03-25 Warsaw Orthopedic, Inc. Spinal implants
US20110054529A1 (en) * 1995-06-07 2011-03-03 Gary Karlin Michelson Threaded interbody spinal fusion implant
US5690693A (en) * 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device
US5713939A (en) * 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
WO1998011942A1 (en) 1996-09-17 1998-03-26 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
US5749909A (en) * 1996-11-07 1998-05-12 Sulzer Intermedics Inc. Transcutaneous energy coupling using piezoelectric device
US5814087A (en) * 1996-12-18 1998-09-29 Medtronic, Inc. Rate responsive pacemaker adapted to adjust lower rate limit according to monitored patient blood temperature
US5895980A (en) * 1996-12-30 1999-04-20 Medical Pacing Concepts, Ltd. Shielded pacemaker enclosure
US6366815B1 (en) * 1997-01-13 2002-04-02 Neurodan A /S Implantable nerve stimulator electrode
US20060064135A1 (en) * 1997-10-14 2006-03-23 Transoma Medical, Inc. Implantable pressure sensor with pacing capability
US20050182330A1 (en) * 1997-10-14 2005-08-18 Transoma Medical, Inc. Devices, systems and methods for endocardial pressure measurement
US7347822B2 (en) 1997-10-14 2008-03-25 Transoma Medical, Inc. Pressure measurement device
US20060094966A1 (en) * 1997-10-14 2006-05-04 Transoma Medical, Inc. Pressure measurement device
US7025727B2 (en) 1997-10-14 2006-04-11 Transoma Medical, Inc. Pressure measurement device
US6275681B1 (en) 1998-04-16 2001-08-14 Motorola, Inc. Wireless electrostatic charging and communicating system
US6349234B2 (en) 1998-06-12 2002-02-19 Intermedics Inc. Implantable device with optical telemetry
US6243608B1 (en) * 1998-06-12 2001-06-05 Intermedics Inc. Implantable device with optical telemetry
US7425200B2 (en) 1998-09-24 2008-09-16 Transoma Medical, Inc. Implantable sensor with wireless communication
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US20020138009A1 (en) * 1998-09-24 2002-09-26 Data Sciences International, Inc. Implantable sensor with wireless communication
US20050159789A1 (en) * 1998-09-24 2005-07-21 Transoma Medical, Inc. Implantable sensor with wireless communication
WO2000024456A1 (en) 1998-10-27 2000-05-04 Phillips Richard P Transcutaneous energy transmission system with full wave class e rectifier
US6112116A (en) * 1999-02-22 2000-08-29 Cathco, Inc. Implantable responsive system for sensing and treating acute myocardial infarction
US20040116952A1 (en) * 1999-03-05 2004-06-17 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
US6659959B2 (en) 1999-03-05 2003-12-09 Transoma Medical, Inc. Catheter with physiological sensor
US6666875B1 (en) * 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
US6272379B1 (en) 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6366817B1 (en) 1999-05-03 2002-04-02 Abiomed, Inc. Electromagnetic field source device with detection of position of secondary coil in relation to multiple primary coils
US6400991B1 (en) 1999-05-03 2002-06-04 Abiomed, Inc. Electromagnetic field source method with detection of position of secondary coil in relation to multiple primary coils
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US20030191504A1 (en) * 1999-07-30 2003-10-09 Meadows Paul M. Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7295878B1 (en) 1999-07-30 2007-11-13 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US20070185551A1 (en) * 1999-07-30 2007-08-09 Advanced Bionics Corporation Implantable Pulse Generators Using Rechargeable Zero-Volt Technology Lithium-Ion Batteries
US6654638B1 (en) * 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
US7481771B2 (en) 2002-01-22 2009-01-27 Cardiomems, Inc. Implantable wireless sensor for pressure measurement within the heart
US7699059B2 (en) 2002-01-22 2010-04-20 Cardiomems, Inc. Implantable wireless sensor
US20050015014A1 (en) * 2002-01-22 2005-01-20 Michael Fonseca Implantable wireless sensor for pressure measurement within the heart
US20030136417A1 (en) * 2002-01-22 2003-07-24 Michael Fonseca Implantable wireless sensor
EP2204217A1 (en) * 2002-01-29 2010-07-07 Medtronic, Inc. Method and apparatus for shielding against mri disturbances
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
US7623929B1 (en) * 2002-08-30 2009-11-24 Advanced Bionics, Llc Current sensing coil for cochlear implant data detection
US20060265020A1 (en) * 2002-09-20 2006-11-23 Fischell David R Physician's programmer for implantable devices having cardiac diagnostic and patient alerting capabilities
US7801596B2 (en) 2002-09-20 2010-09-21 Angel Medical Systems, Inc. Physician's programmer for implantable devices having cardiac diagnostic and patient alerting capabilities
GB2400907A (en) * 2003-04-25 2004-10-27 D4 Technology Ltd Electro-optical pulse rate monitor with data transfer between monitor and external device via the optical sensor
US20060235310A1 (en) * 2003-09-16 2006-10-19 O'brien David Method of manufacturing an implantable wireless sensor
US7574792B2 (en) 2003-09-16 2009-08-18 Cardiomems, Inc. Method of manufacturing an implantable wireless sensor
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US20050187482A1 (en) * 2003-09-16 2005-08-25 O'brien David Implantable wireless sensor
US9265428B2 (en) 2003-09-16 2016-02-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux Ii”) Implantable wireless sensor
US20050102006A1 (en) * 2003-09-25 2005-05-12 Whitehurst Todd K. Skull-mounted electrical stimulation system
US9821112B2 (en) 2003-10-02 2017-11-21 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
US20050113886A1 (en) * 2003-11-24 2005-05-26 Fischell David R. Implantable medical system with long range telemetry
US20070100384A1 (en) * 2003-11-24 2007-05-03 Fischell David R Implantable medical system with long range telemetry
US20050288742A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
US20050288740A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous telemetry to implanted medical device
US20050288741A1 (en) * 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
EP2907542A1 (en) * 2004-06-24 2015-08-19 Ethicon Endo-Surgery Primary coil for transcutaneous energy transfer
US7599743B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
US7599744B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
EP1609502A1 (en) * 2004-06-24 2005-12-28 Ethicon Endo-Surgery Primary coil with ferrite core for transcutaneous energy transfer
AU2005202333B2 (en) * 2004-06-24 2011-08-25 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
US7865238B2 (en) * 2004-09-29 2011-01-04 Koninklijke Philips Electronics N.V. High-voltage module for an external defibrillator
US20070299474A1 (en) * 2004-09-29 2007-12-27 Koninklijke Philips Electronics N.V. High-Voltage Module for an External Defibrillator
US7550978B2 (en) 2004-11-01 2009-06-23 Cardiomems, Inc. Communicating with an implanted wireless sensor
US7839153B2 (en) 2004-11-01 2010-11-23 Cardiomems, Inc. Communicating with an implanted wireless sensor
US8237451B2 (en) 2004-11-01 2012-08-07 Cardiomems, Inc. Communicating with an implanted wireless sensor
US7245117B1 (en) 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor
US20070096715A1 (en) * 2004-11-01 2007-05-03 Cardiomems, Inc. Communicating with an Implanted Wireless Sensor
US20090224773A1 (en) * 2004-11-01 2009-09-10 Cardiomems, Inc. Communicating With an Implanted Wireless Sensor
US20070247138A1 (en) * 2004-11-01 2007-10-25 Miller Donald J Communicating with an implanted wireless sensor
US7932732B2 (en) 2004-11-01 2011-04-26 Cardiomems, Inc. Preventing a false lock in a phase lock loop
US7466120B2 (en) 2004-11-01 2008-12-16 Cardiomems, Inc. Communicating with an implanted wireless sensor
US20090224837A1 (en) * 2004-11-01 2009-09-10 Cardiomems, Inc. Preventing a False Lock in a Phase Lock Loop
US7214068B2 (en) * 2004-12-03 2007-05-08 Medtronic, Inc. Laser ribbon bond pad array connector
US20060122658A1 (en) * 2004-12-03 2006-06-08 Kronich Christine G Laser ribbon bond pad array connector
US20060177956A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Method of manufacturing a hermetic chamber with electrical feedthroughs
US20070261497A1 (en) * 2005-02-10 2007-11-15 Cardiomems, Inc. Hermatic Chamber With Electrical Feedthroughs
US20090145623A1 (en) * 2005-02-10 2009-06-11 O'brien David Hermetic Chamber with Electrical Feedthroughs
US20060174712A1 (en) * 2005-02-10 2006-08-10 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US7647836B2 (en) 2005-02-10 2010-01-19 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US7854172B2 (en) 2005-02-10 2010-12-21 Cardiomems, Inc. Hermetic chamber with electrical feedthroughs
US7662653B2 (en) 2005-02-10 2010-02-16 Cardiomems, Inc. Method of manufacturing a hermetic chamber with electrical feedthroughs
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8118749B2 (en) 2005-03-03 2012-02-21 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US8021307B2 (en) 2005-03-03 2011-09-20 Cardiomems, Inc. Apparatus and method for sensor deployment and fixation
US20060200031A1 (en) * 2005-03-03 2006-09-07 Jason White Apparatus and method for sensor deployment and fixation
US8024047B2 (en) 2005-04-29 2011-09-20 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US8457758B2 (en) 2005-04-29 2013-06-04 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US20100268305A1 (en) * 2005-04-29 2010-10-21 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US20060247737A1 (en) * 2005-04-29 2006-11-02 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US7774069B2 (en) 2005-04-29 2010-08-10 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
US11179048B2 (en) 2005-06-21 2021-11-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) System for deploying an implant assembly in a vessel
US20060287602A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Implantable wireless sensor for in vivo pressure measurement
US20100058583A1 (en) * 2005-06-21 2010-03-11 Florent Cros Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US9078563B2 (en) 2005-06-21 2015-07-14 St. Jude Medical Luxembourg Holdings II S.à.r.l. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US11890082B2 (en) 2005-06-21 2024-02-06 Tc1 Llc System and method for calculating a lumen pressure utilizing sensor calibration parameters
US20060287700A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method and apparatus for delivering an implantable wireless sensor for in vivo pressure measurement
US20060283007A1 (en) * 2005-06-21 2006-12-21 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US11684276B2 (en) 2005-06-21 2023-06-27 Tc1, Llc Implantable wireless pressure sensor
US7621036B2 (en) 2005-06-21 2009-11-24 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US11103147B2 (en) 2005-06-21 2021-08-31 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) Method and system for determining a lumen pressure
US11103146B2 (en) 2005-06-21 2021-08-31 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux 11”) Wireless sensor for measuring pressure
US20070016089A1 (en) * 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US20070129768A1 (en) * 2005-12-07 2007-06-07 Advanced Bionics Corporation Battery Protection and Zero-Volt Battery Recovery System for an Implantable Medical Device
US10974055B2 (en) 2005-12-07 2021-04-13 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US9687663B2 (en) 2005-12-07 2017-06-27 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US10118045B2 (en) 2005-12-07 2018-11-06 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US7962222B2 (en) * 2005-12-07 2011-06-14 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US20080188763A1 (en) * 2006-03-01 2008-08-07 Michael Sasha John System and methods for sliding-scale cardiac event detection
US20070208263A1 (en) * 2006-03-01 2007-09-06 Michael Sasha John Systems and methods of medical monitoring according to patient state
US8781566B2 (en) 2006-03-01 2014-07-15 Angel Medical Systems, Inc. System and methods for sliding-scale cardiac event detection
US8838215B2 (en) 2006-03-01 2014-09-16 Angel Medical Systems, Inc. Systems and methods of medical monitoring according to patient state
US20080188762A1 (en) * 2006-03-01 2008-08-07 Michael Sasha John Systems and methods for cardiac segmentation analysis
US8002701B2 (en) 2006-03-10 2011-08-23 Angel Medical Systems, Inc. Medical alarm and communication system and methods
US20090171404A1 (en) * 2006-03-17 2009-07-02 Leland Standford Junior University Energy generating systems for implanted medical devices
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US7734353B2 (en) * 2007-04-19 2010-06-08 Medtronic Inc. Controlling temperature during recharge for treatment of infection or other conditions
US20090005770A1 (en) * 2007-04-19 2009-01-01 Medtronic, Inc. Controlling temperature during recharge for treatment of condition
US9078613B2 (en) 2007-08-23 2015-07-14 Purdue Research Foundation Intra-occular pressure sensor
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US20110074336A1 (en) * 2009-09-25 2011-03-31 John Boyd Miller Apparatus with a capacitive ceramic-based electrical energy storage unit (eesu) with on-board electrical energy generation and with interface for external electrical energy transfer
US20110080134A1 (en) * 2009-10-01 2011-04-07 John Boyd Miller Apparatus with electric element sourced by a capacitive ceramic-based electrical energy storage unit (eesu) with storage charging from on-board electrical energy generation and external interface
US20110086256A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Rechargeable Battery Assemblies and Methods of Constructing Rechargeable Battery Assemblies
US20110084653A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US20110084654A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US20110084752A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Systems and Methods for Maintaining a Drive Signal to a Resonant Circuit at a Resonant Frequency
US20110084652A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Magnetically Coupled Battery Charging System
US8237402B2 (en) 2009-10-08 2012-08-07 Etymotic Research, Inc. Magnetically coupled battery charging system
US8174233B2 (en) 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8460816B2 (en) 2009-10-08 2013-06-11 Etymotic Research, Inc. Rechargeable battery assemblies and methods of constructing rechargeable battery assemblies
US8174234B2 (en) 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8022775B2 (en) 2009-10-08 2011-09-20 Etymotic Research, Inc. Systems and methods for maintaining a drive signal to a resonant circuit at a resonant frequency
US9220826B2 (en) 2010-12-20 2015-12-29 Abiomed, Inc. Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system
US9002469B2 (en) 2010-12-20 2015-04-07 Abiomed, Inc. Transcutaneous energy transfer system with multiple secondary coils
US8766788B2 (en) 2010-12-20 2014-07-01 Abiomed, Inc. Transcutaneous energy transfer system with vibration inducing warning circuitry
US9174060B2 (en) * 2011-01-21 2015-11-03 Neurocardiac Innovations, Llc Implantable cardiac devices and methods
US9216296B2 (en) 2011-01-21 2015-12-22 Neurocardiac Innovations, Llc Implantable medical device capable of preserving battery energy to extend its operating life
US9144686B2 (en) 2011-01-21 2015-09-29 Neurocardiac Innovations, Llc Implantable medical device with external access for recharging and data communication
US9002449B2 (en) 2011-01-21 2015-04-07 Neurocardiac Innovations, Llc Implantable cardiac devices and methods
US9907972B2 (en) 2011-01-21 2018-03-06 Neurocardiac Innovations, Llc Implantable cardiac devices and methods with body orientation unit
US20120191152A1 (en) * 2011-01-21 2012-07-26 Nader Kameli Implantable cardiac devices and methods
US8620447B2 (en) 2011-04-14 2013-12-31 Abiomed Inc. Transcutaneous energy transfer coil with integrated radio frequency antenna
US10220217B2 (en) 2011-07-14 2019-03-05 Livanova Usa, Inc. Powering of an implantable medical therapy delivery device using far field radiative powering at multiple frequencies
US9492656B2 (en) 2011-07-14 2016-11-15 Cyberonics, Inc. Implantable nerve wrap for nerve stimulation configured for far field radiative powering
US9492678B2 (en) 2011-07-14 2016-11-15 Cyberonics, Inc. Far field radiative powering of implantable medical therapy delivery devices
US9402994B2 (en) 2011-07-14 2016-08-02 Cyberonics, Inc. Powering of an implantable medical therapy delivery device using far field radiative powering at multiple frequencies
US9675809B2 (en) 2011-07-14 2017-06-13 Cyberonics, Inc. Circuit, system and method for far-field radiative powering of an implantable medical device
US8989867B2 (en) 2011-07-14 2015-03-24 Cyberonics, Inc. Implantable nerve wrap for nerve stimulation configured for far field radiative powering
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9855438B2 (en) 2011-07-20 2018-01-02 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US10500394B1 (en) 2011-10-11 2019-12-10 A-Hamid Hakki Pacemaker system equipped with a flexible intercostal generator
US9002468B2 (en) 2011-12-16 2015-04-07 Abiomed, Inc. Automatic power regulation for transcutaneous energy transfer charging system
US8954165B2 (en) 2012-01-25 2015-02-10 Nevro Corporation Lead anchors and associated systems and methods
US9522282B2 (en) 2012-03-29 2016-12-20 Cyberonics, Inc. Powering multiple implantable medical therapy delivery devices using far field radiative powering at multiple frequencies
WO2014036184A3 (en) * 2012-08-29 2014-07-31 University Of Southern California Monitoring and controlling charge rate and level of battery in inductively-charged pulse generating device
US9623246B2 (en) 2013-03-15 2017-04-18 Globus Medical, Inc. Spinal cord stimulator system
US10265526B2 (en) 2013-03-15 2019-04-23 Cirtec Medical Corp. Spinal cord stimulator system
US11704688B2 (en) 2013-03-15 2023-07-18 Cirtec Medical Corp. Spinal cord stimulator system
US9872986B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9872997B2 (en) 2013-03-15 2018-01-23 Globus Medical, Inc. Spinal cord stimulator system
US9878170B2 (en) 2013-03-15 2018-01-30 Globus Medical, Inc. Spinal cord stimulator system
US9887574B2 (en) 2013-03-15 2018-02-06 Globus Medical, Inc. Spinal cord stimulator system
US9101768B2 (en) 2013-03-15 2015-08-11 Globus Medical, Inc. Spinal cord stimulator system
US9956409B2 (en) 2013-03-15 2018-05-01 Globus Medical, Inc. Spinal cord stimulator system
US10016602B2 (en) 2013-03-15 2018-07-10 Globus Medical, Inc. Spinal cord stimulator system
US10016605B2 (en) 2013-03-15 2018-07-10 Globus Medical, Inc. Spinal cord stimulator system
US9308369B2 (en) 2013-03-15 2016-04-12 Globus Medical, Inc. Spinal cord stimulator system
US10149977B2 (en) 2013-03-15 2018-12-11 Cirtec Medical Corp. Spinal cord stimulator system
US9440076B2 (en) 2013-03-15 2016-09-13 Globus Medical, Inc. Spinal cord stimulator system
US9550062B2 (en) 2013-03-15 2017-01-24 Globus Medical, Inc Spinal cord stimulator system
US10810614B2 (en) 2013-03-15 2020-10-20 Cirtec Medical Corp. Spinal cord stimulator system
US10335597B2 (en) 2013-03-15 2019-07-02 Cirtec Medical Corp. Spinal cord stimulator system
US9492665B2 (en) 2013-03-15 2016-11-15 Globus Medical, Inc. Spinal cord stimulator system
US9685787B2 (en) 2013-04-30 2017-06-20 Utilidata, Inc. Metering optimal sampling
US8933585B2 (en) 2013-04-30 2015-01-13 Utilidata, Inc. Metering optimal sampling
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
US9687649B2 (en) 2013-06-28 2017-06-27 Nevro Corp. Neurological stimulation lead anchors and associated systems and methods
US9345883B2 (en) 2014-02-14 2016-05-24 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9814882B2 (en) 2014-02-14 2017-11-14 Boston Scientific Neuromodulation Corporation Rechargeable-battery implantable medical device having a primary battery active during a rechargeable-battery undervoltage condition
US9833624B2 (en) 2014-05-15 2017-12-05 Pacesetter, Inc. System and method for rate modulated cardiac therapy utilizing a temperature senor
US10159841B2 (en) 2014-05-15 2018-12-25 Pacesetter, Inc. System and method for rate modulated cardiac therapy utilizing a temperature senor
US11464964B2 (en) * 2018-08-03 2022-10-11 Brown University Neural interrogation platform
EP3817185A1 (en) 2019-11-04 2021-05-05 Celtro GmbH Energy generation from tiny sources
WO2021089531A1 (en) 2019-11-04 2021-05-14 Celtro Gmbh Self-sufficient cardiac pacemaker
WO2021089530A1 (en) 2019-11-04 2021-05-14 Celtro Gmbh Energy generation from tiny sources

Also Published As

Publication number Publication date
CA991273A (en) 1976-06-15

Similar Documents

Publication Publication Date Title
US3867950A (en) Fixed rate rechargeable cardiac pacemaker
US3522811A (en) Implantable nerve stimulator and method of use
US3888260A (en) Rechargeable demand inhibited cardiac pacer and tissue stimulator
US5193539A (en) Implantable microstimulator
US5735887A (en) Closed-loop, RF-coupled implanted medical device
US7979126B2 (en) Orientation-independent implantable pulse generator
US7174212B1 (en) Implantable medical device having a casing providing high-speed telemetry
US3253595A (en) Cardiac pacer electrode system
JP5396388B2 (en) Implantable intravascular medical device
US3683932A (en) Implantable tissue stimulator
US5312440A (en) Implantable defibrillator arrangement
US4532931A (en) Pacemaker with adaptive sensing means for use with unipolar or bipolar leads
US20080027513A1 (en) Systems And Methods For Using A Butterfly Coil To Communicate With Or Transfer Power To An Implantable Medical Device
KR102244317B1 (en) Electrode configurations for an implantable electroacupuncture device
JP2014508600A (en) Implantable neurostimulator with circuit board and connector
JPH11503930A (en) Implantable heart stimulator with alert system
WO2016126807A1 (en) Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator
US11351389B2 (en) Charging-induced implant operation
CN109803720B (en) Leadless stimulation device having a housing containing its internal components and functioning as a terminal for a battery case and an internal battery
US11065458B2 (en) Electronic pacemaker
JP2016529058A (en) System and method for reducing electromagnetic field induction heating by an implantable pulse generator
JP2010012236A (en) Medical implant
CN112138281A (en) Pacemaker network
US11458321B2 (en) Implantable medical device coils
CN111643815A (en) Pulse generator and implantable sacral nerve stimulation system