US3859125A - Soluble coated paper - Google Patents

Soluble coated paper Download PDF

Info

Publication number
US3859125A
US3859125A US29643572A US3859125A US 3859125 A US3859125 A US 3859125A US 29643572 A US29643572 A US 29643572A US 3859125 A US3859125 A US 3859125A
Authority
US
United States
Prior art keywords
paper
pvoh
soluble
water
coated paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Albert R Miller
Jacob Spiegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilbreth Co
Original Assignee
Gilbreth Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilbreth Co filed Critical Gilbreth Co
Priority to US29643572 priority Critical patent/US3859125A/en
Application granted granted Critical
Publication of US3859125A publication Critical patent/US3859125A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/12Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • Y10T428/1307Bag or tubular film [e.g., pouch, flexible food casing, envelope, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood

Definitions

  • PATENTS 4 Claims 7 Drawing Figures 2,919,205 12/1959
  • This invention relates to a soluble paper, and more particularly, to a soluble paper that is coated with a polyvinyl alcoholfilm.
  • Water soluble or disintegratable paper is known to the art. Such paper is disclosed in US. Pat. No. 3,431,166, the disclosure of which is incorporated by reference herein.
  • PVOH Polyvinyl alcohol
  • PVOH is hygroscopic. Thus, it will attract water to its surface, and when a number of packets of PVOH are stacked, they will stick together. This renders the separation of the packets difficult, and renders the use of these packets in dispensing machines almost impossible. Thus, single packets cannot readily be dispensed from a stack of the packets in the dispensing machine.
  • PVOH has little dimensional stability. Therefore, when materials having substantial weight are placed in the PVOH packets, the packets have a tendency to distort or elongate. This creates dispensing and storage problems.
  • the water-soluble paper will readily dissolve or disintegrate in water. However, its uses are limited in that it cannot be used for packaging liquids. Additionally, the making of packets is difficult since the paper cannot be heat sealed, and must be glued. The use of the glue in many cases renders the dissolving of the paper more difficult.
  • the dissolvable paper is coated with PVOH.
  • the coated paper finds many uses and advantages which could not be obtained from either the PVOH or the paper alone.
  • One of the prime advantages is that the coated paper can be heat sealed.
  • the PVOH is on the interior. Therefore, there is no fear of sticking of packets, since the contacting surfaces of stacked packets are the paper.
  • the packets formed from the coated paper can be used in the storage of liquid, since the PVOH is liquid impermeable.
  • the formulation of the PVOH can be controlled to render the PVOH soluble only at high temperatures, in the order of 140F.
  • the coated paper of this invention finds numerous hospital, medical, industrial and consumer uses. It can be used for bedpan liners, urinal bags, sick bags, in a soluble bedpan, portion packets, aprons, surgical gowns, caps and-overshoes, medical sheeting, labels, etc.
  • a waterasoluble sheet material comprising a watersoluble paper having a film of polyvinyl alcohol coated thereon.
  • FIG. 1 is a perspective view of a disposable bedpan embodying the paper of this invention
  • FIG. 2 is an enlarged sectional view taken along the line 22 of FIG. 1;
  • FIG. 3 is a perspective view, partially broken away, showing the structure forming the base of the bedpan of FIG. 1;
  • FIG. 4 is a perspective view showing the method of disposing of the bedpan of FIG. 1;
  • FIG. 5 is a perspective view of a pouch adapted to receive and store urine, and usable with the bedpan of FIG. 1;
  • FIG. 6 is an enlarged sectional view taken along the line 66 of FIG. 5;
  • FIG. 7 is a schematic view showing the method of forming the coated paper of this invention.
  • Paper 10 basically comprises a sheet of dissolvable paper 12 having a film of PVOH l4 coated thereon.
  • the dissolvable paper 12 is made in accordance with the teachings of US. Pat. No. 3,431,166. As explained in detail in said patent, the paper comprises celluloseglycolic acid (carboxy methyl cellulose, hereinafter re ferred to as CMC-I-I) which has been partially substituted with a sodium salt of potassium salt of the acid (said salts hereinafter referred to as CMC-Na or CMC- K, respectively). The degree of substitution is within the range of 0.1 to 0.8.
  • the PVOH can either be low temperature soluble (i.e., the temperature of cold tap water), or high temperature soluble (i.e., I40F) above 212F.
  • the method of varying the solubility temperature of the PVOH is well known in the art. By way of summary, the completer the hydrolysis of polyvinyl acetate in the formation of the PVOH, the higher the temperature for solubility.
  • the PVOH is formed by reacting polyvinyl acetate, methyl alcohol and sodium hydroxide in a catalyst of sodium methylate. In the reaction, the acetate groups are replaced with hydroxyl groups. As pointed out above, the more complete the hydroly sis, the higher the temperature needed for solubility. Conversely, the greater the amount of acetate groups in the PVOH, the lower the temperature for solubility.
  • the PVOH that is soluble in water at 138F and above is 99 to percent hydrolyzed.
  • the method of making the coated paper is shown in FIG. 7. As seen therein, a solution of PVOH and water 16 is placed in a trough 18. The solution comprises approximately 26 percent PVOH and 74 percent water. The trough 18 is positioned above a continuous conveyor 20.
  • the PVOH-water solution 16 is deposited upon the conveyor 20 when the conveyor is moving in the direction of arrow 22.
  • the conveyor is provided with a non-stick surface, such as polytetrafluorethylene or silicone rubber.
  • a silicone release agent can be continuously sprayed on the conveyor prior to the depositing of the PVOH-watersolution.
  • the PVOH-water solution is deposited'at a pre-set thickness, such as 3 mils. Thereafter, the material is reduced to about one-half its original thickness by a doctor blade 24, leaving PVOH film 14, which is still in a liquid state.
  • the soluble paper 12 is then broght into contact with the liquid film 14, and squeezed into the film by a pressure roller 26. This forces the PVOH into the interstices of the paper 12, thereby coatingth paper and leaving a surface film of PVOH.
  • the water-soluble paper having the PVOH coating having the PVOH coating.
  • the oven includes a motor 30 having leads 32.
  • the motor drives a fan .within the oven, which fan circulates hot air around the coated paper.
  • Any means known to the art can be used for heating the air, such as electric resistance heaters.
  • the coated paper is formed from two pieces of the coated paper of this invention.
  • the paper 38 is outermost and the coated film 40 of PVOH ison the inner side. The two pieces are cut to the desired shape and are heat sealed around substantially the entire perimeter, as shown by heat seal 42,
  • PVOH is heat sealable.
  • the heat will pass through the paper film38 and cause the flowing of the PVOH to form the seal or bead 42.
  • one end of the pouch 36 remains opened and unsealed. The urine is passed through the opening 44 at this end.
  • the pouch 36 can be sealed by any means known to the art.
  • a water-soluble, pressure sensitive adhesive 46 surrounds opening 44.
  • removable protective strips are placed on the pressure sensitive adhesive, and the strips are removed after the bag has been filled.
  • any of the water-soluble, pressure sensitive adhesives known to the art can be used for this purpose.
  • these adhesives comprise alatex and a tackifier with a small amount of rubber anti-oxidants.
  • Latexes that can be used are polyisobutylene, butyl rubber, BunaN, polyvinyl ethers or p'olyacrylate esters.
  • the tackifiers can comprise polyterpine resins, gum
  • the anti-oxidants can comprise aromatic amines, substituted phenols or substituted quinols.
  • the pressure sensitive adhesive is only one means of sealing the pouch 36.
  • the pouch can also be heat sealed or closed with a tie string formed from the coated paper of this invention. Where the pouch is used for storing materials that'are later placed in water, such as soaps and detergents, the pouch will be heat sealed prior to delivery to the ultimate user.
  • a disposable bedpan that can be used with the disposable paper of this invention is generally shown at 48 in FIG. 1.
  • Disposable bedpan 48 basically comprises a base 50 and a lid 52 that is hingedly secured to the base.
  • Base 50 is rigid and includes a large receptacle 54 and a smaller receptacle 56 therein.
  • Base 50 is formed from heavy-grade dissolvable paper 12.
  • the base comprises a plurality of convolutions or corrugations 58 of the dissolvable paper 12. It should be noted that these convolutions do not carry the PVOH coating on the paper.
  • the convolutions are adhesively secured at their contiguous points 60 forming a honeycomb. Any water base adhesive can be used for this purpose, such as polyvinyl acetate or sodium silicate.
  • the convolutions 58 give rigidity to the base 50. They are covered on their tops bottoms and sides by watersoluble paper 62, which is identical to the paper 12. Paper 62 is adhesively secured to the convolutions 58.
  • the paper 62 passes into receptacle 54.
  • the receptacle 54 is provided with a liner 64 which comprises the coated paper 10.
  • the PVOH side of the paper is uppermost, and the soluble paper side 12 is adhesively secured to paper 62 by a water base adhesive to maintain the liner 64 in place.
  • the PVOH used in liner 64 is the high temperature grade.
  • Receptacle 56 is unlined.
  • Lid 52 is formed from corrugated dissolvable paper 12 having surface sheets on the top and bottom of the corrugations.
  • the lid 52 is hingedly secured to the base 50 by a tape 66 that comprises the dissolvable paper 12. Tape 66 is held in place by a water base adhesive such as that described above.
  • a strip 68 of watersoluble paper 12 passes across lid 52 and is adhesively secured in place by a water base adhesive.
  • Three sheets 70 of tissue grade dissolvable paper 12 are held against lid 52 by strip 68.
  • a strip 72 of dissolvable paper 12 is adhesively secured to lid 52 by a pressure sensitive adhesive 74.
  • the exposed portion of the adhesive 74 is to be provided with a removable strip which protects the pressure sensitive adhesive until it is used.
  • the pressure sensitive adhesive 74 can be any of the water-soluble pressure sensitive adhesives specified above.
  • the bedpan 48 is used in the conventional manner.
  • the human excrement will be deposited in receptacle 54. Since high temperature PVOH comprises the exposed surface of the liner 64, the urine deposited in the receptacle 54 will not dissolve the PVOH. Thus, it should be understood that urine has the same temperature as the human body, which is well below the 138F dissolving temperature for the liner 64.
  • the necessary tissue is removed from the strip 68 and deposited in the receptacle 54.
  • the urine pouch 36 if used independently of the receptacle 54, is sealed and placed in the receptacle 56.
  • lid 52 is pivoted in'the direction of arrow 76 untilthe lid 52 is flush with temperature of a minimum of 140F.
  • the bedpans are dissolved in a matter of seconds or a few minutes, at most, and the receptacle 78 is periodically emptied and refilled with warm water.
  • Another feature of this invention is the incorporation of novel plasticizers in the PVOH.
  • Plasticizers that had previously been used were fugitive in nature, that is, they migrated out of the PVOH, and left the PVOH in a brittle state.
  • the plasticizers used in the PVOH of this invention do not migrate. Because of this, the PVOH provides a better heat seal and will not become brittle after long standing.
  • the new plasticizers can be selected from the group consisting of glycerine, glycols, such as ethylene glycol, and sorbitol.
  • the plasticizer will comprise 3 to 5 per cent of the PVOH, with a maximum range being approximately 2 to 7 per cent of PVOH, by weight.
  • the coated paper is in the oven 28 for a sufficient period of time to drive off all of the water in the PVOH-water solution. This can be accomplished at a temperature of 250F and a dwell time in the oven of 5 to 7 minutes. Of course, the temperature and dwell time will vary depending on the thickness of the PVOH film and the thickness of the paper 12. A preferred thickness for both the paper and the PVOH film is 1.5 mils for each, or a total thickness of 3 mils.
  • the paper both in the coated and uncoated state, can be made in any desired thickness.
  • a paper of 7 mils in thickness will give the desired strength to the base to form the honeycomb construction to readily support the weight of the humanbody when the bedpan is used.
  • a preferred thickness for the coated paper such as for use in pouches, in approximately 3 mils. Paper of this thickness has all the necessary structural and tear strength, while at the same time being thin enough for ready dissolving and for facility of heat sealing. If the paper is much thicker than 1.5 mils when used in the coated state, heat scaling is rendered more difficult, since the sealing must be through the paper to the PVOH, as shown in FIG. 6.
  • a PVOH film has been applied as an laminate on the soluble paper using a water-soluble adhesive.
  • the coated paper is far superior to the paper laminated with a sheet of PVOH.
  • problems of the laminate are the fact that a water plasticizer was used in making the PVOH sheets, and this is a fugitive plasticizer.
  • the laminate became brittle as the PVOH became brittle.
  • the pouches formed from the paper of this invention have numerous uses. For instance, they can be used for the collection and storage of urine, as shown in FIG. 1. They can also be used as portion packets which are later dissolved, such as packets for soap, detergent or bleach. They can also be used for industrial packeting.
  • the coated paper must be used for forming the pouches, and the PVOH surface must be on the interior, as seen in FIGS. 5 and 6.
  • dry materials such as powdered bleach or detergent
  • a slightly modified form of the pouch can be made.
  • one half of the pouch is formed from the coated paper and the other half of the pouch is formed from the uncoated paper 12.
  • a sheet of the coated paper is placed against a sheet of the uncoated paper, with the uncoated paper being contiguous with the PVOH side of the coated paper.
  • a pouch is formed by applying heat around the edge of the two sheets of paper, whereby the PVOH will flow into the interstices of the uncoated paper, thereby forming a permanent seal.
  • Packages made from the coated paper of this invention enjoy many advantages. Exact, pre-measured quantities can be packaged. Handling is facilitated because the packages do not have to be torn open, since they are readily dissolved. There is no need to handle dangerous chemicals, since the chemicals will be completely contained within the packages.
  • Trash resulting from used packaging material is eliminated, since the packaging material is dissolved in use. Additionally, the dissolved packaging material acts as a thickening agent. Cleansing action is increased when detergents are packaged, since the dissolved coated paper will act to suspend dirt in the wash water.
  • All types of industrial chemicals can be packaged in packets or pouches formed from the coated paper of this invention, such as dyestuffs,'organic chemicals, dry powdered chemicals and water based chemicals.
  • Agricultural materials such as fungicides, insecticides, herbicides, fertilizers and soil sterilants, can be packaged in the coated paper of this invention.
  • Household materials that can be packaged in the paper are bleaches, detergents, bubble bath and swimming pool chemicals.
  • the coated paper can be used in such items as urinal bags, sick bags, the bedpan disclosed herein and bedpan liners. Additionally, many surgical items can be made from the coated paper such as gowns, caps, overshoes, specialized medical sheeting and aprons.
  • the coated paper can be cut and sealed into any shape using standard hot bar heat sealing equipment.
  • the surface texture provides sharp,-clear, clean multiple color impressions using dry offset, letterpress and other printing processes.
  • a water soluble sheet material comprising a water soluble paper having a film of polyvinyl alcohol coated thereon, said film being impregnated into the interstices of said paper, said film being insoluble in water which is at a temperature below approximately 138F, but being soluble in water above approximately 138F, and said water soluble paper comprising carboxy methyl cellulose that is substituted in the range from 0.1 to 0.8 with an alkali metal salt of carboxy methyl cellulose.

Abstract

A soluble paper having a coating of polyvinyl alcohol. The soluble paper comprises carboxy methyl cellulose, and the sodium or potassium salts of carboxy methyl cellulose. The coated paper is soluble in either high or low temperature water.

Description

United States Patent Hart ..117/161X Miller et a1. 1 1 Jan. 7, 1975 [5 1 SOLUBLE COATED PAPER 3,078,849 2/1963 Murse 128/290 1 3,123,075 3/1964 Stamberger 128/287 [751 lnvemors- Albert somerdley 3.298.987 l/l967 Colgan C1211 2611/29.? Jacob 1 8 1 Phlladelphla, 3,431,166 3/1969 Mizutani Ct 211 162/135 Assigneez p y, 3,594,213 7/1971 Rudmzm 1 17/111 X Pa. [22] Filed; Oct 10, 1972 Primary Examiner-Michael R. Lusignan Attorney, Agent, or Firm-Caesar, Rivise, Bernstein & [21] Appl. No.: 296,435 Cohen 2 [52] U.S. Cl 117/155 UA, 4/112,117/161UE,
229/35, 128/287, 128/290 R [57] ABSTRACT [51] Int. Cl D2lh 1/38 I 58 Field 61 Search 117/111 F, 111 11, 155 UA, A Soluble Paper havmg 999911112 9f p y y alcohol- 17 1 2 2 7 0 2 5 146, The soluble paper comprlses carboxy methyl cellulose, 229/35 and the sodium or potassium salts of carboxy methyl cellulose. The coated paper is soluble in either high or 5 References Cited low temperature water.
UNITED STATES PATENTS 4 Claims, 7 Drawing Figures 2,919,205 12/1959 PATENIEBJAN Tiers SHEET 10F 2 SOLUBLE COATED PAPER This invention relates to a soluble paper, and more particularly, to a soluble paper that is coated with a polyvinyl alcoholfilm.
Water soluble or disintegratable paper is known to the art. Such paper is disclosed in US. Pat. No. 3,431,166, the disclosure of which is incorporated by reference herein.
Polyvinyl alcohol (hereinafter referred toas PVOH) is a known, water-soluble plastic. It has been used in packaging many items wherein the package is intended for subsequent dissolving. Thus, it hasbeen usedin packaging soap and detergent, with the entire package being placed in a washing machine. When the washing machine is filled with water, the package will dissolve and the detergent will be distributed in the washing water. In this way, exact, predetermined amounts of soap or detergent can be placed in the washing machine.
A number of problems have developed when utilizing the pouches formedfrom PVOH. One of the problems is that PVOH is hygroscopic. Thus, it will attract water to its surface, and when a number of packets of PVOH are stacked, they will stick together. This renders the separation of the packets difficult, and renders the use of these packets in dispensing machines almost impossible. Thus, single packets cannot readily be dispensed from a stack of the packets in the dispensing machine.
Additionally, PVOH has little dimensional stability. Therefore, when materials having substantial weight are placed in the PVOH packets, the packets have a tendency to distort or elongate. This creates dispensing and storage problems.
The water-soluble paper will readily dissolve or disintegrate in water. However, its uses are limited in that it cannot be used for packaging liquids. Additionally, the making of packets is difficult since the paper cannot be heat sealed, and must be glued. The use of the glue in many cases renders the dissolving of the paper more difficult.
In the invention of this application, the dissolvable paper is coated with PVOH. The coated paper finds many uses and advantages which could not be obtained from either the PVOH or the paper alone. One of the prime advantages is that the coated paper can be heat sealed. There is complete dimensional stability added to the PVOH by the backing sheet of paper. When the packets are made from the coated paper, the PVOH is on the interior. Therefore, there is no fear of sticking of packets, since the contacting surfaces of stacked packets are the paper.
Additionally, the packets formed from the coated paper can be used in the storage of liquid, since the PVOH is liquid impermeable. The formulation of the PVOH can be controlled to render the PVOH soluble only at high temperatures, in the order of 140F.
The coated paper of this invention finds numerous hospital, medical, industrial and consumer uses. It can be used for bedpan liners, urinal bags, sick bags, in a soluble bedpan, portion packets, aprons, surgical gowns, caps and-overshoes, medical sheeting, labels, etc.
It is therefore an object of this invention to provide a novel, soluble coated paper.
It is another object of this invention to provide a soluble, disposable bedpan.
It is a further object of this invention to provide a liquid impermeable, water-soluble pouch.
These and other objects of this invention are accomplished by providing a waterasoluble sheet material comprising a watersoluble paper having a film of polyvinyl alcohol coated thereon.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
FIG. 1 is a perspective view of a disposable bedpan embodying the paper of this invention;
FIG. 2 is an enlarged sectional view taken along the line 22 of FIG. 1;
FIG. 3 is a perspective view, partially broken away, showing the structure forming the base of the bedpan of FIG. 1; FIG. 4 is a perspective view showing the method of disposing of the bedpan of FIG. 1;
FIG. 5 is a perspective view of a pouch adapted to receive and store urine, and usable with the bedpan of FIG. 1;
FIG. 6 is an enlarged sectional view taken along the line 66 of FIG. 5; and
FIG. 7 is a schematic view showing the method of forming the coated paper of this invention.
Referring now in greater detail to the various figures of the drawings wherein like reference characters refer to like parts, a water-soluble paper embodying the present invention is generally shown at 10 in FIG. 7. Paper 10 basically comprises a sheet of dissolvable paper 12 having a film of PVOH l4 coated thereon.
The dissolvable paper 12 is made in accordance with the teachings of US. Pat. No. 3,431,166. As explained in detail in said patent, the paper comprises celluloseglycolic acid (carboxy methyl cellulose, hereinafter re ferred to as CMC-I-I) which has been partially substituted with a sodium salt of potassium salt of the acid (said salts hereinafter referred to as CMC-Na or CMC- K, respectively). The degree of substitution is within the range of 0.1 to 0.8.
The PVOH can either be low temperature soluble (i.e., the temperature of cold tap water), or high temperature soluble (i.e., I40F) above 212F. The method of varying the solubility temperature of the PVOH is well known in the art. By way of summary, the completer the hydrolysis of polyvinyl acetate in the formation of the PVOH, the higher the temperature for solubility.
Briefly summarized, the PVOH is formed by reacting polyvinyl acetate, methyl alcohol and sodium hydroxide in a catalyst of sodium methylate. In the reaction, the acetate groups are replaced with hydroxyl groups. As pointed out above, the more complete the hydroly sis, the higher the temperature needed for solubility. Conversely, the greater the amount of acetate groups in the PVOH, the lower the temperature for solubility. The PVOH that is soluble in water at 138F and above is 99 to percent hydrolyzed.
The method of making the coated paper is shown in FIG. 7. As seen therein, a solution of PVOH and water 16 is placed in a trough 18. The solution comprises approximately 26 percent PVOH and 74 percent water. The trough 18 is positioned above a continuous conveyor 20.
In the process, the PVOH-water solution 16 is deposited upon the conveyor 20 when the conveyor is moving in the direction of arrow 22. The conveyor is provided with a non-stick surface, such as polytetrafluorethylene or silicone rubber. Alternatively, a silicone release agent can be continuously sprayed on the conveyor prior to the depositing of the PVOH-watersolution.
The PVOH-water solution is deposited'at a pre-set thickness, such as 3 mils. Thereafter, the material is reduced to about one-half its original thickness by a doctor blade 24, leaving PVOH film 14, which is still in a liquid state. The soluble paper 12 is then broght into contact with the liquid film 14, and squeezed into the film by a pressure roller 26. This forces the PVOH into the interstices of the paper 12, thereby coatingth paper and leaving a surface film of PVOH.
The water-soluble paper having the PVOH coating.
thereon then passes along the conveyor and into oven 28. Any type of oven known to the art can be used for drying the coated paper. As shown schematically in FIG. 7, the oven includes a motor 30 having leads 32. The motor drives a fan .within the oven, which fan circulates hot air around the coated paper. Any means known to the art can be used for heating the air, such as electric resistance heaters. After the coated paper has been dried, it is removed from the conveyor, as indicated by arrow 34. The paper'can then be rolled, folded, cut or otherwise handled for storage and subsequent usage. 7
One of the principal uses of the coated paper is in the formation of pouches for storing both liquids and solids. An example of a pouch that can be formed from the coated paper is generally shown at 36 in FIG. 5. Pouch 36 can be used for storing'any materials, and can assume any desired shape. In the embodiment shown in FIG. 5, the pouch 36 is adapted for the reception and storage of urine. As seen in FIG. 6, the pouch is formed from two pieces of the coated paper of this invention. The paper 38 is outermost and the coated film 40 of PVOH ison the inner side. The two pieces are cut to the desired shape and are heat sealed around substantially the entire perimeter, as shown by heat seal 42,
One of the features of this invention is the fact that the PVOH is heat sealable. Thus, the heat will pass through the paper film38 and cause the flowing of the PVOH to form the seal or bead 42. As seen in FIG. 5, one end of the pouch 36 remains opened and unsealed. The urine is passed through the opening 44 at this end.
Once the pouch 36 has been filled with urine, it can be sealed by any means known to the art. By way of example, a water-soluble, pressure sensitive adhesive 46 surrounds opening 44. Of course, in order to prevent the premature sealing of the pouch 36, removable protective strips are placed on the pressure sensitive adhesive, and the strips are removed after the bag has been filled.
Any of the water-soluble, pressure sensitive adhesives known to the art can be used for this purpose. Generally, these adhesives comprise alatex and a tackifier with a small amount of rubber anti-oxidants. Latexes that can be used are polyisobutylene, butyl rubber, BunaN, polyvinyl ethers or p'olyacrylate esters.
The tackifiers can comprise polyterpine resins, gum
rosin, rosin esters, coumarone-indene resins or petroleum hydrocarbon resins. The anti-oxidants can comprise aromatic amines, substituted phenols or substituted quinols. v
The pressure sensitive adhesive is only one means of sealing the pouch 36. The pouch can also be heat sealed or closed with a tie string formed from the coated paper of this invention. Where the pouch is used for storing materials that'are later placed in water, such as soaps and detergents, the pouch will be heat sealed prior to delivery to the ultimate user.
A disposable bedpan that can be used with the disposable paper of this invention is generally shown at 48 in FIG. 1. Disposable bedpan 48 basically comprises a base 50 and a lid 52 that is hingedly secured to the base.
Base 50 is rigid and includes a large receptacle 54 and a smaller receptacle 56 therein. Base 50 is formed from heavy-grade dissolvable paper 12. As seen in FIG. 3, the base comprises a plurality of convolutions or corrugations 58 of the dissolvable paper 12. It should be noted that these convolutions do not carry the PVOH coating on the paper. The convolutions are adhesively secured at their contiguous points 60 forming a honeycomb. Any water base adhesive can be used for this purpose, such as polyvinyl acetate or sodium silicate. The convolutions 58 give rigidity to the base 50. They are covered on their tops bottoms and sides by watersoluble paper 62, which is identical to the paper 12. Paper 62 is adhesively secured to the convolutions 58.
As seen in FIG. 2, the paper 62 passes into receptacle 54. The receptacle 54 is provided with a liner 64 which comprises the coated paper 10. The PVOH side of the paper is uppermost, and the soluble paper side 12 is adhesively secured to paper 62 by a water base adhesive to maintain the liner 64 in place. The PVOH used in liner 64 is the high temperature grade. Receptacle 56 is unlined.
Lid 52 is formed from corrugated dissolvable paper 12 having surface sheets on the top and bottom of the corrugations. The lid 52 is hingedly secured to the base 50 by a tape 66 that comprises the dissolvable paper 12. Tape 66 is held in place by a water base adhesive such as that described above. A strip 68 of watersoluble paper 12 passes across lid 52 and is adhesively secured in place by a water base adhesive. Three sheets 70 of tissue grade dissolvable paper 12 are held against lid 52 by strip 68. A strip 72 of dissolvable paper 12 is adhesively secured to lid 52 by a pressure sensitive adhesive 74. The exposed portion of the adhesive 74 is to be provided with a removable strip which protects the pressure sensitive adhesive until it is used. The pressure sensitive adhesive 74 can be any of the water-soluble pressure sensitive adhesives specified above.
The bedpan 48 is used in the conventional manner. The human excrement will be deposited in receptacle 54. Since high temperature PVOH comprises the exposed surface of the liner 64, the urine deposited in the receptacle 54 will not dissolve the PVOH. Thus, it should be understood that urine has the same temperature as the human body, which is well below the 138F dissolving temperature for the liner 64. The necessary tissue is removed from the strip 68 and deposited in the receptacle 54. The urine pouch 36, if used independently of the receptacle 54, is sealed and placed in the receptacle 56.
After the bedpan 48 has been used, lid 52 is pivoted in'the direction of arrow 76 untilthe lid 52 is flush with temperature of a minimum of 140F. The higher the temperature, the more quickly the bedpans will dissolve. The bedpans are dissolved in a matter of seconds or a few minutes, at most, and the receptacle 78 is periodically emptied and refilled with warm water.
It is thus seen that a completely sanitary bedpan is provided. It is low in cost, and there is no fear of infecting patients since the bedpans are used only once. Sterilization of bedpans is eliminated. Human hands need never come in contactwith the contents of the bedpans,-and this prevents the passing of infection from one bedpan to another during the cleaning process.
Another feature of this invention is the incorporation of novel plasticizers in the PVOH. Plasticizers that had previously been used were fugitive in nature, that is, they migrated out of the PVOH, and left the PVOH in a brittle state. The plasticizers used in the PVOH of this invention do not migrate. Because of this, the PVOH provides a better heat seal and will not become brittle after long standing.
The new plasticizers can be selected from the group consisting of glycerine, glycols, such as ethylene glycol, and sorbitol. Preferably, the plasticizer will comprise 3 to 5 per cent of the PVOH, with a maximum range being approximately 2 to 7 per cent of PVOH, by weight.
In the process shown in FIG. 7, the coated paper is in the oven 28 for a sufficient period of time to drive off all of the water in the PVOH-water solution. This can be accomplished at a temperature of 250F and a dwell time in the oven of 5 to 7 minutes. Of course, the temperature and dwell time will vary depending on the thickness of the PVOH film and the thickness of the paper 12. A preferred thickness for both the paper and the PVOH film is 1.5 mils for each, or a total thickness of 3 mils.
The paper, both in the coated and uncoated state, can be made in any desired thickness. In the bedpan, it has been found that a paper of 7 mils in thickness will give the desired strength to the base to form the honeycomb construction to readily support the weight of the humanbody when the bedpan is used. A preferred thickness for the coated paper, such as for use in pouches, in approximately 3 mils. Paper of this thickness has all the necessary structural and tear strength, while at the same time being thin enough for ready dissolving and for facility of heat sealing. If the paper is much thicker than 1.5 mils when used in the coated state, heat scaling is rendered more difficult, since the sealing must be through the paper to the PVOH, as shown in FIG. 6.
A PVOH film has been applied as an laminate on the soluble paper using a water-soluble adhesive. However, it has been found that the coated paper is far superior to the paper laminated with a sheet of PVOH. Among the problems of the laminate are the fact that a water plasticizer was used in making the PVOH sheets, and this is a fugitive plasticizer. Thus, the laminate became brittle as the PVOH became brittle.
Another problem with the laminate is that it did not heat seal well. This could possibly result from the fact that the adhesive layer inhibits the heat-scalability of the laminate.
Another problem with the laminate is that delamination often occurred. This resulted from too little adhesive. If too much adhesive was used, the soluble paper became clogged, and this resulted in slow dissolving.
Therefore, the amount of adhesive used in the laminate was critical.
None of the foregoing problems exist with the coated soluble paper. It is for these reasons that the coated paper is superior to the laminated paper.
The pouches formed from the paper of this invention have numerous uses. For instance, they can be used for the collection and storage of urine, as shown in FIG. 1. They can also be used as portion packets which are later dissolved, such as packets for soap, detergent or bleach. They can also be used for industrial packeting.
Wherever liquid is stored in the pouches, the coated paper must be used for forming the pouches, and the PVOH surface must be on the interior, as seen in FIGS. 5 and 6. However, where dry materials, such as powdered bleach or detergent, are used, a slightly modified form of the pouch can be made. In the modified form, one half of the pouch is formed from the coated paper and the other half of the pouch is formed from the uncoated paper 12. Accordingly, a sheet of the coated paper is placed against a sheet of the uncoated paper, with the uncoated paper being contiguous with the PVOH side of the coated paper. Thereafter, a pouch is formed by applying heat around the edge of the two sheets of paper, whereby the PVOH will flow into the interstices of the uncoated paper, thereby forming a permanent seal.
The advantage of the modified form of the pouch is.
that it will dissolve in ten to fifteen seconds in F water. A similar pouch made from two plys of the coated paper will take from 1 to 2 minutes to dissolve in 75F water. It is thus seen that for many uses, two plys of the coated paper need not be used for forming the pouch. However, it should be noted that all of the advantages of the coated paper are obtained by forming a pouch from one sheet of coated paper and one sheet of uncoated paper. Thus, the pouch can still be heat sealed during its formation. Likewise, the dissolvable paper adds dimensional stability to the PVOH, and in addition, the hydroscopic problem of the PVOH is eliminated, since the exterior of the pouch or packet comprises the dissolvable paper.
Packages made from the coated paper of this invention enjoy many advantages. Exact, pre-measured quantities can be packaged. Handling is facilitated because the packages do not have to be torn open, since they are readily dissolved. There is no need to handle dangerous chemicals, since the chemicals will be completely contained within the packages.
Trash resulting from used packaging material is eliminated, since the packaging material is dissolved in use. Additionally, the dissolved packaging material acts as a thickening agent. Cleansing action is increased when detergents are packaged, since the dissolved coated paper will act to suspend dirt in the wash water.
All types of industrial chemicals can be packaged in packets or pouches formed from the coated paper of this invention, such as dyestuffs,'organic chemicals, dry powdered chemicals and water based chemicals. Agricultural materials, such as fungicides, insecticides, herbicides, fertilizers and soil sterilants, can be packaged in the coated paper of this invention. Household materials that can be packaged in the paper are bleaches, detergents, bubble bath and swimming pool chemicals.
When the high temperature PVOH is used as the coating material, the coated paper can be used in such items as urinal bags, sick bags, the bedpan disclosed herein and bedpan liners. Additionally, many surgical items can be made from the coated paper such as gowns, caps, overshoes, specialized medical sheeting and aprons.
The coated paper can be cut and sealed into any shape using standard hot bar heat sealing equipment. The surface texture provides sharp,-clear, clean multiple color impressions using dry offset, letterpress and other printing processes.
Without further elaboration, the foregoing will so fully illustrate my invention that others may, by applying current or future knowledge, readily adapt the same for use under various conditions of service.
What is claimed as the invention is:
l. A water soluble sheet material comprising a water soluble paper having a film of polyvinyl alcohol coated thereon, said film being impregnated into the interstices of said paper, said film being insoluble in water which is at a temperature below approximately 138F, but being soluble in water above approximately 138F, and said water soluble paper comprising carboxy methyl cellulose that is substituted in the range from 0.1 to 0.8 with an alkali metal salt of carboxy methyl cellulose.
2. The sheet material of claim 1 wherein said polyvinyl alcohol is plasticized with a plasticizer selected from the group consisting of glycerine, ethylene glycol and sorbitol.
3. The sheet material of claim 2 wherein said plasticizer is present in the range of 2 to 7 per cent, by weight, of polyvinyl alcohol.
4. The sheet material of claim 2 wherein said plasticizer is present in the range of 3 to 5 per cent, by weight, of polyvinyl alcohol.

Claims (4)

1. A WATER SOLUBLE SHEET MATERIAL COMPRISING A WATER SOLUBLE PAPER HAVING A FILM OF POLYVINYL ALCOHOL COATED THEREON, SAID FILM BEING IMPREGNATED INTO THE INTERSTICES OF SAID PAPER, SAID FILM BEING INSOLUBLE IN WATER WHICH IS AT A TEMPERATURE BELOW APPROXIMATELY 138*F, BUT BEING SOLUBLE IN WATER ABOVE APPROXIMATELY 138*F, AND SAID WATER SOLUBLE PAPER COMPRISING
2. The sheet material of claim 1 wherein said polyvinyl alcohol is plasticized with a plasticizer selected from the group consisting of glycerine, ethylene glycol and sorbitol.
3. The sheet material of claim 2 wherein said plasticizer is present in the range of 2 to 7 per cent, by weight, of polyvinyl alcohol.
4. The sheet material of claim 2 wherein said plasticizer is present in the range of 3 to 5 per cent, by weight, of polyvinyl alcohol.
US29643572 1972-10-10 1972-10-10 Soluble coated paper Expired - Lifetime US3859125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US29643572 US3859125A (en) 1972-10-10 1972-10-10 Soluble coated paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29643572 US3859125A (en) 1972-10-10 1972-10-10 Soluble coated paper

Publications (1)

Publication Number Publication Date
US3859125A true US3859125A (en) 1975-01-07

Family

ID=23141988

Family Applications (1)

Application Number Title Priority Date Filing Date
US29643572 Expired - Lifetime US3859125A (en) 1972-10-10 1972-10-10 Soluble coated paper

Country Status (1)

Country Link
US (1) US3859125A (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297153A (en) * 1979-02-09 1981-10-27 Marvin Glass & Associates Method and apparatus for making doll clothing and doll house accessories
US4344266A (en) * 1978-11-09 1982-08-17 Magnex Limited Collapsible structure and method of building using such a structure
US4348293A (en) * 1978-11-17 1982-09-07 Lever Brothers Company Water-insoluble, water-permeable bag having a water-soluble or water-dispersable protective layer and containing a particulate detergent composition
DE3126979A1 (en) * 1980-01-09 1982-09-30 Roland Dipl.-Kfm. 7022 Leinfelden-Echterdingen Belz COMPOSITE FILM
US4416791A (en) * 1981-11-11 1983-11-22 Lever Brothers Company Packaging film and packaging of detergent compositions therewith
US4448622A (en) * 1982-04-26 1984-05-15 The United States Of America As Represented By The United States Department Of Energy Composite polymeric film and method for its use in installing a very thin polymeric film in a device
US4469728A (en) * 1980-01-09 1984-09-04 Belz Roland Karl Composite foil, particularly a toilet seat support, as well as process
US4555354A (en) * 1978-11-17 1985-11-26 Lever Brothers Company Detergents products
US4655382A (en) * 1985-11-12 1987-04-07 Raychem Corp. Materials for use in forming electronic interconnect
US4956217A (en) * 1988-08-28 1990-09-11 Ciba-Geigy Corportion Silicate treated honeycomb structures
US4995122A (en) * 1988-07-05 1991-02-26 Mohnhaupt Elmer J Portable commode
US4996727A (en) * 1989-07-28 1991-03-05 Guardian Products, Inc. Disposable waste bag
US5002526A (en) * 1989-12-22 1991-03-26 Kimberly-Clark Corporation Tampon applicator
EP0470829A1 (en) 1990-08-07 1992-02-12 W.R. Grace & Co.-Conn. Method for modifying concrete properties
WO1992010412A1 (en) * 1990-12-10 1992-06-25 The Procter & Gamble Company Package comprised of environmentally compatible material and containing compressed flexible articles
US5181966A (en) * 1991-04-10 1993-01-26 Honeycutt Travis W Hot water soluble packaging materials
US5181967A (en) * 1991-04-10 1993-01-26 Isolyser Company, Inc. Method of disposal of hot water soluble utensils
US5207837A (en) * 1991-04-10 1993-05-04 Honeycutt Travis W Method of disposal of hot water soluble garments and like fabrics
US5224774A (en) * 1990-08-07 1993-07-06 W. R. Grace & Co.-Conn. Concrete additive product and method of use
EP0549803A1 (en) * 1991-06-20 1993-07-07 Nippon Paper Industries Co., Ltd. Packaging material and methods of manufacturing and disposing of said material
US5250353A (en) * 1991-06-11 1993-10-05 International Paper Company Enhanced paper and paperboard biodegradability
US5268222A (en) * 1991-04-10 1993-12-07 Isolyser Co., Inc. Composite fabric
US5318549A (en) * 1992-06-22 1994-06-07 Yang Chung Rong Disposable urine bag
US5320851A (en) * 1992-01-31 1994-06-14 W. R. Grace & Co.-Conn. Packaging and dispensing system for fluid and semi-fluid cement admixtures
WO1994016585A1 (en) * 1993-01-26 1994-08-04 Isolyser Company, Inc. Composite fabric
US5389068A (en) * 1992-09-01 1995-02-14 Kimberly-Clark Corporation Tampon applicator
US5434004A (en) * 1991-05-13 1995-07-18 Mitsui Toatsu Chemicals, Incorporated Degradable laminate composition
US5470653A (en) * 1994-08-05 1995-11-28 Isolyser Company, Inc. Disposable mop heads
US5620786A (en) * 1993-04-29 1997-04-15 Isolyser Co. Inc. Hot water soluble towels, sponges and gauzes
US5650219A (en) * 1991-04-10 1997-07-22 Isolyser Co. Inc. Method of disposal of hot water soluble garments and like fabrics
US5658977A (en) * 1996-01-11 1997-08-19 Planet Polymer Technologies, Inc. Hot water soluble disposable films, fabrics and articles
US5661217A (en) * 1994-08-05 1997-08-26 Isolyser Company, Inc. Method of manufacturing monolithic structures from polyvinyl alcohol
US5672434A (en) * 1995-08-10 1997-09-30 Appleton Papers Inc. Mulching composite
US5707731A (en) * 1996-05-09 1998-01-13 Isolyser Company, Inc. Disposable cleaning articles
US5866269A (en) * 1995-08-10 1999-02-02 Appleton Papers Inc. Agricultural mulch with extended longevity
US5871679A (en) * 1991-04-10 1999-02-16 Isolyser Company, Inc. Method of producing hot water soluble garments and like fabrics
US5876995A (en) * 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5885907A (en) * 1993-04-29 1999-03-23 Isolyser Company, Inc. Method of disposal of hot water soluble garments and like fabrics
EP0905313A2 (en) * 1997-09-26 1999-03-31 Uni-Charm Corporation Water-disintegratable fibrous sheet containing modified polyvinyl alcohol
US5891812A (en) * 1996-10-11 1999-04-06 Isolyser Company, Inc. Liquid absorbable non-permeable fabrics and methods of making, using, and disposing thereof
US5904974A (en) * 1995-08-31 1999-05-18 Dainichiseika Color & Chemicals Mfg.Co., Ltd PVA-base thermoplastic copolymer and its production process and use
USRE36399E (en) * 1991-04-10 1999-11-23 Isolyser Company, Inc. Method of Disposal of hot water soluble utensils
US6037319A (en) * 1997-04-01 2000-03-14 Dickler Chemical Laboratories, Inc. Water-soluble packets containing liquid cleaning concentrates
US6048410A (en) * 1991-04-10 2000-04-11 Isolyser Company, Inc. Method of disposal of hot water soluble garments and like fabrics
US6136776A (en) * 1997-04-01 2000-10-24 Dickler Chemical Laboratories, Inc. Germicidal detergent packet
US6247995B1 (en) 1996-02-06 2001-06-19 Bruce Bryan Bioluminescent novelty items
US20010009991A1 (en) * 2000-01-25 2001-07-26 Uni-Charm Corporation Absorbent article containing skin-protective ingredient
US6416960B1 (en) 1996-08-08 2002-07-09 Prolume, Ltd. Detection and visualization of neoplastic tissues and other tissues
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6458547B1 (en) 1996-12-12 2002-10-01 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US20020155281A1 (en) * 2000-05-04 2002-10-24 Lang Frederick J. Pre-moistened wipe product
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US20030116575A1 (en) * 2001-12-21 2003-06-26 Ellingson Daniel L. Disposable container with a spill prevention mechanism
US6586529B2 (en) 2001-02-01 2003-07-01 Kimberly-Clark Worldwide, Inc. Water-dispersible polymers, a method of making same and items using same
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6630558B2 (en) 1998-12-31 2003-10-07 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US20040030080A1 (en) * 2001-03-22 2004-02-12 Yihua Chang Water-dispersible, cationic polymers, a method of making same and items using same
US6713140B2 (en) 2001-12-21 2004-03-30 Kimberly-Clark Worldwide, Inc. Latently dispersible barrier composite material
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US20040126585A1 (en) * 2002-12-27 2004-07-01 Kerins John E. Water dispersible commode/bedpan liner
US6783826B2 (en) 2001-12-21 2004-08-31 Kimberly-Clark Worldwide, Inc. Flushable commode liner
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US6897168B2 (en) 2001-03-22 2005-05-24 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6908966B2 (en) 2001-03-22 2005-06-21 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US20050229536A1 (en) * 2004-03-03 2005-10-20 Ecoboard Co., Ltd. Formwork for concrete beam
US7070854B2 (en) 2001-03-22 2006-07-04 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US20060165625A1 (en) * 2005-01-22 2006-07-27 Verrall Andrew P Water-soluble film article having salt layer, and method of making the same
US20060286320A1 (en) * 2005-06-21 2006-12-21 Green Terrell J Targeted reinforcement
US7276459B1 (en) 2000-05-04 2007-10-02 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
EP1925320A2 (en) 1998-03-27 2008-05-28 Prolume, Ltd. Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics
US20090123736A1 (en) * 2005-06-21 2009-05-14 Green Terrell J Repulpable packaging materials with reinforcement
US20100005575A1 (en) * 2005-05-18 2010-01-14 Eye Safety Systems, Inc. Goggles with removable frame and methods of making and using the same
US20120048769A1 (en) * 2010-07-02 2012-03-01 Mark Robert Sivik Process for making films from nonwoven webs
US20120106879A1 (en) * 2010-11-02 2012-05-03 Fiorini Giovanni Bag made of composite material and method for its manufacture
US9074305B2 (en) 2010-07-02 2015-07-07 The Procter & Gamble Company Method for delivering an active agent
US20150250284A1 (en) * 2014-03-04 2015-09-10 Ruben Gonzalez, JR. System and Method for Dividing Hair Using Water Soluble Dividers During the Process of Hair Coloring or Highlighting Treatment
US9175250B2 (en) 2010-07-02 2015-11-03 The Procter & Gamble Company Fibrous structure and method for making same
US9364123B1 (en) * 2014-05-16 2016-06-14 Levan Mirzoev Disposable single use portable toilet
US9523172B2 (en) 2011-07-18 2016-12-20 Lakeland Industries, Inc. Process for producing polyvinyl alcohol articles
US20170027393A1 (en) * 2015-07-30 2017-02-02 Ronald Barnes Urine Leakage Wipe Dispenser
US9797073B1 (en) 2011-07-18 2017-10-24 Lakeland Industries, Inc. Process for producing polyvinyl alcohol articles
USD866754S1 (en) * 2018-01-15 2019-11-12 Coloplast A/S Insert for toilet bag and toilet bag
US10982176B2 (en) 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
US11021812B2 (en) 2010-07-02 2021-06-01 The Procter & Gamble Company Filaments comprising an ingestible active agent nonwoven webs and methods for making same
US11053466B2 (en) 2018-01-26 2021-07-06 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
US11142730B2 (en) 2018-01-26 2021-10-12 The Procter & Gamble Company Water-soluble articles and related processes
US11193097B2 (en) 2018-01-26 2021-12-07 The Procter & Gamble Company Water-soluble unit dose articles comprising enzyme
US11434586B2 (en) 2010-07-02 2022-09-06 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
US11505379B2 (en) 2018-02-27 2022-11-22 The Procter & Gamble Company Consumer product comprising a flat package containing unit dose articles
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
US11679066B2 (en) 2019-06-28 2023-06-20 The Procter & Gamble Company Dissolvable solid fibrous articles containing anionic surfactants
US11753608B2 (en) 2018-01-26 2023-09-12 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
US11859338B2 (en) 2019-01-28 2024-01-02 The Procter & Gamble Company Recyclable, renewable, or biodegradable package
US11878077B2 (en) 2019-03-19 2024-01-23 The Procter & Gamble Company Fibrous water-soluble unit dose articles comprising water-soluble fibrous structures
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
US11951194B2 (en) 2019-06-04 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919205A (en) * 1956-09-18 1959-12-29 Warren S D Co Process for finishing coated paper
US3078849A (en) * 1959-06-18 1963-02-26 Johnson & Johnson Absorbent product
US3123075A (en) * 1964-03-03 Stamberger
US3298987A (en) * 1963-12-31 1967-01-17 Cumberland Chemical Corp Coated fibrous web and coating composition therefor
US3431166A (en) * 1964-10-14 1969-03-04 Mishima Paper Mfg Co Ltd Method of making paper which dissolves in water containing papermaking fibers and fibrous cellulose-glycolic acid
US3594213A (en) * 1967-10-27 1971-07-20 Joseph T Rudman Process for controlling porosity in fibrous webs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123075A (en) * 1964-03-03 Stamberger
US2919205A (en) * 1956-09-18 1959-12-29 Warren S D Co Process for finishing coated paper
US3078849A (en) * 1959-06-18 1963-02-26 Johnson & Johnson Absorbent product
US3298987A (en) * 1963-12-31 1967-01-17 Cumberland Chemical Corp Coated fibrous web and coating composition therefor
US3431166A (en) * 1964-10-14 1969-03-04 Mishima Paper Mfg Co Ltd Method of making paper which dissolves in water containing papermaking fibers and fibrous cellulose-glycolic acid
US3594213A (en) * 1967-10-27 1971-07-20 Joseph T Rudman Process for controlling porosity in fibrous webs

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344266A (en) * 1978-11-09 1982-08-17 Magnex Limited Collapsible structure and method of building using such a structure
US4348293A (en) * 1978-11-17 1982-09-07 Lever Brothers Company Water-insoluble, water-permeable bag having a water-soluble or water-dispersable protective layer and containing a particulate detergent composition
US4555354A (en) * 1978-11-17 1985-11-26 Lever Brothers Company Detergents products
US4297153A (en) * 1979-02-09 1981-10-27 Marvin Glass & Associates Method and apparatus for making doll clothing and doll house accessories
US4671982A (en) * 1980-01-09 1987-06-09 Rb Kunststoffpatent-Verwertungs Ag Composite foil
DE3126979A1 (en) * 1980-01-09 1982-09-30 Roland Dipl.-Kfm. 7022 Leinfelden-Echterdingen Belz COMPOSITE FILM
US4469728A (en) * 1980-01-09 1984-09-04 Belz Roland Karl Composite foil, particularly a toilet seat support, as well as process
US4551369A (en) * 1980-01-09 1985-11-05 Belz Roland Karl Composite packaging material and process for making same
US4416791A (en) * 1981-11-11 1983-11-22 Lever Brothers Company Packaging film and packaging of detergent compositions therewith
US4448622A (en) * 1982-04-26 1984-05-15 The United States Of America As Represented By The United States Department Of Energy Composite polymeric film and method for its use in installing a very thin polymeric film in a device
US4655382A (en) * 1985-11-12 1987-04-07 Raychem Corp. Materials for use in forming electronic interconnect
EP0228791A2 (en) * 1985-11-12 1987-07-15 RAYCHEM CORPORATION (a Delaware corporation) Materials for use in forming electronic interconnect
EP0228791A3 (en) * 1985-11-12 1988-11-17 Raychem Corporation (A Delaware Corporation) Materials for use in forming electronic interconnect
US4995122A (en) * 1988-07-05 1991-02-26 Mohnhaupt Elmer J Portable commode
US4956217A (en) * 1988-08-28 1990-09-11 Ciba-Geigy Corportion Silicate treated honeycomb structures
US4996727A (en) * 1989-07-28 1991-03-05 Guardian Products, Inc. Disposable waste bag
US5002526A (en) * 1989-12-22 1991-03-26 Kimberly-Clark Corporation Tampon applicator
EP0470829A1 (en) 1990-08-07 1992-02-12 W.R. Grace & Co.-Conn. Method for modifying concrete properties
US5203629A (en) * 1990-08-07 1993-04-20 W.R. Grace & Co.-Conn. Method for modifying concrete properties
US5224774A (en) * 1990-08-07 1993-07-06 W. R. Grace & Co.-Conn. Concrete additive product and method of use
WO1992010412A1 (en) * 1990-12-10 1992-06-25 The Procter & Gamble Company Package comprised of environmentally compatible material and containing compressed flexible articles
US5181967A (en) * 1991-04-10 1993-01-26 Isolyser Company, Inc. Method of disposal of hot water soluble utensils
US5650219A (en) * 1991-04-10 1997-07-22 Isolyser Co. Inc. Method of disposal of hot water soluble garments and like fabrics
US5871679A (en) * 1991-04-10 1999-02-16 Isolyser Company, Inc. Method of producing hot water soluble garments and like fabrics
USRE36399E (en) * 1991-04-10 1999-11-23 Isolyser Company, Inc. Method of Disposal of hot water soluble utensils
US6048410A (en) * 1991-04-10 2000-04-11 Isolyser Company, Inc. Method of disposal of hot water soluble garments and like fabrics
US5181966A (en) * 1991-04-10 1993-01-26 Honeycutt Travis W Hot water soluble packaging materials
US5268222A (en) * 1991-04-10 1993-12-07 Isolyser Co., Inc. Composite fabric
DE4219686A1 (en) * 1991-04-10 1993-12-23 Isolyser Co Process for removing clothes and similar substances soluble in hot water
DE4221124C1 (en) * 1991-04-10 1994-04-07 Isolyser Co Process for removing hot water soluble articles
US5207837A (en) * 1991-04-10 1993-05-04 Honeycutt Travis W Method of disposal of hot water soluble garments and like fabrics
US5434004A (en) * 1991-05-13 1995-07-18 Mitsui Toatsu Chemicals, Incorporated Degradable laminate composition
US5250353A (en) * 1991-06-11 1993-10-05 International Paper Company Enhanced paper and paperboard biodegradability
EP0549803A4 (en) * 1991-06-20 1993-11-18 Jujo Paper Co., Ltd. Packaging material and methods of manufacturing and disposing of said material
EP0549803A1 (en) * 1991-06-20 1993-07-07 Nippon Paper Industries Co., Ltd. Packaging material and methods of manufacturing and disposing of said material
US5320851A (en) * 1992-01-31 1994-06-14 W. R. Grace & Co.-Conn. Packaging and dispensing system for fluid and semi-fluid cement admixtures
US5318549A (en) * 1992-06-22 1994-06-07 Yang Chung Rong Disposable urine bag
US5389068A (en) * 1992-09-01 1995-02-14 Kimberly-Clark Corporation Tampon applicator
WO1994016585A1 (en) * 1993-01-26 1994-08-04 Isolyser Company, Inc. Composite fabric
US5620786A (en) * 1993-04-29 1997-04-15 Isolyser Co. Inc. Hot water soluble towels, sponges and gauzes
US5885907A (en) * 1993-04-29 1999-03-23 Isolyser Company, Inc. Method of disposal of hot water soluble garments and like fabrics
US5470653A (en) * 1994-08-05 1995-11-28 Isolyser Company, Inc. Disposable mop heads
US5661217A (en) * 1994-08-05 1997-08-26 Isolyser Company, Inc. Method of manufacturing monolithic structures from polyvinyl alcohol
US5672434A (en) * 1995-08-10 1997-09-30 Appleton Papers Inc. Mulching composite
US5866269A (en) * 1995-08-10 1999-02-02 Appleton Papers Inc. Agricultural mulch with extended longevity
US5904974A (en) * 1995-08-31 1999-05-18 Dainichiseika Color & Chemicals Mfg.Co., Ltd PVA-base thermoplastic copolymer and its production process and use
US5658977A (en) * 1996-01-11 1997-08-19 Planet Polymer Technologies, Inc. Hot water soluble disposable films, fabrics and articles
US6152358A (en) * 1996-02-06 2000-11-28 Bruce Bryan Bioluminescent novelty items
US6247995B1 (en) 1996-02-06 2001-06-19 Bruce Bryan Bioluminescent novelty items
US20060053505A1 (en) * 1996-02-06 2006-03-09 Bruce Bryan Bioluminescent novelty items
US6113886A (en) * 1996-02-06 2000-09-05 Bruce Bryan Bioluminescent novelty items
US5876995A (en) * 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
US5707731A (en) * 1996-05-09 1998-01-13 Isolyser Company, Inc. Disposable cleaning articles
US5985443A (en) * 1996-05-09 1999-11-16 Isolyser Company, Inc. Method of disposing of a mop head
US6416960B1 (en) 1996-08-08 2002-07-09 Prolume, Ltd. Detection and visualization of neoplastic tissues and other tissues
US6596257B2 (en) 1996-08-08 2003-07-22 Prolume, Ltd. Detection and visualization of neoplastic tissues and other tissues
US5891812A (en) * 1996-10-11 1999-04-06 Isolyser Company, Inc. Liquid absorbable non-permeable fabrics and methods of making, using, and disposing thereof
US6649357B2 (en) 1996-12-12 2003-11-18 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US6649356B2 (en) 1996-12-12 2003-11-18 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US6458547B1 (en) 1996-12-12 2002-10-01 Prolume, Ltd. Apparatus and method for detecting and identifying infectious agents
US6037319A (en) * 1997-04-01 2000-03-14 Dickler Chemical Laboratories, Inc. Water-soluble packets containing liquid cleaning concentrates
US6136776A (en) * 1997-04-01 2000-10-24 Dickler Chemical Laboratories, Inc. Germicidal detergent packet
EP0905313A3 (en) * 1997-09-26 2000-05-17 Uni-Charm Corporation Water-disintegratable fibrous sheet containing modified polyvinyl alcohol
EP0905313A2 (en) * 1997-09-26 1999-03-31 Uni-Charm Corporation Water-disintegratable fibrous sheet containing modified polyvinyl alcohol
EP1925320A2 (en) 1998-03-27 2008-05-28 Prolume, Ltd. Luciferases, fluorescent proteins, nucleic acids encoding the luciferases and fluorescent proteins and the use thereof in diagnostics
US6630558B2 (en) 1998-12-31 2003-10-07 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6855790B2 (en) 1998-12-31 2005-02-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US7858840B2 (en) * 2000-01-25 2010-12-28 Uni-Charm Corporation Absorbent article containing skin-protective ingredient
US20010009991A1 (en) * 2000-01-25 2001-07-26 Uni-Charm Corporation Absorbent article containing skin-protective ingredient
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7276459B1 (en) 2000-05-04 2007-10-02 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7101612B2 (en) 2000-05-04 2006-09-05 Kimberly Clark Worldwide, Inc. Pre-moistened wipe product
US20020155281A1 (en) * 2000-05-04 2002-10-24 Lang Frederick J. Pre-moistened wipe product
US6814974B2 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6586529B2 (en) 2001-02-01 2003-07-01 Kimberly-Clark Worldwide, Inc. Water-dispersible polymers, a method of making same and items using same
US6897168B2 (en) 2001-03-22 2005-05-24 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6908966B2 (en) 2001-03-22 2005-06-21 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US7070854B2 (en) 2001-03-22 2006-07-04 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US20040030080A1 (en) * 2001-03-22 2004-02-12 Yihua Chang Water-dispersible, cationic polymers, a method of making same and items using same
US6713140B2 (en) 2001-12-21 2004-03-30 Kimberly-Clark Worldwide, Inc. Latently dispersible barrier composite material
US20030116575A1 (en) * 2001-12-21 2003-06-26 Ellingson Daniel L. Disposable container with a spill prevention mechanism
US6783826B2 (en) 2001-12-21 2004-08-31 Kimberly-Clark Worldwide, Inc. Flushable commode liner
US20040126585A1 (en) * 2002-12-27 2004-07-01 Kerins John E. Water dispersible commode/bedpan liner
US20050229536A1 (en) * 2004-03-03 2005-10-20 Ecoboard Co., Ltd. Formwork for concrete beam
US7353641B2 (en) * 2004-03-03 2008-04-08 Ecoboard Co., Ltd. Void forming core formwork for concrete beam
US8728449B2 (en) * 2005-01-22 2014-05-20 Monosol Llc Water-soluble film article having salt layer, and method of making the same
US20060165625A1 (en) * 2005-01-22 2006-07-27 Verrall Andrew P Water-soluble film article having salt layer, and method of making the same
US20100005575A1 (en) * 2005-05-18 2010-01-14 Eye Safety Systems, Inc. Goggles with removable frame and methods of making and using the same
US20060286320A1 (en) * 2005-06-21 2006-12-21 Green Terrell J Targeted reinforcement
US20090123736A1 (en) * 2005-06-21 2009-05-14 Green Terrell J Repulpable packaging materials with reinforcement
US9421153B2 (en) 2010-07-02 2016-08-23 The Procter & Gamble Company Detergent product and method for making same
US9175250B2 (en) 2010-07-02 2015-11-03 The Procter & Gamble Company Fibrous structure and method for making same
US10894005B2 (en) 2010-07-02 2021-01-19 The Procter & Gamble Company Detergent product and method for making same
US9074305B2 (en) 2010-07-02 2015-07-07 The Procter & Gamble Company Method for delivering an active agent
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
US9163205B2 (en) * 2010-07-02 2015-10-20 The Procter & Gamble Company Process for making films from nonwoven webs
US11944696B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Detergent product and method for making same
US10045915B2 (en) 2010-07-02 2018-08-14 The Procter & Gamble Company Method for delivering an active agent
US11434586B2 (en) 2010-07-02 2022-09-06 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
US20120048769A1 (en) * 2010-07-02 2012-03-01 Mark Robert Sivik Process for making films from nonwoven webs
US9480628B2 (en) 2010-07-02 2016-11-01 The Procer & Gamble Company Web material and method for making same
US11021812B2 (en) 2010-07-02 2021-06-01 The Procter & Gamble Company Filaments comprising an ingestible active agent nonwoven webs and methods for making same
US20130303352A1 (en) * 2010-11-02 2013-11-14 Sacart S.P.A. Method for a manufacture of a bag made of composite material
US20120106879A1 (en) * 2010-11-02 2012-05-03 Fiorini Giovanni Bag made of composite material and method for its manufacture
US9797073B1 (en) 2011-07-18 2017-10-24 Lakeland Industries, Inc. Process for producing polyvinyl alcohol articles
US9523172B2 (en) 2011-07-18 2016-12-20 Lakeland Industries, Inc. Process for producing polyvinyl alcohol articles
US11168441B2 (en) 2011-07-18 2021-11-09 Lakeland Industries, Inc. Process for producing polyvinyl alcohol articles
US9167878B2 (en) * 2014-03-04 2015-10-27 Ruben Gonzalez, JR. System and method for dividing hair using water soluble dividers during the process of hair coloring or highlighting treatment
US20150250284A1 (en) * 2014-03-04 2015-09-10 Ruben Gonzalez, JR. System and Method for Dividing Hair Using Water Soluble Dividers During the Process of Hair Coloring or Highlighting Treatment
US9364123B1 (en) * 2014-05-16 2016-06-14 Levan Mirzoev Disposable single use portable toilet
US20170027393A1 (en) * 2015-07-30 2017-02-02 Ronald Barnes Urine Leakage Wipe Dispenser
USD866754S1 (en) * 2018-01-15 2019-11-12 Coloplast A/S Insert for toilet bag and toilet bag
US11753608B2 (en) 2018-01-26 2023-09-12 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
US11053466B2 (en) 2018-01-26 2021-07-06 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
US11142730B2 (en) 2018-01-26 2021-10-12 The Procter & Gamble Company Water-soluble articles and related processes
US11193097B2 (en) 2018-01-26 2021-12-07 The Procter & Gamble Company Water-soluble unit dose articles comprising enzyme
US11505379B2 (en) 2018-02-27 2022-11-22 The Procter & Gamble Company Consumer product comprising a flat package containing unit dose articles
US10982176B2 (en) 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
US11859338B2 (en) 2019-01-28 2024-01-02 The Procter & Gamble Company Recyclable, renewable, or biodegradable package
US11878077B2 (en) 2019-03-19 2024-01-23 The Procter & Gamble Company Fibrous water-soluble unit dose articles comprising water-soluble fibrous structures
US11951194B2 (en) 2019-06-04 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles
US11679066B2 (en) 2019-06-28 2023-06-20 The Procter & Gamble Company Dissolvable solid fibrous articles containing anionic surfactants
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care

Similar Documents

Publication Publication Date Title
US3859125A (en) Soluble coated paper
US10611555B2 (en) Multi-dose cleaning product and method of manufacture
ES2247183T3 (en) PORTABLE PACKAGING DEVICE AND METHOD TO CONFORM INDIVIDUALLY PACKED ARTICLES.
US3661695A (en) Two water soluble films connected to each side of a water impervious synthetic membrane
JP4817583B2 (en) Packaging materials and products
AU2006285331B2 (en) Pull tab activated sealed packet
US20030116462A1 (en) Pouch configuration for wrapped absorbent articles
CN107406153B (en) Cleaning product web and method of manufacture
JP2004531325A (en) Semi-enclosed applicator for delivering substance onto target surface
NO774289L (en) WET OR GLOVES AND SUBJECT FOR THE SAME.
JPH072272A (en) Medicine packaging material using water-soluble film and its packaging container
BR112014026491B1 (en) packaging unit for hygiene articles and method of forming a packaging unit for hygiene articles from a sheet of material
TW201623097A (en) Containers for unit dose product
US10161085B2 (en) Hand wetted paper
JP2666961B2 (en) Dispenser applicator for coating substances
US20210085132A1 (en) Method to manufacture substrate with latent wetting device
US3209977A (en) Container
JP2006123958A (en) Double packaging bag
MX2008011925A (en) Sheets having inverting dispensing pattern, dispenser therefor and method of dispensing.
EP0378276B1 (en) Device for the collection of waste items, in particular sanitary towels
JPH1147187A (en) Individually packed absorbing article
GB2155902A (en) Wet-release container
JP7219958B2 (en) Food storage bag with hand-wiping function and manufacturing method thereof
JPS6211616Y2 (en)
JP2631858B2 (en) Liquid leakage prevention method for tissue type cleaner