US3855104A - PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE - Google Patents

PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE Download PDF

Info

Publication number
US3855104A
US3855104A US00341593A US34159373A US3855104A US 3855104 A US3855104 A US 3855104A US 00341593 A US00341593 A US 00341593A US 34159373 A US34159373 A US 34159373A US 3855104 A US3855104 A US 3855104A
Authority
US
United States
Prior art keywords
electrodes
bore holes
electrolyzer
acid
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00341593A
Inventor
G Messner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora SpA
Original Assignee
Oronzio de Nora Impianti Elettrochimici SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oronzio de Nora Impianti Elettrochimici SpA filed Critical Oronzio de Nora Impianti Elettrochimici SpA
Application granted granted Critical
Publication of US3855104A publication Critical patent/US3855104A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • ABSTRACT Describes a process and apparatus for the electrolysis of HCl containing solutions in unipolar and bipolar cells using graphite electrodes in which the chlorine and hydrogen and the anolyte and catholyte liquor produced in the process are kept separate by means of separate discharge channels in the electrodes with which the active faces of the anodes and cathodes communicate and through which the acid leaves the cells in such a manneras to give longer diaphragm life.
  • the weak point of all prior electrolyzers is the space between the electrodes, especially the diaphragm, which has the duty to keep the two produced gases separate.
  • This diaphragm is a cloth of polyvinyl chloride fibers, which is assembled between the electrodes and held in place by the framesof synthetic material, similar to a drum-skin, See, for example, my prior US. Pat. No. 3,236,760.
  • the supply of HCl is provided by introduction of hydrochloric acid with a concentration of more than l8% HCl, i.e., more than the concentration of the depleted acid, into the cells between the electrodes.
  • This feed acid has not only to substitute the previously electrolytically decomposed HCl, but it takes off also the Joule heat produced in the electrolyzer.
  • feed acid in the prior art is introduced in two separate streams of HCl on each side of each diaphragm one flows through the anodic room, the other through the cathodic room, losing a fraction of its HCl content, while passing through the cell.
  • the feed rate of the acid is such as to keep the HCl concentration of the depleted acid at approximately l8% by weight, corresponding to the maximum electrical conductivity of the electrolyte.
  • the purpose of the splitting of the feed acid into two parts is to eliminate as quickly as possible the chlorine gas bubbles in the anode space and the hydrogen gas bubbles in the cathode space, which increase the elec tric resistance of the electrolyte and the cell voltage.
  • the usual cell temperature of 70 C about 21 vol.% of water vapor are present in the Cl and H gases.
  • Polyvinyl chloride as compared with other materials, is the more resistant material for the diaphragms. ln HCl electrolyzers, however, it undergoes a slow modification by chlorination, which makes the fibers brittle, so that finally they do not have sufficient tensile strength to withstand the conditions of use in a HCl electrolysis cell. Cracks and holes are formed in the cloth and its capacity to keep the gases separate is reduced after a few months to the point where not only the purity of the gases becomes unsatisfactory, but the danger of explosion of the formed mixtures of Cl, and H, is increased. In order to eliminate this danger, it is necessary to stop the electrolyzer and to replace the damaged diaphragms by new PVC diaphragms. Fluttering and flexing of the diaphragms caused partially by the introduction of the HCl feed on each side of the diaphragms contributes to their rapid destruction.
  • One of the basic principles of the apparatus and process of the present invention is to avoid the selfsupporting diaphragm as used previously, which when submitted to the action of strong mechanical forces in the prior art cells, produced fluttering, a phenomena which not only includes the high power peaks of the fluttering, but also causes the continuous bending of the fibers as they become more and more brittle and leads to rapid destruction of the diaphragms.
  • One of the principal objects of this invention is the substitution of the two feed acid streams used in the prior art, by a single feed stream which pushes the diaphragms which are pervious to the gases and electrolyte against the solid supports of the anode or cathode faces, thereby reducing bending and fluttering of the diaphragms.
  • l have found that the diaphragms can be protected from the mechanical stresses if they are supported as fully as possible on the more or less solid grids of the anode and cathode faces. This results in a longer life for the diaphragm or diaphragms.
  • the diaphragms according to the present invention may be supported on rigid grids or networks made of resistant material, such as Teflon, Plexiglass and so on.
  • a grid increases the electrode gap and the ohmic resistance of the cell by a slight amount, but prolongs the life of the diaphragms.
  • Another object of the invention is to support the diaphragm or diaphragms on a rectangular parallelepiped of graphite, provided with blades and slots, used as the electrodes, i.e., anodes and cathodes, provided at regular intervals with bore holes or channels approximaely 20 40 mm in diameter, parallel to the large surface planes of the electrodes and preferably parallel to their shorter rectangular dimension, which bore holes conduct the produced gases and depleted electrolyte away from the electrode surfaces and eventually out of the cell.
  • the inside surfaces of the said bore holes are painted with a suitable liquid, for instance, with a cold curing phenolic resin, in order to avoid erosion of the soft graphite by the moving gases and liquids during the operation of the cell.
  • This simple resin painting is very useful, because it allows the use of a lower graphite quality while still providing adequate discharge channels for the discharge of the formed gases and of the spent electrolyte, a portion of which may be recirculated as later described.
  • the resin painting including hardening of the resin layer, should be done afterdrilling of the bore holes, but before cutting the slots on the surfaces of the graphite electrodes.
  • a set of saw discs on a common axle is used to cut a multiple of parallet slots on the surfaces of the graphite plates provided as electrodes, the direction of the parallel slots with reference to the bore holes preferably being an angle of approximately although this angle may vary substantially from 90.
  • the slots are of such a depth that they penetrate a few millimeters into the cavities of the bore holes where they cross the bore holes, creating in this way a connection between the bore holes and the cavities of the slots.
  • the slots should have a width of approximately 1 2 mm and a depth of 5 20 mm, while the graphic blades between the slots should have a thickness of approximately 1 3 mm.
  • the graphite blades are the electrodes (i.e., anodes and cathodes), while the slots receive the two produced gases and discharge them into the corresponding bore holes.
  • the bore holes and the slots in the graphite electrodes may be produced by other methods.
  • FIG. I is a schematic illustration of a unipolar graphite electrode used as a terminal electrode at either end of a bipolar HCI cell assembly
  • FIG. 2 shows a similar unipolar graphite electrode with additional slots at right angles to the slots shown in FIG. 1;
  • FIGS. 3 and 3a are. respectively, a face view and a 7 FIG. II is a vertical sectional view through a bipolar electrode along the line 11 ll of FIG. 13;
  • FIG. 12 is a vertical section along the line 12 12 of FIG. 11;
  • FIG. 13 is a horizontal section in diagrammatical outline, of an assembled cell along the line 13 13 of FIG. 11;
  • FIG. 14 is a detail of one form of electrolyte feed and FIG. 140 shows anotherform of electrolyte feed, using Venetian blinds instead of sheet diaphragms;
  • FIGS. 15, 16 and 160 are, respectively, a detail, a face view and a side view of a Plexiglass or Teflon frame for holding the diaphragms against the electrode faces;
  • FIG. 17 is a sectional view along the line 17 17 of FIG. 13;
  • FIG. 18 is a schematic end view of the electrolyzer shown in FIG. 13, this view being substantially the same from either end of the electrolyzer;
  • FIG. 19 is a vertical section along the line 19 19 of FIG. 20, parallel to the direction of the slots and graphite blades, showing the electrodes in horizontal position and showing diaphragms on only one face of the cathodes;
  • FIG. 20 is a horizontal section along the line 20 20 of FIG. 19;
  • FIG. 21 shows an enlarged vertical section through a slightly different form of electrode package, showing diaphragms in dash lines along both the anodic and cathodic faces of the bipolar electrodes;
  • FIG. 21a is a cross sectional detail of FIG. 21'
  • FIG. 22 shows an enlarged view of the top part of a bipolar electrode in horizontal position with the diaphragm omitted;
  • FIG. 23 is a horizontal section along the line 23 23 of FIG. 19;
  • FIG. 24 is a view of a sight glass arrangement along the line 24 24 of FIG. 23, for checking the electrolyte level in single cells.
  • FIG. 25 shows an example of a bipolar electrolyzer with the electrode faces in horizontal position.
  • the unipolar graphite electrode shown schematically in FIGS. 1 and 2 comprises a graphite slab 1 having bore holes 2 for discharging the gas and depleted electrolyte and horizontal slots 3 separated by blades 4.
  • the slots 3 are preferably about I to 2 mm wide and about 5 to 20 mm deep and intersect the bore holes 2, so that gases produced on the electrode and depleted electrolyte flowing into the slots will go into the resin lined bore holes 2 and be discharged at the top of the electrode.
  • the first bore hole in FIG. I has been cut away to show the communication between the slots 3 and the bore holes 2.
  • Vertical slots 3a shown in FIG. 2 may be provided to increase the surface area of the blades 4.
  • the slots 3 and 3a need not be at one to the other.
  • the slots 3a may be at any desired angle to the slots 3, such as 5 to 90.
  • the blades 4 are preferably about I to 3 mm thick.
  • the electrodes 1 shown in FIGS. 1 and 2 may constitute the positive and negative electrodes of a single cell, or the terminal positive and the terminal negative electrode of a bipolar electrolyzer which may, for example, have forty or more bipolar intermediate electrodes such as shown in FIGS. 3 and 4.
  • the slots may be formed in the graphite slab 1 in any suitable manner, as by spaced circular saw blades on a common axis, or by building the electrode from individual plates of graphite having holes 2 and having the slots and blades given above therein. The plates are stacked one on top of the other, with the smaller plates between the larger ones and then cemented together to form electrodes of the construction shown in FIGS. 1 and 2.
  • the electrodes of FIGS. 1, 2 and 3 may be covered with diaphragms which rest on the crest of the graphite blades 4.
  • the diaphragms have been omitted to give greater clarity to these figures.
  • the direction of the slots 3 and the bore holes 2 need not be, respectively, horizontal and vertical or at 90 each to the other.
  • the slots 3 can, for example, be vertical and the resin lined bore holes 2 horizontal, preferably with a slight upward tilt toward the discharge end of the electrolyzer as will be described hereafter.
  • the crest of the blades 4 may have shallow slots, about 0.1 to 1 mm, cut into the graphite surface before the deeper slots 3 are cut, to give the crest of the blades additional roughness.
  • FIGS. 3, 3a and 4 illustrate a bipolar electrode 5 suitable for use as an intermediate electrode in a multiple unit bipolar electrolyzer.
  • the front and back faces of the electrode of FIG. 3 are provided with slots 3 and blades 4, as the FIGS. 1 and 2, and the slots 3, shown in dash lines in FIG. 4, communicate with independent sets of bore holes 2 and 2a in the graphite slabs to discharge gases and electrolyte from the anodic and cathodic faces of the electrode through the bore holes.
  • FIGS. 6, 7, 8, 9 and 10 Further alternative forms of bipolar electrodes are shown schematically in FIGS. 6, 7, 8, 9 and 10, in which the slots 3, shown in dash lines, are in garland or wave form communicating with the bore holes 2 and 20, one of which discharges Cl, and depleted I-ICl acid through the bore holes 2 from the anodic side of the electrodes, and the other holes 20 discharge H, and depleted acid from the cathodic side of these bipolar electrodes, as shown in FIGS. 8, 9 and 10.
  • the wave or garland form of the slots 3 may be produced by circular saw blades moving in and out of graphite slabs l, or this form of electrode may be produced by alternate layers BEST AVAILABLE COPY of thin plates having the wave shape illustrated and rectangular plates forming the blades 4, stacked one on top of the other to the height desired and cemented together. Other methods of forming the alternate slots 3 and blades 4 may be used.
  • the bore holes 2 and 2a are coated on the inside with a suitable coating such as a cold curing phenolic resin, to reduce erosion of the bore holes by the gases and liquids moving therethrough during operation of the cell.
  • the bore holes 2 may be arranged in a single plane as illustrated in FIG. 7 or in a zigzag pattern as illustrated in FIGS. 4 and 6.
  • the average depth of the anodic slots may be made bigger than the slots on the cathodic side of the electrodes, to provide a larger wear dimension of the anodic graphite blades. This form is shown in FIG. 10.
  • Various combinations of slots and bore holes may be made.
  • the slots may be formed by sawing the graphite slabs 1, by assembling and cementing together the stacked layers of slotted plates and rectangular plates or in other ways and the bore holes 2 may be formed by drilling (before the formation of the slots) or by cementing together graphite sections formed by extrusion, block pressing machining or the like, to provide bore holes 2 and 2a in the graphite sections la of FIG. 6.
  • the bore holes 2 and 2a when in vertical or nearly vertical position, are more or less flooded with electrolyte and in order to facilitate quick release of the gases and downward recirculation of the electrolyte, the bore holes may be subdivided by guide vanes 6 of Teflon, Plexiglass or the like, preferably into two un.- equal parts as illustrated in FIG. 5, so that the gas bubbles rise, together with the electrolyte in the larger section of the bore holes, while the smaller section allows downward recirculation of the electrolyte.
  • a similar result may be secured by providing larger bore holes in the graphite electrodes and parallel smaller holes which communicate with the larger bore holes only near the top and bottom of the electrodes, so that the gas bubbles and electrolyte will rise in the larger bore holes and when the gas bubbles are released at the top of the bore holes the smaller bore holes will provide passage for the downward recirculation of the electrolyte, freed from the gas bubbles.
  • FIG. 13 is a horizontal sectional plan view along the line 13 13 of FIG. 11, showing an electrolyzer with a number of bipolar electrodes, the negative and the positive terminal electrodes and the gas collector domes 7 and 7a for C12 and H respectively.
  • the electrode components 8, 9, 10, 11 and 12 of the electrolyzer where spacing gaskets are used and the slotted electrode faces 15 and comb-like feed frames 14 (see FIG. 14) for the feed acid are omitted.
  • the slotted electrode faces 15 are in direct contact with diaphragms 13 which have an appropriate permeability for liquid and current; the diaphragms may be deposited polyvinyl chloride or be prefabricated.
  • Deposited diaphragms may contain loose PVC fibers with the addition, if desired, of other types of fibers, even chemically less resistant, such as asbestos, rayon, cotton, etc, with minor quantities of binders which may be added as liquids, pastes, emulsions, etc.
  • Prefabricated diaphragms may have the character of fleeces, containing PVC fibers or other resistant fibers, added asbestos fibers, rayon fibers, cotton and other less resistant fibers as well as colloid binders introduced, for example, by impregnation of the fiber fleece with a diluted alcoholic solution of phenolic resin, a solution of alkali silicate or alkali cellulose Xanthogenate or with mixtures of the two latter solutions or of other materials and subsequent treatment with acids, heat, etc.
  • prefabricated diaphragms are cloths, such as PVC cloths, impregnated with chemical agents, as above mentioned, in order to give to the diaphragms the correct permeability for the electrolyte.
  • chemically resistant gaskets 14 of this thickness are provided between the flanges of the Haveg frames 16 through surrounding channels 17 in the frames 16 (see FIG. 14).
  • the space between the diaphragms 13 is filled with electrolyte and is the space where the feed acid is fed in.
  • Deposited diaphragms as well as prefabricated diaphragms can be formed with spray guns as, forinstance, in the case of glass fiber reinforced polymers.
  • the introduction of the feed acid into the diaphragm interspace is done from side walls or bottom walls of the periphery of the Haveg frames 16, according to the dimension of the cell.
  • the feed acid from the horizontal-feed acid channels 18 18 located in the side walls of the elements frames is distributed among all elements 8, 9, 10, ll, 12, etc., of the electrolyzer and through the channels 18a, 18b and 18c of each element frames 16 (see FIG. 11).
  • the feed acid starting from these channels 18 18a, etc. flows into the inner part of the comb-like Plexiglass frames, situated between the gaskets l4 and the space between the diaphragm of a single electrolytic cell, as illustrated by the arrows in FIG. 14.
  • the thin comb-like Plexiglass frame 14 shown in FIGS. 16 and 16a and in an enlarged detail in FIG. 15, is held fast between the Haveg frame 16 as shown in FIG. 14 all around the frame flanges 16; it is comb-like only on the sides and bottom, while the upper portion of the Plexiglass frame 14 has rectangular holes for the passage of Cl H and depleted acid flowing to the C1 and H manifolds 7 and 7a.
  • the Plexiglass frames are held in position between gaskets all around the cell frames 16 and the gaskets transmit the pressure also to the rims of the two diaphragms holding them in position.
  • the two diaphragms 13 are indicated as dash lines on the crests of the graphite blades 4; they extend to the neighborhood of the final C1 and H, distribution channels at the top of the Haveg frames 16.
  • FIG. 14 shows as a vertical section the lowest parts of vertical bore holes 20 for H .-ln each bore hole, the lower end of the guide sheet 6 can be seen around which the electrolyte stream, coming downwards in the

Abstract

Describes a process and apparatus for the electolysis of HCl containing solutions in unipolar and bipolar cells using graphite electrodes in which the chlorine and hydrogen and the anolyte and catholyte liquor produced in the process are kept separate by means of separate discharge channels in the electrodes with which the active faces of the anodes and cathodes communicate and through which the acid leaves the cells in such a manner as to give longer diaphragm life.

Description

d U Z O O o 12-17-74 XR 398559104 BEST AVAILABLE COPY United States Patent 1 1 1111 3,855,104 Messner 1 Dec. 17 1974 [541 PROCESS AND APPARATUS FOR THE 1,247,694 11/1917 Levin 204/256 ELECTROLYSIS OF HCL CONTAINING 9 23 32 1 l iams 1 SOLUTIONS WITH GRAPHITE 3.647.672 3/1972 Mehandjiev 204/278 x ELECTRODES WHICH KEEP THE 1.790.249 1/1931 Roth 204/270 x [75] Inventor: Georg Messner, Munich, Germany [73] Assignee: Oronzio De Nora Impianti Elettrochimici S.p.A., Milan. Italy [22] Filed: Mar. 15, 1973 [21] Appl. N0.: 341,593
l30| Foreign Application Priority Data Mar. 21. 1972 Germany 2213603 [52} US. Cl 204/129, 204/128. 204/256, 204/258, 204/266, 204/270. 204/278, 204/283, 204/294 [51] Int. Cl.. 801k 3/04, BOlk 3/10 [58] Field of Search 204/128, 256, 258, 266, 204/270, 278, 283, 294, 129
[56] References Cited UNITED STATES PATENTS 1.575.627 3/1926 Heinze 204/278 1.131.859 3/1915 Parks 204/2-70 CHLORINE AND HYDROGEN GASES SEPARATE FOREIGN PATENTS OR APPLICATIONS 566,090 11/1958 Canada 204/256 Primary ExaminerJohn H. Mack Assistant ExaminerW. 1. Solomon Attorney, Agent, or FirmHammond & Littell [57] ABSTRACT Describes a process and apparatus for the electrolysis of HCl containing solutions in unipolar and bipolar cells using graphite electrodes in which the chlorine and hydrogen and the anolyte and catholyte liquor produced in the process are kept separate by means of separate discharge channels in the electrodes with which the active faces of the anodes and cathodes communicate and through which the acid leaves the cells in such a manneras to give longer diaphragm life.
18 Claims, 29 Drawing Figures BEST AVAILABLE COPY PATENTED 3.855.104
SHEET 0 1 OF 16 FIG.2
wwwwwwwwgg 6%?! EEST AVAILABLE COPY FIG.6
PATENTED mm 7 I974 855? AVA'LABLE COPY 3. 8 5 5. 1 O4 SHEET 030F16 PATENTEI] DEC! 7 I874 SHEU Ch HF 16 FlG.8 F|G.9
WNLABLE iIQPY PATEHTED DEC! 71974 sum over 16 FIG.I5
9E3? AVNLABLE COPY PATEHTED DEC 1 H974 (SHEET 100! 16 BEST AVAlLABLE COPY PATENTEDDECI 71974 3,855,10 sum 12UF 16 4 EEST AVAILABLE COPY PATEHTEQEEE 1 71974 SHEET 13'JF 16 FIG .2l0
BEST AVAILABLE COPY PATENTEU 5551 7 7 SHEET NUF 16 fig? AVAILABLE COPY PXJENTED U53 1 71974 SHEET lSUF 16 BEST AVAILABLE COPY PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCL CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE Hydrochloric acid has been electrolyzed on graphite electrodes, to produce chlorine and hydrogen, for many years. Apparatus built proponderantly on the same principles and of the same materials as used from the beginning of this industry, with some enlargements and small improvements has been used; see Ullmann, 3rd Edition, Vol. 5, page 303. The standard capacity unit, today, is a bipolar electrolyzer loaded to 10,000 Amp. with 30 5O electrode elements in series, producing in the case of 50 elements approximately 15,000 kg chlorine per day.
The weak point of all prior electrolyzers is the space between the electrodes, especially the diaphragm, which has the duty to keep the two produced gases separate. This diaphragm is a cloth of polyvinyl chloride fibers, which is assembled between the electrodes and held in place by the framesof synthetic material, similar to a drum-skin, See, for example, my prior US. Pat. No. 3,236,760.
The supply of HCl is provided by introduction of hydrochloric acid with a concentration of more than l8% HCl, i.e., more than the concentration of the depleted acid, into the cells between the electrodes. This feed acid has not only to substitute the previously electrolytically decomposed HCl, but it takes off also the Joule heat produced in the electrolyzer. Thus, feed acid in the prior art is introduced in two separate streams of HCl on each side of each diaphragm one flows through the anodic room, the other through the cathodic room, losing a fraction of its HCl content, while passing through the cell. The feed rate of the acid is such as to keep the HCl concentration of the depleted acid at approximately l8% by weight, corresponding to the maximum electrical conductivity of the electrolyte.
The purpose of the splitting of the feed acid into two parts is to eliminate as quickly as possible the chlorine gas bubbles in the anode space and the hydrogen gas bubbles in the cathode space, which increase the elec tric resistance of the electrolyte and the cell voltage. At the usual cell temperature of 70 C about 21 vol.% of water vapor are present in the Cl and H gases.
As long as the diaphragm cloth is not damaged, fairly pure chlorine and hydrogen is produced. The purity is 99.7 99.9 vol.% on the dry basis.
Polyvinyl chloride, as compared with other materials, is the more resistant material for the diaphragms. ln HCl electrolyzers, however, it undergoes a slow modification by chlorination, which makes the fibers brittle, so that finally they do not have sufficient tensile strength to withstand the conditions of use in a HCl electrolysis cell. Cracks and holes are formed in the cloth and its capacity to keep the gases separate is reduced after a few months to the point where not only the purity of the gases becomes unsatisfactory, but the danger of explosion of the formed mixtures of Cl, and H, is increased. In order to eliminate this danger, it is necessary to stop the electrolyzer and to replace the damaged diaphragms by new PVC diaphragms. Fluttering and flexing of the diaphragms caused partially by the introduction of the HCl feed on each side of the diaphragms contributes to their rapid destruction.
The present invention as described in the following examples largely overcomes this defect.
One of the basic principles of the apparatus and process of the present invention is to avoid the selfsupporting diaphragm as used previously, which when submitted to the action of strong mechanical forces in the prior art cells, produced fluttering, a phenomena which not only includes the high power peaks of the fluttering, but also causes the continuous bending of the fibers as they become more and more brittle and leads to rapid destruction of the diaphragms.
One of the principal objects of this invention is the substitution of the two feed acid streams used in the prior art, by a single feed stream which pushes the diaphragms which are pervious to the gases and electrolyte against the solid supports of the anode or cathode faces, thereby reducing bending and fluttering of the diaphragms. l have found that the diaphragms can be protected from the mechanical stresses if they are supported as fully as possible on the more or less solid grids of the anode and cathode faces. This results in a longer life for the diaphragm or diaphragms. In addition, the diaphragms according to the present invention may be supported on rigid grids or networks made of resistant material, such as Teflon, Plexiglass and so on. Such a grid increases the electrode gap and the ohmic resistance of the cell by a slight amount, but prolongs the life of the diaphragms.
Another object of the invention is to support the diaphragm or diaphragms on a rectangular parallelepiped of graphite, provided with blades and slots, used as the electrodes, i.e., anodes and cathodes, provided at regular intervals with bore holes or channels approximaely 20 40 mm in diameter, parallel to the large surface planes of the electrodes and preferably parallel to their shorter rectangular dimension, which bore holes conduct the produced gases and depleted electrolyte away from the electrode surfaces and eventually out of the cell. The inside surfaces of the said bore holes are painted with a suitable liquid, for instance, with a cold curing phenolic resin, in order to avoid erosion of the soft graphite by the moving gases and liquids during the operation of the cell. This simple resin painting is very useful, because it allows the use of a lower graphite quality while still providing adequate discharge channels for the discharge of the formed gases and of the spent electrolyte, a portion of which may be recirculated as later described.
In order to keep the surfaces of the graphite blades electrically active, the resin painting, including hardening of the resin layer, should be done afterdrilling of the bore holes, but before cutting the slots on the surfaces of the graphite electrodes.
After the hardening of the rein, a set of saw discs on a common axle is used to cut a multiple of parallet slots on the surfaces of the graphite plates provided as electrodes, the direction of the parallel slots with reference to the bore holes preferably being an angle of approximately although this angle may vary substantially from 90. The slots are of such a depth that they penetrate a few millimeters into the cavities of the bore holes where they cross the bore holes, creating in this way a connection between the bore holes and the cavities of the slots. The slots should have a width of approximately 1 2 mm and a depth of 5 20 mm, while the graphic blades between the slots should have a thickness of approximately 1 3 mm. During electrolysis, the graphite blades are the electrodes (i.e., anodes and cathodes), while the slots receive the two produced gases and discharge them into the corresponding bore holes. The bore holes and the slots in the graphite electrodes may be produced by other methods.
Referring now to the drawings which show preferred forms of embodiment of the invention and some, but not all, of the possible modifications thereof, and are intended only as illustrative embodiments.
FIG. I is a schematic illustration of a unipolar graphite electrode used as a terminal electrode at either end of a bipolar HCI cell assembly;
FIG. 2 shows a similar unipolar graphite electrode with additional slots at right angles to the slots shown in FIG. 1;
FIGS. 3 and 3a are. respectively, a face view and a 7 FIG. II is a vertical sectional view through a bipolar electrode along the line 11 ll of FIG. 13;
FIG. 12 is a vertical section along the line 12 12 of FIG. 11;
FIG. 13 is a horizontal section in diagrammatical outline, of an assembled cell along the line 13 13 of FIG. 11;
FIG. 14 is a detail of one form of electrolyte feed and FIG. 140 shows anotherform of electrolyte feed, using Venetian blinds instead of sheet diaphragms;
FIGS. 15, 16 and 160 are, respectively, a detail, a face view and a side view of a Plexiglass or Teflon frame for holding the diaphragms against the electrode faces;
FIG. 17 is a sectional view along the line 17 17 of FIG. 13;
FIG. 18 is a schematic end view of the electrolyzer shown in FIG. 13, this view being substantially the same from either end of the electrolyzer;
FIG. 19 is a vertical section along the line 19 19 of FIG. 20, parallel to the direction of the slots and graphite blades, showing the electrodes in horizontal position and showing diaphragms on only one face of the cathodes;
FIG. 20 is a horizontal section along the line 20 20 of FIG. 19;
FIG. 21 shows an enlarged vertical section through a slightly different form of electrode package, showing diaphragms in dash lines along both the anodic and cathodic faces of the bipolar electrodes;
FIG. 21a is a cross sectional detail of FIG. 21',
FIG. 22 shows an enlarged view of the top part of a bipolar electrode in horizontal position with the diaphragm omitted;
FIG. 23 is a horizontal section along the line 23 23 of FIG. 19;
FIG. 24 is a view of a sight glass arrangement along the line 24 24 of FIG. 23, for checking the electrolyte level in single cells; and
FIG. 25 shows an example of a bipolar electrolyzer with the electrode faces in horizontal position.
BEST AVAILABLE COPY The unipolar graphite electrode shown schematically in FIGS. 1 and 2, comprises a graphite slab 1 having bore holes 2 for discharging the gas and depleted electrolyte and horizontal slots 3 separated by blades 4. The slots 3 are preferably about I to 2 mm wide and about 5 to 20 mm deep and intersect the bore holes 2, so that gases produced on the electrode and depleted electrolyte flowing into the slots will go into the resin lined bore holes 2 and be discharged at the top of the electrode. The first bore hole in FIG. I has been cut away to show the communication between the slots 3 and the bore holes 2. Vertical slots 3a shown in FIG. 2, may be provided to increase the surface area of the blades 4. The slots 3 and 3a need not be at one to the other. The slots 3a may be at any desired angle to the slots 3, such as 5 to 90. The blades 4 are preferably about I to 3 mm thick.
The electrodes 1 shown in FIGS. 1 and 2, may constitute the positive and negative electrodes of a single cell, or the terminal positive and the terminal negative electrode of a bipolar electrolyzer which may, for example, have forty or more bipolar intermediate electrodes such as shown in FIGS. 3 and 4.
The slots may be formed in the graphite slab 1 in any suitable manner, as by spaced circular saw blades on a common axis, or by building the electrode from individual plates of graphite having holes 2 and having the slots and blades given above therein. The plates are stacked one on top of the other, with the smaller plates between the larger ones and then cemented together to form electrodes of the construction shown in FIGS. 1 and 2.
In use, the electrodes of FIGS. 1, 2 and 3 may be covered with diaphragms which rest on the crest of the graphite blades 4. In FIGS. 1 and 2, the diaphragms have been omitted to give greater clarity to these figures. The direction of the slots 3 and the bore holes 2 need not be, respectively, horizontal and vertical or at 90 each to the other. The slots 3 can, for example, be vertical and the resin lined bore holes 2 horizontal, preferably with a slight upward tilt toward the discharge end of the electrolyzer as will be described hereafter. The crest of the blades 4 may have shallow slots, about 0.1 to 1 mm, cut into the graphite surface before the deeper slots 3 are cut, to give the crest of the blades additional roughness.
FIGS. 3, 3a and 4 illustrate a bipolar electrode 5 suitable for use as an intermediate electrode in a multiple unit bipolar electrolyzer. The front and back faces of the electrode of FIG. 3 are provided with slots 3 and blades 4, as the FIGS. 1 and 2, and the slots 3, shown in dash lines in FIG. 4, communicate with independent sets of bore holes 2 and 2a in the graphite slabs to discharge gases and electrolyte from the anodic and cathodic faces of the electrode through the bore holes.
Further alternative forms of bipolar electrodes are shown schematically in FIGS. 6, 7, 8, 9 and 10, in which the slots 3, shown in dash lines, are in garland or wave form communicating with the bore holes 2 and 20, one of which discharges Cl, and depleted I-ICl acid through the bore holes 2 from the anodic side of the electrodes, and the other holes 20 discharge H, and depleted acid from the cathodic side of these bipolar electrodes, as shown in FIGS. 8, 9 and 10. The wave or garland form of the slots 3 may be produced by circular saw blades moving in and out of graphite slabs l, or this form of electrode may be produced by alternate layers BEST AVAILABLE COPY of thin plates having the wave shape illustrated and rectangular plates forming the blades 4, stacked one on top of the other to the height desired and cemented together. Other methods of forming the alternate slots 3 and blades 4 may be used. In any form of construction, the bore holes 2 and 2a are coated on the inside with a suitable coating such as a cold curing phenolic resin, to reduce erosion of the bore holes by the gases and liquids moving therethrough during operation of the cell.
The bore holes 2 and may be arranged in a single plane as illustrated in FIG. 7 or in a zigzag pattern as illustrated in FIGS. 4 and 6. When the bore holes 2 or 2a are located beyond the center of the electrode, with reference to the anodic face, the average depth of the anodic slots may be made bigger than the slots on the cathodic side of the electrodes, to provide a larger wear dimension of the anodic graphite blades. This form is shown in FIG. 10. Various combinations of slots and bore holes may be made. The slots may be formed by sawing the graphite slabs 1, by assembling and cementing together the stacked layers of slotted plates and rectangular plates or in other ways and the bore holes 2 may be formed by drilling (before the formation of the slots) or by cementing together graphite sections formed by extrusion, block pressing machining or the like, to provide bore holes 2 and 2a in the graphite sections la of FIG. 6.
In use, the bore holes 2 and 2a when in vertical or nearly vertical position, are more or less flooded with electrolyte and in order to facilitate quick release of the gases and downward recirculation of the electrolyte, the bore holes may be subdivided by guide vanes 6 of Teflon, Plexiglass or the like, preferably into two un.- equal parts as illustrated in FIG. 5, so that the gas bubbles rise, together with the electrolyte in the larger section of the bore holes, while the smaller section allows downward recirculation of the electrolyte. A similar result may be secured by providing larger bore holes in the graphite electrodes and parallel smaller holes which communicate with the larger bore holes only near the top and bottom of the electrodes, so that the gas bubbles and electrolyte will rise in the larger bore holes and when the gas bubbles are released at the top of the bore holes the smaller bore holes will provide passage for the downward recirculation of the electrolyte, freed from the gas bubbles.
FIG. 13 is a horizontal sectional plan view along the line 13 13 of FIG. 11, showing an electrolyzer with a number of bipolar electrodes, the negative and the positive terminal electrodes and the gas collector domes 7 and 7a for C12 and H respectively. For clearness, gaps have been left between the electrode components 8, 9, 10, 11 and 12 of the electrolyzer where spacing gaskets are used and the slotted electrode faces 15 and comb-like feed frames 14 (see FIG. 14) for the feed acid are omitted. The slotted electrode faces 15 are in direct contact with diaphragms 13 which have an appropriate permeability for liquid and current; the diaphragms may be deposited polyvinyl chloride or be prefabricated.
Deposited diaphragms may contain loose PVC fibers with the addition, if desired, of other types of fibers, even chemically less resistant, such as asbestos, rayon, cotton, etc, with minor quantities of binders which may be added as liquids, pastes, emulsions, etc.
Prefabricated diaphragms may have the character of fleeces, containing PVC fibers or other resistant fibers, added asbestos fibers, rayon fibers, cotton and other less resistant fibers as well as colloid binders introduced, for example, by impregnation of the fiber fleece with a diluted alcoholic solution of phenolic resin, a solution of alkali silicate or alkali cellulose Xanthogenate or with mixtures of the two latter solutions or of other materials and subsequent treatment with acids, heat, etc.
Other types of prefabricated diaphragms are cloths, such as PVC cloths, impregnated with chemical agents, as above mentioned, in order to give to the diaphragms the correct permeability for the electrolyte. In order to maintain the optimum distance between the cathodic and anodic diaphragms of about 6 to 10 mm, chemically resistant gaskets 14 of this thickness are provided between the flanges of the Haveg frames 16 through surrounding channels 17 in the frames 16 (see FIG. 14). The space between the diaphragms 13 is filled with electrolyte and is the space where the feed acid is fed in.
Deposited diaphragms as well as prefabricated diaphragms can be formed with spray guns as, forinstance, in the case of glass fiber reinforced polymers.
The introduction of the feed acid into the diaphragm interspace is done from side walls or bottom walls of the periphery of the Haveg frames 16, according to the dimension of the cell. As shown in FIG. 11, the feed acid from the horizontal-feed acid channels 18 18 located in the side walls of the elements frames is distributed among all elements 8, 9, 10, ll, 12, etc., of the electrolyzer and through the channels 18a, 18b and 18c of each element frames 16 (see FIG. 11). The feed acid starting from these channels 18 18a, etc. flows into the inner part of the comb-like Plexiglass frames, situated between the gaskets l4 and the space between the diaphragm of a single electrolytic cell, as illustrated by the arrows in FIG. 14.
The thin comb-like Plexiglass frame 14 shown in FIGS. 16 and 16a and in an enlarged detail in FIG. 15, is held fast between the Haveg frame 16 as shown in FIG. 14 all around the frame flanges 16; it is comb-like only on the sides and bottom, while the upper portion of the Plexiglass frame 14 has rectangular holes for the passage of Cl H and depleted acid flowing to the C1 and H manifolds 7 and 7a. The Plexiglass frames are held in position between gaskets all around the cell frames 16 and the gaskets transmit the pressure also to the rims of the two diaphragms holding them in position. In FIG. 14, the two diaphragms 13 are indicated as dash lines on the crests of the graphite blades 4; they extend to the neighborhood of the final C1 and H, distribution channels at the top of the Haveg frames 16.
FIG. 14 shows as a vertical section the lowest parts of vertical bore holes 20 for H .-ln each bore hole, the lower end of the guide sheet 6 can be seen around which the electrolyte stream, coming downwards in the

Claims (18)

1. IN A HYDROCHLORIC ACID ELECTROLYZER, MEANS TO FEED ACID TO BE ELECTROLYZED TO SAID ELECTROLYZER, MEANS TO CONDUCT ELECTROLYZING CURRENT TO SAID ELECTRLYZER, SPACED GRAPHITE ELECTRODES IN SAID ELECTROLYZER, SLOTS AND BLADES ON THE FACES OF SAID ELECTRODES, TWO SEPARATED SETS OF BORE HOLES IN THE INTERIOR OF EACH OF SAID ELECTRODES, CONNECTIONS BETWEEN THE SLOTS AND ONE SET OF BORE HOLES BY WHICH HYDROGEN PRODUCED ON ONE FACE OF THE ELECTRODES AND DEPLETED ACID ARE COONVEYED TO ONE SET OF BORE HOLES AND CONNECTIONS BETWEEN THE SLOTS AND ANOTHER SET OF BORE HOLES BY WHICH CHLORINE PRODUCED ON ANOTHER FACE OF THE ELECTRODES AND DEPLETED ACID ARE CONVEYED TO ANOTHER SET OF BORE HOLES AND MEANS TO CONDUCT HYDROGEN AND DEPLETED ACID FROM ONE SET OF BORE HOLES AND CHLORINE AND DEPLETED ACID FROM ANOTHER SET OF BORE HOLES TO THE OUTSIDE OF THE ELECTROLYZER.
2. In the electrolyzer of claim 1, a diaphragm supported against a face of each electrode.
3. The electrolyzer of claim 2, in which the diaphragms are polyvinyl chloride.
4. In the electrolyzer of claim 2, a plurality of bipolar electrodes, means to space the electrodes apart, diaphragms supported against each face of each electrode, means to feed acid to be electrolyzed into the electrolyzer between the diaphragms and means to discharge gases and depleted acid from the electrolyzer through said bore holes.
5. The electrolyzer of claim 1, having rows of slots on the face of the electrode intersecting each other at angles of from 5* to 90* to each other.
6. The electrolyzer of claim 4, having a plurality of bipolar electrodes mounted between head pieces and held together between the head pieces by long bolts, a gas and liquid collector chamber in each head piece, two sets of bore holes in each electrode and channels for gas and liquid connecting each set of bore holes with one of said gas and liquid collector chambers.
7. The electrolyzer of claim 6, in which a plurality of bipolar electrodes are mounted between unipolar terminal positive and negative electrodes and all the said electrodes are mounted between the said head pieces and the head pieces are provided with connector rods for connecting the terminal electrodes into the electrical circuit.
8. The electrolyzer of claim 6, having means in each gas and liquid collector chamber to separate the gas from the liquid.
9. The electrolyzer of claim 1, having a plurality of electrodes, means to space the electrodes apart, venetian deflectors supported against the face of each electrode and means to feed acid to be electrolyzed to the electrolyzer between venetian deflectors.
10. The electrolyzer of claim 9, having both venetian deflectors and diaphragms supported against the electrode faces.
11. The electrolyzer of claim 1, in which the slots between the blades are in garland like waves communicating with said bore holes.
12. The electrolyzer of claim 1, in which the blades have a width of about 1.5 to 3 mm, the slots have a width of about 1 to 2 mm and are about 5 to 20 mm deep and the bore holes are about 20 to 40 mm wide and intersect the slots.
13. The electrolyzed claim 1, in which the electrodes are arranged in vertical planes.
14. The electrolyzer of claim 1, in which the electrodes are arranged in horizontal planes one above the other and at least one diaphragm rests against the upper face of the lower electrodes.
15. The electrolyzer of claim 1, in which partitioning inserts inside the bore holes divide the bore holes into two unequal passages.
16. The method of providing recirculation of depleted acid in a hydrochloric acid electrolyzer according to claim 1 having electrodes with substantially vertical bore holes for discharge of gases and depleted acid from the faces of the electrodes which comprises providing recirculation channels within the electrodes and recirculating the depleted acid rising with tHe gases in said bore holes downward through said recirculation channels after the gases have been discharged from the depleted acid toward the top of the said bore holes.
17. The method of claim 16 in which the bore holes are provided with partitions and the gases and depleted acid are circulated upwardly on one side of said partitions and the depleted acid free from the gases is recirculated downwardly on the other side of said partitions.
18. In a hydrochloric acid electrolyzer, a plurality of bipolar graphite electrodes, each having parallel slots and blades on the front and back face thereof, two separated sets of bore holes in each of said electrodes with which the slots communicate, a diaphragm resting against the blades of each electrode face, means to space the electrodes and diaphragms apart, means to feed acid electrolyte to be electrolyzed into the spaces between the electrodes and diaphragms, means to maintain a hydrostatic pressure differential between the side of each diaphragm facing the feed acid inlet space and the side of the diaphragms resting against the blades of the electrodes and means to convey hydrogen and depleted acid into one set of bore holes and means to convey chlorine and depleted acid into another set of bore holes and means to separately discharge hydrogen and depleted acid from one set of bore holes, means to separately discharge chlorine and depleted acid from another set of bore holes and means to separately discharge said hydrogen and depleted acid and said chlorine and depleted acid from said electrolyzer through said bore holes.
US00341593A 1972-03-21 1973-03-15 PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE Expired - Lifetime US3855104A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2213603A DE2213603A1 (en) 1972-03-21 1972-03-21 METHOD AND DEVICE FOR THE ELECTROLYTIC TREATMENT OF SOLUTIONS CONTAINING HYDROGEN CHLORINE ON GRAPHITE ELECTRODES, KEEPING THE CHLORINE AND HYDROGEN GASES SEPARATED

Publications (1)

Publication Number Publication Date
US3855104A true US3855104A (en) 1974-12-17

Family

ID=5839587

Family Applications (1)

Application Number Title Priority Date Filing Date
US00341593A Expired - Lifetime US3855104A (en) 1972-03-21 1973-03-15 PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE

Country Status (3)

Country Link
US (1) US3855104A (en)
CA (1) CA995624A (en)
DE (1) DE2213603A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930151A (en) * 1973-04-19 1975-12-30 Kureha Chemical Ind Co Ltd Multiple vertical diaphragm electrolytic cell having gas-bubble guiding partition plates
US3951649A (en) * 1974-08-19 1976-04-20 University Engineers, Inc. Process for the recovery of copper
US4013537A (en) * 1976-06-07 1977-03-22 The B. F. Goodrich Company Electrolytic cell design
US4048046A (en) * 1976-06-16 1977-09-13 The B. F. Goodrich Company Electrolytic cell design
US4056452A (en) * 1976-02-26 1977-11-01 Billings Energy Research Corporation Electrolysis apparatus
US4057479A (en) * 1976-02-26 1977-11-08 Billings Energy Research Corporation Solid polymer electrolyte cell construction
US4130468A (en) * 1975-11-28 1978-12-19 Oronzio De Nora Impianti Elettrochimici S.P.A. Method of operation of an electrolysis cell with vertical anodes and cathodes
US4131532A (en) * 1975-10-29 1978-12-26 Societe Generale De Constructions Electriques Et Mecaniques "Alsthom Et Cie" Electrochemical oxygen production device
US4235694A (en) * 1978-10-06 1980-11-25 Hall Frederick F Electrolytic cells for hydrogen gas production
US4256554A (en) * 1980-03-28 1981-03-17 Energy Development Associates, Inc. Electrolytic cell for separating chlorine gas from other gases
US4257867A (en) * 1980-03-28 1981-03-24 Energy Development Associates, Inc. Inert gas rejection device for zinc-halogen battery systems
EP0041294A1 (en) * 1980-05-31 1981-12-09 Electrochemische Energieconversie N.V. Apparatus for supplying or draining a fluid to or from the marginal portion of a flat fuel cell electrode and an electrode element and a fuel cell provided with such an apparatus
US4402811A (en) * 1980-11-06 1983-09-06 Bayer Aktiengesellschaft Hydrochloric acid electrolytic cell for the preparation of chlorine and hydrogen
US4608144A (en) * 1984-03-27 1986-08-26 Imperial Chemical Industries Plc Electrode and electrolytic cell
US4707239A (en) * 1986-03-11 1987-11-17 The United States Of America As Represented By The Secretary Of The Interior Electrode assembly for molten metal production from molten electrolytes
US4822461A (en) * 1986-06-17 1989-04-18 Imperial Chemical Industries Plc Electrolytic cell
US5114547A (en) * 1989-07-14 1992-05-19 Permascand Ab Electrode
US20030221971A1 (en) * 2002-06-04 2003-12-04 Keister Timothy Edward Method for electrolytic production of hypobromite for use as a biocide
US20070246352A1 (en) * 2002-06-04 2007-10-25 Prochem Tech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
US20110174633A1 (en) * 2002-06-04 2011-07-21 Prochemtech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
WO2014009549A1 (en) * 2012-07-13 2014-01-16 Uhdenora S.P.A. Insulating frame with corner expansion joints for electrolysis cells
WO2014116318A1 (en) 2013-01-22 2014-07-31 GTA, Inc. Electrolyzer apparatus and method of making it
US20150127279A1 (en) * 2011-07-19 2015-05-07 Thyssenkrupp Electrolysis Gmbh Method for safely and economically operating an electrolyser
US9222178B2 (en) 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
US10486972B2 (en) * 2014-06-11 2019-11-26 Haldor Topsoe A/S Process for safe production of phosgene

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2908269C2 (en) * 1979-03-02 1984-04-26 Uhde Gmbh, 4600 Dortmund Hydrochloric acid electrolysis cell
DE2926776C2 (en) * 1979-07-03 1984-03-15 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Fuel and / or electrolysis cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1131859A (en) * 1915-03-16 Clifton A Parks Electrolytic apparatus.
US1247694A (en) * 1915-10-25 1917-11-27 Isaac H Levin Electrolytic apparatus.
US1376495A (en) * 1921-05-03 Electrolytic cell
US1575627A (en) * 1924-12-10 1926-03-09 Farbenfab Vorm Bayer F & Co Electrode for use in the electrolytic evolution of gases
US1790249A (en) * 1926-01-21 1931-01-27 Ig Farbenindustrie Ag Electrode for electrolytic cells
US2682505A (en) * 1949-11-03 1954-06-29 Montedison Spa Electrode assembly for bipolar electrolyzers
CA566090A (en) * 1958-11-18 De Nora Oronzio Bipolar electrolyser
US3647672A (en) * 1967-11-13 1972-03-07 Nautchno Izsledovatelski Inst Electrode with aerolifting and gas-separation effects for electrolysis of solutions of electrolytes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1131859A (en) * 1915-03-16 Clifton A Parks Electrolytic apparatus.
US1376495A (en) * 1921-05-03 Electrolytic cell
CA566090A (en) * 1958-11-18 De Nora Oronzio Bipolar electrolyser
US1247694A (en) * 1915-10-25 1917-11-27 Isaac H Levin Electrolytic apparatus.
US1575627A (en) * 1924-12-10 1926-03-09 Farbenfab Vorm Bayer F & Co Electrode for use in the electrolytic evolution of gases
US1790249A (en) * 1926-01-21 1931-01-27 Ig Farbenindustrie Ag Electrode for electrolytic cells
US2682505A (en) * 1949-11-03 1954-06-29 Montedison Spa Electrode assembly for bipolar electrolyzers
US3647672A (en) * 1967-11-13 1972-03-07 Nautchno Izsledovatelski Inst Electrode with aerolifting and gas-separation effects for electrolysis of solutions of electrolytes

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930151A (en) * 1973-04-19 1975-12-30 Kureha Chemical Ind Co Ltd Multiple vertical diaphragm electrolytic cell having gas-bubble guiding partition plates
US3951649A (en) * 1974-08-19 1976-04-20 University Engineers, Inc. Process for the recovery of copper
US4131532A (en) * 1975-10-29 1978-12-26 Societe Generale De Constructions Electriques Et Mecaniques "Alsthom Et Cie" Electrochemical oxygen production device
US4130468A (en) * 1975-11-28 1978-12-19 Oronzio De Nora Impianti Elettrochimici S.P.A. Method of operation of an electrolysis cell with vertical anodes and cathodes
US4056452A (en) * 1976-02-26 1977-11-01 Billings Energy Research Corporation Electrolysis apparatus
US4057479A (en) * 1976-02-26 1977-11-08 Billings Energy Research Corporation Solid polymer electrolyte cell construction
US4013537A (en) * 1976-06-07 1977-03-22 The B. F. Goodrich Company Electrolytic cell design
US4048046A (en) * 1976-06-16 1977-09-13 The B. F. Goodrich Company Electrolytic cell design
US4235694A (en) * 1978-10-06 1980-11-25 Hall Frederick F Electrolytic cells for hydrogen gas production
US4256554A (en) * 1980-03-28 1981-03-17 Energy Development Associates, Inc. Electrolytic cell for separating chlorine gas from other gases
US4257867A (en) * 1980-03-28 1981-03-24 Energy Development Associates, Inc. Inert gas rejection device for zinc-halogen battery systems
EP0041294A1 (en) * 1980-05-31 1981-12-09 Electrochemische Energieconversie N.V. Apparatus for supplying or draining a fluid to or from the marginal portion of a flat fuel cell electrode and an electrode element and a fuel cell provided with such an apparatus
US4402811A (en) * 1980-11-06 1983-09-06 Bayer Aktiengesellschaft Hydrochloric acid electrolytic cell for the preparation of chlorine and hydrogen
US4608144A (en) * 1984-03-27 1986-08-26 Imperial Chemical Industries Plc Electrode and electrolytic cell
US4707239A (en) * 1986-03-11 1987-11-17 The United States Of America As Represented By The Secretary Of The Interior Electrode assembly for molten metal production from molten electrolytes
US4822461A (en) * 1986-06-17 1989-04-18 Imperial Chemical Industries Plc Electrolytic cell
US5114547A (en) * 1989-07-14 1992-05-19 Permascand Ab Electrode
US20070246352A1 (en) * 2002-06-04 2007-10-25 Prochem Tech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
US20030221971A1 (en) * 2002-06-04 2003-12-04 Keister Timothy Edward Method for electrolytic production of hypobromite for use as a biocide
US7927470B2 (en) 2002-06-04 2011-04-19 Prochemtech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
US20110174633A1 (en) * 2002-06-04 2011-07-21 Prochemtech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
US8585999B2 (en) 2002-06-04 2013-11-19 Prochemtech International, Inc. Method of making flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
US9933492B2 (en) * 2011-07-19 2018-04-03 Thyssenkrupp Electrolysis Gmbh Method for safely and economically operating an electrolyser
US20150127279A1 (en) * 2011-07-19 2015-05-07 Thyssenkrupp Electrolysis Gmbh Method for safely and economically operating an electrolyser
CN104395504A (en) * 2012-07-13 2015-03-04 乌德诺拉股份公司 Insulating frame with corner expansion joints for electrolysis cells
EA025913B1 (en) * 2012-07-13 2017-02-28 Уденора С.П.А. Insulating frame with corner expansion joints for electrolysis cells
CN104395504B (en) * 2012-07-13 2017-07-11 乌德诺拉股份公司 For the insulating frame that node is expanded with turning of electrolytic cell
WO2014009549A1 (en) * 2012-07-13 2014-01-16 Uhdenora S.P.A. Insulating frame with corner expansion joints for electrolysis cells
US10227701B2 (en) 2012-07-13 2019-03-12 Uhdenora S.P.A. Insulating frame with corner expansion joints for electrolysis cells
US8888968B2 (en) 2013-01-22 2014-11-18 GTA, Inc. Electrolyzer apparatus and method of making it
US8808512B2 (en) 2013-01-22 2014-08-19 GTA, Inc. Electrolyzer apparatus and method of making it
US9017529B2 (en) 2013-01-22 2015-04-28 GTA, Inc. Electrolyzer apparatus and method of making it
WO2014116318A1 (en) 2013-01-22 2014-07-31 GTA, Inc. Electrolyzer apparatus and method of making it
US9222178B2 (en) 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
EP3156520A1 (en) 2013-01-22 2017-04-19 GTA Inc. Electrolyzer apparatus and method of making it
US10486972B2 (en) * 2014-06-11 2019-11-26 Haldor Topsoe A/S Process for safe production of phosgene

Also Published As

Publication number Publication date
CA995624A (en) 1976-08-24
DE2213603A1 (en) 1973-10-04

Similar Documents

Publication Publication Date Title
US3855104A (en) PROCESS AND APPARATUS FOR THE ELECTROLYSIS OF HCl CONTAINING SOLUTIONS WITH GRAPHITE ELECTRODES WHICH KEEP THE CHLORINE AND HYDROGEN GASES SEPARATE
CA1295284C (en) Electrolytic cell for alkali metal hydrosulfite solutions
US3242059A (en) Electrolytic process for production of chlorine and caustic
FI71356C (en) ELEKTRODSTRUKTUR FOER ANVAENDNING I ELEKTROLYTISK CELL
US3778362A (en) Electrolytic apparatus including bipolar electrodes defining an enclosed volume and held in a nonconductive frame
EP0248433B1 (en) Electrolytic cell
US4100050A (en) Coating metal anodes to decrease consumption rates
US4108742A (en) Electrolysis
US3809630A (en) Electrolysis cell with permeable valve metal anode and diaphragms on both the anode and cathode
RU2062307C1 (en) Electrolytic cell to produce chlorine and alkali
US3930981A (en) Bipolar electrolysis cells with perforate metal anodes and baffles to deflect anodic gases away from the interelectrodic gap
GB1561956A (en) Electrolysis apparatus
US4761216A (en) Multilayer electrode
US5130008A (en) Frame unit for an electrolyser of the filter-press type and monopolar electrolyser of the filter-press type
US3324023A (en) Bipolar electrolytic cell for the production of gases
US4770756A (en) Electrolytic cell apparatus
CA1041036A (en) Electrochemical apparatus and process for the manufacture of halates
CA1123376A (en) Electrolysis bath assembly
US3898149A (en) Electrolytic diaphragm cell
US3451906A (en) Respacing of electrodes in electrolytic cells for the production of the halates,perhalates or hypohalites of alkali metals
CA1088456A (en) Electrolytic cell with cation exchange membrane and gas permeable electrodes
CA1177776A (en) Electrochemical apparatus and process for manufacturing halates
US4069128A (en) Electrolytic system comprising membrane member between electrodes
US3932261A (en) Electrode assembly for an electrolytic cell
CA1134779A (en) Electrolysis cell