US3853783A - Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same - Google Patents

Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same Download PDF

Info

Publication number
US3853783A
US3853783A US00349509A US34950973A US3853783A US 3853783 A US3853783 A US 3853783A US 00349509 A US00349509 A US 00349509A US 34950973 A US34950973 A US 34950973A US 3853783 A US3853783 A US 3853783A
Authority
US
United States
Prior art keywords
laser
vanadyl phthalocyanine
phthalocyanine
sulfonamide
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00349509A
Inventor
R Tucker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US00349509A priority Critical patent/US3853783A/en
Application granted granted Critical
Publication of US3853783A publication Critical patent/US3853783A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/02Goggles
    • A61F9/022Use of special optical filters, e.g. multiple layers, filters for protection against laser light or light from nuclear explosions, screens with different filter properties on different parts of the screen; Rotating slit-discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters

Definitions

  • K VOPC 6 a D where Pc is a phthalocyanine moiety, R and R are lower alkyl and x is an integer from 1 to 4; are incorporated into plastics to provide plastic compositions suitable for fabrication into devices, such as goggle lenses, capable of protecting the eye against laser radiation of from about 620 to 720 nanometers, e.g. the ruby laser (694 nm), the krypton laser (671 nm) and the helium-neon laser (633 nm).
  • a typical composition consists of 75 parts poly(methyl methacrylate) syrup, 25 parts methyl methacrylate, 0.03 parts vanadyl phthalocyanine di-n-butylsulfonamide having 2.8 dibutyl sulfonamide radicals per mole of phthalocyanine, 0.2 part 2,2-dihydroxy-4-methoxybenzophenone and 0.03 part azobisisobutyronitrile.
  • a plate, 0.1 in. thick, cast-molded from said composition exhibited an optical density at 694.3 nm of 5.5+ and a luminous transmittance of 47 percent. When exposed to a Q- switched ruby laser of 300 kilowatts per cm for 20 nanoseconds, the plate remains undamaged.
  • This invention relates to new light absorbing compounds and more specifically to new vanadyl phthalocyanine sulfonamides represented by the formula:
  • Pc is a phthalocyanine moiety
  • R and R are lower alkyl
  • x is an integer from 1 to 4.
  • the invention further relates to plastic compositions containing the vanadyl phthalocyanine sulfonamides as defined above; to optical devices, such as goggle lenses, face shields and the like, fabricated from such compositions; and to the use of such devices for protection of the human eye against the harmful effects of exposure to laser radiation of certain wavelengths, for example the radiation of a ruby laser beam.
  • the new vanadyl phthalocyanine sulfonamides of the invention as defined above are useful as the absorbers in plastic laser protective compositions, particularly for those lasers with wavelengths in the region of from about 620 to 720 nanometers which includes the ruby laser (694 nm); the krypton laser (671 nm); and the heliumneon laser (633 nm).
  • the compounds have the required absorption and stability characteristics and in addition have excellent and superior compatibility for incorporation into the types of plastic compositions found most useful for laser protective application.
  • compositions containing the absorbers of the invention are not immediately penetrated by the beam of a laser but will withstand direct impingement of the beam for a brief period sufficient to allow the person wearing the lens to withdraw from the area of the beam.
  • the compositions containing the absorbers of the invention are not immediately penetrated by the beam of a laser but will withstand direct impingement of the beam for a brief period sufficient to allow the person wearing the lens to withdraw from the area of the beam.
  • Optical filters containing vanadyl phthalocyanine as an infrared absorber have been disclosed by Donoian et al, US. Pat. No. 3,291,746.
  • Donoian et al were concerned only with protection of the eye against exposure to infrared radiation present in sunlight or emitted from high temperature bodies, such as tungsten filaments, fluorescent lamps, carbon arcs, etc. Ruby or other laser radiation, however, is not infrared radiation in any sense as contemplated by Donoian et a1.
  • laser light which is a generated, concentrated beam of a specific narrow band of wavelength, is unique and vastly different from all other forms of light.
  • the vanadyl phthalocyanine sulfonamides of this invention are prepared from vanadyl phthalocyanine by (1) reaction of the latter with chlorosulfonic acid and thionyl chloride to give first the vanadyl phthalocyanine sulfonyl chloride. The acid chloride is then (2) allowed to react with a secondary lower alkyl amine or a mixture of two or more such amines to obtain the desired sulfonamide.
  • amines which may be used are dimethylamine, diethylamine, dipropylamine, dibutylamine and mixtures thereof.
  • the reactions involved are represented as follows:
  • R and R are lower (C -C alkyl and x is an integer of 1 to 4.
  • the method of preparing metal phthalocyanine sulfonyl chlorides is conventional, the average number of sulfonyl chloride radicals which are incorporated into the phthalocyanine molecule being controlled by the proportion of phthalocyanine and chlorosulfonic acid employed in the reaction. (See, for example, US. Pat. Nos. 2,219,330; 2,897,207 and 3,536,502.)
  • the proportion of secondary amine used in the instant process is sufficient to convert each of the sulfonyl chloride radicals in the vanadyl phthalocyanine sulfonyl chloride to sulfonamide radicals.
  • the preparation of a typical vanadyl phthalocyanine sulfonamide of this invention is shown in detail in Example 1, hereinbelow.
  • the vanadyl phthalocyanine sulfonamides of the invention have a distinct advantage over the vanadyl phthalocyanines for use in laser-protective compositions and devices since these sulfonamides are readily soluble in various transparent plastics whereas vanadyl phthalocyanine is not.
  • the absorber compound for protection against the narrow band radiation of the laser beam (as opposed to the broad band radiation encountered in sunlight) the absorber compound must be incorporated in the plastic substrate in a sufficient amount to provide an optical density of at least 3. Since the vanadyl phthalocyanine must be dispersed in the plastic, the attainment of a uniform dispersion providing the required optical density is difficult.
  • the plastic compositions of the invention when formed into lenses provide the necessary laser-protective optical density of at least 3.0 and at the same time a visual transmittance of at least 25 percent.
  • Useful optical plastics include poly(methyl methacrylate), copolymers of a major proportion of methyl methacrylate, cellulose acetate, cellulose propionate, cellulose acetatebutyrate, polycarbonates, polyvinyl chloride, polysulfones, polystyrene, copolymers of styrene, and the like.
  • the plastics of choice are polymethyl methacrylate, cellulose propionate, polyvinyl chloride and polycarbonates.
  • the plastic composition of the invention will contain from about 0.001 part to about 1.0 part of the sulfonamide per 100 parts of the plastic, preferably 0.009 to 0.02 parts, with the provision, however, that sufficient is used to give an optical density of at least 3 at the wavelength of the laser,
  • the sulfonamide can be added to the plastic by any of the ways normally used to incorporate additives into plastic, such as dry blending followed by molding, milling, extrusion, or the like, or the compound can be incorporated in the plastic syrup during polymerization.
  • compositions and lenses of this invention may also contain other light absorbers, such as ultraviolet absorbers if desired, or conventional additives, such as polymerization initiators, plasticizers, heat stabilizers, anti-static agents, etc.
  • EXAMPLE 1 A. PREPARATION OF VANADYL PHTHALOCYA- NINE SULFONYL CHLORIDE To 230 grams (128.5 ml.) of chlorosulfonic acid there was added 25 grams (0.0432 mole) of vanadyl phthalocyanine over a period of .b hour at 2350C. The mixture was then heated at 138140C. for 3 hours. After cooling to 60C., 32.0 grams 19.5 ml.) of thionyl chloride was added drop-wise over a period of 20 minutes. The mixture was then heated to 80C. with stirring for 2 hours after which it was drowned in a mixture of 700 ml.
  • the tar was then stirred in dilute hydrochloric acid (excess, about 0.5-1 molar) until it solidified. It was filtered, washed and dried. It was then dissolved in 150 ml. of acetone, filtered to remove insolubles and then evaporated to dryness at 70C.
  • the product obtained was shown by assay to have an average of 2.8 dibutylsulfonamide groups per a vanadyl phthalocyanine molecule. As above-indicated, however, the procedure may be adjusted to provide a product having an average of from 1 to 4 sulfonamide groups per vanadyl phthalocyanine molecule.
  • EXAMPLE 2 A composition consisting of 100 parts of cellulose propionate, 0.07 part of vanadyl phthalocyanine di-nbutylsulfonamide, prepared after the fashion of Example 1, and 0.2 part of 2,2-dihydroxy-4- methoxybenzophenone was blended and molded into a laser protective spectacle having a thickness of 0.093 inch. It had the following properties:
  • Optical density (O.D.) at 694.3 nm 10.0 (Ruby laser) at 671.0 nm 6.6 (Krypton laser) at 633.0 nm 3.4 (Helium-Neon laser) Luminous transmittance 29
  • concentration of the sulfonamide compound was increased to 0.08 part, the spectical obtained had an optical density at 633 nm of 3.5 and a transmittance of 25 percent.
  • EXAMPLE 4 A mixture was prepared consisting of grams of polymethyl methacrylate syrup, 25 grams of methyl methacrylate, 0.03 gram of azobisisobutyronitrile, 0.2
  • An optical filter comprising a thermoplastic polymer substantially transparent to visable light having incorporated therein from 0.001 to 1.0 percent, by weight, of a vanadyl phthalocyanine sulfonamide having the formula:
  • thermoplastic polymer is selected from the group consisting of cellulose propionate, poly(methyl methacrylate), polyvinyl chloride and polycarbonates.
  • a method of protecting the human eye from exposure to laser radiation having a wavelength of from about 620 to about 720 nanometers which comprises interposing between the source of said radiation and the eye an optical filter comprising a thermoplastic polymer substantially transparent to visable light having incorporated therein from 0.001 to 1.0 percent, by weight, of a vanadyl phthalocyanine sulfonamide having the formula:

Abstract

Vanadyl phthalocyanine sulfonamides of the formula:

WHERE Pc is a phthalocyanine moiety, R and R'' are lower alkyl and x is an integer from 1 to 4; are incorporated into plastics to provide plastic compositions suitable for fabrication into devices, such as goggle lenses, capable of protecting the eye against laser radiation of from about 620 to 720 nanometers, e.g. the ruby laser (694 nm), the krypton laser (671 nm) and the helium-neon laser (633 nm). A typical composition consists of 75 parts poly(methyl methacrylate) syrup, 25 parts methyl methacrylate, 0.03 parts vanadyl phthalocyanine di-nbutylsulfonamide having 2.8 dibutyl sulfonamide radicals per mole of phthalocyanine, 0.2 part 2,2''-dihydroxy-4-methoxybenzophenone and 0.03 part azobisisobutyronitrile. A plate, 0.1 in. thick, cast-molded from said composition, exhibited an optical density at 694.3 nm of 5.5+ and a luminous transmittance of 47 percent. When exposed to a Q-switched ruby laser of 300 kilowatts per cm2 for 20 nanoseconds, the plate remains undamaged.

Description

IJite. Sites atent [191 Tucker Dec. 10, 1974 [75] Inventor: Robert Jerome Tucker,
Hackettstown, NJ.
[73] Assignee: American Cyanamid Company,
Stamford, Conn.
22 Filed: Apr. 9, 1973 211 App]. No.: 349,509
Related Us. Application Data [62] Division of Ser. No. 165,384, July 22, 1971,
abandoned.
[52] US. Cl. 252/300, 260/314.5
[51] Int. Cl F2lv 9/00, G02b 5/20, G020 7/10 [58] Field of Search 260/3145, 75; 252/300; 351/44 [56] References Cited UNITED STATES PATENTS 2,155,038 4/1938 Davis et a1. 260/3145 2,861,005 11/1958 Siege] 1 260/3145 3,091,618 5/1963 Fleysher et a1. 260/3145 3,148,933 9/1964 Randall ct a1 260/3415 3,291,746 12/1966 Donovian et a1. 252/300 Primary ExaminerRonald H. Smith Assistant ExaminerJ. P. Brammer Attorney, Agent, or Firm.1ohn L. Sullivan [57] ABSTRACT Vanadyl phthalocyanine sulfonamides of the formula:
K VOPC 6 a D where Pc is a phthalocyanine moiety, R and R are lower alkyl and x is an integer from 1 to 4; are incorporated into plastics to provide plastic compositions suitable for fabrication into devices, such as goggle lenses, capable of protecting the eye against laser radiation of from about 620 to 720 nanometers, e.g. the ruby laser (694 nm), the krypton laser (671 nm) and the helium-neon laser (633 nm). A typical composition consists of 75 parts poly(methyl methacrylate) syrup, 25 parts methyl methacrylate, 0.03 parts vanadyl phthalocyanine di-n-butylsulfonamide having 2.8 dibutyl sulfonamide radicals per mole of phthalocyanine, 0.2 part 2,2-dihydroxy-4-methoxybenzophenone and 0.03 part azobisisobutyronitrile. A plate, 0.1 in. thick, cast-molded from said composition, exhibited an optical density at 694.3 nm of 5.5+ and a luminous transmittance of 47 percent. When exposed to a Q- switched ruby laser of 300 kilowatts per cm for 20 nanoseconds, the plate remains undamaged.
6 Claims, No Drawings VANADYL PHTHALOCYANINE SULFONAMIDES AND LASER PROTECTIVE PLASTIC FILTERS CONTAINING THE SAME This is a continuation, division, of application Ser. No. 165,384 filed July 22, 1971 now abandoned.
This invention relates to new light absorbing compounds and more specifically to new vanadyl phthalocyanine sulfonamides represented by the formula:
where Pc is a phthalocyanine moiety; R and R are lower alkyl; and x is an integer from 1 to 4.
The invention further relates to plastic compositions containing the vanadyl phthalocyanine sulfonamides as defined above; to optical devices, such as goggle lenses, face shields and the like, fabricated from such compositions; and to the use of such devices for protection of the human eye against the harmful effects of exposure to laser radiation of certain wavelengths, for example the radiation of a ruby laser beam.
Since the discovery of the laser some ten years ago, many useful applications of this unique, powerful form of light have been developed. With such developments, the matter of eye protection for personnel involved in laser work has become extremely important due to the immediate serious damaging effects on the eye of exposure to laser light. For such purpose, it is necessary to provide materials suitable for goggle lenses which will filter or absorb, to a suitable degree, light in the narrow wavelength of the laser and at the same time allow light of visible wavelengths to pass through to a suitable degree. Various devices have been proposed for effective protection of the human eye against the effects of the intense penetrating beam of a laser but generally these include only optical filters made of inorganic substrate materials containing inorganic light absorbers. One such successful device is the W-37 Anti-Laser Eyeshield manufactured by Lausch and Lomb. This device, described in Laser Focus Magazine for May, 1969, is characterized by the manufacturer as Laser protection engineered by laser scientists. Essentially, it is a combination of a dichroic-coated, light reflecting glass plate in combination with a colored, lightabsorbing glass plate.
It has now been found that the new vanadyl phthalocyanine sulfonamides of the invention as defined above are useful as the absorbers in plastic laser protective compositions, particularly for those lasers with wavelengths in the region of from about 620 to 720 nanometers which includes the ruby laser (694 nm); the krypton laser (671 nm); and the heliumneon laser (633 nm). The compounds have the required absorption and stability characteristics and in addition have excellent and superior compatibility for incorporation into the types of plastic compositions found most useful for laser protective application. Thus, the compositions containing the absorbers of the invention are not immediately penetrated by the beam of a laser but will withstand direct impingement of the beam for a brief period sufficient to allow the person wearing the lens to withdraw from the area of the beam. Thus, on impingement of a beam of sufiicient energy to pierce the lens, the
lens will not be pierced immediately, but will first suffer damage observable to the wearer, such as fogging, darkening, waviness or bubbles therein, whereby the wearer will be warned that he is in the danger area. There was no basis on which it could have been expected that the plastic lens containing a compound of the invention would have such stability, or finite life, under exposure to the laser beam, so as to afford this warning protection. This discovery that the laser beam could thus be stopped, albeit temporarily, by the plastic lens was, therefore, totally surprising.
Optical filters containing vanadyl phthalocyanine as an infrared absorber have been disclosed by Donoian et al, US. Pat. No. 3,291,746. However, Donoian et al were concerned only with protection of the eye against exposure to infrared radiation present in sunlight or emitted from high temperature bodies, such as tungsten filaments, fluorescent lamps, carbon arcs, etc. Ruby or other laser radiation, however, is not infrared radiation in any sense as contemplated by Donoian et a1. Thus, laser light, which is a generated, concentrated beam of a specific narrow band of wavelength, is unique and vastly different from all other forms of light. The Donoian et a] disclosure of protecting against ordinary infrared radiation from common sources, such as sunlight, would, therefore, clearly not suggest protecting against the powerful, penetrating beam of the ruby laser.
The vanadyl phthalocyanine sulfonamides of this invention are prepared from vanadyl phthalocyanine by (1) reaction of the latter with chlorosulfonic acid and thionyl chloride to give first the vanadyl phthalocyanine sulfonyl chloride. The acid chloride is then (2) allowed to react with a secondary lower alkyl amine or a mixture of two or more such amines to obtain the desired sulfonamide.
Examples of amines which may be used are dimethylamine, diethylamine, dipropylamine, dibutylamine and mixtures thereof. The reactions involved are represented as follows:
where Pc represents a phthalocyanine moiety, R and R are lower (C -C alkyl and x is an integer of 1 to 4.
The method of preparing metal phthalocyanine sulfonyl chlorides is conventional, the average number of sulfonyl chloride radicals which are incorporated into the phthalocyanine molecule being controlled by the proportion of phthalocyanine and chlorosulfonic acid employed in the reaction. (See, for example, US. Pat. Nos. 2,219,330; 2,897,207 and 3,536,502.) The proportion of secondary amine used in the instant process is sufficient to convert each of the sulfonyl chloride radicals in the vanadyl phthalocyanine sulfonyl chloride to sulfonamide radicals. The preparation of a typical vanadyl phthalocyanine sulfonamide of this invention is shown in detail in Example 1, hereinbelow.
The vanadyl phthalocyanine sulfonamides of the invention have a distinct advantage over the vanadyl phthalocyanines for use in laser-protective compositions and devices since these sulfonamides are readily soluble in various transparent plastics whereas vanadyl phthalocyanine is not. Thus, for protection against the narrow band radiation of the laser beam (as opposed to the broad band radiation encountered in sunlight) the absorber compound must be incorporated in the plastic substrate in a sufficient amount to provide an optical density of at least 3. Since the vanadyl phthalocyanine must be dispersed in the plastic, the attainment of a uniform dispersion providing the required optical density is difficult. Due to the solubility of the sulfonamides, however, this uniform optical density is readily achieved. Thus, the plastic compositions of the invention when formed into lenses provide the necessary laser-protective optical density of at least 3.0 and at the same time a visual transmittance of at least 25 percent.
Useful optical plastics include poly(methyl methacrylate), copolymers of a major proportion of methyl methacrylate, cellulose acetate, cellulose propionate, cellulose acetatebutyrate, polycarbonates, polyvinyl chloride, polysulfones, polystyrene, copolymers of styrene, and the like. The plastics of choice are polymethyl methacrylate, cellulose propionate, polyvinyl chloride and polycarbonates.
The plastic composition of the invention will contain from about 0.001 part to about 1.0 part of the sulfonamide per 100 parts of the plastic, preferably 0.009 to 0.02 parts, with the provision, however, that sufficient is used to give an optical density of at least 3 at the wavelength of the laser, The sulfonamide can be added to the plastic by any of the ways normally used to incorporate additives into plastic, such as dry blending followed by molding, milling, extrusion, or the like, or the compound can be incorporated in the plastic syrup during polymerization.
The compositions and lenses of this invention may also contain other light absorbers, such as ultraviolet absorbers if desired, or conventional additives, such as polymerization initiators, plasticizers, heat stabilizers, anti-static agents, etc.
The invention is illustrated by the following examples.
EXAMPLE 1 A. PREPARATION OF VANADYL PHTHALOCYA- NINE SULFONYL CHLORIDE To 230 grams (128.5 ml.) of chlorosulfonic acid there was added 25 grams (0.0432 mole) of vanadyl phthalocyanine over a period of .b hour at 2350C. The mixture was then heated at 138140C. for 3 hours. After cooling to 60C., 32.0 grams 19.5 ml.) of thionyl chloride was added drop-wise over a period of 20 minutes. The mixture was then heated to 80C. with stirring for 2 hours after which it was drowned in a mixture of 700 ml. water, 87 grams of salt and ice to keep the mix at 0-3C. After stirring for 15 minutes to insure complete precipitation of the sulfonyl chloride product, the mixture was filtered and the precipitate washed with ice cold water. 255.6 grams of wet filter cake were obtained.
B. PREPARATION OF SULFONAMIDE To a slurry of 60 grams of wet cake from A (above) in 100 ml. of water and 200 grams of ice, there was added 25.8 g. (0.2 mole) of di-n-butylamine. The mixture was stirred for 10 minutes, and 10 grams sodium bicarbonate and 100 ml. acetone added. After stirring cold for 30 minutes, the mixture was heated to 60C. and stirred an additional 30 minutes. It was then cooled to room temperature, the vanadyl phthalocyanine sulfonamide precipitating as a tar. The liquid portion was decanted and the remaining tar was washed with water by decantation. The tar was then stirred in dilute hydrochloric acid (excess, about 0.5-1 molar) until it solidified. It was filtered, washed and dried. It was then dissolved in 150 ml. of acetone, filtered to remove insolubles and then evaporated to dryness at 70C.
The product obtained was shown by assay to have an average of 2.8 dibutylsulfonamide groups per a vanadyl phthalocyanine molecule. As above-indicated, however, the procedure may be adjusted to provide a product having an average of from 1 to 4 sulfonamide groups per vanadyl phthalocyanine molecule.
EXAMPLE 2 A composition consisting of 100 parts of cellulose propionate, 0.07 part of vanadyl phthalocyanine di-nbutylsulfonamide, prepared after the fashion of Example 1, and 0.2 part of 2,2-dihydroxy-4- methoxybenzophenone was blended and molded into a laser protective spectacle having a thickness of 0.093 inch. It had the following properties:
Optical density (O.D.) at 694.3 nm 10.0 (Ruby laser) at 671.0 nm 6.6 (Krypton laser) at 633.0 nm 3.4 (Helium-Neon laser) Luminous transmittance 29 When the concentration of the sulfonamide compound was increased to 0.08 part, the spectical obtained had an optical density at 633 nm of 3.5 and a transmittance of 25 percent.
EXAMPLE 3 O.D. at 694.3 nm 5.5+
at 671 nm 4.2 Luminous transmittance 47 When this plate was directly exposed to a Q-switched ruby laser of 300 kilowatts per cm for 20 nanoseconds, no damage to the plate resulted.
EXAMPLE 4 A mixture was prepared consisting of grams of polymethyl methacrylate syrup, 25 grams of methyl methacrylate, 0.03 gram of azobisisobutyronitrile, 0.2
CD. at 694.3 nm 3.4 Luminous transmittance 62 Using the same composition as above except for the use of 0.015 gram of the vanadyl phthalocyanine di-nbutylsulfonamide, a plate having the following properties was obtained:
CD. at 694.3 nm 319 Luminous transmittance 58 I claim:
1. An optical filter comprising a thermoplastic polymer substantially transparent to visable light having incorporated therein from 0.001 to 1.0 percent, by weight, of a vanadyl phthalocyanine sulfonamide having the formula:
R VOPc so n Rl X wherein P0 is the phthalocyanine moiety; R and R are lower alkyl and x is an integer from 1 to 4; said filter having an optical density of at least 3.
2. An optical filter according to claim 1 wherein the vanadyl phthalocyanine sulfonamide is a di-n-butyl sulfonamide.
3. An optical filter according to claim 1 wherein the thermoplastic polymer is selected from the group consisting of cellulose propionate, poly(methyl methacrylate), polyvinyl chloride and polycarbonates.
4. A method of protecting the human eye from exposure to laser radiation having a wavelength of from about 620 to about 720 nanometers which comprises interposing between the source of said radiation and the eye an optical filter comprising a thermoplastic polymer substantially transparent to visable light having incorporated therein from 0.001 to 1.0 percent, by weight, of a vanadyl phthalocyanine sulfonamide having the formula:
polyvinyl chloride and polycarbonates.

Claims (6)

1. AN OPTICAL FILTER COMPRISING A THERMOPLASTIC POLYMER SUBSTANTIALLY TRANSPARENT TO VISABLE LIGHT HAVING INCORPORATED THEREIN FROM 0.001 TO 1.0 PERCENT, BY WEIGHT, OF A VANADYL PHTHALOCYANINE SULFONAMIDE HAVING THE FORMULA:
2. An optical filter according to claim 1 wherein the vanadyl phthalocyanine sulfonamide is a di-n-butyl sulfonamide.
3. An optical filter according tO claim 1 wherein the thermoplastic polymer is selected from the group consisting of cellulose propionate, poly(methyl methacrylate), polyvinyl chloride and polycarbonates.
4. A method of protecting the human eye from exposure to laser radiation having a wavelength of from about 620 to about 720 nanometers which comprises interposing between the source of said radiation and the eye an optical filter comprising a thermoplastic polymer substantially transparent to visable light having incorporated therein from 0.001 to 1.0 percent, by weight, of a vanadyl phthalocyanine sulfonamide having the formula:
5. A method according to claim 4 wherein the vanadyl phthalocyanine sulfonamide is a di-n-butyl sulfonamide.
6. A method according to claim 4 wherein the thermoplastic polymer is selected from the group consisting of cellulose propionate, poly(methyl methacrylate), polyvinyl chloride and polycarbonates.
US00349509A 1971-07-22 1973-04-09 Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same Expired - Lifetime US3853783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00349509A US3853783A (en) 1971-07-22 1973-04-09 Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16538471A 1971-07-22 1971-07-22
US00349509A US3853783A (en) 1971-07-22 1973-04-09 Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same

Publications (1)

Publication Number Publication Date
US3853783A true US3853783A (en) 1974-12-10

Family

ID=26861347

Family Applications (1)

Application Number Title Priority Date Filing Date
US00349509A Expired - Lifetime US3853783A (en) 1971-07-22 1973-04-09 Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same

Country Status (1)

Country Link
US (1) US3853783A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972893A (en) * 1970-08-21 1976-08-03 Nippon Chemical Works Co., Ltd. Method for preparing cobalt phthalocyanine complex salts
US3997464A (en) * 1975-05-15 1976-12-14 American Cyanamid Company Plastic lenses for glass melters
US4039467A (en) * 1975-06-16 1977-08-02 American Cyanamid Company Visibly opaque infrared transmitting optical filter containing a combination of copper and vanadyl phthalocyanine sulfonamides
US4298975A (en) * 1979-01-15 1981-11-03 U.S. Philips Corporation Optical recording medium and method of optically recording information thereon
US4622174A (en) * 1984-06-05 1986-11-11 Barnes Engineering Company Transparent protective laser shield
US4663084A (en) * 1983-11-01 1987-05-05 Tdk Corporation Electroconductive compositions
USH534H (en) 1987-09-17 1988-10-04 The United States Of America As Represented By The Secretary Of The Army Laser energy attenuation paint
US4885114A (en) * 1987-04-22 1989-12-05 Barnes Engineering Co. Metallized tetra((meso)-5-methyl-2-thiophene)porphines, platinum (5-bromo octaethylporphine) and optical filters containing same
US4933110A (en) * 1988-12-28 1990-06-12 American Cyanamid Company Optical radiation shield for protection from multiple lasers
US4935166A (en) * 1985-09-17 1990-06-19 Lee James C Narrow band selective absorption filter
US5005926A (en) * 1988-10-18 1991-04-09 Barnes Engineering Company Ballistic protective laser shield
US5095384A (en) * 1990-10-26 1992-03-10 The United States Of America As Represented By The Secretary Of The Air Force Laser damage resistant vanadium dioxide films
US5102213A (en) * 1985-09-17 1992-04-07 Honeywell Inc. Narrow band selective absorption filter
US5270854A (en) * 1985-09-17 1993-12-14 Honeywell Inc. Narrow band selective absorption filter
US5271872A (en) * 1988-11-25 1993-12-21 Gentex Corporation Laser-attenuative optical filter
US6010756A (en) * 1998-05-19 2000-01-04 Lockheed Martin Corporation Rugate filter and method of making same
US20060060829A1 (en) * 2002-08-14 2006-03-23 Keyzer Gerardus D Liquid crystal display and colour filter with improved transparency for green light
US20140239242A1 (en) * 2013-02-26 2014-08-28 LASERVISION GmbH & Co., KG Laser protection material and laser protection component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155038A (en) * 1937-02-12 1939-04-18 Ici Ltd Compounds of the phthalocyanine series
US2861005A (en) * 1953-11-12 1958-11-18 Du Pont Phthalocyanine pigments
US3091618A (en) * 1960-12-27 1963-05-28 Allied Chem Process of preparing metal-containing phthalocyanine sulfonic acids
US3148933A (en) * 1961-12-19 1964-09-15 Gen Aniline & Film Corp Process for coloring fibers with fiber reactive phthalocyanine dyestuffs and products obtained thereby
US3291746A (en) * 1963-08-26 1966-12-13 American Cyanamid Co Metal phthalocyanines as infrared absorbers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155038A (en) * 1937-02-12 1939-04-18 Ici Ltd Compounds of the phthalocyanine series
US2861005A (en) * 1953-11-12 1958-11-18 Du Pont Phthalocyanine pigments
US3091618A (en) * 1960-12-27 1963-05-28 Allied Chem Process of preparing metal-containing phthalocyanine sulfonic acids
US3148933A (en) * 1961-12-19 1964-09-15 Gen Aniline & Film Corp Process for coloring fibers with fiber reactive phthalocyanine dyestuffs and products obtained thereby
US3291746A (en) * 1963-08-26 1966-12-13 American Cyanamid Co Metal phthalocyanines as infrared absorbers

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972893A (en) * 1970-08-21 1976-08-03 Nippon Chemical Works Co., Ltd. Method for preparing cobalt phthalocyanine complex salts
US3997464A (en) * 1975-05-15 1976-12-14 American Cyanamid Company Plastic lenses for glass melters
US4039467A (en) * 1975-06-16 1977-08-02 American Cyanamid Company Visibly opaque infrared transmitting optical filter containing a combination of copper and vanadyl phthalocyanine sulfonamides
US4298975A (en) * 1979-01-15 1981-11-03 U.S. Philips Corporation Optical recording medium and method of optically recording information thereon
US4663084A (en) * 1983-11-01 1987-05-05 Tdk Corporation Electroconductive compositions
US4622174A (en) * 1984-06-05 1986-11-11 Barnes Engineering Company Transparent protective laser shield
US4935166A (en) * 1985-09-17 1990-06-19 Lee James C Narrow band selective absorption filter
US5102213A (en) * 1985-09-17 1992-04-07 Honeywell Inc. Narrow band selective absorption filter
US5270854A (en) * 1985-09-17 1993-12-14 Honeywell Inc. Narrow band selective absorption filter
US4885114A (en) * 1987-04-22 1989-12-05 Barnes Engineering Co. Metallized tetra((meso)-5-methyl-2-thiophene)porphines, platinum (5-bromo octaethylporphine) and optical filters containing same
USH534H (en) 1987-09-17 1988-10-04 The United States Of America As Represented By The Secretary Of The Army Laser energy attenuation paint
US5005926A (en) * 1988-10-18 1991-04-09 Barnes Engineering Company Ballistic protective laser shield
US5271872A (en) * 1988-11-25 1993-12-21 Gentex Corporation Laser-attenuative optical filter
EP0375898A3 (en) * 1988-12-28 1991-08-07 Bilsom AB Optical radiation shield for protection from lasers
AU613818B2 (en) * 1988-12-28 1991-08-08 Bilsom Ab Optical radiation shield for protection from multiple lasers
EP0375898A2 (en) * 1988-12-28 1990-07-04 Bilsom AB Optical radiation shield for protection from lasers
US4933110A (en) * 1988-12-28 1990-06-12 American Cyanamid Company Optical radiation shield for protection from multiple lasers
US5095384A (en) * 1990-10-26 1992-03-10 The United States Of America As Represented By The Secretary Of The Air Force Laser damage resistant vanadium dioxide films
US6010756A (en) * 1998-05-19 2000-01-04 Lockheed Martin Corporation Rugate filter and method of making same
US6256148B1 (en) 1998-05-19 2001-07-03 Lockheed Martin Corporation Rugate filter and method of making same
US20060060829A1 (en) * 2002-08-14 2006-03-23 Keyzer Gerardus D Liquid crystal display and colour filter with improved transparency for green light
US7582230B2 (en) * 2002-08-14 2009-09-01 Ciba Specialty Chemicals Corporation Liquid crystal display and colour filter with improved transparency for green light
US20140239242A1 (en) * 2013-02-26 2014-08-28 LASERVISION GmbH & Co., KG Laser protection material and laser protection component
KR20140106403A (en) * 2013-02-26 2014-09-03 레이저비지온 게엠베하 운트 코. 카게 Laser protection material and laser protection component
EP2811216A3 (en) * 2013-02-26 2014-12-17 Laservision GmbH & Co. KG Laser protection material and laser protection components

Similar Documents

Publication Publication Date Title
US3853783A (en) Vanadyl phthalocyanine sulfonamides and laser protective plastic filters containing the same
US3485650A (en) Useful infrared absorbing substances for plastics or glass
US3627690A (en) Photochromic naphthopyran compositions
EP0375898B1 (en) Optical radiation shield for protection from lasers
US5407885A (en) Photochromic naphthacenequinones, process for their preparation and the use thereof
US4885114A (en) Metallized tetra((meso)-5-methyl-2-thiophene)porphines, platinum (5-bromo octaethylporphine) and optical filters containing same
US6113813A (en) Photochromic ultraviolet protective shield
EP0186364A2 (en) Photochromic compounds
JP3188072B2 (en) Plastic lens
CA2365469A1 (en) Hydrophilic macromolecular compounds
US5723075A (en) Dimerized thiourea derivatives near-infared absorbents comprising the same, and heat wave shielding materials comprising the same
US1434268A (en) A voluntary asso
US3909442A (en) Solubilized orange dye (dialkylsulfonamide derivative)
EP0549808A1 (en) Transparent plastic material
CA1061534A (en) Multi-wavelength optical filter
US3959171A (en) Optical filter for neodymium laser light
US3984177A (en) Articles employing photochromic materials
EP0432841B1 (en) Spiro-indoline-oxazine compounds with photochromatic and photosensitizing characteristics and the process for their preparation
US3997464A (en) Plastic lenses for glass melters
US5149830A (en) Substituted xanthene compounds
JPH11199683A (en) Polycarbonate plate and infrared ray cutting filter
US10215897B1 (en) Infrared light absorbing aminium and diimmonium compositions
JPS63165392A (en) Novel t-butyl-substituted benzenedithiol nickel complex and plastic composition containing said complex
US3575872A (en) Selenocarbazonates and their use as photochromic materials
US3660299A (en) Variable density light filtering means utilizing leuco phenazine dyes