US3848331A - Method of producing molded stators from steel particles - Google Patents

Method of producing molded stators from steel particles Download PDF

Info

Publication number
US3848331A
US3848331A US00396256A US39625673A US3848331A US 3848331 A US3848331 A US 3848331A US 00396256 A US00396256 A US 00396256A US 39625673 A US39625673 A US 39625673A US 3848331 A US3848331 A US 3848331A
Authority
US
United States
Prior art keywords
microlaminations
container
coil
core
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00396256A
Inventor
N Pavlik
J Cunningham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AO Smith Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US00396256A priority Critical patent/US3848331A/en
Priority to CA207,483A priority patent/CA988694A/en
Priority to GB29231/75A priority patent/GB1482378A/en
Priority to GB3822474A priority patent/GB1477510A/en
Priority to AU73070/74A priority patent/AU496361B2/en
Priority to DE2443281A priority patent/DE2443281A1/en
Priority to FR7430616A priority patent/FR2243508A1/fr
Priority to JP49103966A priority patent/JPS5054805A/ja
Application granted granted Critical
Publication of US3848331A publication Critical patent/US3848331A/en
Assigned to A. O. SMITH CORPORATION reassignment A. O. SMITH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED. (SEE RECORD FOR DETAILS) Assignors: WESTINGHOUSE ELECTRIC CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49076From comminuted material

Definitions

  • the core comprises a preformed coil about which a plurality of substantially rectangular microlaminations of a ferromagnetic material are disposed and the components are compressed into a unitary structure.
  • the method includes the steps of preforming a coil assembling the coil in fluid-tight container together with a core bar positioned centrally of the coil. Microlaminations are added to the container which is thereafter pressurized to compress the microlaminations about the coil to form a unitary structure.
  • the present invention relates to unitary structure which comprises a magnetic core having conductors embedded therein.
  • the core is formed by performing a coil and disposing the same within a fluid tight container. Thereafter a core bar is positioned centrally of the coil and a quantity of microlaminations is added to the container to fill the space between the core bar, the coil and the container.
  • the container is sealed and subjected to pressure so as to mold the entire unit into a unitary structure which may be thereafter readily removed from the fluid tight container.
  • Cores and particularly motor stator cores are generally made from laminations.
  • these laminations are punched from electrical steel sheet which are thereafter annealed, insulated and stacked one upon the other in order to form the core.
  • Conductors usually in the form of coils are then wound into the slots which have been machined within the core structure or which are formed when the laminations are punched.
  • the material which is removed to produce this slot may comprise 2540% of the total area of each lamination and this material is lost as scrap.
  • the stacked core produces a slot geometry which is limited because of the die cost. Consequently the slot fill of the conductors is restricted since the conventional method of winding or inserting the conductors into the slot does not permit them to be compressed.
  • the present invention teaches that small, substantially rectangular ferromagnetic particles in the form of microlaminations which may be formed for example from plain carbon steel sheet and processed to yield the required magnetic properties, can be molded around a preformed coil assembly.
  • the resulting core formed from the microlaminations is scrapless.
  • has a high precision bore due to the molding technique utilizes more active magnetic materials since precut slots are eliminated and in addition the molding technique compacts the coil conductors during the molding pres surization and thereby eliminates the need for thick slot liners.
  • both better space factors and higher densities of both magnetic material and conductor can be obtained with the result that such molded cores exhibit outstanding magnetic characteristics.
  • FIG. 1 is a view of a preformed coil employed in making a molded motor stator with part of the insulation removed;
  • FIG. 2 is a view in vertical cross section of a loaded container which is utilized in practicing the method of the present invention
  • FIG. 3 is a sectional view of the loaded container taken along the lines 111-111 of FIG 2;
  • FIG. 4 is a plot of the applied voltage versus the no load ampers
  • FIG. 5 is a plot of the applied voltage versus the no load watts.
  • FIG. 6 is a macrograph of a cross-section of the conductors after pressurization and molding of the core into unitary structure.
  • One of the basic materials which is employed in the method of the present invention includes small substantially rectangular parallelopipeds of magnetic material, each of which has been termed a microlamination' Essentially this material preferably comprises a low carbon steel and that steel which is normally used for tin cans is an ideal source since it. is abundantly available and is quite low in cost. Of course any other ferromagnetic material which can be obtained in essentially this shaped particle may function just as well. This material is preferably purchased in the so-called black plate condition; that is the condition prior to the application of the metal coating thereto for the tin can stock.
  • this material is available in a wide range of thicknesses usually within the range between about 0.005 inch to about 0.014 inch. While a relatively wide range of steel particle sizes and thicknesses appears to be satisfactory it is preferred to have the microlamination formed with the length ranging between about 0.05 inch and about 0.06 inch, a width of between 0.01 inch and 0.02 inch and a thickness of between 0.005 and about 0.008 inch.
  • the laminations are usually formed from the tin can stock to the above dimensions by cutting with a high speed rotary die cutter in free space or the material maybe slit to the width desired and then cut with a rotary cutter against a stationary knife edge. In the latter case, the cutter and slitter are in line.
  • an atmosphere of wet hydrogen having a dew point in excess of about +60F is utilized.
  • the wet hydrogen atmosphere is effective for removing the carbon content to a value of less than about 0.01%
  • this coating provides sufficient interlaminar resistance that after the core is molded it will exhibit the required core loss as well as other magnetic characteristics.
  • the method of the present invention is applicable to produce any molded core having at least one conductor contained wherein and the method is amenable to other techniques such as the so-called free mold or the fixed mold techniques.
  • specific reference will be placed in the following description to a method of molding stators having embedded conductors therein and is applicable to the production of a stator core for a motor it being understood that the method is applicable to both static and dynamic electrical apparatus where conductors areto be molded in a magnetic core.
  • FIG. 1 there is shown a stator coil preform 10 which comprises a plurality of vertically extending slot conductors 12 which according to the prior art methods of manufacturing motors would be disposed within the slots of the stator lamination.
  • the coil perform 10 having its slot conductors 12 disposed as shown in FIG. 1 is formed on a mandrel or form with the requisite number of end turns 14.
  • the coil preform 10 is usually formed of a electrical conductor wire such as magnet wire to which an electrically insulative coating 16 has been applied.
  • the coil perform 10 may be wound on a mandrel (not shown) and can be thereafter coated with any suitable resinous or other insulating coating 16 of a thickness not exceeding about 3 mils which will maintain the dimensional integrity of the coil preform 10 after it has been removed from the forming mandrel.
  • FIG. 2 there is illustrated a container shown generally at 20 which comprises a unitary structure with a base 22 and upwardly extending sidewalls 24.
  • a container 20 may be formed of elastic or flexible polyurethane resin which is cast into the desired shape. Natural rubber, silicone rubbers and synthetic elastomers can be also employed.
  • a cast resin base 26 Situated on the base 22 of the container 20 and within the sidewalls 24 is a cast resin base 26 having a centrally disposed opening therein 28 for accommodating a core bar 30 which is centrally disposed within the container 20 and functions to accurately position the bore of the formed molded stator so as to accommodate the rotor of a motor.
  • the base 26 is also provided with an annular opening or slot 32 which is disposed for accommodating the end turns 14 of the coil preform 10.
  • FIG. 3 will show in cross-section the assembled relationship of the sidewalls 24, lot conductors l2 and core bar 30.
  • a selected quantity of the annealed and insulated microlaminations 35 is deposited and positioned in the space 34 between the outer container sidewalls 24 the core bar 30 and the slot windings 12.
  • the entire container and its contents are subjeted to vibratory energy so that the green" pack ing factor will be maximized in order to obtain the highest possible packing factor in the completely molded stator after the same has been pressurized.
  • the pre formed coil may be energized with a suitable source of electrical current in order to align the microlaminations along the magnetic flux lines to form poles to provide maximum magnetic cooperation with the shape and pattern in which the coil is wound.
  • a matching top filler and seal 36 which is essentially a mirror image of the cast base 26 is disposed in a seating arrangement on top of the microlamination 35, the coil end turns 14 and core bar 30. As thus assembled the loaded container is ready for pressurization to effect consolidation.
  • isostatic pressure In order to compact the microlaminations 35 uniformly around the preformed coil 14 it is preferred to apply isostatic pressure to the assembly. Such isostatic pressurization will be effective for densifying both. the conductors t2 and the microlaminations and since the container 20 which is preferably formed out of polyurethane is flexible it will permit dimensional changes to occur during the pressurization thereby enabling the attainment of a packing factor in excess of 80%.
  • the loaded container is placed within a suitable isostatic pressurization chamber which is thereafter filled with a fluid and pressur ized sufficiently to cause densification of the microlaminations and coils to occur such that the packing factor or density thereof will be in excess of 80% of the volume occupied by the microlaminations and the embedded conductors. While the degree of pressurization above a certain limit is not too cricital, it has been found that with the application of about 50,000 psi a molded stator is produced exhibiting a density or pack ing factor in excess of 80% of theoretical.
  • the coil was treated in a fluidized bed of dry powder of an epoxy resin of the polyglycidyl ester of a dihydric phenol type.
  • This fluidized bed treatment with the epoxy resin was effective for providing a very hard out flexible electrical insulation coating to the slot conductors as well as the end turns.
  • a cast flexible polyurethane container 20 with a cast base 26 for accurately positioning the preformed stator coil was thereafter employed in which the preformed stator coil 10 was positioned within the cast base and a steel core bar 30 was thereafter inserted within the interior of the coil to accurately dimension the bore thereof.
  • the container with the cast base 26, preformed coil 10 and core bar were thereafter placed on a virbator and previously prepared microlaminations were poured into the space 34 between the core bar and the preformed coil 110, as well -the pressure was released and the molded stator was then removed from the polyurethane container after removing top filler 36.
  • This molded stator was assembled into a'three-quarter horsepower two pole induction motor and tested with the results as graphically illustrated in FIGS. 4 and 5.
  • FIG. 41- which is a plot of the applied voltage versus the noload amperes for both a conventionally wound motor a core made of punched laminations as well as the motor of the present invention, shows the improvement effected by the use of the microlaminations in conjunction with the preformed stator coil which are molded into a unitary stator core.
  • the no-load amperes are lower for the molded stator motor of this invention.
  • FIG. 6 is a photomacrograph of the cross section of the slot conductors after hydrostatic pressing. It will be noted that by the mere application of a hydrostatic pressure of about 50,000 psi the slot conductors have been compressed so as to form substantially regular hexagons throughout the cross section. By the compression of the slot conductors, compression of the microlaminations and the elimination of the usual slot liners, more effective amounts of metal can be put to work in the same spare considerations. It is noted that while the space factor of the conductor approaches no damage was found to the wires or to the insulation. The wire to wire insulation withstood 800 volts and the wire microlamination insulation withstood 2600 volts. Thus there is complete integrity to each of the individual slot conductors which is not disturbed through the subjection of said conductors to the hydrostatic pressing.
  • Another advantage of the consolidation of the microlamination magnetic core and conductors into a solid unitary stator is that destructive vibration which takes place between insulated windings and liminations is greatly reduced because of the solid compaction of the windings and the core. Thus failure ofthe electrical insulator by abrasion or cut-through of the enamel on the conductors is avoided.
  • a ring core was molded about a wire bundle under the same conditions and thereafter the conductors were machined out and the core alone was evaluated for magnetic performance. Density measurements indicate that the microlaminates had been compressed to a packing factor of about 89%
  • the core has a magnetic induction of 12.5 kilogausses where binder may applied field was 50 oersteds. and 14.2 kilogauss when the applied field was I00 oersteds. Moreover. the core exhibited a 15 kilogauss watt loss of 5.9 watts per pound. These are properties superior to laminated cores.
  • the method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlaminations are formed from a ferromagnetic material, are substantially of'an elongated rectangular cross-section, have been annealed to decarburize, deoxidize and improve the magnetic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming a conductor into a desired configuration, assembling the preformed conductor in a flexible container of predetermined configuration, add- .ing microlaminations about the conductor within the container, sealing the container, compressing the mic rolaminates about the conductor to attain a packing 1 factor in excess of 80%, removing the pressure and thereafter removing the molded core from the container.
  • microlaminates are coated with a binder prior to pressurization.
  • the method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlaminations are formed from a ferromagnetic material, are substantially of an elongated rectangle cross section, have been annealed to decarbonize, deoxidize and improve the mag netic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming the conductor into a coil configuration, assembling the preformed coilcentrally within a flexible container of predetermined configuration, positioning a core bar inpredetermined spaced relation within the coil, adding a predetermined amount of microlaminations to the space between the core bar and container walls and about the coil, sealing the container, pressurizing the microlaminations and coil to attain a packing factor in excess of 80% to form a unitary structure, removing the pressure and thereafter removing the molded core from the container.

Abstract

A method is disclosed for forming a magnetic core. The core comprises a preformed coil about which a plurality of substantially rectangular microlaminations of a ferromagnetic material are disposed and the components are compressed into a unitary structure. The method includes the steps of preforming a coil assembling the coil in fluid-tight container together with a core bar positioned centrally of the coil. Microlaminations are added to the container which is thereafter pressurized to compress the microlaminations about the coil to form a unitary structure.

Description

United States Patent 1191 Pavlik et al.
METHOD OF PRODUCING MOLDED STATORS FROM STEEL PARTICLES Inventors: Norman M. Pavlik, Pittsburgh;
James W. Cunningham, Vandergrift, both ofPa.
Westinghouse Electric Corporation, Pittsburgh, Pa.
Filed: Sept. 11, 1973 Appl. No.: 396,256
Assignee:
US. Cl 29/596, 29/420, 29/606, 29/608, 148/104, 264/111, 310/44, 310/216,
Int. Cl. H02k 15/02 Field of Search 29/596, 598, 606, 608, 29/420; 310/216, 42, 44, 254; 336/233; 264/111; 148/104, 105
References Cited UNITED STATES PATENTS 12/1934 Polydoroff 29/608 X 7/1936 Rehmann 29/608 UX [451 Nov. 19, 1974 2,064,773 12/1936 Vogt 148/104 2,241,441 5/1941 Bandur 336/233 X 2,419,847 4/1947 Mittermaier 29/606 UX 2,966,704 1/1961 OBrian et a1...... 29/608 UX 3,255,052 6/1966 Opitz 148/104 X Primary Examiner-C. W. Lanharn Assistant Examiner-Carl E. Hall Attorney, Agent, or Firm-R. T. Randig [57] ABSTRACT A method is disclosed for forming a magnetic core. The core comprises a preformed coil about which a plurality of substantially rectangular microlaminations of a ferromagnetic material are disposed and the components are compressed into a unitary structure. The method includes the steps of preforming a coil assembling the coil in fluid-tight container together with a core bar positioned centrally of the coil. Microlaminations are added to the container which is thereafter pressurized to compress the microlaminations about the coil to form a unitary structure.
15 Claims, 6 Drawing Figures PATENTEL NU! I 9l974 SHEEI 2 0F 3 Q/CONVENTIONAL MOTOR MOLDED MOTOR l 2 NO LOAD AMPERES O O O O 8 6 2 I l FIG. 5.
LCONVENTIONAL MOTOR NO LOAD WATTS PATENTEL HUV 1 91974 SHEET 3 0F 3 FIG. 6.
METHOD OF PRODUCING MOLDED STATORS FROM STEEL PARTICLES CROSS REFERENCE TO RELATED APPLICATIONS The subject matter of the present application is clearly related to application Ser. No. 396,260 filed Sept. 11, 1973 and application'Ser. No. 396,257, filed Sept. 1 1, 1973, filed concurrently herewith.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to unitary structure which comprises a magnetic core having conductors embedded therein. Essentially the core is formed by performing a coil and disposing the same within a fluid tight container. Thereafter a core bar is positioned centrally of the coil and a quantity of microlaminations is added to the container to fill the space between the core bar, the coil and the container. Upon filling the container with the requisite amount of microlaminations, the container is sealed and subjected to pressure so as to mold the entire unit into a unitary structure which may be thereafter readily removed from the fluid tight container.
2. Description of the Prior Art Cores and particularly motor stator cores are generally made from laminations. In conventional manufacturing techniques, these laminations are punched from electrical steel sheet which are thereafter annealed, insulated and stacked one upon the other in order to form the core. Conductors usually in the form of coils are then wound into the slots which have been machined within the core structure or which are formed when the laminations are punched. The material which is removed to produce this slot may comprise 2540% of the total area of each lamination and this material is lost as scrap. Moreover the stacked core produces a slot geometry which is limited because of the die cost. Consequently the slot fill of the conductors is restricted since the conventional method of winding or inserting the conductors into the slot does not permit them to be compressed. Moreover thick liners are required to protect the conductors from abrasion by the rough edges of the laminations during the winding operation. Since the conductors cannot be compressed in the current method of manufacture some of the volume encompassed by the end turns of the windings is wasted due to the inherent limitation of the lamination construction. It therefore becomes apparent that it is desired to make a more'efficient use of both the space and materials involved in such magnetic cores. As a result of the practice of the present invention both conductor and core configurations have been improved where the stator core is constructed by molding iron particles around the conductors and thereby completely eliminating the presently wasted space.
Past attempts for example those described in US. Pat. Nos. 1,850,181; 1,669,648 and 1,982,689 to produce simple ring cores by pressing the iron powder particles have produced very poor magnetic properties. One factor for the poor magnetic properties is believed to be due to the inability to achieve a sufficient density of iron. Part of the densification aspect was slightly improved where metallic iron in the form of flakes or wire employed in preference to iron powder. The metallic flakes simply consisted of atomizing molten iron into powder configuration and rolling the same to produce a flattened elongated powder metal particle.
In order to overcome these shortcomings in the prior art practice, the present invention teaches that small, substantially rectangular ferromagnetic particles in the form of microlaminations which may be formed for example from plain carbon steel sheet and processed to yield the required magnetic properties, can be molded around a preformed coil assembly. The resulting core formed from the microlaminations is scrapless. has a high precision bore due to the molding technique, utilizes more active magnetic materials since precut slots are eliminated and in addition the molding technique compacts the coil conductors during the molding pres surization and thereby eliminates the need for thick slot liners. As a result both better space factors and higher densities of both magnetic material and conductor can be obtained with the result that such molded cores exhibit outstanding magnetic characteristics.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a preformed coil employed in making a molded motor stator with part of the insulation removed;
FIG. 2 is a view in vertical cross section of a loaded container which is utilized in practicing the method of the present invention;
FIG. 3 is a sectional view of the loaded container taken along the lines 111-111 of FIG 2;
FIG. 4 is a plot of the applied voltage versus the no load ampers;
FIG. 5 is a plot of the applied voltage versus the no load watts; and
FIG. 6 is a macrograph of a cross-section of the conductors after pressurization and molding of the core into unitary structure.
DESCRIPTION OF THE PREFERRED EMBODIMENT One of the basic materials which is employed in the method of the present invention includes small substantially rectangular parallelopipeds of magnetic material, each of which has been termed a microlamination' Essentially this material preferably comprises a low carbon steel and that steel which is normally used for tin cans is an ideal source since it. is abundantly available and is quite low in cost. Of course any other ferromagnetic material which can be obtained in essentially this shaped particle may function just as well. This material is preferably purchased in the so-called black plate condition; that is the condition prior to the application of the metal coating thereto for the tin can stock. Essentially this material is available in a wide range of thicknesses usually within the range between about 0.005 inch to about 0.014 inch. While a relatively wide range of steel particle sizes and thicknesses appears to be satisfactory it is preferred to have the microlamination formed with the length ranging between about 0.05 inch and about 0.06 inch, a width of between 0.01 inch and 0.02 inch and a thickness of between 0.005 and about 0.008 inch. The laminations are usually formed from the tin can stock to the above dimensions by cutting with a high speed rotary die cutter in free space or the material maybe slit to the width desired and then cut with a rotary cutter against a stationary knife edge. In the latter case, the cutter and slitter are in line.
Other feedstock can also be employed with equally good results, for example steel wool, scrap and billet shavings, scrap cobalt iron can be processed into microlaminations for use in motors for special applications, as aircraft. It will be appreciated that the formation of the microlaminations entails a considerable amount of stressing of the material. Accordingly where the materials are to be used in a magnetic core the desired magnetic properties must be developed. This aspect includes the relieving of the stresses in the steel imparted during the formation of the microlamination plus a deoxidation and a decarburization treatment so that the core structure of a high density or packing factor can be obtained which will also exhibit excellent magnetic characteristics. Thus in developing the magnetic characteristics it is preferred to anneal the microlaminations at a temperature within the range between about 700C and 800C. It has been found that these temperatures are sufficient for relieving the stresses in microlaminates which have been induced during their processing.
In order to decarburize the microlaminations, during the initial stage of the heat treatment at the temperature range indicated, an atmosphere of wet hydrogen having a dew point in excess of about +60F is utilized. The wet hydrogen atmosphere is effective for removing the carbon content to a value of less than about 0.01%
i by weight. This wet hydrogen atmosphere is maintained about the heated microlaminations for a period of up to about 2 hours in order to obtain the desired low carbon content therein, and thereafter the annealing within the stated temperature range is continued in a dry hydrogen atmosphere which is also effective for deoxidizing the microlaminations. It has been found that forming gas or other strongly oxidizing atmospheres that produce oxides on the steel cannot be used since I the oxide thickness adversely affects the packing factor that treatment with magnesium methylate is a preferred medium for providing an insulating coating on the laminations since the insulating coating is very thin and is flexible enough to withstand the molding pressures.
While other insulating coatings may be employed, this coating provides sufficient interlaminar resistance that after the core is molded it will exhibit the required core loss as well as other magnetic characteristics.
The method of the present invention is applicable to produce any molded core having at least one conductor contained wherein and the method is amenable to other techniques such as the so-called free mold or the fixed mold techniques. However specific reference will be placed in the following description to a method of molding stators having embedded conductors therein and is applicable to the production of a stator core for a motor it being understood that the method is applicable to both static and dynamic electrical apparatus where conductors areto be molded in a magnetic core.
More specifically. the method of the applicants" present invention is directed to the utilization of a preformed coil which is used in the manufacture of a stator for a motor. Referring now to FIG. 1 there is shown a stator coil preform 10 which comprises a plurality of vertically extending slot conductors 12 which according to the prior art methods of manufacturing motors would be disposed within the slots of the stator lamination. The coil perform 10 having its slot conductors 12 disposed as shown in FIG. 1 is formed on a mandrel or form with the requisite number of end turns 14. The coil preform 10 is usually formed of a electrical conductor wire such as magnet wire to which an electrically insulative coating 16 has been applied. The coil perform 10 may be wound on a mandrel (not shown) and can be thereafter coated with any suitable resinous or other insulating coating 16 of a thickness not exceeding about 3 mils which will maintain the dimensional integrity of the coil preform 10 after it has been removed from the forming mandrel.
Referring now to FIG. 2 there is illustrated a container shown generally at 20 which comprises a unitary structure with a base 22 and upwardly extending sidewalls 24. In practice it has been found that such a container 20 may be formed of elastic or flexible polyurethane resin which is cast into the desired shape. Natural rubber, silicone rubbers and synthetic elastomers can be also employed. Situated on the base 22 of the container 20 and within the sidewalls 24 is a cast resin base 26 having a centrally disposed opening therein 28 for accommodating a core bar 30 which is centrally disposed within the container 20 and functions to accurately position the bore of the formed molded stator so as to accommodate the rotor of a motor. The base 26 is also provided with an annular opening or slot 32 which is disposed for accommodating the end turns 14 of the coil preform 10.
Reference to FIG. 3 will show in cross-section the assembled relationship of the sidewalls 24, lot conductors l2 and core bar 30. As thus assembled, a selected quantity of the annealed and insulated microlaminations 35 is deposited and positioned in the space 34 between the outer container sidewalls 24 the core bar 30 and the slot windings 12. During the addition of the quantity of microlaminations 35 in the spaces provided therefor, the entire container and its contents are subjeted to vibratory energy so that the green" pack ing factor will be maximized in order to obtain the highest possible packing factor in the completely molded stator after the same has been pressurized. Where desired, in order to obtain a preferred orientation the pre formed coil may be energized with a suitable source of electrical current in order to align the microlaminations along the magnetic flux lines to form poles to provide maximum magnetic cooperation with the shape and pattern in which the coil is wound.
When a sufficient quantity of microlaminations has been added to occupy the predetermined space, a matching top filler and seal 36 which is essentially a mirror image of the cast base 26 is disposed in a seating arrangement on top of the microlamination 35, the coil end turns 14 and core bar 30. As thus assembled the loaded container is ready for pressurization to effect consolidation.
In order to compact the microlaminations 35 uniformly around the preformed coil 14 it is preferred to apply isostatic pressure to the assembly. Such isostatic pressurization will be effective for densifying both. the conductors t2 and the microlaminations and since the container 20 which is preferably formed out of polyurethane is flexible it will permit dimensional changes to occur during the pressurization thereby enabling the attainment of a packing factor in excess of 80%.
To effect consolidation the loaded container is placed within a suitable isostatic pressurization chamber which is thereafter filled with a fluid and pressur ized sufficiently to cause densification of the microlaminations and coils to occur such that the packing factor or density thereof will be in excess of 80% of the volume occupied by the microlaminations and the embedded conductors. While the degree of pressurization above a certain limit is not too cricital, it has been found that with the application of about 50,000 psi a molded stator is produced exhibiting a density or pack ing factor in excess of 80% of theoretical.
In order to more clearly demonstrate the present invention reference may be had to the following which describes the construction of a two-pole dual voltage, three-quarter horsepower induction motor. A preformed coil similar to that illustrated in FIG. I was employed in which the conductors were wound on a man drel to provide the slot conductors l2 and the end turns 14 in the manner illustrated in FIG. 1. After winding,
and removal of the coil preform from the mandrel the coil was treated in a fluidized bed of dry powder of an epoxy resin of the polyglycidyl ester of a dihydric phenol type. This fluidized bed treatment with the epoxy resin was effective for providing a very hard out flexible electrical insulation coating to the slot conductors as well as the end turns.
A cast flexible polyurethane container 20 with a cast base 26 for accurately positioning the preformed stator coil was thereafter employed in which the preformed stator coil 10 was positioned within the cast base and a steel core bar 30 was thereafter inserted within the interior of the coil to accurately dimension the bore thereof. The container with the cast base 26, preformed coil 10 and core bar were thereafter placed on a virbator and previously prepared microlaminations were poured into the space 34 between the core bar and the preformed coil 110, as well -the pressure was released and the molded stator was then removed from the polyurethane container after removing top filler 36. This molded stator was assembled into a'three-quarter horsepower two pole induction motor and tested with the results as graphically illustrated in FIGS. 4 and 5.
Reference to FIG. 41-, which is a plot of the applied voltage versus the noload amperes for both a conventionally wound motor a core made of punched laminations as well as the motor of the present invention, shows the improvement effected by the use of the microlaminations in conjunction with the preformed stator coil which are molded into a unitary stator core. For the same voltage over the range of I20 to 240 volts, the no-load amperes are lower for the molded stator motor of this invention.
The advantages of the present invention can be discussed quite clearly when the same stators are employed in the same motors and the plots of the respective applied voltage versus the no load watts is considered. As graphically illustrated in FIG. 5, emplo ing a stator made in accordance with the teaching of the present invention results in a substantial improvement over a conventionally constructed motor. Thus at 220 volts the stator of this invention has 120 watts at noload versus I watts. a 3071 reduction. This improvement is believed to occur by reason of the higher overall density which can be obtained employing the present invention.
Reference is now directed to FIG. 6 which is a photomacrograph of the cross section of the slot conductors after hydrostatic pressing. It will be noted that by the mere application of a hydrostatic pressure of about 50,000 psi the slot conductors have been compressed so as to form substantially regular hexagons throughout the cross section. By the compression of the slot conductors, compression of the microlaminations and the elimination of the usual slot liners, more effective amounts of metal can be put to work in the same spare considerations. It is noted that while the space factor of the conductor approaches no damage was found to the wires or to the insulation. The wire to wire insulation withstood 800 volts and the wire microlamination insulation withstood 2600 volts. Thus there is complete integrity to each of the individual slot conductors which is not disturbed through the subjection of said conductors to the hydrostatic pressing.
Another advantage of the consolidation of the microlamination magnetic core and conductors into a solid unitary stator is that destructive vibration which takes place between insulated windings and liminations is greatly reduced because of the solid compaction of the windings and the core. Thus failure ofthe electrical insulator by abrasion or cut-through of the enamel on the conductors is avoided.
In order to finish the evaluation of a similar molded core a ring core was molded about a wire bundle under the same conditions and thereafter the conductors were machined out and the core alone was evaluated for magnetic performance. Density measurements indicate that the microlaminates had been compressed to a packing factor of about 89% The core has a magnetic induction of 12.5 kilogausses where binder may applied field was 50 oersteds. and 14.2 kilogauss when the applied field was I00 oersteds. Moreover. the core exhibited a 15 kilogauss watt loss of 5.9 watts per pound. These are properties superior to laminated cores.
It will become apparent that while the specific example has been illustrated employing a fluid hydrostatic pressure technique, other methods such as a dry bag isostatic compaction technique can be employed sults. It is imperative, however, that in the event that the binder is used that the same be capable of exerting its binding influence without entailing to excessive thicknesses, with lower packing density of the magnetic material per se. Thus binders generally used, for example, with iron powders such as carbowax and organic resins were not satisfactory because of excessive thick nesses which results in the decrease in packing density.
.wound onto a cylindrical bell, placed in the pressurizing container, and the electrical conductor disposed therein, to be followedby the core bar, and finally the microlaminations are poured in between the tape shell and the core bar. Upon consolidation with a pressurized fluid the entire assembly will be integrally united.
From the foregoing it will be appreciatd that substantial savings can be effected in both the conductor as well as the cores since for all practical purposes air gaps are eliminated and there is a higher material density than could be obtained from employing staked laminations as the core material and thereafter winding the core in a manner of a conventional motor. Thus in addition to the savings in materials as well as labor, im-
proved performance is obtained, resulting in the same power output from substantially reduced inputs, or stated conversely, higher power outputs can be obtained from the same electrical inputs.
We claim:
1. The method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlaminations are formed from a ferromagnetic material, are substantially of'an elongated rectangular cross-section, have been annealed to decarburize, deoxidize and improve the magnetic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming a conductor into a desired configuration, assembling the preformed conductor in a flexible container of predetermined configuration, add- .ing microlaminations about the conductor within the container, sealing the container, compressing the mic rolaminates about the conductor to attain a packing 1 factor in excess of 80%, removing the pressure and thereafter removing the molded core from the container.
2. The method of claim 1 in which the microlaminations are treated with a binder prior to pressurization.
3. The method of claim 1, in which a core bar of predetermined shape is disposed within the preformed conductor which is disposed in the flexible container prior to introducing the microlaminations.
4. The method of claim 1 in which the conductor is provided with a conductor-to-microlaminate insulation not in excess of 3 mils in thickness.
5. The method of claim 1 in which a yoke is applied to the molded core, said yoke being in the form of a tape wound ring core.
6. The method of claim 1 in which a yoke is applied to the molded core, said yoke being in the form of a plurality of punched or stamped laminations.
7. The method of claim 1 in which the container is subjected to vibratory energy while the microlaminations are added thereto.
8. The method of producing a molded stator employing microlaminations in which the microlaminations are formed from low carbon steel. are substantially rectangular in shape, have been annealed to decarbonize and deoxidize the same and improve the magnetic characteristics thereof and in which each of the microlaminations is provided with a magnetically insulative coating on the surface thereof, the steps comprising, preforming a stator coil. preforming a stator yoke. said yoke having an outside diameter of the desied dimension of the finished stator and an inside diameter sufficiently great to accommodate the coil therein. assembling the preformed yoke and the the preformed coil in a flexible container of predetermined configuration, saidcoil being positioned centrally of the yoke and both within the container, positioning a core bar centrally within the coil, energizing the coil, adding the microlaminates about the coil within the container. sealing the container, pressurizing the container to effect a packing factor in excess of about removing the pressure and thereafter removing the molded stator from the container.
9. The method of claim 4 in which the microlaminates are coated with a binder prior to pressurization.
10. The method of claim 4 in which the coil is provided with a wire-to-microlaminations electrical insulation not in excess of about 3 mils.
11. The method of claim 4 in which the yoke is formed in the manner of a tape wound ring core.
12. The method of claim 4 in which the yoke is formed of a plurality of stamped or punched laminations.
13. The method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlaminations are formed from a ferromagnetic material, are substantially of an elongated rectangle cross section, have been annealed to decarbonize, deoxidize and improve the mag netic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming the conductor into a coil configuration, assembling the preformed coilcentrally within a flexible container of predetermined configuration, positioning a core bar inpredetermined spaced relation within the coil, adding a predetermined amount of microlaminations to the space between the core bar and container walls and about the coil, sealing the container, pressurizing the microlaminations and coil to attain a packing factor in excess of 80% to form a unitary structure, removing the pressure and thereafter removing the molded core from the container.
14. The method of claim 9 in which the assembly is subjected to vibratory energy during the addition of the microlaminates to the container.
a binder prior to pressurization.
tions are treated with

Claims (15)

1. The method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlamInations are formed from a ferromagnetic material, are substantially of an elongated rectangular cross-section, have been annealed to decarburize, deoxidize and improve the magnetic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming a conductor into a desired configuration, assembling the preformed conductor in a flexible container of predetermined configuration, adding microlaminations about the conductor within the container, sealing the container, compressing the microlaminates about the conductor to attain a packing factor in excess of 80%, removing the pressure and thereafter removing the molded core from the container.
2. The method of claim 1 in which the microlaminations are treated with a binder prior to pressurization.
3. The method of claim 1, in which a core bar of predetermined shape is disposed within the preformed conductor which is disposed in the flexible container prior to introducing the microlaminations.
4. The method of claim 1 in which the conductor is provided with a conductor-to-microlaminate insulation not in excess of 3 mils in thickness.
5. The method of claim 1 in which a yoke is applied to the molded core, said yoke being in the form of a tape wound ring core.
6. The method of claim 1 in which a yoke is applied to the molded core, said yoke being in the form of a plurality of punched or stamped laminations.
7. The method of claim 1 in which the container is subjected to vibratory energy while the microlaminations are added thereto.
8. The method of producing a molded stator employing microlaminations in which the microlaminations are formed from low carbon steel, are substantially rectangular in shape, have been annealed to decarbonize and deoxidize the same and improve the magnetic characteristics thereof and in which each of the microlaminations is provided with a magnetically insulative coating on the surface thereof, the steps comprising, preforming a stator coil, preforming a stator yoke, said yoke having an outside diameter of the desied dimension of the finished stator and an inside diameter sufficiently great to accommodate the coil therein, assembling the preformed yoke and the the preformed coil in a flexible container of predetermined configuration, said coil being positioned centrally of the yoke and both within the container, positioning a core bar centrally within the coil, energizing the coil, adding the microlaminates about the coil within the container, sealing the container, pressurizing the container to effect a packing factor in excess of about 80%, removing the pressure and thereafter removing the molded stator from the container.
9. The method of claim 4 in which the microlaminates are coated with a binder prior to pressurization.
10. The method of claim 4 in which the coil is provided with a wire-to-microlaminations electrical insulation not in excess of about 3 mils.
11. The method of claim 4 in which the yoke is formed in the manner of a tape wound ring core.
12. The method of claim 4 in which the yoke is formed of a plurality of stamped or punched laminations.
13. The method of producing a molded core having at least one conductor embedded therein employing microlaminations in which the microlaminations are formed from a ferromagnetic material, are substantially of an elongated rectangle cross section, have been annealed to decarbonize, deoxidize and improve the magnetic characteristics thereof, and in which each of the microlaminations is provided with an electrically insulative coating on the surface thereof, the steps comprising, preforming the conductor into a coil configuration, assembling the preformed coil centrally within a flexible container of predetermined configuration, positioning a core bar in predetermined spaced relation within the coil, adding a predetermined amount of microlaminations to the space between the core bar and container waLls and about the coil, sealing the container, pressurizing the microlaminations and coil to attain a packing factor in excess of 80% to form a unitary structure, removing the pressure and thereafter removing the molded core from the container.
14. The method of claim 9 in which the assembly is subjected to vibratory energy during the addition of the microlaminates to the container.
15. The method of claim 9 in which the microlaminations are treated with a binder prior to pressurization.
US00396256A 1973-09-11 1973-09-11 Method of producing molded stators from steel particles Expired - Lifetime US3848331A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00396256A US3848331A (en) 1973-09-11 1973-09-11 Method of producing molded stators from steel particles
CA207,483A CA988694A (en) 1973-09-11 1974-08-21 Method of producing molded stators from steel particles
GB3822474A GB1477510A (en) 1973-09-11 1974-09-02 Method of producing moulded cores employing microlaminations
GB29231/75A GB1482378A (en) 1973-09-11 1974-09-02 Stators for dynamoelectric machines
AU73070/74A AU496361B2 (en) 1973-09-11 1974-09-06 Improvements in or relating to molded stators produced from steel particles (microlaminations)
DE2443281A DE2443281A1 (en) 1973-09-11 1974-09-10 LAMINATED MAGNETIC CORE
FR7430616A FR2243508A1 (en) 1973-09-11 1974-09-10
JP49103966A JPS5054805A (en) 1973-09-11 1974-09-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00396256A US3848331A (en) 1973-09-11 1973-09-11 Method of producing molded stators from steel particles

Publications (1)

Publication Number Publication Date
US3848331A true US3848331A (en) 1974-11-19

Family

ID=23566501

Family Applications (1)

Application Number Title Priority Date Filing Date
US00396256A Expired - Lifetime US3848331A (en) 1973-09-11 1973-09-11 Method of producing molded stators from steel particles

Country Status (6)

Country Link
US (1) US3848331A (en)
JP (1) JPS5054805A (en)
CA (1) CA988694A (en)
DE (1) DE2443281A1 (en)
FR (1) FR2243508A1 (en)
GB (2) GB1477510A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948690A (en) * 1973-09-11 1976-04-06 Westinghouse Electric Corporation Molded magnetic cores utilizing cut steel particles
FR2391587A1 (en) * 1977-05-18 1978-12-15 Matsushita Electric Works Ltd PROCESS FOR MANUFACTURING COILS FOR ROTORS OF CORELESS MOTORS
US4158580A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making pressed magnetic core components
US4158581A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making magnetic component for direct current apparatus
US4158582A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making pressed magnetic core components
US4158561A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method for preparing oxide coated microlamination particles
US4265681A (en) * 1978-04-14 1981-05-05 Westinghouse Electric Corp. Method of producing low loss pressed magnetic cores from microlaminations
US4400675A (en) * 1981-11-05 1983-08-23 Westinghouse Electric Corp. Transformer with impedance matching means
US4486641A (en) 1981-12-21 1984-12-04 Ruffini Robert S Inductor, coating and method
US4776980A (en) * 1987-03-20 1988-10-11 Ruffini Robert S Inductor insert compositions and methods
EP0313514A1 (en) * 1987-10-21 1989-04-26 Mavilor Systèmes S.A. Manufacturing method of a non-slotted stator for an electric motor and electric motor fitted with such a stator
EP0495582A2 (en) * 1991-01-14 1992-07-22 Westinghouse Electric Corporation High efficiency, low reactance disk-type machine including a rotor and stator
US5138292A (en) * 1990-03-21 1992-08-11 Herion Werke Kg Encapsulated apparatus
US5403540A (en) * 1990-10-29 1995-04-04 Corning Incorporated Heating of formed metal structure by induction
US5418811A (en) * 1992-04-08 1995-05-23 Fluxtrol Manufacturing, Inc. High performance induction melting coil
US5625243A (en) * 1993-06-15 1997-04-29 High Speed Tech Oy Ltd. Rotor construction in an asynchronous electric machine
US5680692A (en) * 1994-10-03 1997-10-28 General Electric Company Fabrication of induction motors
US5682129A (en) * 1988-11-07 1997-10-28 N.V. Airpax S.A. Electrical actuator
US5990588A (en) * 1996-12-13 1999-11-23 General Electric Company Induction motor driven seal-less pump
US6232681B1 (en) * 2000-03-23 2001-05-15 Delco Remy International, Inc. Electromagnetic device with embedded windings and method for its manufacture
US20020175588A1 (en) * 2001-05-24 2002-11-28 Rajasingham Arjuna Indraes Waran Axial gap electrical machine
US6524380B1 (en) 2000-03-06 2003-02-25 Hamilton Sundstrand Corporation Magnesium methylate coatings for electromechanical hardware
US7078843B2 (en) 2003-09-05 2006-07-18 Black & Decker Inc. Field assemblies and methods of making same
US7146706B2 (en) 2003-09-05 2006-12-12 Black & Decker Inc. Method of making an electric motor
US7205696B2 (en) 2003-09-05 2007-04-17 Black & Decker Inc. Field assemblies having pole pieces with ends that decrease in width, and methods of making same
US7211920B2 (en) 2003-09-05 2007-05-01 Black & Decker Inc. Field assemblies having pole pieces with axial lengths less than an axial length of a back iron portion and methods of making same
US7510766B2 (en) 2003-02-05 2009-03-31 Corporation Imfine Inc. High performance magnetic composite for AC applications and a process for manufacturing the same
US20090134719A1 (en) * 2006-04-14 2009-05-28 Ciiis, Llc Electric motor containing ferromagnetic particles
US20090240096A1 (en) * 2005-07-27 2009-09-24 Neuronetics, Inc. Magnetic core for medical procedures
US20090315427A1 (en) * 2008-06-23 2009-12-24 Jung Moo Seo Slotless motor
US20100040488A1 (en) * 2007-02-23 2010-02-18 Yasuhiro Yukitake Motor and electric pump
FR2946811A1 (en) * 2009-06-11 2010-12-17 Patrick Chevallier Stator for electric generator of axial flow wind turbine i.e. synchronous/asynchronous induction machine, has contact surfaces arranged in transverse way to magnetic field lines created in disk during operation of electric generator
WO2012080586A1 (en) * 2010-12-17 2012-06-21 Verteole Stator for an electric generator
US8207647B2 (en) 2003-09-05 2012-06-26 Black & Decker Inc. Power tools with motor having a multi-piece stator
US20140252912A1 (en) * 2011-11-03 2014-09-11 Moteurs Leroy-Somer Rotor of an electric machine
CN104347260A (en) * 2013-07-26 2015-02-11 郑佐 Manufacturing process of integrally formed traction electromagnet
US20200227955A1 (en) * 2019-01-14 2020-07-16 GM Global Technology Operations LLC Molded core assemblies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202019A1 (en) * 2012-02-10 2013-08-14 Ksb Aktiengesellschaft Manufacturing process for a rotor and rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1982689A (en) * 1931-03-16 1934-12-04 Johnson Lab Inc Magnetic core material
US2048222A (en) * 1931-10-08 1936-07-21 Deutsche Edelstahlwerke Ag Improvements, in or relating to magnets
US2064773A (en) * 1933-06-01 1936-12-15 Ferrocart Corp Of America Method for making magnetic cores
US2241441A (en) * 1938-07-15 1941-05-13 Western Electric Co Manufacture of magnetic bodies
US2419847A (en) * 1944-06-02 1947-04-29 Gen Electric Powdered iron magnetic core
US2966704A (en) * 1957-01-22 1961-01-03 Edward D O'brian Process of making a ferrite magnetic device
US3255052A (en) * 1963-12-09 1966-06-07 Magnetics Inc Flake magnetic core and method of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1982689A (en) * 1931-03-16 1934-12-04 Johnson Lab Inc Magnetic core material
US2048222A (en) * 1931-10-08 1936-07-21 Deutsche Edelstahlwerke Ag Improvements, in or relating to magnets
US2064773A (en) * 1933-06-01 1936-12-15 Ferrocart Corp Of America Method for making magnetic cores
US2241441A (en) * 1938-07-15 1941-05-13 Western Electric Co Manufacture of magnetic bodies
US2419847A (en) * 1944-06-02 1947-04-29 Gen Electric Powdered iron magnetic core
US2966704A (en) * 1957-01-22 1961-01-03 Edward D O'brian Process of making a ferrite magnetic device
US3255052A (en) * 1963-12-09 1966-06-07 Magnetics Inc Flake magnetic core and method of making same

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948690A (en) * 1973-09-11 1976-04-06 Westinghouse Electric Corporation Molded magnetic cores utilizing cut steel particles
FR2391587A1 (en) * 1977-05-18 1978-12-15 Matsushita Electric Works Ltd PROCESS FOR MANUFACTURING COILS FOR ROTORS OF CORELESS MOTORS
US4158580A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making pressed magnetic core components
US4158581A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making magnetic component for direct current apparatus
US4158582A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method of making pressed magnetic core components
US4158561A (en) * 1978-04-14 1979-06-19 Westinghouse Electric Corp. Method for preparing oxide coated microlamination particles
US4265681A (en) * 1978-04-14 1981-05-05 Westinghouse Electric Corp. Method of producing low loss pressed magnetic cores from microlaminations
US4400675A (en) * 1981-11-05 1983-08-23 Westinghouse Electric Corp. Transformer with impedance matching means
US4486641A (en) 1981-12-21 1984-12-04 Ruffini Robert S Inductor, coating and method
US4776980A (en) * 1987-03-20 1988-10-11 Ruffini Robert S Inductor insert compositions and methods
US4837921A (en) * 1987-10-21 1989-06-13 Mavilor Systemes S. A. Process for manufacturing a grooveless stator for electric motor
EP0313514A1 (en) * 1987-10-21 1989-04-26 Mavilor Systèmes S.A. Manufacturing method of a non-slotted stator for an electric motor and electric motor fitted with such a stator
WO1989004540A1 (en) * 1987-10-30 1989-05-18 R.S. Ruffini & Associates Inductor insert compositions and methods
US5682129A (en) * 1988-11-07 1997-10-28 N.V. Airpax S.A. Electrical actuator
US5138292A (en) * 1990-03-21 1992-08-11 Herion Werke Kg Encapsulated apparatus
US5403540A (en) * 1990-10-29 1995-04-04 Corning Incorporated Heating of formed metal structure by induction
EP0495582A2 (en) * 1991-01-14 1992-07-22 Westinghouse Electric Corporation High efficiency, low reactance disk-type machine including a rotor and stator
US5177392A (en) * 1991-01-14 1993-01-05 Westinghouse Electric Corp. High efficiency, low reactance disk-type machine including an improved rotor and stator
EP0495582A3 (en) * 1991-01-14 1994-05-18 Westinghouse Electric Corp High efficiency, low reactance disk-type machine including a rotor and stator
US5588019A (en) * 1992-04-08 1996-12-24 Fluxtrol Manufacturing, Inc. High performance induction melting coil
US5418811A (en) * 1992-04-08 1995-05-23 Fluxtrol Manufacturing, Inc. High performance induction melting coil
US5625243A (en) * 1993-06-15 1997-04-29 High Speed Tech Oy Ltd. Rotor construction in an asynchronous electric machine
US5680692A (en) * 1994-10-03 1997-10-28 General Electric Company Fabrication of induction motors
US5793138A (en) * 1994-10-03 1998-08-11 General Electric Company Fabrication of induction motors
US5990588A (en) * 1996-12-13 1999-11-23 General Electric Company Induction motor driven seal-less pump
US6578251B2 (en) * 1996-12-13 2003-06-17 General Electric Company Method of fabrication of an induction motor driven seal-less pump
US6274962B1 (en) 1996-12-13 2001-08-14 General Electric Company Induction motor driven seal-less pump
US6524380B1 (en) 2000-03-06 2003-02-25 Hamilton Sundstrand Corporation Magnesium methylate coatings for electromechanical hardware
US6362544B2 (en) * 2000-03-23 2002-03-26 Delco Remy International, Inc. Electromagnetic device with embedded windings and method for its manufacture
US6232681B1 (en) * 2000-03-23 2001-05-15 Delco Remy International, Inc. Electromagnetic device with embedded windings and method for its manufacture
US20020175588A1 (en) * 2001-05-24 2002-11-28 Rajasingham Arjuna Indraes Waran Axial gap electrical machine
US7098566B2 (en) * 2001-05-24 2006-08-29 Rajasingham Arjuna Indraes War Axial gap electrical machine
US7510766B2 (en) 2003-02-05 2009-03-31 Corporation Imfine Inc. High performance magnetic composite for AC applications and a process for manufacturing the same
US20070024151A1 (en) * 2003-09-05 2007-02-01 Du Hung T Electric motor having a field assembly with slot insulation
US7146706B2 (en) 2003-09-05 2006-12-12 Black & Decker Inc. Method of making an electric motor
US7205696B2 (en) 2003-09-05 2007-04-17 Black & Decker Inc. Field assemblies having pole pieces with ends that decrease in width, and methods of making same
US7211920B2 (en) 2003-09-05 2007-05-01 Black & Decker Inc. Field assemblies having pole pieces with axial lengths less than an axial length of a back iron portion and methods of making same
US7233091B2 (en) 2003-09-05 2007-06-19 Black & Decker Inc. Electric motor with field assemblies having core pieces with mating features
US7078843B2 (en) 2003-09-05 2006-07-18 Black & Decker Inc. Field assemblies and methods of making same
US7528520B2 (en) 2003-09-05 2009-05-05 Black & Decker Inc. Electric motor having a field assembly with slot insulation
US8558420B2 (en) 2003-09-05 2013-10-15 Black & Decker Inc. Power tool with motor having a multi-piece stator
US8207647B2 (en) 2003-09-05 2012-06-26 Black & Decker Inc. Power tools with motor having a multi-piece stator
US10617884B2 (en) 2005-07-27 2020-04-14 Neurontics, Inc. Magnetic core for medical procedures
US9308386B2 (en) * 2005-07-27 2016-04-12 Neuronetics, Inc. Magnetic core for medical procedures
US20090240096A1 (en) * 2005-07-27 2009-09-24 Neuronetics, Inc. Magnetic core for medical procedures
US8657731B2 (en) 2005-07-27 2014-02-25 Neuronetics, Inc. Magnetic core for medical procedures
US20180178026A1 (en) * 2005-07-27 2018-06-28 Neuronetics, Inc. Magnetic core for medical procedures
US9931518B2 (en) 2005-07-27 2018-04-03 Neuronetics, Inc. Magnetic core for medical procedures
US20090134719A1 (en) * 2006-04-14 2009-05-28 Ciiis, Llc Electric motor containing ferromagnetic particles
US20100040488A1 (en) * 2007-02-23 2010-02-18 Yasuhiro Yukitake Motor and electric pump
US8310125B2 (en) * 2007-02-23 2012-11-13 Jtekt Corporation Motor and electric pump having a stator including a first sintered metal and second sintered metal
US20090315427A1 (en) * 2008-06-23 2009-12-24 Jung Moo Seo Slotless motor
US7990013B2 (en) * 2008-06-23 2011-08-02 Korea Electronics Technology Institute Slotless motor
FR2946811A1 (en) * 2009-06-11 2010-12-17 Patrick Chevallier Stator for electric generator of axial flow wind turbine i.e. synchronous/asynchronous induction machine, has contact surfaces arranged in transverse way to magnetic field lines created in disk during operation of electric generator
WO2012080586A1 (en) * 2010-12-17 2012-06-21 Verteole Stator for an electric generator
US9425661B2 (en) * 2011-11-03 2016-08-23 Moteurs Leroy-Somer Rotor of an electric machine
US20140252912A1 (en) * 2011-11-03 2014-09-11 Moteurs Leroy-Somer Rotor of an electric machine
CN104347260B (en) * 2013-07-26 2017-02-08 郑佐 Manufacturing process of integrally formed traction electromagnet
CN104347260A (en) * 2013-07-26 2015-02-11 郑佐 Manufacturing process of integrally formed traction electromagnet
US20200227955A1 (en) * 2019-01-14 2020-07-16 GM Global Technology Operations LLC Molded core assemblies
CN111435812A (en) * 2019-01-14 2020-07-21 通用汽车环球科技运作有限责任公司 Molded core assembly
US10923969B2 (en) * 2019-01-14 2021-02-16 GM Global Technology Operations LLC Molded core assemblies for a motor-generator
CN111435812B (en) * 2019-01-14 2022-07-22 通用汽车环球科技运作有限责任公司 Moulded core assembly

Also Published As

Publication number Publication date
JPS5054805A (en) 1975-05-14
CA988694A (en) 1976-05-11
GB1477510A (en) 1977-06-22
GB1482378A (en) 1977-08-10
DE2443281A1 (en) 1975-03-20
FR2243508A1 (en) 1975-04-04
AU7307074A (en) 1976-03-11

Similar Documents

Publication Publication Date Title
US3848331A (en) Method of producing molded stators from steel particles
US6362544B2 (en) Electromagnetic device with embedded windings and method for its manufacture
US5592731A (en) Method of constructing a stator
US6651309B2 (en) Method for fabricating a highly-dense powder iron pressed stator core for use in alternating current generators and electric motors
US4868970A (en) Method of making an electric motor
US11381123B2 (en) Hybrid stator core component design for axial flux motor
US5536985A (en) Composite armature assembly
EP0419124A1 (en) Stator assembly for an alternating current generator
GB2172149A (en) Electric motors
US5680692A (en) Fabrication of induction motors
US7340820B2 (en) Machine stator fabrication method
EP1837977B1 (en) Magnetic powder metal component stator
US3533867A (en) Methods for reducing electrical losses in and bonding of electrical inductive laminated structures
EP1230053B1 (en) Method of producing an armature segment of an electrical machine
EP0064846A2 (en) Method of making motor stator
JPS6110937A (en) Magnetic wedge
JP5256172B2 (en) Soft magnetic flakes for magnetic cores and magnetic cores for electromagnetic parts
JPH0629114A (en) Dust core and manufacture thereof
RU2051456C1 (en) Method for manufacturing magnetic circuits of electrical machines and devices
GB1501371A (en) Electromagnetic device and method of manufacturing same
US20050015969A1 (en) Method for producing an electric machine subassembly produced according to said method, and electric machine with said subassembly
JPH0740778B2 (en) Method for manufacturing magnetically anisotropic material
JP2019087569A (en) Shaft built-in bonded magnet and manufacturing method thereof
JPS6110936A (en) Magnetic wedge
Miyahara Soft magnetic composite with improved iron losses

Legal Events

Date Code Title Description
AS Assignment

Owner name: A. O. SMITH CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED.;ASSIGNOR:WESTINGHOUSE ELECTRIC CORPORATION;REEL/FRAME:004583/0789

Effective date: 19860516