US3847792A - High octane motor fuel production - Google Patents

High octane motor fuel production Download PDF

Info

Publication number
US3847792A
US3847792A US00405348A US40534873A US3847792A US 3847792 A US3847792 A US 3847792A US 00405348 A US00405348 A US 00405348A US 40534873 A US40534873 A US 40534873A US 3847792 A US3847792 A US 3847792A
Authority
US
United States
Prior art keywords
reaction zone
percent
further characterized
hydrocracking
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00405348A
Inventor
C Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Priority to US00405348A priority Critical patent/US3847792A/en
Application granted granted Critical
Publication of US3847792A publication Critical patent/US3847792A/en
Priority claimed from DE19752506336 external-priority patent/DE2506336C2/en
Priority to BE177258A priority patent/BE854248Q/en
Assigned to UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP reassignment UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD
Assigned to UOP, A GENERAL PARTNERSHIP OF NY reassignment UOP, A GENERAL PARTNERSHIP OF NY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UOP INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G59/00Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
    • C10G59/02Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only

Definitions

  • ABSTRACT A combination process for the production of an unleaded, narrow boiling range, high octane motor fuel which involves (l a novel form of low-severity hydro- Cracking followed by (2) Catalytic reforming.
  • the 208g/60 65 cess is effected without the intermediate separation of 1 le O can the product effluent from the low-severity hydrocracking zone, and, therefore, provides a true in-line
  • UNITE B SZZ IfES SZ FENTS hydrocracking/reforming combination process The 208g/60 65 cess is effected without the intermediate separation of 1 le O can the product effluent from the low-severity hydrocracking zone, and, therefore, provides a true in-line
  • the present invention is directed toward a multiplestage combination process for the conversion of a naphtha, or gasoline boiling range hydrocarbons, into a high octaine motor fuel which does not require the addition of metallic components i.e. lead compounds to enhance the anti-knock characteristics thereof.
  • aromatic hydrocarbons principally benzene, toluene and the various xylene isomers
  • a principal utilization thereof is as gasoline blending components in the production of a high octane motor fuel.
  • Benzene has a clear research octane blending value of about 99, while the more abundant toluene and other aromatics have a value in excess of about 100; they are, therefore, the
  • octane-improvers in a refinery gasoline pool.
  • One well-known and well-documented refining process capable of providing significant improvement in the octane rating of naphtha boiling range fractions, is the catalytic reforming process.
  • the principal octane-improving reactions are naphthene dehydrogenation, naphthene dehydroisomerization, paraffin dehydrocyclization and paraffin hydrocracking.
  • Naphthene dehydrogenation is an extremely rapid reaction constituting the principal octane improving reaction.
  • Paraffin aromatization is achieved through the dehydrocyclization of straight-chain paraffins having at least six carbon atoms per molecule. This latter reaction is limited in view of the fact that the aromatic concentration increases as the charge stock traverses the reforming reaction zones, thereby decreasing the rate of additional dehydrocyclization.
  • the novel hydrocracking zone characteristically retains most of the rings present in the feed, albeit with fewer side chain carbon atoms.
  • the integrity .of the cyclic structure of alkyl aromatics can be largely preserved while producing isomeric paraffins from the side chain components.
  • the extent of ring retention is a function of the extent of hydrocracking, so that a degree of freedom exists with regard to this aspect of the invention.
  • l-lydrocarbonaceous charge stocks contemplated for conversion in accordance with the present invention, constitute naphtha boiling range hydrocarbon fractions and/or distillates.
  • Gasoline boiling range hydrocarbons generally connotes those hydrocarbons, usually devoid of pentane and lighter material, having an initial boiling point of at least about 100F., and an end boiling point less than about 450F., and is inclusive of intermediate boiling range fractions often referred to in the art as light naphtha and heavy naphtha".
  • a charge stock having a particular boiling range Suffice to say, a suitable charge stock will generally have an initial boiling point above about 100F. and an end boiling point below about 450F.
  • the charge stock is reduced in boiling range; consequently, a charge stock having a substantially higher boiling range may be successfully processed to yield a suitable charge stock for the catalytic reforming step.
  • the precise boiling range of any given naphtha fraction will be dependent upon the economic and processing considerations which are prevalent in the particular locale where such a charge stock is available.
  • the key feature of the present invention resides in a combination of hydrocracking and catalytic reforming in which (1) alkyl side chains on aromatic hydrocarbons are reduced and cracked to useful components, (2) higher molecular weight paraffins are cracked into more highly branched, lower boiling material and (3) the ring structure of both naphthenes and aromatics is largely preserved so that the catalytic reforming operation will result in exceptional product quality and volumetric yield.
  • the essence of the present invention resides in the in-line" processing afforded by the integrated compatibility of the entire system. There is no intermediate separation of the effluent from the first, hydrocracking reaction zone, but rather the introduction of the total product effluent therefrom into the catalytic reforming zone. Thus, there is necessitated only a single separation system, that following catalytic reforming, therefore eliminating one entire system involving cooling, condensing, high-pressure separation, compression and hydrogen recycle. Typical of the diametrically opposed prior art hereinbefore described, and wherein intermediate separation is effected between the two reaction zones, is the multiple-stage process delineated in British Pat. No. 1,108,667 (Int. Cl. C-lOg 37/10).
  • each reaction zone possesses its own heating, reacting, cooling and condensing equipment. More importantly, it is required that each reaction system have a separate recycle gas system integrated therewith.
  • catalytic compatibility which permits a single system of cooling, condensing, separation and compressive hydrogen recycle
  • Another feature of the present invention resides in the reduction of the molecular weight of aromatic hydrocarbons.
  • the prior art has disclosed the concept of selectively cracking normal paraffins from a reformed product effluent without disturbing aromatic molecular weight.
  • the molecular weight of the aromatics is reduced by the utilization of extremely inefficient demethylation, resulting in a decreased liquid volumetric yield.
  • the alkyl side chains are selectively converted to C C and C hydrocarbons before reforming without substantial loss of the ring structure itself, so that the overall liquid hydrocarbon yield is high.
  • a principal object of the present invention is to afford the production of a high octane, unleaded, or low leaded motor fuel.
  • a corollary objective is to produce an aromatic-rich, normally liquid motor fuel product heavily concentrated in high octane rating isoparaffins.
  • a specific object is to provide a combination process for the production of an unleaded, narrow boiling range high octane motor fuel through the use of a lowseverity hydrocracking system followed by catalytic reforming, which process is effected without the intermediate separation of the product effluent from the lowseverity hydrocracking zone.
  • my invention encompasses a process for the production of a high octane rating motor fuel which comprises the steps of: (a) reacting a naphtha boiling range charge stock with hydrogen, in a first reaction zone, at conditions, including a pressure below about 400 psig, selected to convert long-chain paraffins into lower-boiling isoparaffins; (b) reacting the resulting first zone effluent, without intermediate separation thereof, in a second reaction zone, at catalytic reforming conditions, including a pressure below about 400 psig., selected to convertnaphthenic hydrocarbons into aromatics; and, (c) recovering said high octane rating motor fuel from the resulting second zone effluent.
  • the present invention is directed toward a process for the production of a high octane motor fuel which comprises the steps of: (a) reacting naphtha boiling range hydrocarbons, containing cyclic components, with hydrogen, in a first reaction zone, in contact with a first catalytic composite of a Group VIII noble metal component and a zeolitic aluminosilicate carrier material, at a temperature in the range of about 350F. to about 800F.
  • the zeolitic crystalline aluminosilicate carrier material comprises mordenite having a silica to alumina mole ratio from about 12.0to about 30.0.
  • the present invention constitutes a combination process for the production of a high octane, unleaded, or low leaded motor fuel.
  • the key feature of this combination process is a true seriesflow system between the initial hydrocracking zone and the subsequent catalytic reforming zones; that is, the hydrocracked product effluent is utilized as the charge to the catalytic reforming zone without any intermediate separation thereof.
  • the naphtha boiling range charge stock to the hydrocracking reaction zone may be obtained from a multitude of sources.
  • one suitable source constitutes the naphtha distillate derived from a full boiling range petroleum crude oil; another source is the naphtha fraction obtained from the catalytic cracking of gas oil, while still another source constitutes the gasoline boiling range effluent from a hydrocracking reaction zone which processes heavier-than-gasoline charge stocks.
  • another source is the naphtha fraction obtained from the catalytic cracking of gas oil, while still another source constitutes the gasoline boiling range effluent from a hydrocracking reaction zone which processes heavier-than-gasoline charge stocks.
  • the greater proportion of such naphtha fractions are contaminated through the inclusion of sulfurous and nitrogenous compounds, as well as olefinic hydrocarbons, it is contemplated that such contaminants will be removed by conventional hydrorefining before the charge stock is supplied to the hydrocracking reaction zone. Details of hydrorefming processes are well known and thoroughly described in the prior art. It is understood that such pretreatment of the naphtha charge stock is not a novel feature of the present combination process.
  • the hydrocracking reaction zone is unlike presentday hydrocracking processes, both in function and result. Initially, the charge to the hydrocracking reaction zone is a naphtha boiling range stock, and the net product effluent contains very little normally gaseous material such as methane and ethane. That normallygaseous material present in the recycled hydrogen-rich vaporous phase will, of course, be present in the effluent.
  • normally gaseous material such as methane and ethane.
  • That normallygaseous material present in the recycled hydrogen-rich vaporous phase will, of course, be present in the effluent.
  • the present hydrocracking reaction zone is referred to herein as I-cracking.
  • the selective nature of the hydrocracking reactions taking place include the retention of cyclic rings and the reduction in molecular weight thereof, via isomerization and the splitting of isoparaffins from the parent molecule.
  • cyclic compounds boiling in the higher temperature range of the feed stock are converted to lower-boiling naphthenes and.
  • the conversion conditions employed in the hydrocracking reaction zone include a liquid hourly space velocity of about 0.5 to about 10.0, preferably having an upper limit of about 4.0, a hydrogen circulation rate of from about 1 to about 20 moles per mole of feed, a
  • a maximum catalyst bed temperature in the range of about 350 to about 800F. In most instances, the maximum catalyst bed temperature will be in the range of about 600F. to about 750F.
  • the catalytic composite disposed in the hydrocracking reaction zone of the present combination process comprises a Group VIII noble metal component combined with a porous carrier material, either amorphous, or zeolitic in nature, and preferably siliceous; a particularly preferred carrier material comprises the crystalline alumino-silicate generally known as mordenite.
  • Suitable carrier materials may be selected from the group of amorphous refractory inorganic oxides including alumina, silica, titania, zirconia, mixtures thereof, etc., or from zeolitic, alumino-silicate materials such as faujasite, mordenite, Type A or Type U molecular sieves, or zeolitic material which is combined with an amorphous matrix.
  • a Group VIII noble metal component comprises an element of hydrocracking catalyst. Suitable metals are those from the group of platinum, palladium, rhodium, ruthenium, osmium and iridium, as well as mixtures thereof. Of these, a palladium, orplatinum component is especially preferred in view of the increased propensity to maintain the cyclic structure.
  • the noble metal will be combined with the carrier material in an amount of about 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
  • Mordenite the preferred carrier material, from the standpoint of converting normal paraffins into the isomeric counterparts, may be employed in and of itself; generally, however, the carrier material is amorphous alumina with the mordenite being in the range of about l.0-percent to about 75.0 percent.
  • the utilization of this specific hydrocracking/reforming combination permits a common recycle gas system. It further permits the catalytic reforming zone to function atrelatively low-severity conditions.
  • the catalytic composite disposed within the hydrocracking reaction zone utilizes a mordenite-containing carrier material for a palladium, or platinum component.
  • Mordenite is a highly siliceous zeolitic crystalline aluminosilicate which, as naturally-occurring, or synthetically-prepared, has a silica to alumina mole ratio in the range of about 6 to about 12.
  • the crystalline structure of mordenite consists of fourand five-membered rings of silicon and aluminum tetrahedra arranged to form channels, or tubes running parallel to the axis of the crystal. Being parallel, these channels do not intersect with the result that they may be entered only at the ends thereof.
  • Such a channel-type structure is unique to mordenite among the many zeolites, and the mordenite structure is often termed two-dimensional" in contrast to other zeolitic 7 materials, such as faujasite, in which the cages may be entered from three directions.
  • the conventional silicon to aluminum mole ratio of 6 to about 12 may be increased to as high as 50 or more by acid-leaching alumina from the mordenite, while simultaneously preserving the characteristic mordenite crystal structure.
  • substantially pure mordenite may be employed in the carrier material for the hydrocracking reaction zone, the preferred technique utilizes a mordenite crystal structure contained in amorphous alumina which is fixed in combination therewith in an amount in the range of about 25.0 percent to about 99.0 percent by weight.
  • the hydrocracking catalytic composite is prepared by initially forming the mordenite component having a silica/alumina mole ratio of about 12 to about 30, and preferably from about 15 to about 25. This is in contrast to conventional mordenite which commonly has a silica to alumina mole ratio in the range of about 6 to about 12.
  • An amorphous silica-alumina composite is utilized as the starting material, and one particularly suitable source thereof is amorphous cracking catalyst containing about 13.0 percent by weight of alumina.
  • the mordenite is typically manufactured by a process involving several steps, one of which is the formation of an acidic silica sol via the acidification of an aqueous sodium silicate solution.
  • steps in the manufacture of the cracking catalyst include gelation of the silica gel, subsequent adjustment of the pH of the resulting slurry to about 3.5, followed by impregnation with an alumina sol using an aqueous aluminum sulfate solution. The aluminum sulfate is thereafter hydrolyzed and precipitated.
  • the silica-alumina product from the above steps is slurried with water and spray-dried to yield fine silica-alumina microspheres suitable as the starting material for the manufacture of the mordenite component of the catalyst employed in the combination process of the present invention.
  • amorphous silicaalumina starting material Regardless of the origin of the amorphous silicaalumina starting material, the same is heated in admixture with an aqueous alkali metal solution, for example, sodium hydroxide, at a temperature in the range of about 275F. to about 480F.
  • the solution has an alkali metal concentration sufficient to provide an alkali metal/aluminum weight ratio from about 1.5 to about 3.5 within the reaction mixture. Yields of zeolites in the range of 90.0 percent to about 100.0 percent may be obtained after the stirred reaction mixture has been" heated for a period from about 8 to about 24 hours.
  • the resulting zeolite has a silica/alumina mole ratio substantially the same as the amorphous silica-alumina starting material.
  • the noble metal component, and especially'palladium, or platinum may be incorporated within the catalytic composite in any suitable manner including ionexchange or impregnation.
  • the latter constitutes a preferred method, and utilizes water-soluble compounds of the noble metal component.
  • the mordenitecontaining carrier material may be impregnated with an aqueous solution of ammonium chloropalladate, chloropalladic acid, palladic chloride, hydrated palladium nitrate or the corresponding platinum compounds, etc.
  • the carrier material is dried at a temperature in the range of about 200F. to about 400F., and subsequently subjected to a calcination, or oxidation technique at an elevated temperature in the rang of about 900F. to about 1,200F.
  • the catalytic composite Prior to its use, the catalytic composite may be subjected to a substantially water-free reduction technique. This is designed to insure a more uniform and thorough dispersion of the metallic components throughout the carrier material.
  • Substantially pure and dry hydrogen is employed as the rducing agent at a temperature of about 800F. to about l,200F., and for a time sufficient to reduce the metallic component.
  • Group VIII noble metal component is employed generically to encompass the existence of the metal in the elemental state, or in some combined form such as an oxide, sulfide, chloride, etc.
  • the maximum catalyst bed temperature is maintained in the aforesaid range of from about 350F. to about 800F., and preferably from about 600F. to about 750F.
  • the use of conventional quench streams, either normally liquid, or normally gaseous, and introduced at one or more intermediate loci of the catalyst bed is contemplated.
  • the total product effluent from the l-cracking reaction zone, without any intermediate separation thereof, is introduced into the catalytic reforming reaction zone.
  • Catalytic composites suitable for utilization in the reforming-reaction zone, generally comprise a refractory inorganic oxide carrier material containing a metallic component selected from the noble metals of Group VIII.
  • a refractory inorganic oxide carrier material containing a metallic component selected from the noble metals of Group VIII.
  • Suitable porous carrier materials include the amorphous refractory inorganic oxides such as alumina, silica, zirconia, etc., and various crystalline aluminosilicates or combinations of alumina and/or silica with the various crystalline aluminosilicates.
  • favored metallic components include ruthenium, rhodium, palladium, osmium, rhenium, platinum, iridium, germanium, nickel, tin, and mixtures thereof.
  • a preferred catalytic composite constitutes alumina and a platimum component in a concentration ranging from about 0.01 percent to about 5.0 percent by weight, and preferably from about 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal. Reforming catalysts, suitable for utilization in the present combination process, may also contain combined halogen selected from the group of chlorine, fluorine, bromine, iodine and mixtures thereof.
  • Effective reforming operating conditions include catalyst temperatures within the range of about 800F. to about 1,100F., preferably having an upper limit of about 1,050F.
  • the liquid hourly space velocity defined as volumes of hydrocarbon charge per hour per volume of catalyst disposed within the reforming reaction zone, is preferably within the range of about 1.0 to about 5.0, although space velocities from about 0.5 to about 15.0 may be employed.
  • the quantity of hydrogen-rich gas, in admixture with the hydrocarbon feed stock is generally from about 1.0 to about 20.0 moles of hydrogen per mole of normally liquid hydrocarbons. Pressures in the range of about 100 to about 400 psig. are suitable for effecting catalytic reforming reactions.
  • the reforming zone pressure will be somewhat less than that imposed upon the hydrocracking reaction zone, allowing for the pressure drop normally experienced as a result of fluid flow through the system, or at some intentionally reduced pressure level i.e. from about 100 psig. to about 300 psig.
  • the reforming reaction zone effluent is introduced into a high-pressure separation system at a temperature of about 60F. to about 140F., to separate lighter components from heavier, normally liquid components. Since normal reforming operations produce large quantities of hydrogen, a certain amount of a gaseous stream is removed from the reforming system by way of pressure control, the remaining hyrogen-rich gaseous phase being recycled to combine with the charge to the hydrocracking reaction zone.
  • the heavy naphtha charge stock is introduced into the process via line 1 and passes into heat-exchanger 2 where the temperature thereof is increased by suitable heat-exchange with the reformed product effluent in line 3.
  • the charge stock continues through line 4, is admixed with a hydrogen-rich recycle gaseous phase in line 5, the source of which is hereinafter described, and the temperature is further increased in heater 7.
  • the heated charge stock/hydrogen mixture passesthrough line 8 into hydrocracking reaction zone 9 at a temperature such that the maximum catalyst bed temperature therein is about 640F.
  • Other operating conditions include a liquid hourly space velocity of about 1.0, a hydrogen to charge stock mole ratio of about 100110 and an imposed pressure of about 260 psig.
  • the catalytic composite disposed in hydrocracking reaction zone 9 constitutes an alumina carrier material, having 5.0 percent by weight of mordenite associated therewith, and about 0.75 percent by weight of a palladium component, calculated as the elemental metal.
  • the product effluent is withdrawn via line 10, and is introduced thereby into heater ll.
  • Analyses thereof indicate that only about 0.2 percent by weight of the charge to reaction zone 9 is converted into methane and ethane. Furthermore, of the 13.5 percent by volume butanes, 89.0 percent is isobutane; of the 14.2 percent pentanes, 84.0 percent is isopentane; and, of the 5.5 percent hexanes, approximately 80.0 percent constitutes isohexanes; the total cyclic content has increased to 59.4 percent of the hexane-plus fraction, from the 51.5 percent in the fresh feed charge stock.
  • the total hydrocracked product effluent, introduced into reforming reaction zone 13 by way of line 12, without intermediate separation thereof, is initially at a temperature of about 970F.
  • the catalytic reforming system although illustrated as a single vessel, may in fact be a plurality of reaction zones wherein the endothermic nature of the reactions is compensated via interheating between zones.
  • Other operating conditions include a pressure of about 180 psig., a liquid hourly space velocity of about 1.25 and a hydrogen to hexaneplus hydrocarbon mole ratio of about 8.0.1.0.
  • the hydrogen-hydrocarbon mole ratio has been diminished somewhat as a result of the hydrogen consumed in bydrocracking reactor 9.
  • the reforming catalyst is a composite of alumina, 0.75 percent by weight of chloride, 0.20 percent by weight of germanium and about 0.60 percent by weight of platinum.
  • the catalytically reformed product effluent is withdrawn from reaction zone 13 by way of line 3, is utilized as a heat-exchange medium in heatexchanger 2 and, following additional cooling to a temperature of about 95F., is introduced into cold separator 6 by way of line 14.
  • a hydrogen-rich recycle gas stream is withdrawn by way of line and combined with the fresh feed charge stock from line 4.
  • the principally liquid product effluent is withdrawn by way of line 15 and sent to suitable separation facilities to recover a pentane-plus, normally liquid product effluent, a propane concentrate, a butane concentrate and, if desired, a pentane/hexane concentrate.
  • Vent hydrogen-rich gas is discharged through line 16 by way of pressure control. Properties and yields of the reformed product effluent, including pentane and hexane, based upon fresh feed charge stock to hydrocracking reactor 13, are presented in the following Table II:
  • the mixed butanes can be partially dehydrogenated to produce butylenes which may be subsequently alk lated with unconverted isobutanes to produce a alkylate of known octane ratinig.
  • the propane may be utilized as a starting material for isopropyl alcohol, or may also be subjected to dehydrogenation and alkylation to produce a C -alkylate of good octane ratin
  • This example illustrates the application of the concept of the present combination to certain specific compatible catalysts in the hydrocracking and catalytic reforming zones.
  • the inventive concept is applicable to other hydrocracking and reforming catalysts provided they are compatible i.e. they can function in a low-pressure, series-flow fashion with substantially the same catalytic reaction atmosphere prevailing in both zones and without separation of components between zones.
  • a process for the production of a high octane motor fuel which comprises the steps of:
  • the rocess of claim 1 further characterized in that said irst catalytic com osite contains a platinum component, in an amount 0 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
  • temperature in said first reaction zone is in the range of 350F. to about 650-"F.
  • mordenite has a silica to alumina mole ratio from 12.0 to about 30.0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A combination process for the production of an unleaded, narrow boiling range, high octane motor fuel which involves (1) a novel form of low-severity hydrocracking followed by (2) catalytic reforming. The process is effected without the intermediate separation of the product effluent from the low-severity hydrocracking zone, and, therefore, provides a true ''''in-line'''' hydrocracking/reforming combination process.

Description

States Patent [19.1
Unite 1 Berger [111 3,847,792 Nov. 12, 1974 HIGH OCTANE MOTOR FUEL PRODUCTION [75] Inventor: Charles V. Berger, Western Springs,
[73] Assignee: Universal Oil Products Company, Des Plaines, Ill.
1221 Filed: Oct. 10, 1973 21 Appl.No.:405,348
Related US. Application Data [63] Continuation-impart of Ser. No. 237,776, March 24,
1972, abandoned.
Primary ExaminerDelbert E. Gantz Assistant Examiner-James W. Hcllwege Attorney, Agent, or Firm-Jamcs R. Hoatson, Jr.; Robert W. Erickson; William H. Page, 11
[57] ABSTRACT A combination process for the production of an unleaded, narrow boiling range, high octane motor fuel which involves (l a novel form of low-severity hydro- Cracking followed by (2) Catalytic reforming. The 208g/60 65 cess is effected without the intermediate separation of 1 le O can the product effluent from the low-severity hydrocracking zone, and, therefore, provides a true in-line [56] UNITE B SZZ IfES SZ FENTS hydrocracking/reforming combination process. 3,663,425 5 1972 Pollitzer et a1 208/60 7 Claims 1 Drawing Figure Heater 00/0 /5 Separator 1 HIGH OCTANE MOTOR FUEL PRODUCTION RELATED APPLICATION The present application is a continuation-in-part of my copending application, Ser. No. 237,776, filed Mar. 24, 1972, now abandoned, all the teachings of which copending application are incorporated herein by specific reference thereto.
APPLICABILITY OF INVENTION The present invention is directed toward a multiplestage combination process for the conversion of a naphtha, or gasoline boiling range hydrocarbons, into a high octaine motor fuel which does not require the addition of metallic components i.e. lead compounds to enhance the anti-knock characteristics thereof. Although aromatic hydrocarbons, principally benzene, toluene and the various xylene isomers, are required in large quantities to satisfy the demand for a wide variety of petrochemicals, a principal utilization thereof is as gasoline blending components in the production of a high octane motor fuel. Benzene has a clear research octane blending value of about 99, while the more abundant toluene and other aromatics have a value in excess of about 100; they are, therefore, the
predominant octane-improvers in a refinery gasoline pool. One well-known and well-documented refining process, capable of providing significant improvement in the octane rating of naphtha boiling range fractions, is the catalytic reforming process. In such a process, the principal octane-improving reactions are naphthene dehydrogenation, naphthene dehydroisomerization, paraffin dehydrocyclization and paraffin hydrocracking. Naphthene dehydrogenation is an extremely rapid reaction constituting the principal octane improving reaction. With respect to a five-membered ring alkyl naphthene, it is first necessary to effect isomerization to produce a six-membered ring naphthene, followed by the dehydrogenation thereof to an aromatic hydrocarbon. Paraffin aromatization is achieved through the dehydrocyclization of straight-chain paraffins having at least six carbon atoms per molecule. This latter reaction is limited in view of the fact that the aromatic concentration increases as the charge stock traverses the reforming reaction zones, thereby decreasing the rate of additional dehydrocyclization. Unreacted, relatively low octane paraffins, principally comprising pentanes and hexanes, are, therefore, present in the reformed product effluent and effectively reduce the overall octane rating thereof. Currently, these components can be tolerated in view of their comparatively high lead susceptibility.
Relatively recent investigations into the causes and cures of environmental pollution have indicated that more than half the violence perpetrated upon the atmosphere stems from vehicular exhaust consisting primarily of unburned hydrocarbons and carbon monoxide. These investigations have resulted in the development of various catalytic converters which, when installed within the exhaust system, are capable of converting more than 90 percent of the noxious components. During the development of these catalytic converters, it was learned that the efficiency of conversion and stability of the selected catalytic composites were severely impaired when the exhaust fumes resulted from the combustion of lead-containing motor fuel. Therefore,
2. it-has been recognized throughout the petroleum industry, as well as in major gasoline-consuming countries, that suitable motor fuels must ultimately be produced for consumption in current internal combustion engines without requiring the addition of lead-containing, ecologically deleterious compounds.
It has also been observed recently that a narrow boiling range motor fuel, consisting almost exclusively of C -C hydrocarbons, with only minor quantities of C -C (and heavier), would have certainn advantages in reducing the emission of unburned hydrocarbons into the atmosphere. Currently marketed gasolines have a much broader boiling range, particularly with respect to the high-boiling end. One of the principal objects of my invention is to offer an efficient process for producing a highly desirable narrow-boiling range motor fuel. It is also being recognized that unburned hydrocarbons and carbon monoxide are not the only dangerous pollutants being discharged via vehicular exhause. The possibility that lead compounds emitted in exhaust gases contributes to lead poisoning has resulted in appropriate legislation, enacted in some countries, to reduce significantly the quantity of lead permitted in motor fuel.
One natural consequence of the removal of lead, in addition to others, resides in the fact that petroleum refining techniques will necessarily experience modification in order to produce the required voluminous quantities of a high octane, unleaded motor fuel, in an economically attractive fashion. With respect to a highseverity catalytic reforming system, paraffinic hydrocarbons are subjected to, and undergo cracking. Although this partially increases the octane rating of the gasoline boiling range product, substantial quantities of normally gaseous material are produced. At a relatively low reforming severity, paraffin cracking is decreased with thee result that an increased quantity of low octane rating saturates is produced. In order to upgrade the overall quality of the gasoline, either the addition of lead becomes necessary, or the low octane rating saturates must be subjected to further processing to produce higher octane components. As previously stated, additional processing of the saturates can be eliminated by increasing the severity of operation within the catalytic reforming reaction zone. This type of operation produces a two-fold effect, notwithstanding an increase in the final octane rating of the ultimate product; first, additional high octane aromatic components are produced and, secondly, the low octane components are at least partially eliminated by conversion either to aromatic hydrocarbons, or to light normally gaseous material. The end result includes a lower liquid yield of motor fuel due both to shrinkage in molecular size, and to the production of the aforesaid light gaseous components.
'Such problems, attendant the production of a high octane, unleaded motor fuel, are eliminated through the utilization of the present combination process. The application of the present process is by no means limited to the production of lead-free gasoline, but is also advantageous for leaded gasolines as well. As hereinafter-indicated in greater detail, the novel hydrocracking zone characteristically retains most of the rings present in the feed, albeit with fewer side chain carbon atoms. Thus, the integrity .of the cyclic structure of alkyl aromatics can be largely preserved while producing isomeric paraffins from the side chain components. Of
course, the extent of ring retention is a function of the extent of hydrocracking, so that a degree of freedom exists with regard to this aspect of the invention.
l-lydrocarbonaceous charge stocks, contemplated for conversion in accordance with the present invention, constitute naphtha boiling range hydrocarbon fractions and/or distillates. Gasoline boiling range hydrocarbons generally connotes those hydrocarbons, usually devoid of pentane and lighter material, having an initial boiling point of at least about 100F., and an end boiling point less than about 450F., and is inclusive of intermediate boiling range fractions often referred to in the art as light naphtha and heavy naphtha". However, it is not intended to limit the present invention to a charge stock having a particular boiling range. Suffice to say, a suitable charge stock will generally have an initial boiling point above about 100F. and an end boiling point below about 450F. During the selective hydrocracking step, the charge stock is reduced in boiling range; consequently, a charge stock having a substantially higher boiling range may be successfully processed to yield a suitable charge stock for the catalytic reforming step. The precise boiling range of any given naphtha fraction will be dependent upon the economic and processing considerations which are prevalent in the particular locale where such a charge stock is available. The key feature of the present invention resides in a combination of hydrocracking and catalytic reforming in which (1) alkyl side chains on aromatic hydrocarbons are reduced and cracked to useful components, (2) higher molecular weight paraffins are cracked into more highly branched, lower boiling material and (3) the ring structure of both naphthenes and aromatics is largely preserved so that the catalytic reforming operation will result in exceptional product quality and volumetric yield.
PRIOR ART It must be acknowledged that the prior art contains references to the hydrocracking of hydrocarbon fractions followed by the catalytic reforming of a portion of the hydrocracked product effluent. The distinct feature of my invention, however, is contrary and resides in the utilization of a compatible catalyst system in which the operating conditions of pressure, hydrogen recycle and contaminant level are such that a true series-flow from hydrocracking to catalytic reforming is afforded. That is, the combination may be maintained in a completely integrated fashion without the necessity for the separation of gaseous and/or liquid phases intermediate the two systems. According to the prevalent prior art preferential practice, hydrocracking is best conducted at significantly higher pressures than catalytic reforming e.g. 1,0003,000 psig. vs. 100-400 psig. Applicable prior art further teaches the requirement of independent control of contaminant levels. Thus, hydrocracking systems require, or are enhanced by a high hydrocarbon sulfide level in a reaction system for some catalysts, or a high hydrogen chloride level for other catalysts. The latter type of catalyst is also generally intolerant of water at anylevel; thus, there exists a need for water elimination from the feed stock. Conversely, catalytic reforming operations generally require the presence of water and/or hydrogen chloride at only some few parts per million, and usuallyprefer the substantially complete prior elimination of sulfurous compounds. The prior art does not, therefore, disclose the essentials of the present invention which is the compatibility of the two catalysts to the same pressure level and reaction atmosphere.
The essence of the present invention resides in the in-line" processing afforded by the integrated compatibility of the entire system. There is no intermediate separation of the effluent from the first, hydrocracking reaction zone, but rather the introduction of the total product effluent therefrom into the catalytic reforming zone. Thus, there is necessitated only a single separation system, that following catalytic reforming, therefore eliminating one entire system involving cooling, condensing, high-pressure separation, compression and hydrogen recycle. Typical of the diametrically opposed prior art hereinbefore described, and wherein intermediate separation is effected between the two reaction zones, is the multiple-stage process delineated in British Pat. No. 1,108,667 (Int. Cl. C-lOg 37/10). Throughout the specification, and especially with reference to the accompanying drawing, there is disclosed a two-stage system in which each reaction zone possesses its own heating, reacting, cooling and condensing equipment. More importantly, it is required that each reaction system have a separate recycle gas system integrated therewith. There exists, therefore, no awareness of the catalytic compatibility which permits a single system of cooling, condensing, separation and compressive hydrogen recycle Another feature of the present invention, not found in prior art combination processes, resides in the reduction of the molecular weight of aromatic hydrocarbons. The prior art has disclosed the concept of selectively cracking normal paraffins from a reformed product effluent without disturbing aromatic molecular weight. In another type of processing, the molecular weight of the aromatics is reduced by the utilization of extremely inefficient demethylation, resulting in a decreased liquid volumetric yield. In the present process, the alkyl side chains are selectively converted to C C and C hydrocarbons before reforming without substantial loss of the ring structure itself, so that the overall liquid hydrocarbon yield is high.
OBJECTS AND EMBODIMENTS A principal object of the present invention is to afford the production of a high octane, unleaded, or low leaded motor fuel. A corollary objective is to produce an aromatic-rich, normally liquid motor fuel product heavily concentrated in high octane rating isoparaffins.
A specific object is to provide a combination process for the production of an unleaded, narrow boiling range high octane motor fuel through the use of a lowseverity hydrocracking system followed by catalytic reforming, which process is effected without the intermediate separation of the product effluent from the lowseverity hydrocracking zone.
Therefore, in a broad embodiment, my invention encompasses a process for the production of a high octane rating motor fuel which comprises the steps of: (a) reacting a naphtha boiling range charge stock with hydrogen, in a first reaction zone, at conditions, including a pressure below about 400 psig, selected to convert long-chain paraffins into lower-boiling isoparaffins; (b) reacting the resulting first zone effluent, without intermediate separation thereof, in a second reaction zone, at catalytic reforming conditions, including a pressure below about 400 psig., selected to convertnaphthenic hydrocarbons into aromatics; and, (c) recovering said high octane rating motor fuel from the resulting second zone effluent.
In a more specific embodiment, the present invention is directed toward a process for the production of a high octane motor fuel which comprises the steps of: (a) reacting naphtha boiling range hydrocarbons, containing cyclic components, with hydrogen, in a first reaction zone, in contact with a first catalytic composite of a Group VIII noble metal component and a zeolitic aluminosilicate carrier material, at a temperature in the range of about 350F. to about 800F. and a pressure from about 100 to about 400 psig.; (b) reacting the resulting first reaction zone effluent, without intermediate separation thereof, in a second reaction zone, in contact with a second catalytic composite comprising platinum and alumina, at a temperature in the range of about 800F. to about 1,100F. and a pressure of from l00 to about 400 psig., said temperature and pressure selected to convert naphthenes to aromatic hydrocarbons; and, (c) recovering said high octane motor fuel from the resulting second reaction zone effluent.
Other embodiments of my invention involve the composition of the catalytic composites, operating conditions and various processing techniques. In one such other embodiment, the zeolitic crystalline aluminosilicate carrier material comprises mordenite having a silica to alumina mole ratio from about 12.0to about 30.0.
SUMMARY OF INVENTION As hereinabove set forth, the present invention constitutes a combination process for the production of a high octane, unleaded, or low leaded motor fuel. The key feature of this combination process is a true seriesflow system between the initial hydrocracking zone and the subsequent catalytic reforming zones; that is, the hydrocracked product effluent is utilized as the charge to the catalytic reforming zone without any intermediate separation thereof. The naphtha boiling range charge stock to the hydrocracking reaction zone may be obtained from a multitude of sources. For example, one suitable source constitutes the naphtha distillate derived from a full boiling range petroleum crude oil; another source is the naphtha fraction obtained from the catalytic cracking of gas oil, while still another source constitutes the gasoline boiling range effluent from a hydrocracking reaction zone which processes heavier-than-gasoline charge stocks. In view of the fact that the greater proportion of such naphtha fractions are contaminated through the inclusion of sulfurous and nitrogenous compounds, as well as olefinic hydrocarbons, it is contemplated that such contaminants will be removed by conventional hydrorefining before the charge stock is supplied to the hydrocracking reaction zone. Details of hydrorefming processes are well known and thoroughly described in the prior art. It is understood that such pretreatment of the naphtha charge stock is not a novel feature of the present combination process.
The hydrocracking reaction zone is unlike presentday hydrocracking processes, both in function and result. Initially, the charge to the hydrocracking reaction zone is a naphtha boiling range stock, and the net product effluent contains very little normally gaseous material such as methane and ethane. That normallygaseous material present in the recycled hydrogen-rich vaporous phase will, of course, be present in the effluent. Through the utilization of a particular catalytic composite and operating conditions, the integrity of cyclic rings is largely maintained, and the cracking of paraffinic hydrocarbons results primarily in low molecular weight isoparaffins. In view of the unique character of the product effluent, being exceedingly rich in isoparaffins, with respect to the total paraffin content, the present hydrocracking reaction zone is referred to herein as I-cracking." The selective nature of the hydrocracking reactions taking place include the retention of cyclic rings and the reduction in molecular weight thereof, via isomerization and the splitting of isoparaffins from the parent molecule. Thus, cyclic compounds boiling in the higher temperature range of the feed stock are converted to lower-boiling naphthenes and.
aromatics; in the subsequent catalytic reforming reaction zone, the naphthenes are dehydrogenated into gasoline boiling range aromatics while the aromatics in the hydrocracked product effluent are retained intact. Beneficial effects are thus afforded since high octane aromatic hydrocarbons are more uniformly distributed throughout the final gasoline boiling range.
The conversion conditions employed in the hydrocracking reaction zone include a liquid hourly space velocity of about 0.5 to about 10.0, preferably having an upper limit of about 4.0, a hydrogen circulation rate of from about 1 to about 20 moles per mole of feed, a
pressure of from about to about 400 psig. and, of
greater significance, a maximum catalyst bed temperature in the range of about 350 to about 800F. In most instances, the maximum catalyst bed temperature will be in the range of about 600F. to about 750F.
The catalytic composite disposed in the hydrocracking reaction zone of the present combination process comprises a Group VIII noble metal component combined with a porous carrier material, either amorphous, or zeolitic in nature, and preferably siliceous; a particularly preferred carrier material comprises the crystalline alumino-silicate generally known as mordenite. Suitable carrier materials may be selected from the group of amorphous refractory inorganic oxides including alumina, silica, titania, zirconia, mixtures thereof, etc., or from zeolitic, alumino-silicate materials such as faujasite, mordenite, Type A or Type U molecular sieves, or zeolitic material which is combined with an amorphous matrix. As above-noted, a Group VIII noble metal component comprises an element of hydrocracking catalyst. Suitable metals are those from the group of platinum, palladium, rhodium, ruthenium, osmium and iridium, as well as mixtures thereof. Of these, a palladium, orplatinum component is especially preferred in view of the increased propensity to maintain the cyclic structure. The noble metal will be combined with the carrier material in an amount of about 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal. Mordenite, the preferred carrier material, from the standpoint of converting normal paraffins into the isomeric counterparts, may be employed in and of itself; generally, however, the carrier material is amorphous alumina with the mordenite being in the range of about l.0-percent to about 75.0 percent. The utilization of this specific hydrocracking/reforming combination permits a common recycle gas system. It further permits the catalytic reforming zone to function atrelatively low-severity conditions.
As hereinabove set forth, the catalytic composite disposed within the hydrocracking reaction zone utilizes a mordenite-containing carrier material for a palladium, or platinum component. Mordenite is a highly siliceous zeolitic crystalline aluminosilicate which, as naturally-occurring, or synthetically-prepared, has a silica to alumina mole ratio in the range of about 6 to about 12. The crystalline structure of mordenite consists of fourand five-membered rings of silicon and aluminum tetrahedra arranged to form channels, or tubes running parallel to the axis of the crystal. Being parallel, these channels do not intersect with the result that they may be entered only at the ends thereof. Such a channel-type structure is unique to mordenite among the many zeolites, and the mordenite structure is often termed two-dimensional" in contrast to other zeolitic 7 materials, such as faujasite, in which the cages may be entered from three directions. The conventional silicon to aluminum mole ratio of 6 to about 12 may be increased to as high as 50 or more by acid-leaching alumina from the mordenite, while simultaneously preserving the characteristic mordenite crystal structure. Although substantially pure mordenite may be employed in the carrier material for the hydrocracking reaction zone, the preferred technique utilizes a mordenite crystal structure contained in amorphous alumina which is fixed in combination therewith in an amount in the range of about 25.0 percent to about 99.0 percent by weight.
The hydrocracking catalytic composite is prepared by initially forming the mordenite component having a silica/alumina mole ratio of about 12 to about 30, and preferably from about 15 to about 25. This is in contrast to conventional mordenite which commonly has a silica to alumina mole ratio in the range of about 6 to about 12. An amorphous silica-alumina composite is utilized as the starting material, and one particularly suitable source thereof is amorphous cracking catalyst containing about 13.0 percent by weight of alumina. The mordenite is typically manufactured by a process involving several steps, one of which is the formation of an acidic silica sol via the acidification of an aqueous sodium silicate solution. Other steps in the manufacture of the cracking catalyst include gelation of the silica gel, subsequent adjustment of the pH of the resulting slurry to about 3.5, followed by impregnation with an alumina sol using an aqueous aluminum sulfate solution. The aluminum sulfate is thereafter hydrolyzed and precipitated. The silica-alumina product from the above steps is slurried with water and spray-dried to yield fine silica-alumina microspheres suitable as the starting material for the manufacture of the mordenite component of the catalyst employed in the combination process of the present invention.
Regardless of the origin of the amorphous silicaalumina starting material, the same is heated in admixture with an aqueous alkali metal solution, for example, sodium hydroxide, at a temperature in the range of about 275F. to about 480F. The solution has an alkali metal concentration sufficient to provide an alkali metal/aluminum weight ratio from about 1.5 to about 3.5 within the reaction mixture. Yields of zeolites in the range of 90.0 percent to about 100.0 percent may be obtained after the stirred reaction mixture has been" heated for a period from about 8 to about 24 hours. The resulting zeolite has a silica/alumina mole ratio substantially the same as the amorphous silica-alumina starting material.
Although it is understood that no precise method of manufacturing the mordenite component is essential to my invention, it is preferred to convert the resulting sodium form to the hydrogen form by conventional ionexchange techniques. Conversion of the sodium form to the hydrogen form is achieved either by the direct replacement of sodium ions with hydrogen ions, or by the replacement of sodium ions with ammonium ions, followed by decomposition of the ammonium form by way of calcination at an elevated temperature. At least about 95.0 percent, and preferably at least about 99.0 percent of the alkali metal is removed by the ionexchange technique.
The noble metal component, and especially'palladium, or platinum may be incorporated within the catalytic composite in any suitable manner including ionexchange or impregnation. The latter constitutes a preferred method, and utilizes water-soluble compounds of the noble metal component. Thus, the mordenitecontaining carrier material may be impregnated with an aqueous solution of ammonium chloropalladate, chloropalladic acid, palladic chloride, hydrated palladium nitrate or the corresponding platinum compounds, etc. Following impregnation, the carrier material is dried at a temperature in the range of about 200F. to about 400F., and subsequently subjected to a calcination, or oxidation technique at an elevated temperature in the rang of about 900F. to about 1,200F.
Prior to its use, the catalytic composite may be subjected to a substantially water-free reduction technique. This is designed to insure a more uniform and thorough dispersion of the metallic components throughout the carrier material. Substantially pure and dry hydrogen is employed as the rducing agent at a temperature of about 800F. to about l,200F., and for a time sufficient to reduce the metallic component. In the present specification, as well as the appended claims, the use of the term Group VIII noble metal component is employed generically to encompass the existence of the metal in the elemental state, or in some combined form such as an oxide, sulfide, chloride, etc.
In view of the fact that the reactions being effected within the hydrocracking reaction zone are exothermic in nature, an increasing temperature gradient will be experienced as the hydrogen and charge stock traverse the catalyst bed. In accordance with the present process, the maximum catalyst bed temperature, virtually the same as that measured at the outlet of the catalytic reaction zone, is maintained in the aforesaid range of from about 350F. to about 800F., and preferably from about 600F. to about 750F. In order to assure that the catalyst bed temperature does not exceed the maximum selected limit, the use of conventional quench streams, either normally liquid, or normally gaseous, and introduced at one or more intermediate loci of the catalyst bed, is contemplated. The total product effluent from the l-cracking reaction zone, without any intermediate separation thereof, is introduced into the catalytic reforming reaction zone.
Catalytic composites, suitable for utilization in the reforming-reaction zone, generally comprise a refractory inorganic oxide carrier material containing a metallic component selected from the noble metals of Group VIII. Recent developments in the area of catalytic reforming have indicated that catalyst activity and stability are significantly enhanced through the addition of various modifiers, and especially tin, rhenium, nickel, and/or germanium. Suitable porous carrier materials include the amorphous refractory inorganic oxides such as alumina, silica, zirconia, etc., and various crystalline aluminosilicates or combinations of alumina and/or silica with the various crystalline aluminosilicates. Generally favored metallic components include ruthenium, rhodium, palladium, osmium, rhenium, platinum, iridium, germanium, nickel, tin, and mixtures thereof. A preferred catalytic composite constitutes alumina and a platimum component in a concentration ranging from about 0.01 percent to about 5.0 percent by weight, and preferably from about 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal. Reforming catalysts, suitable for utilization in the present combination process, may also contain combined halogen selected from the group of chlorine, fluorine, bromine, iodine and mixtures thereof.
Effective reforming operating conditions include catalyst temperatures within the range of about 800F. to about 1,100F., preferably having an upper limit of about 1,050F. The liquid hourly space velocity, defined as volumes of hydrocarbon charge per hour per volume of catalyst disposed within the reforming reaction zone, is preferably within the range of about 1.0 to about 5.0, although space velocities from about 0.5 to about 15.0 may be employed. The quantity of hydrogen-rich gas, in admixture with the hydrocarbon feed stock, is generally from about 1.0 to about 20.0 moles of hydrogen per mole of normally liquid hydrocarbons. Pressures in the range of about 100 to about 400 psig. are suitable for effecting catalytic reforming reactions. However, since the present combination process is effected in true series-flow fashion, the reforming zone pressure will be somewhat less than that imposed upon the hydrocracking reaction zone, allowing for the pressure drop normally experienced as a result of fluid flow through the system, or at some intentionally reduced pressure level i.e. from about 100 psig. to about 300 psig. The reforming reaction zone effluent is introduced into a high-pressure separation system at a temperature of about 60F. to about 140F., to separate lighter components from heavier, normally liquid components. Since normal reforming operations produce large quantities of hydrogen, a certain amount of a gaseous stream is removed from the reforming system by way of pressure control, the remaining hyrogen-rich gaseous phase being recycled to combine with the charge to the hydrocracking reaction zone.
DESCRIPTION OF DRAWING The inventive concept, encompassed by the present process, is illustrated in the accompanying drawing. Miscellaneous appurtenances, not believed necessary for a completely clear understanding of the present combination process, have been eliminated. The use of details such as pumps, compressors, instrumentation and controls, heat-recovery circuits, miscellaneous valving, start-up lines and similar hardware, etc., is well within the purview of those skilled in the petroleum refining art. Similarly, with respect to the flow of materials throughout the system, only those major streams required to illustrate the interconnection and interaction of the reaction zones are presented. Thus, recycle lines,
quench streams, and vent gas streams have also been eliminated.
With reference now to the drawing, it will be described in conjunction with a commercially sealed unit designed to process a principally heptane-plus, straightrun naphtha fraction which has previously been subjected to a hydrorefining technique for desulfurization, denitrification and olefin saturation. Pertinent properties of this naphtha fraction are presented in the following Table I:
TABLE I Charge Stock Properties Specific Gravity 0.759 100 ml. Distillation, F.
l.B.P. 210 10% 230 30% 244 50% 262 286 318 End Point 369 Hydrocarbon Type, vol.%
Paraffins 48.5 Naphthenes 41.4 Aromatics 10.1
The heavy naphtha charge stock is introduced into the process via line 1 and passes into heat-exchanger 2 where the temperature thereof is increased by suitable heat-exchange with the reformed product effluent in line 3. The charge stock continues through line 4, is admixed with a hydrogen-rich recycle gaseous phase in line 5, the source of which is hereinafter described, and the temperature is further increased in heater 7.
The heated charge stock/hydrogen mixture passesthrough line 8 into hydrocracking reaction zone 9 at a temperature such that the maximum catalyst bed temperature therein is about 640F. Other operating conditions include a liquid hourly space velocity of about 1.0, a hydrogen to charge stock mole ratio of about 100110 and an imposed pressure of about 260 psig. The catalytic composite disposed in hydrocracking reaction zone 9 constitutes an alumina carrier material, having 5.0 percent by weight of mordenite associated therewith, and about 0.75 percent by weight of a palladium component, calculated as the elemental metal. The product effluent is withdrawn via line 10, and is introduced thereby into heater ll. Analyses thereof indicate that only about 0.2 percent by weight of the charge to reaction zone 9 is converted into methane and ethane. Furthermore, of the 13.5 percent by volume butanes, 89.0 percent is isobutane; of the 14.2 percent pentanes, 84.0 percent is isopentane; and, of the 5.5 percent hexanes, approximately 80.0 percent constitutes isohexanes; the total cyclic content has increased to 59.4 percent of the hexane-plus fraction, from the 51.5 percent in the fresh feed charge stock.
The total hydrocracked product effluent, introduced into reforming reaction zone 13 by way of line 12, without intermediate separation thereof, is initially at a temperature of about 970F. The catalytic reforming system, although illustrated as a single vessel, may in fact be a plurality of reaction zones wherein the endothermic nature of the reactions is compensated via interheating between zones. Other operating conditions include a pressure of about 180 psig., a liquid hourly space velocity of about 1.25 and a hydrogen to hexaneplus hydrocarbon mole ratio of about 8.0.1.0. The hydrogen-hydrocarbon mole ratio has been diminished somewhat as a result of the hydrogen consumed in bydrocracking reactor 9.
The reforming catalyst is a composite of alumina, 0.75 percent by weight of chloride, 0.20 percent by weight of germanium and about 0.60 percent by weight of platinum. The catalytically reformed product effluent is withdrawn from reaction zone 13 by way of line 3, is utilized as a heat-exchange medium in heatexchanger 2 and, following additional cooling to a temperature of about 95F., is introduced into cold separator 6 by way of line 14. As hereinbefore set forth, a hydrogen-rich recycle gas stream is withdrawn by way of line and combined with the fresh feed charge stock from line 4. The principally liquid product effluent is withdrawn by way of line 15 and sent to suitable separation facilities to recover a pentane-plus, normally liquid product effluent, a propane concentrate, a butane concentrate and, if desired, a pentane/hexane concentrate. Vent hydrogen-rich gas is discharged through line 16 by way of pressure control. Properties and yields of the reformed product effluent, including pentane and hexane, based upon fresh feed charge stock to hydrocracking reactor 13, are presented in the following Table II:
Considering only the pentane-plus portion of the product effluent, the same is produced in an amount of about 73.6 percent by volume, and has a research octane rating, without the addition of lead compounds, of about 96.2. It should further be noted that the end point ofthe product effluent is only 316F., which is advantageous in view of the fact that consideration is being given throughout the industry to effect a decrease in the end point of marketable motor fuel.
TABLE II Reformate Yields and Properties Component Wt.% Vol.%
Hydrogen Methane/Ethane 3.]
Propanc lsobutanc N-butanc lsopentane N-pentane Hexane-plus NS I36 TABLE ll-Continued Reformate Yields and Properties The mixed butanes can be partially dehydrogenated to produce butylenes which may be subsequently alk lated with unconverted isobutanes to produce a alkylate of known octane ratinig. Similarly, the propane may be utilized as a starting material for isopropyl alcohol, or may also be subjected to dehydrogenation and alkylation to produce a C -alkylate of good octane ratin This example illustrates the application of the concept of the present combination to certain specific compatible catalysts in the hydrocracking and catalytic reforming zones. However, in a broad sense, the inventive concept is applicable to other hydrocracking and reforming catalysts provided they are compatible i.e. they can function in a low-pressure, series-flow fashion with substantially the same catalytic reaction atmosphere prevailing in both zones and without separation of components between zones.
The foregoing illustrates the method by which the present combination is effected and the benefits afforded through the utilization thereof.
I claim as my invention:
1. A process for the production of a high octane motor fuel which comprises the steps of:
a. reacting naphtha boiling range hydrocarbons, containing cyclic components, with hydrogen, in a first reaction zone, in contact with a first catalytic composite of a Group VIII noble metal component and a zeolitic aluminosilicate carrier material and at a temperature in the range of about 350F. to about 800 F. and a pressure from about to about 400 b. recting the resulting first reaction zone effluent, without intermediate separation thereof, in a second reaction zone, in contact with a second catalytic composite comprising platinum and alumina, at a temperature in the range of about 800F. to about 1,l00F. and a pressure of from 100 to about 400 psig., said temperature and pressure selected to dconvert naphthenes to aromatic hydrocarbons; an
c. recovering said high octane motor fuel from the resulting second reaction zone effluent.
2. The process of claim 1 further characterized in that said first catalytic composite contains a palladium component, in an amount of 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
3. The rocess of claim 1 further characterized in that said irst catalytic com osite contains a platinum component, in an amount 0 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
4. The process of claim 1 further characterized in that temperature in said first reaction zone is in the range of 350F. to about 650-"F.
5. The process of claim 1 further characterized in that said carrier material comprises mordenite.
6. The process of claim 5 further characterized in that said mordenite has a silica to alumina mole ratio from 12.0 to about 30.0.
7. The process of claim 1 further characterized in that said carrier material comprises mordenite distributed within an amorphous alur nina matrix.

Claims (7)

1. A PROCESS FOR THE PRODUCTION OF A HIGH OCTANE MOTOR FUEL WHICH COMPRISES THE STEPS OF A. REACTING NAPHTHA BOILING RANGE HYDROCARBONS, CONTAINING CYCLIC COMPONENTS, WITH HYDROGEN, IN A FIRST REACTION ZONE, IN CONTACT WITH A FIRST CATALYTIC COMPOSITE OF A GROUP VIII NOBLE METAL COMPONENT AND A ZEOLITE ALUMINOSILICATE CARRIER MATERIAL AND AT A TEMPERATURE IN THE RANGE OF ABOUT 350*F. TO ABOUT 800*F AND A PRESSURE FROM ABOUT 100 TO ABOUT 400 PSIG. B. REACTING THE RESULTING FIRST REACTION ZONE EFFLUENT, WITHOUT INTERMEDIATE SEPARATION THEREOF, IN A SECOND REACTION ZONE, IN CONTACT WITH A SECOND CATALYTIC COMPOSITE COMPRISING PLATINUM AND ALUMINUM, AT A TEMPERATURE IN THE RANGE OF ABOUT 800*F TO ABOUT 1,100*F AND A PRESSURE OF FROM 100 TO BOUT 400 PSIG; SAID TEMPERATURE AND PRESSURE SELECTED TO CONVERT NAPHTHENES TO AROMATIC HYDROCARBONS; AND, C. RECOVERING SAID HIGH OCTANE NOTOR FUEL FROM THE RESULTING SECOND REACTION ZONE EFFLUENT.
2. The process of claim 1 further characterized in that said first catalytic composite contains a palladium component, in an amount of 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
3. The process of claim 1 further characterized in that said first catalytic composite contains a platinum component, in an amount of 0.01 percent to about 2.0 percent by weight, calculated as the elemental metal.
4. The process of claim 1 further characterized in that temperature in said first reaction zone is in the range of 350*F. to about 650*F.
5. The process of claim 1 further characterized in that said carrier material comprises mordenite.
6. The process of claim 5 further characterized in that said mordenite has a silica to alumina mole ratio from 12.0 to about 30.0.
7. The process of claim 1 further characterized in that said carrier material comprises mordenite distributed within an amorphous alumina matrix.
US00405348A 1972-03-24 1973-10-10 High octane motor fuel production Expired - Lifetime US3847792A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00405348A US3847792A (en) 1972-03-24 1973-10-10 High octane motor fuel production
BE177258A BE854248Q (en) 1972-03-24 1977-05-04 FUEL PRODUCTION PROCESS FOR ENGINES WITH A HIGH OCTANE RATE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23777672A 1972-03-24 1972-03-24
US00405348A US3847792A (en) 1972-03-24 1973-10-10 High octane motor fuel production
DE19752506336 DE2506336C2 (en) 1975-02-14 Process for the production of high octane motor fuel

Publications (1)

Publication Number Publication Date
US3847792A true US3847792A (en) 1974-11-12

Family

ID=27186269

Family Applications (1)

Application Number Title Priority Date Filing Date
US00405348A Expired - Lifetime US3847792A (en) 1972-03-24 1973-10-10 High octane motor fuel production

Country Status (2)

Country Link
US (1) US3847792A (en)
BE (1) BE854248Q (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178230A (en) * 1978-05-22 1979-12-11 Uop Inc. Process for the simultaneous production of aromatic hydrocarbons and isobutane
US4780228A (en) * 1984-07-06 1988-10-25 Exxon Chemical Patents Inc. Viscosity index improver--dispersant additive useful in oil compositions
US4820402A (en) * 1982-05-18 1989-04-11 Mobil Oil Corporation Hydrocracking process with improved distillate selectivity with high silica large pore zeolites
US4962269A (en) * 1982-05-18 1990-10-09 Mobil Oil Corporation Isomerization process
US5041208A (en) * 1986-12-04 1991-08-20 Mobil Oil Corporation Process for increasing octane and reducing sulfur content of olefinic gasolines
WO1993008145A1 (en) * 1991-10-25 1993-04-29 Mobil Oil Corporation Combined paraffin isomerization/ring opening process
US5409595A (en) * 1993-08-16 1995-04-25 Mobil Oil Corporation Heavy naphtha conversion
WO1997013826A1 (en) * 1995-10-12 1997-04-17 The Dow Chemical Company Hydrocracking over a mordenite zeolite catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108667A (en) * 1965-09-06 1968-04-03 Leuna Werke Veb Process for the production of motor vehicle petrols with a high road octane number
US3663425A (en) * 1969-09-16 1972-05-16 Universal Oil Prod Co Gasoline producing process comprising hydrocracking and reforming
US3719586A (en) * 1971-05-24 1973-03-06 Sun Oil Co Naphtha conversion process including hydrocracking and hydroreforming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1108667A (en) * 1965-09-06 1968-04-03 Leuna Werke Veb Process for the production of motor vehicle petrols with a high road octane number
US3663425A (en) * 1969-09-16 1972-05-16 Universal Oil Prod Co Gasoline producing process comprising hydrocracking and reforming
US3719586A (en) * 1971-05-24 1973-03-06 Sun Oil Co Naphtha conversion process including hydrocracking and hydroreforming

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178230A (en) * 1978-05-22 1979-12-11 Uop Inc. Process for the simultaneous production of aromatic hydrocarbons and isobutane
US4820402A (en) * 1982-05-18 1989-04-11 Mobil Oil Corporation Hydrocracking process with improved distillate selectivity with high silica large pore zeolites
US4962269A (en) * 1982-05-18 1990-10-09 Mobil Oil Corporation Isomerization process
US4780228A (en) * 1984-07-06 1988-10-25 Exxon Chemical Patents Inc. Viscosity index improver--dispersant additive useful in oil compositions
US5041208A (en) * 1986-12-04 1991-08-20 Mobil Oil Corporation Process for increasing octane and reducing sulfur content of olefinic gasolines
WO1993008145A1 (en) * 1991-10-25 1993-04-29 Mobil Oil Corporation Combined paraffin isomerization/ring opening process
US5382730A (en) * 1991-10-25 1995-01-17 Mobil Oil Corp. Combined paraffin isomerization/ring opening process
AU665965B2 (en) * 1991-10-25 1996-01-25 Mobil Oil Corporation Combined paraffin isomerization/ring opening process
US5409595A (en) * 1993-08-16 1995-04-25 Mobil Oil Corporation Heavy naphtha conversion
WO1997013826A1 (en) * 1995-10-12 1997-04-17 The Dow Chemical Company Hydrocracking over a mordenite zeolite catalyst

Also Published As

Publication number Publication date
BE854248Q (en) 1977-09-01

Similar Documents

Publication Publication Date Title
US5350504A (en) Shape selective hydrogenation of aromatics over modified non-acidic platinum/ZSM-5 catalysts
US4181599A (en) Naphtha processing including reforming, isomerization and cracking over a ZSM-5-type catalyst
US4435283A (en) Method of dehydrocyclizing alkanes
US4645586A (en) Reforming process
US5292976A (en) Process for the selective conversion of naphtha to aromatics and olefins
US4594145A (en) Reforming process for enhanced benzene yield
US3788975A (en) Simultaneous production of aromatic hydrocarbons and isobutane
US4190519A (en) Combination process for upgrading naphtha
US4401554A (en) Split stream reforming
US5658453A (en) Integrated aromatization/trace-olefin-reduction scheme
US5770042A (en) Upgrading of cyclic naphthas
US4935566A (en) Dehydrocyclization and reforming process
US4867864A (en) Dehydrogenation, dehydrocyclization and reforming catalyst
US3287253A (en) Process for reforming a naphtha fraction in three stages to produce a high octane gasoline
GB2163177A (en) Method of catalytically producing high aromatic content products
US3847792A (en) High octane motor fuel production
US4950385A (en) Reforming process for the catalytic conversion of petroleum fractions to a mixture of hydrocarbons rich in aromatics
US3575846A (en) Catalysts for the selective conversion of straight-chain hydrocarbons
US4665273A (en) Isomerization of high sulfur content naphthas
US3714023A (en) High octane gasoline production
US3930986A (en) High octane motor fuel production
US5858209A (en) Catalytic reforming process with increased aromatics yield
US3650943A (en) High octane unleaded gasoline production
US3867276A (en) High octane motor fuel production
US5672265A (en) Catalytic reforming process with increased aromatics yield

Legal Events

Date Code Title Description
AS Assignment

Owner name: UOP, DES PLAINES, IL, A NY GENERAL PARTNERSHIP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATALISTIKS INTERNATIONAL, INC., A CORP. OF MD;REEL/FRAME:005006/0782

Effective date: 19880916

AS Assignment

Owner name: UOP, A GENERAL PARTNERSHIP OF NY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UOP INC.;REEL/FRAME:005077/0005

Effective date: 19880822