US3847388A - Sheet stacking method and apparatus - Google Patents

Sheet stacking method and apparatus Download PDF

Info

Publication number
US3847388A
US3847388A US00317028A US31702872A US3847388A US 3847388 A US3847388 A US 3847388A US 00317028 A US00317028 A US 00317028A US 31702872 A US31702872 A US 31702872A US 3847388 A US3847388 A US 3847388A
Authority
US
United States
Prior art keywords
sheet
tray
sheets
propelling
upwardly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00317028A
Inventor
T Lynch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US00317028A priority Critical patent/US3847388A/en
Priority to CA186,366A priority patent/CA996145A/en
Priority to BR9542/73A priority patent/BR7309542D0/en
Priority to FR7344220A priority patent/FR2267683A5/fr
Priority to JP14176573A priority patent/JPS5737865B2/ja
Priority to DE2363224A priority patent/DE2363224C3/en
Priority to GB5891973A priority patent/GB1440489A/en
Priority to SU731977841A priority patent/SU620201A3/en
Priority to NLAANVRAGE7317528,A priority patent/NL177198C/en
Application granted granted Critical
Publication of US3847388A publication Critical patent/US3847388A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6552Means for discharging uncollated sheet copy material, e.g. discharging rollers, exit trays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/20Delivering or advancing articles from machines; Advancing articles to or into piles by contact with rotating friction members, e.g. rollers, brushes, or cylinders
    • B65H29/22Delivering or advancing articles from machines; Advancing articles to or into piles by contact with rotating friction members, e.g. rollers, brushes, or cylinders and introducing into a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/34Apparatus for squaring-up piled articles
    • B65H31/36Auxiliary devices for contacting each article with a front stop as it is piled

Definitions

  • a sheet delivering and propelling device for stacking sheets of cut material in alignment within a collecting tray A sheet delivering and propelling device for stacking sheets of cut material in alignment within a collecting tray.'An extended flapper element of elastomeric resilient material is coaxially aligned with one of a pair of cooperating pinch rollers arranged to-deliver sheets into a collecting tray. The flapper is mounted within the pinch roll assembly so that it is-deformed into a loaded condition as it is drawn into the nip formed between the cooperating rolls and, upon passing through the nip, is released against the uppermost sheet delivered into the tray imparting the energy stored therein to the sheet effecting the alignment of the sheet within the tray.
  • Another object of this invention is to improve the efficiency and reliability'of sheet stacking in automatic copying machines.
  • FIG. 1 is a schematic representation of an automatic xerographic copying device incorporating the apparatus of the present invention
  • FIG. 2 is a partial perspective view showing the sheet handling apparatus of the present invention as utilized in the automatic copying device illustrated in FIG. 1;
  • FIGS. 3 through 5 are partial plane views showing the various steps of loading the flapper element and bringing the element into contact with sheets stored within acollecting tray.
  • FIG. 1 there is shown an automatic xerographic reproducing machine incorporating the sheet delivery and stacking mechanism of the present invention.
  • the copying machine'illustrated employs an image recording drum member having an outer surface thereon coated with a suitable photoconductive material llQAny suitable material, such as-selenium or the like, capable of supporting a latent magnetic image thereon can be used to coat the drum surface.
  • the drum which is joumaled for rotation within the machine frame by means of a shaft 12, isrotated in the direction indicated so as to transport the photoconductive recording surface through a plurality of xerographic processing" stations.
  • FIG. 1 A series of block diagrams delineated A through E.
  • a still further'object of this invention is to provide a sheet collecting device for use in high speed copiers.
  • Yet another object of this invention is to compact sheet'delive'ry and stacking apparatus employed in high speed copiers.
  • a further object of this invention is to prevent copy sheets delivered at high speed into a copy tray from escaping the collecting area.
  • a sheet delivery and stacking system wherein a pair of cooperating pinch rolls are arranged to advance cut sheets of final support material, introduced into the nip formed by the rolls, the apparatus further including at least one sheet.
  • stacking element operatively associated with one of the feed rolls so as to turn therewith, the stacking element having a resilient arm extending from the outwardly roll in a generally radially direction being arranged so that the arm is deformed as it is drawn through the nip and is released, upon passage through the nip, into contact with the uppermost sheet delivered into the tray to impart the energy stored in the arm to the sheet thus effecting alignment of the sheet within the tray.
  • the image bearing plate surface is transported through a developing station C wherein toner material is applied to the charged surface thereby rendering the latent electrostatic image visible.
  • the now developed image is brought into contact with a sheet-of final support material, such as paper or the like, within a transfer station D wherein the toner image is electrically removed from the drum surface and loosely bonded to the contacting side of the final support sheet.
  • any residual toner remaining on the drum after the transfer operation is completed is removed therefrom within a cleaning station E thus placing the photoconductive plate in a condition to be once again recycled .through the automatic machine.
  • the sheets of final support material processed in this automatic machine will be stored in the machine frame within a removable.
  • the individual sheets of support material are supported in a stacked configuration within the cassette and forwarded through the transfer station D in synchronous moving relationship with the visible toner image deposited on the drum.
  • Sheet feeding is accomplished by means of a feed roll 16 and a sheet registering device 17.
  • the sheet roller serves to separate the uppermost sheet from the stack and advance the sheet into the registration mechanism 17.
  • the motion of the leading edge of the sheet is momentarily interrupted while the sheet is properly aligned and registered with the image on the drum surface.
  • the registering mechanism then advances the sheet into the transfer station D where the image is placed upon the copy sheet in the manner described above.
  • the imaged sheet of final support material is forwarded to a xerographic fusing station F via a conventional belt transport 18 or any other switchable means.
  • a xerographic toner image supported on the cut sheet is heated to a temperaturesufficient to fix the toner image to the support material thus creating a permanent record of the information.
  • a'conventional radiant heat fuser 21 is herein employed.
  • FIGS. 2 through-5 there is illustrated the sheet delivering and stacking apparatus of the present invention for aligning cut sheets of material in a stack configuration within a collecting means of the biasing pressure imparted thereto via the upper roll sub-assembly thus causing the sheet to be driven in the direction indicated into the collecting tray.
  • a sheet cutting system made up of a multiple cutting blade support element 60 and a blade backing roller 61 is also contained within the assembly for slitting or perforating the sheets as they are advanced through the sheet advancing between the rolls.
  • the collecting tray includes an inclined 'main base plate 62 and an upwardly turned margin stop 63 mounted substantially parallel to the base frame.
  • Copy sheets upon leaving the fuser assembly F, are initially engaged by a first set of advancing rolls 20 (FIG. 1) and are then forwarded along a guide plate 64 into the nip of the second advancing roll assembly 30 and subsequently deposited within a copy tray in the manner described above.
  • the cut sheets of material leaving the advancing roll assembly 30 would normally tray.
  • a pinch roll advancing assembly, generally referenced 30, is mounted above the sheet receiving and collecting tray 22 so that the sheets passing through the advancing nip formed between the cooperating pinch rolls is allowed to fall freely into the bottom of the tray.
  • the feed roll assembly basically consists of an upper roll sub-assembly includes a series of idler rolls through 38 which are mounted for free rotation about a support shaft 40. Although not shown, both ends of the support shaft 40 are pivotably mounted within the machine frame so that the entire upper roll subassembly can be pivoted downwardly towards the lower sub-assembly.
  • a pair of biasing springs 41, 42 are sup ported upon a stationary bracket 45 with the free ends of the springs riding in contact with bearing surfaces 46 carried in the upper roll sub-assembly.
  • the spring elements urge the entire sub-assembly downwardly into contact with the lower pinch roll sub-assembly and provide sufficient nip pressure to hold a sheet of material introduced into the feed roll assembly in friction driving contact between the coacting rolls.
  • the lower roll sub-assembly 32 is supported upon a shaft 46 and a shaft rotatably mounted at each end in roller bearings contained within support brackets 47, 48.
  • the right hand end of shaft 46, as viewed in FIG. 2, extends beyond the support bracket 48 and has a drive sprocket 50. affixed thereto.
  • the sprocket is operatively attached to the main machine drive system via a chain (not shown) to turn the lower roll sub-assembly in the direction indicated.
  • a series of pinch rolls 51 through 56 are coaxially aligned upon the shaft 46 and are adapted to turn therewith.
  • a sheet of support material introduced into the nip between'the feed rolls is held in friction driving contact against the lower drive rolls by drop onto the base plate of the tray and then slide downwardly into stack alignment against the'margin stop 63.
  • this gravity induced process has proven to be unreliable.
  • the sheets tend to pile one upon the other in such rapid succession that the sheet becomes misaligned or invariably walk out of the tray or back up into the feed roll assembly.
  • the apparatus of the present invention provides a means by which each individual sheet delivered into the paper tray is actively engaged by a compact propelling mechanism which moves the sheet rapidly and efficiently into alignment against the stop 63. Furthermore, the present apparatus, because of its flexibility is relatively insensitive to any changes in stack height.
  • the propelling means shown in this embodiment of the invention is made up of three stacking elements which are secured to the lower drive shaft 46 of the feed roll assembly. Although a specific number of flapper elements are herein utilized, it should be clear to one skilled in the art that the number of stacking elements can be employed in the practice of the present invention without departing from the teachings of the invention.
  • the stacking elements are interposed between the lower feed rolls and are affixed to the shaft 46 in the manner best illustrated in FIGS. 3 through 5.
  • the stackers are formed of a relatively tough elastomeric material having resilient properties, such as polyurethane or the like.
  • the elements basically are provided with a hub portion 71 having a central aperture therein which permits the elastomeric element to be slipped over the drive shaft.
  • the aperture formed in the hub is provided with aflat 72 which is capable of seating itself against a complementary flat machined on the shaft causing the stackers to be driven in a positive manner by the rotating shaft.
  • Extending downwardly from the hub 71 is an elongated arm or flapper 75 which normally extends outwardly from the hub in a substantially radial direction as seen in FIG. 2.
  • the normally extended arm 75 of the flapper isdrawn into the feed roll nip in the manner illustrated in FIG. 3.
  • drawing the arm into the nip forces the resilient arm back into a deforming posture thus placing considerable stress upon the element.
  • Further rotation of the shaft brings the free end or tip of the stressed flapper into the nip while at the same time placing the base or root of the arm well beyond a line extended from the feed roll shaft perpendicular to the base plate of the tray.
  • the flapper is placed in what herein is referred to as a fully loaded condition preparatory to acting upon the uppermost sheet delivered into the collecting tray.
  • a sheet propelling and aligning device comprising:
  • said rotating means further including propelling means for contacting a downwardly facing side of said sheet during advancement of said sheet in said first direction and for then contacting an upwardly facing side of said sheet delivered into said tray for propelling the entire sheet in. a second direction different from said first direction to align said sheet in said tray against said stop means, said propelling means comprising at least one resilient blade member arranged to provide said contact.
  • said blade member being of sufficient length to contact said base means when no sheets are supported thereon.
  • a device as in claim 2 wherein said rotating means comprises a pair of cooperating pinch rolls.
  • a device as in claim 3 further including means to deform said blade member into a loaded condition prior to said member contacting said sheet, and means to release said deformed blade against the sheet whereby the energy stored within said blade is imparted to the sheet.
  • a device as in claim 6 including a plurality of said elongated resilient members.
  • each of said resilient members are arranged to make a plurality of contacts against each sheet delivered to said collecting tray and supported by said base means.

Abstract

A sheet delivering and propelling device for stacking sheets of cut material in alignment within a collecting tray. An extended flapper element of elastomeric resilient material is coaxially aligned with one of a pair of cooperating pinch rollers arranged to deliver sheets into a collecting tray. The flapper is mounted within the pinch roll assembly so that it is deformed into a loaded condition as it is drawn into the nip formed between the cooperating rolls and, upon passing through the nip, is released against the uppermost sheet delivered into the tray imparting the energy stored therein to the sheet effecting the alignment of the sheet within the tray.

Description

Unite States Lynch [4 1 Nov. 12, 1974 1 SHEET STACKING METHOD AND APPARATUS [75] Inventor: Thomas Lynch, Fairport, NY.
[73] Assignee: Xerox Corporation, Stamford,
Conn.
[22] Filed: Dec. 20, 1972 [21] Appl. No.: 317,028
[52] US. Cl 271/174, 271/80, 271/220 [51] Int. Cl B6511 29/22, B65h 31/34 [58] Field of Search 271/220, 221, 222, 86, 271/87, 89, 68, 71, 80, 174, 177-179 [56] References Cited UNITED STATES PATENTS 3,166,313 1/1965 Rehm 271/86 ME 3,516,657 6/1970 Knudsen 271/68 FOREIGN PATENTS OR APPLICATIONS 294,048 4/1965 Netherlands 271/71 1,136,703 12/1968 Great Britain 271/68 Primary Examiner-James B. Marbert Assistant Examiner-James W. Miller Attorney, Agent, or Firm-Thomas .1. Wall; Paul Weinstein; James J. Ralabate {57 ABSTRACT A sheet delivering and propelling device for stacking sheets of cut material in alignment within a collecting tray.'An extended flapper element of elastomeric resilient material is coaxially aligned with one of a pair of cooperating pinch rollers arranged to-deliver sheets into a collecting tray. The flapper is mounted within the pinch roll assembly so that it is-deformed into a loaded condition as it is drawn into the nip formed between the cooperating rolls and, upon passing through the nip, is released against the uppermost sheet delivered into the tray imparting the energy stored therein to the sheet effecting the alignment of the sheet within the tray.
9 Claims, 5 Drawing Figures More specifically, this invention' relates to a sheet,
handling device suitable for use in an automatic copying machine for delivering and stacking process and sheets of material within a collecting tray. With the advent of the xerographic process has come an increased demand for more compact and higher speed office copying machines which are capable of processing cut sheets of material. As these machines attain higher speeds, the sheet handling requirements imposed on the apparatus have similarly increased. This is particularly true in machine environments where the finished copies must be rapidly fed into a final collecting tray,-
bin or the like. It has been found that delivering individual cut sheets of material rapidly into a relatively confined space such as a collecting tray causes the sheets to curl or become misaligned which may ultimately result in the sheets either walking out of the tray area or backing up into the sheet delivery mechanism. Even where the sheets remain within the collecting area, the
sheets tend to become so misaligned that the operator is forced to restack the sheets upon their removal from the machine thus increasing, rather than decreasing, the work load imposed upon the machine user.
Some paperhandling devices have beendevised for, stacking sheets of cut material as they are'delivered into a collecting tray as exemplified by US. Pats. Nos. 3,630,515 and 3,669,447. In general, most of these prior art devices involve sheet-handling mechanisms which are relatively bulky, complex, and incapable of uniformly acting upon the sheets as the size of the stack changes. i
It is therefore an object'of the present invention to improve apparatus for delivering and stacking cut sheets of material in a collecting tray;
Another object of this invention is to improve the efficiency and reliability'of sheet stacking in automatic copying machines.
tion to be read in connection with the accompanying drawings, wherein: i n
FIG. 1 is a schematic representation of an automatic xerographic copying device incorporating the apparatus of the present invention;
FIG. 2 is a partial perspective view showing the sheet handling apparatus of the present invention as utilized in the automatic copying device illustrated in FIG. 1;
FIGS. 3 through 5 are partial plane views showing the various steps of loading the flapper element and bringing the element into contact with sheets stored within acollecting tray.
Referring now to FIG. 1, there is shown an automatic xerographic reproducing machine incorporating the sheet delivery and stacking mechanism of the present invention. The copying machine'illustrated employs an image recording drum member having an outer surface thereon coated with a suitable photoconductive material llQAny suitable material, such as-selenium or the like, capable of supporting a latent magnetic image thereon can be used to coat the drum surface. The drum, which is joumaled for rotation within the machine frame by means of a shaft 12, isrotated in the direction indicated so as to transport the photoconductive recording surface through a plurality of xerographic processing" stations. Although not shown, it
should be understood that suitable means are also provided to both drive and coordinate themovement of the various machine components'whereby a faithful art, the various processing stations forproducing a copy are herein represented in FIG. 1 as a series of block diagrams delineated A through E. At station A,
an electrostatic charge is uniformly placed upon the r photoconductive surface preparatory to the surface re- A still further'object of this invention is to provide a sheet collecting device for use in high speed copiers.
Yet another object of this invention is to compact sheet'delive'ry and stacking apparatus employed in high speed copiers.
A further object of this invention is to prevent copy sheets delivered at high speed into a copy tray from escaping the collecting area.
These and other objects of the present invention are attained by a sheet delivery and stacking system wherein a pair of cooperating pinch rolls are arranged to advance cut sheets of final support material, introduced into the nip formed by the rolls, the apparatus further including at least one sheet. stacking element operatively associated with one of the feed rolls so as to turn therewith, the stacking element having a resilient arm extending from the outwardly roll in a generally radially direction being arranged so that the arm is deformed as it is drawn through the nip and is released, upon passage through the nip, into contact with the uppermost sheet delivered into the tray to impart the energy stored in the arm to the sheet thus effecting alignment of the sheet within the tray.
For a better understanding of the invention as well as other objects and further features thereof, reference is had to the following detailed description of the invenceiving a light image of the original to be recorded. The charged drum is then moved through an exposure station B containing a scanning apparatus 13 wherein a flowing light image of a stationaryoriginal 14 is recorded upon the photoreceptor in the form of a latent electrostatic image.
Next, in the direction of drum rotation, the image bearing plate surface is transported through a developing station C wherein toner material is applied to the charged surface thereby rendering the latent electrostatic image visible. The now developed image is brought into contact with a sheet-of final support material, such as paper or the like, within a transfer station D wherein the toner image is electrically removed from the drum surface and loosely bonded to the contacting side of the final support sheet.
Finally, any residual toner remaining on the drum after the transfer operation is completed is removed therefrom within a cleaning station E thus placing the photoconductive plate in a condition to be once again recycled .through the automatic machine.
It is herein contemplated that the sheets of final support material processed in this automatic machine will be stored in the machine frame within a removable.
paper cassette 15. It is further contemplated that the automatic reproducing machine-will have the capability of accepting and processing copy sheets-of various lengths, the length of the sheet selected being dictated by the size of the original to be reproduced.
The individual sheets of support material are supported in a stacked configuration within the cassette and forwarded through the transfer station D in synchronous moving relationship with the visible toner image deposited on the drum. Sheet feeding is accomplished by means of a feed roll 16 and a sheet registering device 17. In operation, the sheet roller serves to separate the uppermost sheet from the stack and advance the sheet into the registration mechanism 17. Here, the motion of the leading edge of the sheet is momentarily interrupted while the sheet is properly aligned and registered with the image on the drum surface. The registering mechanism then advances the sheet into the transfer station D where the image is placed upon the copy sheet in the manner described above.
Upon completion of the transfer operation, the imaged sheet of final support material is forwarded to a xerographic fusing station F via a conventional belt transport 18 or any other switchable means. Within the fusing station, the xerographic toner image supported on the cut sheet is heated to a temperaturesufficient to fix the toner image to the support material thus creating a permanent record of the information. Although any number of well known fixing techniques can be employed to produce the desired results, a'conventional radiant heat fuser 21 is herein employed.
Referring now specifically to FIGS. 2 through-5, there is illustrated the sheet delivering and stacking apparatus of the present invention for aligning cut sheets of material in a stack configuration within a collecting means of the biasing pressure imparted thereto via the upper roll sub-assembly thus causing the sheet to be driven in the direction indicated into the collecting tray.
Although not involved with the present invention, a sheet cutting system made up of a multiple cutting blade support element 60 and a blade backing roller 61 is also contained within the assembly for slitting or perforating the sheets as they are advanced through the sheet advancing between the rolls.
As more clearly illustrated in FIGS. 3 through 5, the collecting tray includes an inclined 'main base plate 62 and an upwardly turned margin stop 63 mounted substantially parallel to the base frame. Copy sheets, upon leaving the fuser assembly F, are initially engaged by a first set of advancing rolls 20 (FIG. 1) and are then forwarded along a guide plate 64 into the nip of the second advancing roll assembly 30 and subsequently deposited within a copy tray in the manner described above. As can be seen, the cut sheets of material leaving the advancing roll assembly 30 would normally tray. As more clearly seen in FIG. 2, a pinch roll advancing assembly, generally referenced 30, is mounted above the sheet receiving and collecting tray 22 so that the sheets passing through the advancing nip formed between the cooperating pinch rolls is allowed to fall freely into the bottom of the tray.
The feed roll assembly basically consists of an upper roll sub-assembly includes a series of idler rolls through 38 which are mounted for free rotation about a support shaft 40. Although not shown, both ends of the support shaft 40 are pivotably mounted within the machine frame so that the entire upper roll subassembly can be pivoted downwardly towards the lower sub-assembly. A pair of biasing springs 41, 42 are sup ported upon a stationary bracket 45 with the free ends of the springs riding in contact with bearing surfaces 46 carried in the upper roll sub-assembly. The spring elements urge the entire sub-assembly downwardly into contact with the lower pinch roll sub-assembly and provide sufficient nip pressure to hold a sheet of material introduced into the feed roll assembly in friction driving contact between the coacting rolls.
The lower roll sub-assembly 32 is supported upon a shaft 46 and a shaft rotatably mounted at each end in roller bearings contained within support brackets 47, 48. The right hand end of shaft 46, as viewed in FIG. 2, extends beyond the support bracket 48 and has a drive sprocket 50. affixed thereto. The sprocket is operatively attached to the main machine drive system via a chain (not shown) to turn the lower roll sub-assembly in the direction indicated.
A series of pinch rolls 51 through 56 are coaxially aligned upon the shaft 46 and are adapted to turn therewith. In operation a sheet of support material introduced into the nip between'the feed rolls is held in friction driving contact against the lower drive rolls by drop onto the base plate of the tray and then slide downwardly into stack alignment against the'margin stop 63. However, this gravity induced process has proven to be unreliable. In the case of high speed machines, the sheets tend to pile one upon the other in such rapid succession that the sheet becomes misaligned or invariably walk out of the tray or back up into the feed roll assembly. The apparatus of the present invention provides a means by which each individual sheet delivered into the paper tray is actively engaged by a compact propelling mechanism which moves the sheet rapidly and efficiently into alignment against the stop 63. Furthermore, the present apparatus, because of its flexibility is relatively insensitive to any changes in stack height.
The propelling means shown in this embodiment of the invention is made up of three stacking elements which are secured to the lower drive shaft 46 of the feed roll assembly. Although a specific number of flapper elements are herein utilized, it should be clear to one skilled in the art that the number of stacking elements can be employed in the practice of the present invention without departing from the teachings of the invention.
The stacking elements are interposed between the lower feed rolls and are affixed to the shaft 46 in the manner best illustrated in FIGS. 3 through 5. In practice, the stackers are formed of a relatively tough elastomeric material having resilient properties, such as polyurethane or the like. The elements basically are provided with a hub portion 71 having a central aperture therein which permits the elastomeric element to be slipped over the drive shaft. The aperture formed in the hub is provided with aflat 72 which is capable of seating itself against a complementary flat machined on the shaft causing the stackers to be driven in a positive manner by the rotating shaft.
Extending downwardly from the hub 71 is an elongated arm or flapper 75 which normally extends outwardly from the hub in a substantially radial direction as seen in FIG. 2. Initially, as the lower shaft rotates in the direction indicated, the normally extended arm 75 of the flapper isdrawn into the feed roll nip in the manner illustrated in FIG. 3. As shown, drawing the arm into the nip forces the resilient arm back into a deforming posture thus placing considerable stress upon the element. Further rotation of the shaft brings the free end or tip of the stressed flapper into the nip while at the same time placing the base or root of the arm well beyond a line extended from the feed roll shaft perpendicular to the base plate of the tray. At this time, the flapper is placed in what herein is referred to as a fully loaded condition preparatory to acting upon the uppermost sheet delivered into the collecting tray.
Further rotation of the shaft frees the tip of the flapper arm from between the pinch rolls thus allowing the arm to unload against the top sheet in the tray. The combined energy stored in the flapper, due to the driving action of the shaft and the force or deformation, is imparted to the sheet upon contact thus driving the sheet downwardly into a stack for alignment against the stop 63. As can be seen, the circumference of the pinch rolls acting upon the copy sheets is considerably less than the length of the sheets individually. As a consequence, the flapper arm makes a multitude of contacts upon each sheet delivered into the tray thereby insuring that the sheet will be properly aligned against the stop.
While this invention has been described with reference to the structure disclosed therein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the scope of the following claims.
What is claimed is:
l. A sheet propelling and aligning device comprising:
base means for advancing said sheet in a first direc- 3 5 tion over and past said stop means and into said tray, said rotating means further including propelling means for contacting a downwardly facing side of said sheet during advancement of said sheet in said first direction and for then contacting an upwardly facing side of said sheet delivered into said tray for propelling the entire sheet in. a second direction different from said first direction to align said sheet in said tray against said stop means, said propelling means comprising at least one resilient blade member arranged to provide said contact.
with said upwardly and downwardly facing sides of said sheet and to turn with said rotating means, and extending outwardly of said rotating means in a generally radial direction, said blade member being of sufficient length to contact said base means when no sheets are supported thereon.
2. A device as in claim 1 wherein said second direc tion generally opposes said first direction.
3. A device as in claim 2 wherein said rotating means comprises a pair of cooperating pinch rolls.
4. A device as in claim 3 further including means to deform said blade member into a loaded condition prior to said member contacting said sheet, and means to release said deformed blade against the sheet whereby the energy stored within said blade is imparted to the sheet.
5. A device as in claim 4 wherein said first direction is an upwardly direction and said second direction is a downwardly direction.
6. A device as in claim 5 wherein said resilient member is coaxially aligned on a common shaft with the lower of said pinch rolls.
7. A device as in claim 6 including a plurality of said elongated resilient members.
8. A device as in claim 7 wherein said resilient membets are constructed of an elastomeric material.
9. A device as in claim 8 wherein each of said resilient members are arranged to make a plurality of contacts against each sheet delivered to said collecting tray and supported by said base means. =1 =l= =l= =l

Claims (9)

1. A sheet propelling and aligning device comprising: a sheet collecting tray, said tray including a base means for supporting said sheets and a stop means extending upwardly of said base means; a rotating means positioned over said tray and said base means for advancing said sheet in a first direction over and past said stop means and into said tray, said rotating means further including propelling means for contacting a downwardly facing side of said sheet during advancement of said sheet in said first direction and for then contacting an upwardly facing side of said sheet delivered into said tray for propelling the entire sheet in a second direction different from said first direction to align said sheet in said tray against said stop means, said propelling means comprising at least one resilient blade member arranged to provide said contact with said upwardly and downwardly facing sides of said sheet and to turn with said rotating means, and extending outwardly of said rotating means in a generally radial direction, said blade member being of sufficient length to contact said base means when no sheets are supported thereon.
2. A device as in claim 1 wherein said second direction generally opposes said first direction.
3. A device as in claim 2 wherein said rotating means comprises a pair of cooperating pinch rolls.
4. A device as in claim 3 further including means to deform said blade member into a loaded condition prior to said member contacting said sheet, and means to release said deformed blade against the sheet whereby the energy stored within said blade is imparted to the sheet.
5. A device as in claim 4 wherein said first direction is an upwardly direction and said second direction is a downwardly direction.
6. A device as in claim 5 wherein said resilient member is coaxially aligned on a common shaft with the lower of said pinch rolls.
7. A device as in claim 6 including a plurality of said elongated resilient members.
8. A device as in claim 7 wherein said resilient members are constructed of an elastomeric material.
9. A device as in claim 8 wherein each of said resilient members are arranged to make a plurality of contacts against each sheet delivered to said collecting tray and supported by said base means.
US00317028A 1972-12-20 1972-12-20 Sheet stacking method and apparatus Expired - Lifetime US3847388A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US00317028A US3847388A (en) 1972-12-20 1972-12-20 Sheet stacking method and apparatus
CA186,366A CA996145A (en) 1972-12-20 1973-11-21 Sheet stacker with rotary flayer
BR9542/73A BR7309542D0 (en) 1972-12-20 1973-12-05 IMPROVEMENTS IN AN APPLIANCE FOR SUPPLYING MATERIAL SHEETS TO A COLLECTING TRAY IN THE STACKING PROCESS OF THE SHEETS AND IN A PRODUCTION DEVICE FOR REGISTRATION AND ALIGNMENT OF MATERIAL CUT SHEETS
FR7344220A FR2267683A5 (en) 1972-12-20 1973-12-11
JP14176573A JPS5737865B2 (en) 1972-12-20 1973-12-18
DE2363224A DE2363224C3 (en) 1972-12-20 1973-12-19 Device for feeding and aligning sheets in a stacking container
GB5891973A GB1440489A (en) 1972-12-20 1973-12-19 Sheet stacking method and apparatus
SU731977841A SU620201A3 (en) 1972-12-20 1973-12-19 Sheet-receiving device
NLAANVRAGE7317528,A NL177198C (en) 1972-12-20 1973-12-20 DEVICE FOR DELIVERING AND STACKING SHEETS SUPPLIED.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00317028A US3847388A (en) 1972-12-20 1972-12-20 Sheet stacking method and apparatus

Publications (1)

Publication Number Publication Date
US3847388A true US3847388A (en) 1974-11-12

Family

ID=23231804

Family Applications (1)

Application Number Title Priority Date Filing Date
US00317028A Expired - Lifetime US3847388A (en) 1972-12-20 1972-12-20 Sheet stacking method and apparatus

Country Status (9)

Country Link
US (1) US3847388A (en)
JP (1) JPS5737865B2 (en)
BR (1) BR7309542D0 (en)
CA (1) CA996145A (en)
DE (1) DE2363224C3 (en)
FR (1) FR2267683A5 (en)
GB (1) GB1440489A (en)
NL (1) NL177198C (en)
SU (1) SU620201A3 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068839A (en) * 1977-03-04 1978-01-17 International Business Machines Corporation Sheet stacking apparatus
US4092099A (en) * 1977-02-08 1978-05-30 Rank Xerox, Ltd. Copier paper delivery means in a heat-fixing device of a copying machine
FR2390756A1 (en) * 1977-05-09 1978-12-08 Xerox Corp SHEET CENTERING DEVICE FOR REPRODUCING MACHINE
US4221378A (en) * 1979-05-03 1980-09-09 Xerox Corporation Copy stacking tray with restraining fingers
US4319743A (en) * 1980-02-11 1982-03-16 International Business Machines Corp. Two-direction rotary paper aligner
US4830359A (en) * 1987-09-29 1989-05-16 Xerox Corporation Sheet collector
US4883265A (en) * 1985-03-15 1989-11-28 Canon Kabushiki Kaisha Tray apparatus
US4898374A (en) * 1988-06-27 1990-02-06 Imagitek, Inc. Intermittent drive mechanism for copy stacking
US4903956A (en) * 1988-10-31 1990-02-27 Stephens David J Sheet stacking apparatus having positive control system for trailing sheet ends
US4917364A (en) * 1985-03-15 1990-04-17 Canon Kabushiki Kaisha Sheet processing apparatus
US5005821A (en) * 1990-05-02 1991-04-09 Xerox Corporation Loose element sheet stacking assistance system
US5014976A (en) * 1990-04-04 1991-05-14 Xerox Corporation Exit roller shield for duplex printing
US5044625A (en) * 1990-05-11 1991-09-03 Xerox Corporation Active tamper for bidirectional sorter
US5048724A (en) * 1988-11-22 1991-09-17 Fedpak Systems, Inc. Soft serve frozen confection dispenser
US5058880A (en) * 1990-08-17 1991-10-22 Xerox Corporation Disk stacker including wiping member for registration assist
US5120047A (en) * 1991-02-07 1992-06-09 Xerox Corporation Integral sheet stacking buckle suppressor and registration edge
US5120046A (en) * 1991-02-07 1992-06-09 Xerox Corporation Automatically spaced sheet stacking baffle
EP0529708A1 (en) * 1991-08-27 1993-03-03 Ward Holding Company, Inc. Sheet stacking
US5215300A (en) * 1985-03-15 1993-06-01 Canon Kabushiki Kaisha Tray apparatus
US5290025A (en) * 1991-07-22 1994-03-01 Compagnie Generale D'automatisme Cga-Hbs Device for discharging and stacking flat objects on edge, especially pieces of mail at the output of a sorting machine
US5791644A (en) * 1996-11-08 1998-08-11 Hewlett-Packard Company Retainer and registration mechanism for media processing
US5931460A (en) * 1996-11-22 1999-08-03 Sharp Kabushiki Kaisha Sheet registering device
EP0945383A3 (en) * 1998-03-27 2000-03-15 EASTMAN KODAK COMPANY (a New Jersey corporation) Device for delivering, depositing, and aligning sheets in a stack container
US6220592B1 (en) * 1998-05-13 2001-04-24 Canon Kabushiki Kaisha Sheet processing apparatus and image forming apparatus
US6227538B1 (en) * 1999-04-19 2001-05-08 Gbr Systems Corporation Paper tamping mechanism
US6264193B1 (en) * 1998-09-26 2001-07-24 BDT-BüRD-UND DATENTECHNIK GMBH & CO. KG. Document conveyance system for conveying single documents
US6286829B1 (en) * 1998-09-26 2001-09-11 Bdt Buro Device for collecting and aligning a stack of sheets of a recording medium
US6311971B1 (en) * 2000-07-06 2001-11-06 Lexmark International, Inc. Stacker controlling curl
US6398214B1 (en) * 1999-01-29 2002-06-04 Canon Kabushiki Kaisha Sheet handling device and image forming apparatus having sheet-aligning rotary member
US6412774B1 (en) * 1999-06-11 2002-07-02 Nisca Corporation Sheet receiving apparatus
WO2002064471A1 (en) * 2001-01-31 2002-08-22 Lexmark International, Inc. Finisher with sheet placement control
US6488279B1 (en) * 1999-11-16 2002-12-03 Matsushita Electric Industrial Co., Ltd. Discharge mechanism of sheet material in image forming apparatus
US20040070141A1 (en) * 2002-07-02 2004-04-15 Heinz Michels Device for stacking sheet-shaped materials on sheet stacks
US20050200073A1 (en) * 2004-03-04 2005-09-15 Sho Mizuno Paper sheet accumulating/feeding apparatus
US20060237900A1 (en) * 2005-04-26 2006-10-26 Canon Kabushiki Kaisha Sheet delivery apparatus
US20070063427A1 (en) * 2005-09-22 2007-03-22 Samsung Electronics Co., Ltd. Image forming apparatus
US20070065201A1 (en) * 2005-09-20 2007-03-22 Ricoh Company, Limited Sheet conveying apparatus and image forming apparatus
US7404687B2 (en) * 2004-04-16 2008-07-29 Rittal Gmbh & Co. Kg Holder for a support arm system
US20090008872A1 (en) * 2007-07-02 2009-01-08 Xerox Corporation Low noise compile paddles
US20090179376A1 (en) * 2008-01-11 2009-07-16 Hironori Ogasawara Sheet carrying device, and document carrying apparatus and image forming apparatus using the sheet carrying device
US20110233858A1 (en) * 2010-03-26 2011-09-29 Konica Minolta Business Technologies, Inc. Sheet ejection device, post-processing apparatus and image forming system
US20170137253A1 (en) * 2015-11-18 2017-05-18 Fuji Xerox Co., Ltd. Post-processing device and image forming apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116940A1 (en) * 1980-05-02 1982-07-22 Gradco/Dendoki, Inc., 92660 Newport Beach, Calif. SORTING DEVICE FOR PAPER SHEETS, PREFERABLY FOR ATTACHMENT TO A COPIER
US4368977A (en) * 1981-05-20 1983-01-18 International Business Machines Corporation Document ejector apparatus and method useful for copiers
JPS5930843U (en) * 1982-08-23 1984-02-25 株式会社アルファ技研 Packaging for instant adhesives
GB8515939D0 (en) * 1985-06-24 1985-07-24 Xerox Corp Restacking apparatus
DE3839305A1 (en) * 1988-11-21 1990-05-23 Kodak Ag DEVICE FOR THE STACKING OF SINGLE FEEDING SHEETS
DE4213672C2 (en) * 1991-04-12 1997-03-27 Gold Star Co Device for discharging printing paper for a printer
CH690435A5 (en) * 1995-12-05 2000-09-15 Ferag Ag Method and apparatus for braking, acceleration and / or directing conveyed printed products.
DE10023796A1 (en) 2000-05-15 2001-11-22 Nexpress Solutions Llc Filing table
DE10023797C2 (en) 2000-05-15 2003-02-27 Nexpress Solutions Llc filing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL294048A (en) * 1964-06-15
US3166313A (en) * 1960-08-27 1965-01-19 Telefunken Patent Article handling device
GB1136703A (en) * 1966-05-04 1968-12-18 Celloplast Ab Apparatus for stacking bags
US3516657A (en) * 1968-08-06 1970-06-23 Moore Business Forms Inc High capacity stackers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166313A (en) * 1960-08-27 1965-01-19 Telefunken Patent Article handling device
NL294048A (en) * 1964-06-15
GB1136703A (en) * 1966-05-04 1968-12-18 Celloplast Ab Apparatus for stacking bags
US3516657A (en) * 1968-08-06 1970-06-23 Moore Business Forms Inc High capacity stackers

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092099A (en) * 1977-02-08 1978-05-30 Rank Xerox, Ltd. Copier paper delivery means in a heat-fixing device of a copying machine
US4068839A (en) * 1977-03-04 1978-01-17 International Business Machines Corporation Sheet stacking apparatus
FR2390756A1 (en) * 1977-05-09 1978-12-08 Xerox Corp SHEET CENTERING DEVICE FOR REPRODUCING MACHINE
US4221378A (en) * 1979-05-03 1980-09-09 Xerox Corporation Copy stacking tray with restraining fingers
US4319743A (en) * 1980-02-11 1982-03-16 International Business Machines Corp. Two-direction rotary paper aligner
US5215300A (en) * 1985-03-15 1993-06-01 Canon Kabushiki Kaisha Tray apparatus
US4917364A (en) * 1985-03-15 1990-04-17 Canon Kabushiki Kaisha Sheet processing apparatus
US5350169A (en) * 1985-03-15 1994-09-27 Canon Kabushiki Kaisha Tray apparatus
US4883265A (en) * 1985-03-15 1989-11-28 Canon Kabushiki Kaisha Tray apparatus
US5316287A (en) * 1985-03-15 1994-05-31 Canon Kabushiki Kaisha Tray apparatus
US4830359A (en) * 1987-09-29 1989-05-16 Xerox Corporation Sheet collector
US4898374A (en) * 1988-06-27 1990-02-06 Imagitek, Inc. Intermittent drive mechanism for copy stacking
US4903956A (en) * 1988-10-31 1990-02-27 Stephens David J Sheet stacking apparatus having positive control system for trailing sheet ends
US5048724A (en) * 1988-11-22 1991-09-17 Fedpak Systems, Inc. Soft serve frozen confection dispenser
US5014976A (en) * 1990-04-04 1991-05-14 Xerox Corporation Exit roller shield for duplex printing
US5005821A (en) * 1990-05-02 1991-04-09 Xerox Corporation Loose element sheet stacking assistance system
US5044625A (en) * 1990-05-11 1991-09-03 Xerox Corporation Active tamper for bidirectional sorter
US5058880A (en) * 1990-08-17 1991-10-22 Xerox Corporation Disk stacker including wiping member for registration assist
US5120047A (en) * 1991-02-07 1992-06-09 Xerox Corporation Integral sheet stacking buckle suppressor and registration edge
US5120046A (en) * 1991-02-07 1992-06-09 Xerox Corporation Automatically spaced sheet stacking baffle
US5290025A (en) * 1991-07-22 1994-03-01 Compagnie Generale D'automatisme Cga-Hbs Device for discharging and stacking flat objects on edge, especially pieces of mail at the output of a sorting machine
EP0529708A1 (en) * 1991-08-27 1993-03-03 Ward Holding Company, Inc. Sheet stacking
US5791644A (en) * 1996-11-08 1998-08-11 Hewlett-Packard Company Retainer and registration mechanism for media processing
US5931460A (en) * 1996-11-22 1999-08-03 Sharp Kabushiki Kaisha Sheet registering device
EP0945383A3 (en) * 1998-03-27 2000-03-15 EASTMAN KODAK COMPANY (a New Jersey corporation) Device for delivering, depositing, and aligning sheets in a stack container
US6196542B1 (en) * 1998-03-27 2001-03-06 Nexpress Solutions Llc Device for delivering, depositing, and aligning sheets in a stack container
US6220592B1 (en) * 1998-05-13 2001-04-24 Canon Kabushiki Kaisha Sheet processing apparatus and image forming apparatus
US6286829B1 (en) * 1998-09-26 2001-09-11 Bdt Buro Device for collecting and aligning a stack of sheets of a recording medium
US6264193B1 (en) * 1998-09-26 2001-07-24 BDT-BüRD-UND DATENTECHNIK GMBH & CO. KG. Document conveyance system for conveying single documents
US6398214B1 (en) * 1999-01-29 2002-06-04 Canon Kabushiki Kaisha Sheet handling device and image forming apparatus having sheet-aligning rotary member
US6227538B1 (en) * 1999-04-19 2001-05-08 Gbr Systems Corporation Paper tamping mechanism
US6412774B1 (en) * 1999-06-11 2002-07-02 Nisca Corporation Sheet receiving apparatus
US6488279B1 (en) * 1999-11-16 2002-12-03 Matsushita Electric Industrial Co., Ltd. Discharge mechanism of sheet material in image forming apparatus
US6311971B1 (en) * 2000-07-06 2001-11-06 Lexmark International, Inc. Stacker controlling curl
WO2002004331A1 (en) * 2000-07-06 2002-01-17 Lexmark International, Inc. Stacker controlling curl
WO2002064471A1 (en) * 2001-01-31 2002-08-22 Lexmark International, Inc. Finisher with sheet placement control
US6550763B2 (en) 2001-01-31 2003-04-22 Lexmark International, Inc. Finisher with sheet placement control
US20040070141A1 (en) * 2002-07-02 2004-04-15 Heinz Michels Device for stacking sheet-shaped materials on sheet stacks
US7380784B2 (en) * 2004-03-04 2008-06-03 Hitachi-Omron Terminal Solutions, Corp. Paper sheet accumulating/feeding apparatus
US7556262B2 (en) * 2004-03-04 2009-07-07 Hitachi-Omron Terminal Solutions, Corp. Paper sheet accumulating/feeding apparatus
US7793931B2 (en) 2004-03-04 2010-09-14 Hitachi-Omron Terminial Solutions, Corp. Paper sheet accumulating/feeding apparatus
US20090236788A1 (en) * 2004-03-04 2009-09-24 Sho Mizuno Paper sheet accumulating/feeding apparatus
US20050200073A1 (en) * 2004-03-04 2005-09-15 Sho Mizuno Paper sheet accumulating/feeding apparatus
US20080136089A1 (en) * 2004-03-04 2008-06-12 Sho Mizuno Paper sheet accumulating/feeding apparatus
US7404687B2 (en) * 2004-04-16 2008-07-29 Rittal Gmbh & Co. Kg Holder for a support arm system
US7431289B2 (en) * 2005-04-26 2008-10-07 Canon Kabushiki Kaisha Sheet delivery apparatus
US7681880B2 (en) 2005-04-26 2010-03-23 Canon Kabushiki Kaisha Sheet delivery apparatus
US20060237900A1 (en) * 2005-04-26 2006-10-26 Canon Kabushiki Kaisha Sheet delivery apparatus
US20070065201A1 (en) * 2005-09-20 2007-03-22 Ricoh Company, Limited Sheet conveying apparatus and image forming apparatus
US20070063427A1 (en) * 2005-09-22 2007-03-22 Samsung Electronics Co., Ltd. Image forming apparatus
US7591468B2 (en) * 2007-07-02 2009-09-22 Xerox Corporation Low noise compile paddles
US20090008872A1 (en) * 2007-07-02 2009-01-08 Xerox Corporation Low noise compile paddles
US20090179376A1 (en) * 2008-01-11 2009-07-16 Hironori Ogasawara Sheet carrying device, and document carrying apparatus and image forming apparatus using the sheet carrying device
US7628397B2 (en) * 2008-01-11 2009-12-08 Sharp Kabushiki Kaisha Sheet carrying device, and document carrying apparatus and image forming apparatus using the sheet carrying device
US20110233858A1 (en) * 2010-03-26 2011-09-29 Konica Minolta Business Technologies, Inc. Sheet ejection device, post-processing apparatus and image forming system
US8408540B2 (en) * 2010-03-26 2013-04-02 Konica Minolta Business Technologies, Inc. Sheet ejection device, post-processing apparatus and image forming system
US20170137253A1 (en) * 2015-11-18 2017-05-18 Fuji Xerox Co., Ltd. Post-processing device and image forming apparatus
US9718635B2 (en) * 2015-11-18 2017-08-01 Fuji Xerox Co., Ltd. Post-processing device and image forming apparatus

Also Published As

Publication number Publication date
DE2363224B2 (en) 1979-12-13
NL177198C (en) 1985-08-16
NL177198B (en) 1985-03-18
SU620201A3 (en) 1978-08-15
NL7317528A (en) 1974-06-24
JPS4991457A (en) 1974-08-31
DE2363224A1 (en) 1974-06-27
FR2267683A5 (en) 1975-11-07
GB1440489A (en) 1976-06-23
JPS5737865B2 (en) 1982-08-12
BR7309542D0 (en) 1974-09-05
CA996145A (en) 1976-08-31
DE2363224C3 (en) 1980-08-21

Similar Documents

Publication Publication Date Title
US3847388A (en) Sheet stacking method and apparatus
US4266762A (en) Sheet alignment and feeding apparatus
US3719266A (en) Sheet stacking apparatus
US4040616A (en) Sheet turn around/inverter
EP0632340A2 (en) Soft nip sheet folding apparatus
GB2082551A (en) Laterally offsetting and stacking sheets
US5657983A (en) Wear resistant registration edge guide
US4023792A (en) Sheet feeding apparatus
US4475732A (en) Sheet feeding and separating apparatus with stack force relief/enhancement
US5346199A (en) Adjustable nudger roll normal force using multiple springs
US3866901A (en) Reverse buckle feeder
US5149077A (en) Hybrid nudger roll
CA1164486A (en) Sheet feeding apparatus
US4487407A (en) Trail edge copy registration system
US4561644A (en) Sheet feeding and separating apparatus with stack force relief/enhancement
GB2082550A (en) Inverting and stacking sheets in a photocopier
JPS5964435A (en) Reinforced paddle wheel inertial separating feeder
US5013026A (en) Sheet stacking and inverting apparatus
US5228679A (en) Sheet damping mechanism
US4984778A (en) Sheet feeder with skew control
EP1338537A2 (en) Self-adaptive sheet feeding roll
JPS62153064A (en) Printer
US3647207A (en) Sheet-feeding mechanism centering device
US5146286A (en) Compact copy sheet input/output apparatus for an electrophotographic printing machine
EP0866009B1 (en) Sheet registration assembly including a force reducing deskew roll