US3844729A - Metals having wear-resistant surfaces and their fabrication - Google Patents

Metals having wear-resistant surfaces and their fabrication Download PDF

Info

Publication number
US3844729A
US3844729A US00237154A US23715472A US3844729A US 3844729 A US3844729 A US 3844729A US 00237154 A US00237154 A US 00237154A US 23715472 A US23715472 A US 23715472A US 3844729 A US3844729 A US 3844729A
Authority
US
United States
Prior art keywords
metal
coating
oxide
matrix
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00237154A
Inventor
H Beyer
U Buran
K Sedlatschek
F Heitzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwarzkopf Technologies Corp
Original Assignee
Schwarzkopf Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwarzkopf Technologies Corp filed Critical Schwarzkopf Technologies Corp
Application granted granted Critical
Publication of US3844729A publication Critical patent/US3844729A/en
Anticipated expiration legal-status Critical
Assigned to SCHWARZKOPF TECHNOLOGIES CORPORATION, A CORP. OF MD reassignment SCHWARZKOPF TECHNOLOGIES CORPORATION, A CORP. OF MD CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 05/21/1991 Assignors: SCHWARZKOPF DEVELOPMENT CORPORATION, A CORP. OF MD
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/932Abrasive or cutting feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12104Particles discontinuous
    • Y10T428/12111Separated by nonmetal matrix or binder [e.g., welding electrode, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2958Metal or metal compound in coating

Definitions

  • ABSTRACT Ultrasound, Agent, or Firm-Morgan, Finnegan, Durham & Pine
  • Various techniques are used to facilitate feeding the components of the surface coating to plasma guns in convenient form, for example by the inclusion of a powdered metal oxide within an elongated tube of the matrix metal or by binding or cementing the powdered oxide to a rod of that metal.
  • Relative motion of the sliding, rolling and/or revolving types may occur between the surfaces of machine elements that contact one another. Due to functional requirements, such contact surfaces are frequently subjected to heavy unit pressures, cyclical loads and high temperatures as well as high sliding speeds. For these reasons, maintaining the lubrication of the contact surfaces is frequently extremely difficult, and in some instances those surfaces are almost continuously operating within the range of mixed friction or even the solid friction state wherein no lubricant is present between the contacting frictional surfaces. Hence, the machine elements are subjected to the adhesive wear resulting from adhesion of sliding parts toone another as well as abrasive wear and corrosion wear at the contact surfaces resulting in early functional failure and the disadvantages involved in shutting down machines or an entire plant.
  • Wear-resistant coatings such as electroplated chromium, thermally sprayed hard alloys and wear-resistant metals, surface diffusion coatings of the type disclosed in US. Pat. No. 3,037,883 and electrostatically applied cemented carbide coatings have been applied in the past to the contact surfaces of such machine elements. Unfortunately, many of these coatings were unable to withstand the stresses or failed for other reasons. Although sprayed molybdenum coatings have given good results even under conditions of inadequate lubrication, these coatings also failed at high temperatures. However, coatings consisting of hard granular materials, such as carbides, borides or nitrides embedded in various metallic matrices have proved useful in improving the wear resistance of steel parts, such as vehicle tracks, gears, etc. For example, cemented titanium carbide coatings increase the service life of tools.
  • US. Pat. No. 3,378,392 discloses spray applications with an oxygen-acetylene powder flame spray gun and plasma guns that deposit wear-resistant and loadresistant surface coatings on bearings, rolls, etc. Almost all of the descriptive matter is concerned with the twocomponent coatings prepared from powder components, and it is stated that such mixtures are preferably sprayed per se. All of the detailed examples in the patent are concerned with depositing coatings derived from the two-component mixtures and general statements as to the results.
  • One essential component is a high melting powder containing one or more of a specitied group of refractory metals which include tungsten and molybdenum and their alloys.
  • the other essential component is a self-fluxing metal powder which contains at least one fluxing constituent (e.g., boron or preferably boron and silicon) in addition to certain metals.
  • at least one fluxing constituent e.g., boron or preferably boron and silicon
  • an optional third component namely other spray materials, such as aluminum, refractory carbides or refractory oxides, such as aluminum oxide or zirconium oxide, and in addition the compound molybdenum disilicide, etc.
  • the third component may be sprayed in admixture or in conjunction with the two essential powder components, but there is no disclosure as to effects produced by the optional additive.
  • US. Pat. No. 3,016,31 1 describes rocket nozzles fabricated by spray deposition as zirconia dispersions in tungsten per se or as coatings of these dispersions on graphite, and these articles were found to display good resistance to severe high velocity flame conditions.
  • the instant invention is directed at the problem of eliminating the aforementioned disadvantages of the frictional contact surfaces of such prior art machine elements and considerably increasing the service life of such parts to thereby substantially improve the economics of operating such machines.
  • the present invention relates to machine elements with hard and wear-resistant surfaces on metal bases and their production. These surfaces are capable of not only withstanding large stresses and the friction resulting from high sliding speeds but also of sliding contact with one another at elevated temperatures and under conditions of inadequate lubrication. These improved results are obtainable with a metal machine element having a frictional contact surface coated with a thermallybonded wear-resistant composition which consists essentially of at least one refractory metal oxide finely dispersed in a flux-free metal matrix. It has been discovered that no self-fluxing alloy or other fluxing agent is necessary in the coating compositions involved in the instant invention. Also, the inclusion of the metal oxide produces unexpectedly less wear on a complementary uncoated contact surface in engagement with the coated contact surface as is described hereinafter.
  • metal is employed herein in its broad sense of referring to alloys as well as elemental metals; and the expression metal oxides is used as encompassing metal-oxygen complexes, such as the spinels, as well as simple refractory oxides containing a single metal.
  • the metal of the tool or machine element or component may preferably be made of steel.
  • the coating or contact layer consists of a mixture of metals with metal oxides and/or spinels.
  • the metals are preferably molybdenum, tungsten, chromium, nickel, cobalt, steel and their alloys. Molybdenum and its alloys are particularly preferred and recommended molybdenum alloys are those containing one or more of such metals as copper, nickel, cobalt, chromium, iron, titanium, aluminium, hafnium or zirconium.
  • the metal oxides preferably include zirconia, chromia, alumina, titania, aluminum-magnesium spinel with the formula Mg(A' lO or chromium-iron spinel, that is Fe(CrO and zirconia is especially preferred.
  • desirable oxides neither melt nor decompose at temperatures below l,400C. and these may be further exemplified by thoria, beryllia, hafnia, magnesia and ceria.
  • the simple metal oxides and spinels may also consist of mixtures, e.g., of zirconia and chromm.
  • the optimum proportion of the oxide component of such coatings depends on the desired high temperature strength with the amount of oxide being increased with an increase in the operating temperature.
  • the proportion of metal in the coating should be from 20 to 98 volume percent (preferably 40-70 vol. percent), and the balance is essentially the metal oxide constituent, except for those instances in which a minor proportion of a solid lubricant is present as described hereinafter.
  • the matrix metal may amount to between 20 and 95 percent of the total weight of the coating composition.
  • the formation of the coatings in accordance with the present invention may utilize certain known techniques, especially plasma spraying and flame spraying (flame plating) as described in U.S. Pat. No. 3,378,392, and those disclosures are incorporated herein by reference.
  • powder mixtures containing the coating components may be sprayed onto the part to be coated by means of a plasma gun.
  • the powdered and mixed components may be presintered and this product may then be ground to a powder.
  • Segregation may also be averted by addition of a binder compound (e.g., a wax, paraffin or an aqueous solution of methyl cellulose) which desirably provides frangible type of adhesion or consolidation of the powder particles.
  • a binder compound e.g., a wax, paraffin or an aqueous solution of methyl cellulose
  • coatings having compositions in accordance with the invention may be produced by using two plasma guns simultaneously, one for the matrix metal and one for the refractory oxide component.
  • Rods or wires containing the components may also be used in forming the coatings.
  • the coatings in accordance with the invention may be applied by such methods as plasma gun spraying or melting in an oxyacetylene flame or electric arc.
  • the fabrication of such rods or wires may be carried out by the sintering of powdered material and subsequent shaping or forming at elevated temperature, e.g., by forging, rolling or drawing.
  • a sintered rod with a high metal oxide content i.e., above vol. percent
  • a sintered rod with a high metal oxide content is usually difficult to work, but it can be encased in a ductile metal sheath which may subsequently be removed, if necessary (e.g., by dissolving the sheath).
  • Another method of producing such a rod or wire with the desired composition is to coat a matrix metal wire with the oxide material, for example, by dipping the wire in a suspension in which the oxide component is finely dispersed, for example, in an aqueous solution of methyl cellulose, sugar or an aliginate which serves as a thickener for stabilizing the suspension as well as a binding agent. After drying the coating, the dry binding agent cements the oxide powder to the metal core, and the coated wire can be used immediately or it may be further drawn out. Coatings resulting from melting such wires contain the components in a suitably uniform distribution.
  • tubes e.g., molybdenum tubes, filled with the oxide component or a mixture of metal and oxide components in powdered form, and these tubes may be used immediately or they may be drawn to finer gauges.
  • a similar method consists in filling a metal block having a bore with powdered oxides or a mixture of oxides and metals and then shaping the block into an elongated tube consisting of a metal jacket on the outside around a core of powdered material having the selected oxide content.
  • extrusion assistant is a highly viscous solution either of method cellulose in water or of a wax or paraffin in a suitable organic solvent. Its solvent may be subsequently evaporated and the material may be further consolidated by sintering. Of course, none of this organic matter remains after plasma or flame spraying the coating material.
  • Another method of producing coatings in accordance with the present invention is to use two plasma guns, of which one sprays the metallic components in the fonn of wire and the oxide component in the form of powder is sprayed from the other gun.
  • a further improved embodiment of the invention consists in adding solid lubricants, such as lead oxide, sulfur, molybdenum sulfide or carbon, to the coating materials during the spraying process.
  • solid lubricants such as lead oxide, sulfur, molybdenum sulfide or carbon
  • Organic lubricants such as polytetrafluoroethylene
  • the distribution of the lubricant in the coating should be uniform, and this can be accomplished by maintaining uniform rates of supplying the lubricant, the metal oxide and the matrix metal in the aforementioned application methods.
  • the solid lubricant concentration should be restricted to minor contents which do not reduce the mechanical strength of the coating below the level required for any particular application.
  • a coating consisting of a finely dispersed mixture of 50 vol. percent zirconia and 50 vol. percent molybdenum, applied by means of a plasma gun has been found to increase considerably the service life of piston rings of internal combustion engines without deleterious effects on the cylinder linings.
  • coatings of pure molybdenum have provided approximately the same long service life for the piston ring, the complementary surface of the cylinder sleeve was subjected to increased wear.
  • the zirconia addition evidently causes a considerable inhibition of the metallurgical reactions between the Contact surfaces; such reactions are regarded as predominantly of a physical nature.
  • the coatings in accordance with the invention have proved suitable for machine parts subject to all types of friction but particularly sliding friction.
  • the coating protects not only the coated parts but also the complementary surfaces.
  • a metal machine element having a frictional contact surface coated with a thermally bonded wearresistant composition applied by flame spraying or plasma gun technique which consists essentially of at least one refractory metal oxide finely dispersed in a flux-free metal matrix.
  • oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
  • tungsten chromium, nickel, cobalt, steel and their alloys
  • said oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
  • said lubricant is of the group consisting of lead oxide, sulfur, molybdenum sulfide, carbon and polytetrafluoroethylene.
  • a method of manufacturing the article of claim 1 which comprises flame or plasma spraying the coating components onto said metal substrate with said matrix metal in the molten state.
  • a method according to claim 13 in which powdered coating components are separately charged to ticles of a mixture of powdered coating components are consolidated into a mass and said mass is comminuted prior to spraying thereby preventing segregation of said components.
  • said elongated body is a solid core of matrix metal provided with an adherent surface layer of a refractory metal oxide.
  • a method according to claim 13 in which at least one of the components of said coating is at least partially consolidated as an elongated body prior to said deposition by extrusion as a powder in admixture with an extrusion assistant.

Abstract

A metal article, such as a machine element or tool, composed of a metal base and an integral wear-resistant surface layer or coating consisting of one or more finely divided refractory metal oxides (e.g. zirconia and spinel) dispersed in a matrix of a refractory metal (e.g. molybdenum and alloys) with the matrix metal preferably constituting 40 to 70 percent of the volume of the components employed in the coating; optionally, a solid lubricant such as lead oxide or molybdenum sulfide is also dispersed in the coating layer. These articles are fabricated by depositing the coating components onto the metal base from a plasma jet while the matrix metal is in the molten state in order to thermally bond the surface layer to the metal base or substrate. Various techniques are used to facilitate feeding the components of the surface coating to plasma guns in convenient form, for example by the inclusion of a powdered metal oxide within an elongated tube of the matrix metal or by binding or cementing the powdered oxide to a rod of that metal.

Description

United States Patent 1191 1 1 Oct. 29, 1974 Sedlatschek et al.
1 METALS HAVING WEAR-RESISTANT SURFACES AND THEIR FABRICATION [75] Inventors: Karl Sedlatschek, Ruette; Friedrich Heitzinger, Lechaschau, both of Austria; Horst Beyer, Burscheid; Ulrich Buran, Opladen-Quettingen, both of Germany [73] Assignee: Schwarzkopf Development Corporation, New York, NY.
[22] Filed: Mar. 22, 1972 [21] Appl. No.: 237,154
[30] Foreign Application Priority Data Mar. 25, 1971 Austria 2583/71 [52] U.S. Cl 29/195, 29/195, 29/195, l17/93.l PF, 117/105.2
[51] Int. Cl B32b 15/04, C230 7/00 [58] Field of Search 29/195 M, 195 Y, 195 R,
29/195 G, 195 S; 117/93.1 PF, 105.2
[56] References Cited UNITED STATES PATENTS 2,775,531 12/1956 Montgomery et al 29/195 M X 2,903,375 9/1959 Peras 29/195 M X 2,994,654 8/1961 Fahnoe et al Y X 3,061,525 10/1962 Grazen 29/195 M X 3,091,548 5/1963 Dillon 29/195 M X 3,582,481 6/1971 Hovey et a1 29/195 Y X 3,644,105 2/1972 Selker et a1 29/195 Y X Bredzs 29/195 M Perugini 29/195 M X Primary Examiner-13. Dewayne Rutledge Assistant ExaminerE. L. Weise Attorney, Agent, or Firm-Morgan, Finnegan, Durham & Pine [57] ABSTRACT These articles are fabricated by depositing the coating components onto the metal base from a plasma jet while the matrix metal is in the molten state in order 'to thermally bond the surface layer to the metal base or substrate. Various techniques are used to facilitate feeding the components of the surface coating to plasma guns in convenient form, for example by the inclusion of a powdered metal oxide within an elongated tube of the matrix metal or by binding or cementing the powdered oxide to a rod of that metal. I
26 Claims, No Drawings METALS HAVING WEAR-RESISTANT SURFACES AND THEIR FABRICATION The present invention concerns metal machine elements having coatings that are characterized by excellent wearing properties as well as methods for manufacturing such articles.
Relative motion of the sliding, rolling and/or revolving types may occur between the surfaces of machine elements that contact one another. Due to functional requirements, such contact surfaces are frequently subjected to heavy unit pressures, cyclical loads and high temperatures as well as high sliding speeds. For these reasons, maintaining the lubrication of the contact surfaces is frequently extremely difficult, and in some instances those surfaces are almost continuously operating within the range of mixed friction or even the solid friction state wherein no lubricant is present between the contacting frictional surfaces. Hence, the machine elements are subjected to the adhesive wear resulting from adhesion of sliding parts toone another as well as abrasive wear and corrosion wear at the contact surfaces resulting in early functional failure and the disadvantages involved in shutting down machines or an entire plant.
Wear-resistant coatings, such as electroplated chromium, thermally sprayed hard alloys and wear-resistant metals, surface diffusion coatings of the type disclosed in US. Pat. No. 3,037,883 and electrostatically applied cemented carbide coatings have been applied in the past to the contact surfaces of such machine elements. Unfortunately, many of these coatings were unable to withstand the stresses or failed for other reasons. Although sprayed molybdenum coatings have given good results even under conditions of inadequate lubrication, these coatings also failed at high temperatures. However, coatings consisting of hard granular materials, such as carbides, borides or nitrides embedded in various metallic matrices have proved useful in improving the wear resistance of steel parts, such as vehicle tracks, gears, etc. For example, cemented titanium carbide coatings increase the service life of tools.
US. Pat. No. 3,378,392 discloses spray applications with an oxygen-acetylene powder flame spray gun and plasma guns that deposit wear-resistant and loadresistant surface coatings on bearings, rolls, etc. Almost all of the descriptive matter is concerned with the twocomponent coatings prepared from powder components, and it is stated that such mixtures are preferably sprayed per se. All of the detailed examples in the patent are concerned with depositing coatings derived from the two-component mixtures and general statements as to the results. One essential component is a high melting powder containing one or more of a specitied group of refractory metals which include tungsten and molybdenum and their alloys. The other essential component is a self-fluxing metal powder which contains at least one fluxing constituent (e.g., boron or preferably boron and silicon) in addition to certain metals. However, there is a brief mention of an optional third component namely other spray materials, such as aluminum, refractory carbides or refractory oxides, such as aluminum oxide or zirconium oxide, and in addition the compound molybdenum disilicide, etc. The third component may be sprayed in admixture or in conjunction with the two essential powder components, but there is no disclosure as to effects produced by the optional additive.
US. Pat. No. 3,016,31 1 describes rocket nozzles fabricated by spray deposition as zirconia dispersions in tungsten per se or as coatings of these dispersions on graphite, and these articles were found to display good resistance to severe high velocity flame conditions.
US. Pat. Nos. 2,570,649, 2,875,043 and 2,936,229 disclose various procedures for spraying coatings using heat fusible materials in wire or rod form, as powders and as rods constructed of powders consolidated by means of synthetic resin binding agents.
The instant invention is directed at the problem of eliminating the aforementioned disadvantages of the frictional contact surfaces of such prior art machine elements and considerably increasing the service life of such parts to thereby substantially improve the economics of operating such machines.
The present invention relates to machine elements with hard and wear-resistant surfaces on metal bases and their production. These surfaces are capable of not only withstanding large stresses and the friction resulting from high sliding speeds but also of sliding contact with one another at elevated temperatures and under conditions of inadequate lubrication. These improved results are obtainable with a metal machine element having a frictional contact surface coated with a thermallybonded wear-resistant composition which consists essentially of at least one refractory metal oxide finely dispersed in a flux-free metal matrix. It has been discovered that no self-fluxing alloy or other fluxing agent is necessary in the coating compositions involved in the instant invention. Also, the inclusion of the metal oxide produces unexpectedly less wear on a complementary uncoated contact surface in engagement with the coated contact surface as is described hereinafter.
The term metal is employed herein in its broad sense of referring to alloys as well as elemental metals; and the expression metal oxides is used as encompassing metal-oxygen complexes, such as the spinels, as well as simple refractory oxides containing a single metal.
In many embodiments of the invention, the metal of the tool or machine element or component may preferably be made of steel. According to the invention, the coating or contact layer consists of a mixture of metals with metal oxides and/or spinels. The metals are preferably molybdenum, tungsten, chromium, nickel, cobalt, steel and their alloys. Molybdenum and its alloys are particularly preferred and recommended molybdenum alloys are those containing one or more of such metals as copper, nickel, cobalt, chromium, iron, titanium, aluminium, hafnium or zirconium. The metal oxides preferably include zirconia, chromia, alumina, titania, aluminum-magnesium spinel with the formula Mg(A' lO or chromium-iron spinel, that is Fe(CrO and zirconia is especially preferred. In general, desirable oxides neither melt nor decompose at temperatures below l,400C. and these may be further exemplified by thoria, beryllia, hafnia, magnesia and ceria. According to the invention, the simple metal oxides and spinels may also consist of mixtures, e.g., of zirconia and chromm.
The optimum proportion of the oxide component of such coatings depends on the desired high temperature strength with the amount of oxide being increased with an increase in the operating temperature. The proportion of metal in the coating should be from 20 to 98 volume percent (preferably 40-70 vol. percent), and the balance is essentially the metal oxide constituent, except for those instances in which a minor proportion of a solid lubricant is present as described hereinafter. On a weight basis the matrix metal may amount to between 20 and 95 percent of the total weight of the coating composition.
The formation of the coatings in accordance with the present invention may utilize certain known techniques, especially plasma spraying and flame spraying (flame plating) as described in U.S. Pat. No. 3,378,392, and those disclosures are incorporated herein by reference. in one embodiment, powder mixtures containing the coating components may be sprayed onto the part to be coated by means of a plasma gun. In order to prevent segregation of the components of the mixture, the powdered and mixed components may be presintered and this product may then be ground to a powder. Segregation may also be averted by addition of a binder compound (e.g., a wax, paraffin or an aqueous solution of methyl cellulose) which desirably provides frangible type of adhesion or consolidation of the powder particles. Finally, coatings having compositions in accordance with the invention may be produced by using two plasma guns simultaneously, one for the matrix metal and one for the refractory oxide component.
Rods or wires containing the components may also be used in forming the coatings. By means of these rods or wires, the coatings in accordance with the invention may be applied by such methods as plasma gun spraying or melting in an oxyacetylene flame or electric arc. The fabrication of such rods or wires may be carried out by the sintering of powdered material and subsequent shaping or forming at elevated temperature, e.g., by forging, rolling or drawing. A sintered rod with a high metal oxide content (i.e., above vol. percent) is usually difficult to work, but it can be encased in a ductile metal sheath which may subsequently be removed, if necessary (e.g., by dissolving the sheath).
Another method of producing such a rod or wire with the desired composition is to coat a matrix metal wire with the oxide material, for example, by dipping the wire in a suspension in which the oxide component is finely dispersed, for example, in an aqueous solution of methyl cellulose, sugar or an aliginate which serves as a thickener for stabilizing the suspension as well as a binding agent. After drying the coating, the dry binding agent cements the oxide powder to the metal core, and the coated wire can be used immediately or it may be further drawn out. Coatings resulting from melting such wires contain the components in a suitably uniform distribution.
Another embodiment is using tubes, e.g., molybdenum tubes, filled with the oxide component or a mixture of metal and oxide components in powdered form, and these tubes may be used immediately or they may be drawn to finer gauges.
A similar method consists in filling a metal block having a bore with powdered oxides or a mixture of oxides and metals and then shaping the block into an elongated tube consisting of a metal jacket on the outside around a core of powdered material having the selected oxide content.
Another method of converting the coating components into the elongated form of rod or wire is to add an extrusion assistant to the original powder and to extrude the plastic mixture. The extrusion assistant is a highly viscous solution either of method cellulose in water or of a wax or paraffin in a suitable organic solvent. Its solvent may be subsequently evaporated and the material may be further consolidated by sintering. Of course, none of this organic matter remains after plasma or flame spraying the coating material.
Another method of producing coatings in accordance with the present invention is to use two plasma guns, of which one sprays the metallic components in the fonn of wire and the oxide component in the form of powder is sprayed from the other gun.
A further improved embodiment of the invention consists in adding solid lubricants, such as lead oxide, sulfur, molybdenum sulfide or carbon, to the coating materials during the spraying process. Organic lubricants, such as polytetrafluoroethylene, may also be used. The distribution of the lubricant in the coating should be uniform, and this can be accomplished by maintaining uniform rates of supplying the lubricant, the metal oxide and the matrix metal in the aforementioned application methods. Also, the solid lubricant concentration should be restricted to minor contents which do not reduce the mechanical strength of the coating below the level required for any particular application.
In one specific embodiment, a coating consisting of a finely dispersed mixture of 50 vol. percent zirconia and 50 vol. percent molybdenum, applied by means of a plasma gun, has been found to increase considerably the service life of piston rings of internal combustion engines without deleterious effects on the cylinder linings. Although coatings of pure molybdenum have provided approximately the same long service life for the piston ring, the complementary surface of the cylinder sleeve was subjected to increased wear. Thus the zirconia addition evidently causes a considerable inhibition of the metallurgical reactions between the Contact surfaces; such reactions are regarded as predominantly of a physical nature.
The coatings in accordance with the invention have proved suitable for machine parts subject to all types of friction but particularly sliding friction. The coating protects not only the coated parts but also the complementary surfaces.
We claim:
1. A metal machine element having a frictional contact surface coated with a thermally bonded wearresistant composition applied by flame spraying or plasma gun technique which consists essentially of at least one refractory metal oxide finely dispersed in a flux-free metal matrix.
2. An article according to claim 1 in which the amount of said matrix metal is from 20 to 98 percent of the volume of the components used in depositing said coating.
3. An article according to claim 2 in which said matrix metal is of the group consisting of molybdenum, tungsten, chromium, nickel, cobalt, steel and their aloys.
4. An article according to claim 1 in which said oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
5. An article according to claim 1 in which said matrix metal is of the group consisting of molybdenum,
tungsten, chromium, nickel, cobalt, steel and their alloys, and said oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
6. An article according to claim 5 in which said matrix metal component amounts to from 40 to 70 percent of the volume of the components of said coating.
7. An article according to claim 6 in which a steel substrate bears an integral surface coating consisting of zirconia finely dispersed in a metal matrix containing a major proportion of molybdenum.
8. An article according to claim 1 in which said matrix metal contains at least a substantial proportion of molybdenum.
9. An article according to claim 1 in which said oxide is of a group consisting of aluminum-magnesium spinel and chromium-iron spinel.
10. An article according to claim 1 in which said coating consists essentially of zirconia finely dispersed in a molybdenum matrix.
11. An article according to claim 1 in which said coating contains a solid lubricant dispersed therein.
12. An article according to claim 11 in which said lubricant is of the group consisting of lead oxide, sulfur, molybdenum sulfide, carbon and polytetrafluoroethylene.
13. A method of manufacturing the article of claim 1 which comprises flame or plasma spraying the coating components onto said metal substrate with said matrix metal in the molten state.
l4. A method according to claim 13 in which flame spraying is employed in the deposition of said coating components.
IS. A method according to claim 13 in which a mixture of powdered coating components is charged to a plasma gun for deposition by spraying.
16. A method according to claim 13 in which powdered coating components are separately charged to ticles of a mixture of powdered coating components are consolidated into a mass and said mass is comminuted prior to spraying thereby preventing segregation of said components.
18. A method according to claim 13 in which an elongated body of matrix metal is melted.
19. A method according to claim 18 in which said elongated body is a solid core of matrix metal provided with an adherent surface layer of a refractory metal oxide.
20. A method according to claim 18 in which said solid core is dipped into a suspension of said oxide in a liquid and dried to form said adherent layer of refractory oxide;
21. A method according to claim 19 in which said elongated body is drawn to greater length prior to melting for spray deposition.
22. A method according to claim 13 in which the metal oxide for spray deposition is introduced as a powder contained within an elongated hollow metal jacket.
23. A method according to claim 22 in which said metal jacket is melted to supply said matrix metal.
24. A method according to claim 22 in which a hollow block of metal filled with said powdered oxide is reshaped into elongated form.
25. A method according to claim 13 in which at least one of the components of said coating is at least partially consolidated as an elongated body prior to said deposition by extrusion as a powder in admixture with an extrusion assistant.
26. A method according to claim 25 in which further consolidation of said component is effected by sintering said elongated body prior to said deposition.

Claims (26)

1. A METAL MACHINE ELEMENT HAVING A FRICTIONAL CONTACT SURFACE COATED WITH A THERMALLY BONDED WEAR-RESISTANT COMPOSITION APPLIED BY FLAME SPRAYING OR PLASMA GUN TECHNIQUE WHICH CONSISTS ESSENTIALLY OF AT LEAST ONE REFRACTORY METAL OXIDE FINELY DISPERSED IN A FLUX-FREE METAL MATRIX.
2. An article according to claim 1 in which the amount of said matrix metal is from 20 to 98 percent of the volume of the components used in depositing said coating.
3. An article according to claim 2 in which said matrix metal is of the group consisting of molybdenum, tungsten, chromium, nickel, cobalt, steel and their alloys.
4. An article according to claim 1 in which said oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
5. An article according to claim 1 in which said matrix metal is of the group consisting of molybdenum, tungsten, chromium, nickel, cobalt, steel and their alloys, and said oxide component is of the group consisting of zirconia, alumina, chromia, titania, thoria, beryllia, hafnia, magnesia, ceria and spinels.
6. An article according to claim 5 in which said matrix metal component amounts to from 40 to 70 Percent of the volume of the components of said coating.
7. An article according to claim 6 in which a steel substrate bears an integral surface coating consisting of zirconia finely dispersed in a metal matrix containing a major proportion of molybdenum.
8. An article according to claim 1 in which said matrix metal contains at least a substantial proportion of molybdenum.
9. An article according to claim 1 in which said oxide is of a group consisting of aluminum-magnesium spinel and chromium-iron spinel.
10. An article according to claim 1 in which said coating consists essentially of zirconia finely dispersed in a molybdenum matrix.
11. An article according to claim 1 in which said coating contains a solid lubricant dispersed therein.
12. An article according to claim 11 in which said lubricant is of the group consisting of lead oxide, sulfur, molybdenum sulfide, carbon and polytetrafluoroethylene.
13. A method of manufacturing the article of claim 1 which comprises flame or plasma spraying the coating components onto said metal substrate with said matrix metal in the molten state.
14. A method according to claim 13 in which flame spraying is employed in the deposition of said coating components.
15. A method according to claim 13 in which a mixture of powdered coating components is charged to a plasma gun for deposition by spraying.
16. A method according to claim 13 in which powdered coating components are separately charged to separate plasma guns for simultaneous deposition on said metal substrate.
17. A method according to claim 13 in which the particles of a mixture of powdered coating components are consolidated into a mass and said mass is comminuted prior to spraying thereby preventing segregation of said components.
18. A method according to claim 13 in which an elongated body of matrix metal is melted.
19. A method according to claim 18 in which said elongated body is a solid core of matrix metal provided with an adherent surface layer of a refractory metal oxide.
20. A method according to claim 18 in which said solid core is dipped into a suspension of said oxide in a liquid and dried to form said adherent layer of refractory oxide.
21. A method according to claim 19 in which said elongated body is drawn to greater length prior to melting for spray deposition.
22. A method according to claim 13 in which the metal oxide for spray deposition is introduced as a powder contained within an elongated hollow metal jacket.
23. A method according to claim 22 in which said metal jacket is melted to supply said matrix metal.
24. A method according to claim 22 in which a hollow block of metal filled with said powdered oxide is reshaped into elongated form.
25. A method according to claim 13 in which at least one of the components of said coating is at least partially consolidated as an elongated body prior to said deposition by extrusion as a powder in admixture with an extrusion assistant.
26. A method according to claim 25 in which further consolidation of said component is effected by sintering said elongated body prior to said deposition.
US00237154A 1971-03-25 1972-03-22 Metals having wear-resistant surfaces and their fabrication Expired - Lifetime US3844729A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT258371A AT312317B (en) 1971-03-25 1971-03-25 Wear-resistant coatings for machine parts

Publications (1)

Publication Number Publication Date
US3844729A true US3844729A (en) 1974-10-29

Family

ID=3536895

Family Applications (1)

Application Number Title Priority Date Filing Date
US00237154A Expired - Lifetime US3844729A (en) 1971-03-25 1972-03-22 Metals having wear-resistant surfaces and their fabrication

Country Status (3)

Country Link
US (1) US3844729A (en)
AT (1) AT312317B (en)
DE (1) DE2209675A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029852A (en) * 1974-06-10 1977-06-14 Maximilian Palena Metal non-skid coating
US4039700A (en) * 1973-05-09 1977-08-02 Robert Bosch G.M.B.H. Hard metal coating process for metal objects
US4276353A (en) * 1978-08-23 1981-06-30 Metco, Inc. Self-bonding flame spray wire for producing a readily grindable coating
EP0042693A2 (en) * 1980-06-21 1981-12-30 LUCAS INDUSTRIES public limited company Semi-conductor power device assembly and method of manufacture thereof
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
US5141769A (en) * 1989-12-19 1992-08-25 Mtu Motoren-Und Turbinen-Union Gmbh Method for applying wear-resistant dispersion coatings
US5648158A (en) * 1995-05-24 1997-07-15 A.O. Smith Corporation Method of protecting metal against corrosion and a vehicle including a structural member protected by the method in high temperature areas
US5723535A (en) * 1993-09-13 1998-03-03 H.C. Starck Gmbh & Co., Kg Pastes for the coating of substrates, methods for manufacturing them and their use
US5877093A (en) * 1995-10-27 1999-03-02 Honeywell Inc. Process for coating an integrated circuit device with a molten spray
US6017591A (en) * 1996-11-14 2000-01-25 Ford Global Technologies, Inc. Method of making adherently sprayed valve seats
US6287985B1 (en) * 1995-10-27 2001-09-11 Honeywell International Inc. Process for applying a molten droplet coating for integrated circuits
US20050029808A1 (en) * 2003-08-05 2005-02-10 Heany Industries, Inc. Surface coated spherical slip joint for forming a sealed interface and method of fabrication
US20050247179A1 (en) * 2002-08-14 2005-11-10 Aktiebolaget Electrolux Drive wheel
US20070209879A1 (en) * 2004-04-01 2007-09-13 Dirk Schmidt System For Lubricating A Closing Mechanism, A Closing Bar And Closing Hook
US20120195542A1 (en) * 2011-01-27 2012-08-02 National Oilwell Varco, L.P. Oil-Sealed Mud Motor Bearing Assembly With Mud-Lubricated Off-Bottom Thrust Bearing
US9597857B2 (en) 2012-02-17 2017-03-21 Charles R. Ligon Enhanced friction coating construction and method for forming same
US20190186281A1 (en) * 2017-12-20 2019-06-20 United Technologies Corporation Compressor abradable seal with improved solid lubricant retention
US10370514B2 (en) 2014-06-23 2019-08-06 Southwire Company, Llc UV-resistant superhydrophobic coating compositions
US10889727B1 (en) 2018-06-14 2021-01-12 Southwire Company, Llc Electrical cable with improved installation and durability performance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE426918B (en) * 1979-02-26 1983-02-21 Thomas Johannesson PROCEDURE FOR THE PREPARATION OF A PART WITH NUTS-RESISTANT SURFACE
DE3132104A1 (en) * 1981-08-13 1983-03-03 Kurosaki Yogyo Co., Ltd., Kitakyusyu, Fukuoka Shaped articles formed by flame-application of refractory powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775531A (en) * 1949-05-10 1956-12-25 Univ Ohio State Res Found Method of coating a metal surface
US2903375A (en) * 1956-08-08 1959-09-08 Renault Method of coating a mould for use in a foundry
US2994654A (en) * 1958-02-04 1961-08-01 Vitro Corp Of America Method of forming a lubricating element by electrophoresis
US3061525A (en) * 1959-06-22 1962-10-30 Platecraft Of America Inc Method for electroforming and coating
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
US3582481A (en) * 1966-01-13 1971-06-01 Bunker Ramo Method of application of dry lubricant to surface of an article
US3644105A (en) * 1970-03-03 1972-02-22 Clevite Corp Multilayer bearing
US3705791A (en) * 1970-09-18 1972-12-12 Wall Colmonoy Corp Cermet alloy composition
US3719519A (en) * 1965-08-06 1973-03-06 G Perugini Process of forming protective coatings on metallic surfaces by spraying a combination of powders of a metal alloy,chromium and a ceramic oxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775531A (en) * 1949-05-10 1956-12-25 Univ Ohio State Res Found Method of coating a metal surface
US2903375A (en) * 1956-08-08 1959-09-08 Renault Method of coating a mould for use in a foundry
US2994654A (en) * 1958-02-04 1961-08-01 Vitro Corp Of America Method of forming a lubricating element by electrophoresis
US3061525A (en) * 1959-06-22 1962-10-30 Platecraft Of America Inc Method for electroforming and coating
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
US3719519A (en) * 1965-08-06 1973-03-06 G Perugini Process of forming protective coatings on metallic surfaces by spraying a combination of powders of a metal alloy,chromium and a ceramic oxide
US3582481A (en) * 1966-01-13 1971-06-01 Bunker Ramo Method of application of dry lubricant to surface of an article
US3644105A (en) * 1970-03-03 1972-02-22 Clevite Corp Multilayer bearing
US3705791A (en) * 1970-09-18 1972-12-12 Wall Colmonoy Corp Cermet alloy composition

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039700A (en) * 1973-05-09 1977-08-02 Robert Bosch G.M.B.H. Hard metal coating process for metal objects
US4029852A (en) * 1974-06-10 1977-06-14 Maximilian Palena Metal non-skid coating
US4276353A (en) * 1978-08-23 1981-06-30 Metco, Inc. Self-bonding flame spray wire for producing a readily grindable coating
EP0042693A2 (en) * 1980-06-21 1981-12-30 LUCAS INDUSTRIES public limited company Semi-conductor power device assembly and method of manufacture thereof
EP0042693A3 (en) * 1980-06-21 1982-06-09 Lucas Industries Public Limited Company Semi-conductor power device assembly and method of manufacture thereof
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
US5141769A (en) * 1989-12-19 1992-08-25 Mtu Motoren-Und Turbinen-Union Gmbh Method for applying wear-resistant dispersion coatings
US5723535A (en) * 1993-09-13 1998-03-03 H.C. Starck Gmbh & Co., Kg Pastes for the coating of substrates, methods for manufacturing them and their use
US5648158A (en) * 1995-05-24 1997-07-15 A.O. Smith Corporation Method of protecting metal against corrosion and a vehicle including a structural member protected by the method in high temperature areas
US5877093A (en) * 1995-10-27 1999-03-02 Honeywell Inc. Process for coating an integrated circuit device with a molten spray
US6287985B1 (en) * 1995-10-27 2001-09-11 Honeywell International Inc. Process for applying a molten droplet coating for integrated circuits
US6017591A (en) * 1996-11-14 2000-01-25 Ford Global Technologies, Inc. Method of making adherently sprayed valve seats
US20090106987A1 (en) * 2002-08-14 2009-04-30 Stigbjorn Juhojuntti Drive wheel
US7905024B2 (en) * 2002-08-14 2011-03-15 Aktiebolaget Electrolux Drive wheel
US20050247179A1 (en) * 2002-08-14 2005-11-10 Aktiebolaget Electrolux Drive wheel
US20050029808A1 (en) * 2003-08-05 2005-02-10 Heany Industries, Inc. Surface coated spherical slip joint for forming a sealed interface and method of fabrication
US6904661B2 (en) 2003-08-05 2005-06-14 Heany Industries, Inc. Method of fabricating surface coated spherical slip joint for forming a sealed interface
US20070209879A1 (en) * 2004-04-01 2007-09-13 Dirk Schmidt System For Lubricating A Closing Mechanism, A Closing Bar And Closing Hook
US8827040B2 (en) * 2004-04-01 2014-09-09 Jost-Werke Gmbh System for lubricating a closing mechanism, a closing bar and closing hook
US20120195542A1 (en) * 2011-01-27 2012-08-02 National Oilwell Varco, L.P. Oil-Sealed Mud Motor Bearing Assembly With Mud-Lubricated Off-Bottom Thrust Bearing
US8511906B2 (en) * 2011-01-27 2013-08-20 National Oilwell Varco, L.P. Oil-sealed mud motor bearing assembly with mud-lubricated off-bottom thrust bearing
US9597857B2 (en) 2012-02-17 2017-03-21 Charles R. Ligon Enhanced friction coating construction and method for forming same
US10370514B2 (en) 2014-06-23 2019-08-06 Southwire Company, Llc UV-resistant superhydrophobic coating compositions
US11001696B2 (en) 2014-06-23 2021-05-11 Southwire Company, Llc UV-resistant superhydrophobic coating compositions
US20190186281A1 (en) * 2017-12-20 2019-06-20 United Technologies Corporation Compressor abradable seal with improved solid lubricant retention
US10889727B1 (en) 2018-06-14 2021-01-12 Southwire Company, Llc Electrical cable with improved installation and durability performance

Also Published As

Publication number Publication date
DE2209675A1 (en) 1972-10-19
AT312317B (en) 1973-12-27

Similar Documents

Publication Publication Date Title
US3844729A (en) Metals having wear-resistant surfaces and their fabrication
US3313633A (en) High temperature flame spray powder
US3378392A (en) High temperature flame spray powder and process
US3841901A (en) Aluminum-and molybdenum-coated nickel, copper or iron core flame spray materials
US4741974A (en) Composite wire for wear resistant coatings
CA1276843C (en) Composite hard chromium compounds for thermal spraying
US3254970A (en) Flame spray clad powder composed of a refractory material and nickel or cobalt
US5080056A (en) Thermally sprayed aluminum-bronze coatings on aluminum engine bores
US3332752A (en) Composite flame spraying wire
US4173685A (en) Coating material and method of applying same for producing wear and corrosion resistant coated articles
US5122182A (en) Composite thermal spray powder of metal and non-metal
US3436248A (en) Flame spraying exothermically reacting intermetallic compound forming composites
US3342626A (en) Flame spray metallizing
US4019875A (en) Aluminum-coated nickel or cobalt core flame spray materials
JP2004510050A (en) Thermal coating of piston rings for mechanically alloyed powders.
US3084064A (en) Abradable metal coatings and process therefor
JPH08253877A (en) Composite coating having abrasion resistance
JP5222553B2 (en) Abrasion resistant alloy powder and coating
US3440079A (en) Spray coating
US3071489A (en) Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby
US3890137A (en) Welding powder for producing wear-resistant layers by build-up welding
KR910006512A (en) Peelable coating agent and preparation method thereof
US5690716A (en) Thermal spray powder
US3455019A (en) Method for producing carbide containing materials
US4510183A (en) Method for applying wear-resistant coatings on working surfaces of tools and devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHWARZKOPF TECHNOLOGIES CORPORATION, A CORP. OF M

Free format text: CHANGE OF NAME;ASSIGNOR:SCHWARZKOPF DEVELOPMENT CORPORATION, A CORP. OF MD;REEL/FRAME:005931/0448

Effective date: 19910517