US3838809A - Automatic serum preparation station - Google Patents

Automatic serum preparation station Download PDF

Info

Publication number
US3838809A
US3838809A US00351631A US35163173A US3838809A US 3838809 A US3838809 A US 3838809A US 00351631 A US00351631 A US 00351631A US 35163173 A US35163173 A US 35163173A US 3838809 A US3838809 A US 3838809A
Authority
US
United States
Prior art keywords
centrifuge
drum
sample
centrifuge drum
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00351631A
Inventor
M Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00351631A priority Critical patent/US3838809A/en
Priority to US487317A priority patent/US3908893A/en
Application granted granted Critical
Publication of US3838809A publication Critical patent/US3838809A/en
Priority to US05/625,029 priority patent/US4058252A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0407Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers for liquids contained in receptacles

Definitions

  • trigger mechanism opens the valve means to pass the lighter components through the common wall into the aspiration chamber while the centrifuge drum is spinning, closing the valve means when the rate at which the centrifuge drum is spinning falls below a desired level.
  • An automatic sample loading mechanism is also provided which utilizes centrifugal forces to load a sample into the separation chamber of the centrifuge drum.
  • the present invention relates generally to centrifugal separation of liquids and more particularly to an apparatus for automatically separating the serum, or plasma, from a whole blood sample for subsequent biochemical analysis.
  • centrifugal separation technique commonly used for processing whole blood to serum or plasma (heparinized serum) requires the following steps:
  • test tube (geometrically and symmetrically) in a centrifuge
  • batch size i.e., the number of samples in a batch
  • the plasma should be decanted or aspirated as soon as possible after the centrifuge is stopped, or the immiscible components will re-diffuse into the plasma.
  • a centrifuge apparatus for centrifugally separating a sample mixture into its lighter and heavier components.
  • the apparatus comprises a centrifugal drum having a separation chamber and an aspiration chamber positioned directly thereabove, the chambers being separated by a common wall having valve means connecting the separation chamber and the aspiration chamber.
  • the separation chamber has a truncated conical side wall with a larger diameter trap portion located at the base thereof.
  • a motor is provided for spinning the centrifuge drum to force the heavier components into the trap portion while the lighter components are forced up the conical side wall.
  • a trigger mechanism opens the valve means to pass the lighter components through the common wall while the centrifuge drum is spinning. closing the valve means when the rate at which the centrifuge drum is spinning falls below a desired level.
  • the centrifuge apparatus further includes an automatic sample loading mechanism for loading a sample into the separation chamber of the centrifuge drum through an aperture in its bottom end.
  • the automatic sample loading mechanism comprises a sample cup having an open top end corresponding to the aperture in the centrifuge drum for containing the sample to be loaded into the drum.
  • a transport means selectively moves the centrifuge drum and the sample cup into juxtaposition during loading so that the open top end of the sample cup is coincident with the aperture in the bottom end of the centrifuge drum.
  • a plurality of samples are simultaneously centrifugally separated into their components by an automatic centrifuging apparatus comprising a plurality of centrifuge units, each unit comprising a centrifugedrum and a motor for spinning the drum.
  • Loading means are pro vided for sequentially loading'each of the drums with one of the samples and brake means for braking the drum to a stop after the sample therein has been centrifugally separated.
  • One of the components is removed from the drum by an aspiration means, and the drum is then washed by wash means to remove any remaining sample from the drum.
  • the centrifuge drum is then rinsed by rinse means and dried by a drying means.
  • Means are provided for sequentially advancing each of the centrifuge units past the loading means, the brake means, the aspiration means, the wash means, the rinse means and the drying means to simultaneously process a plurality of samples.
  • FIG. 1 is a perspective view of a centrifuge unit in accordance with a referred embodiment of the invention
  • FIG. 2 is a sectional view of the centrifuge unit taken along lines 2-2 of FIG. 1 illustrating a method of loading a sample into the centrifuge drum of the centrifuge unit;
  • FIG. 3 is a detailed sectional view of the centrifuge drum taken along lines 2-2 of FIG. 1;
  • FIG. 4 is a schematic representation of an automatic serum preparation apparatus utilizing a plurality of the centrifuge units shown in FIG. 1.
  • the centrifuge unit shown in FIG. 1 includes a centrifuge drum for centrifuging whole blood to obtain plasma samples for biochemical analysis.
  • the drum 10 is mounted on a shaft 11, coincident with its longitudinal axis, and rotated at high speeds by a hydraulic motor 12 to centrifuge the blood sample, separating the packed red cells from the plasma.
  • a sample loading mechanism is positioned directly below the drum 10 for automatically loading the whole blood into the drum 10 for subsequent centrifugal separation.
  • the loading mechanism comprises a substantially cylindrical cup 13 removably mounted on a horizontal plate 14 by means of a shaft 15 on the bottom of cup 13 which is insertable into an aperture in plate 14. Further, an arrangement comprising several ball bearings (not shown) mounted in an annular sleeve 16 is interposed between plate 14 and the bottom of cup 13. Accordingly, cup 13 is free to spin about its longitudinal axis (i.e., shaft 15). Moreover, the longitudinal axis of cup 13 is aligned with the rotational axis (i.e., shaft 11) of centrifuge drum 10.
  • a pair of air cylinders 17, positioned at opposite ends of plate 14, are effective to vertically reposition plate 14 relative to the bottom of centrifuge drum 10 whenever compressed air is introduced, or released as the case may be, into the cylinders through tubing 18. Consequently, cup 13 can be moved along its longitudinal axis until its open top end is coincident, or in juxtaposition, with a corresponding aperture 19 (not shown) in the bottom end of centrifuge drum l0.
  • the blood sample is initially placed in cup 13 for subsequent loading into the centrifuge drum 10.
  • the automatic loading feature of the present invention may be more readily understood by reference now to FIG. 2.
  • cup 13 is repositioned so that its open end is in juxtaposition with the aperture 19 in the bottom of drum 10.
  • the top edge of cup 13 is beveled to fit the correspondingly beveled edge of aperture 19. Consequently, when the centrifuge drum is rotated while in juxtaposition with cup 13, the cup 13 is also rotated.
  • a pair of alignment bars 20 extend from base 21 and pass through corresponding apertures in plate 14 to prevent twisting.
  • FIG. 3 The interior features of the centrifuge drum 10 are shown in FIG. 3. There, it may be seen that the centrifuge drum 10 is divided into a pair of adjacent chambers, a separation chamber identified generally at 22 and an aspiration chamber identified generally at 23, separated by a common wall 24. In addition to aperture 19 in the bottom of separation chamber 22, a similar aperture 25 is provided in the top end of the aspiration, or pick-up, chamber 23. Thus, the shaft 11 is passed through aperture 25 and is attached to the center of common wall 24 by a suitable fastening arrangement 26.
  • the interior wall 27 of separation chamber 22 comprises three essentially distinct sections: 270 defining a truncated conical portion while 27b and 27c define a larger diameter trap portion, identified generally at 28, located at its base.
  • the blood is initially forced into the trap portion 28 where the heavier immiscible cellular components 29 are trapped.
  • the volume of blood loaded into the separation chamber 22 exceeds the volume of trap portion 28, the packed red cells are captured in the trap 28 while the lighter plasma forms a distinct layer 30 interior to the packed red cells.
  • the volume of trap 28 is sufficient to contain the entire volume of packed red cells in the sample. Consequently, the same lateral forces resulting from centrifugation that were utilized to load the sample into the separation chamber 22 will prevail to force the plasma up the conical wall portion 27a toward the aspiration chamber 23.
  • the separation chamber 22 and the aspiration chamber 23 are separated by a common wall 24.
  • a valve orifice 31 is provided in wall 24 to connect the two chambers at a point near the juncture of the conical wall portion 27a and the common wall 24.
  • the orifice 31 is closed by a valve plug 32 insertable therein.
  • a trigger mechanism comprising air cylin- -der 33, bar 34, and L-shaped rod 35 (FIG. 1) combine to remove the plug 32 from the orifice 31.
  • the air cylinder 33 controlled by an influx of compressed air, forces bar 34 downward.
  • the L-shaped rod 35 which passes through a guide slot 36 in the common wall 24, in turn, is effective to disengage the plug 32.
  • the trigger mechanism i.e., air cylinder 33
  • a spring 37 on shaft 1 l forces the bar 34 upward so that plug 32 seals the orifice 31, permanently separating the plasma from the packed red cells.
  • the plasma may be manually or automatically aspirated from the pick-up chamber 23 through the aperture 25.
  • a barrier 38 is also provided to contain the plasma within a limited area of the base of aspiration chamber 23 after the drum 10 stops spinning so that the plasma may be more easily aspirated.
  • the centrifuge unit of the present invention is especially well suited for adaptation to provide an automatic serum preparation apparatus, such as that shown schematically in FIG. 4. That is, because each centrifuge unit is virtually independent of the other units, several units may be combined to provide an automatic serum preparation unit for simultaneously processing several blood samples.
  • a number of centrifuge units are mounted on a conveyor such as circular plate 39 approximately 16 inches in diameter.
  • the plate 39 is sequentially rotated at a predetermined rate to various positions, or stations, by a step ping motor 40.
  • a centrifuge unit 42 is centered over an automatic loading mechanism so that the cup containing the whole blood can be raised into juxtaposition with the centrifuge drum. Subsequently, the centrifuge motor spins the drum and the cup in the manner previously described, causing the sample to be loaded into the drum.
  • the cup is dropped away, and the stepping motor 40 advances the plate 39, moving centrifuge unit 42 to the next station- Accordingly, blood samples can be introduced into successive centrifuge units at asingle input station 41 by loading the sample into a unit and advancing the plate 39 so that the loaded unit is replaced by an empty unit.
  • the centrifuge 42 As the centrifuge 42 is advanced, the plasma and packed red cells are separated, and the plasma is isolated in the aspiration chamber of the drum. Subsequently, the centrifuge unit 42 reaches brake stop station 43 where the spinning drum is stopped. The stepping motor 40 next advances the unit 42 to the aspirate station 44 where aspiration of the plasma may be manually or automatically accomplished. The centrifuge unit 42 is then moved to the wash" station 45 where a soap solution is sprayed into both chambers of the drums, cleaning both of all traces of the blood sample. In turn, the unit 42 is advanced to the rinse station 46 where both chambers are thoroughly rinsed, and finally, it is stepped through two successive dry stations 47 and 48 where the centrifuge drum is dried. After completion of this sequence, the centrifuge unit 42, as well as successive centrifuge units, is ready to centrifuge a new sample; and thus, when it once again reaches input station 41, it is loaded with a new blood sample.
  • an automatic loading centrifuge unit which is adaptable for use in a batch processing automatic serum preparation arrangement. Because the plasma, or serum, is automatically separated from the whole blood and isolated in a pick-up chamber where the packed red cells cannot recombine with the plasma. there is less urgency for removing the plasma from the centrifuge. Further, less care need be taken in aspirating the plasma since only the plasma is separated into the pick-up chamber. if that were not the case, as in prior art systems, care would have to be exercised to insure that the end of the aspirating needle is not inserted too deeply into the plasma layer, aspirating the immiscible components as well as the plasma. Finally, the units relatively simple design maintains the cost of each unit at a minimal level, making it extremely attractive for use in hospitals and research laboratories.
  • An automatic centrifuging apparatus for simultaneously centrifuging a plurality of samples into their components, the apparatus comprising:
  • each unit comprising a centrifuge drum and a motor for spinning the drum;
  • loading means for sequentially loading each of the drums with one of the samples
  • brake means for braking the drum after the sample therein has been centrifugally separated; aspiration means for removing one of the components from the centrifuge drum;
  • wash means for washing the centrifuge drum to remove any remaining sample tlherefrom
  • rinse means for rinsing the centrifuge drum
  • drying means for drying the centrifuge drum
  • An automatic centrifuging apparatus in accordance with claim 1 wherein the means comprises a stepping motor driving a conveyor, the plurality of centrifuge units being mounted on the conveyor and sequentially advanced by the stepping motor.

Abstract

A centrifuge apparatus for centrifugally separating the lighter components of a sample mixture from its heavier components is disclosed. The apparatus includes a centrifuge drum having vertically aligned separation and aspiration chambers separated by a common wall having valve means therein for connecting the two chambers. The separation chamber has a truncated conical side wall with a larger diameter trap portion located at the base thereof. A motor is included for spinning the centrifuge drum to force the heavier components into the transportation while the lighter components are forced up the conical side wall. A trigger mechanism opens the valve means to pass the lighter components through the common wall into the aspiration chamber while the centrifuge drum is spinning, closing the valve means when the rate at which the centrifuge drum is spinning falls below a desired level. An automatic sample loading mechanism is also provided which utilizes centrifugal forces to load a sample into the separation chamber of the centrifuge drum.

Description

United States Patent 1 Williams [76] Inventor: Melvin Williams, 840 Elmwood,
Evanston, 111. 60202 [22] Filed: Apr. 16, 1973 [21] Appl. No.: 351,631
[52] US. Cl 233/24, 233/25, 233/26,
[51] Int. Cl B04b 9/02 [58] Field of Search 233/23 R, 24, 25, 26, 27, 233/28, 14 R; 23/259 [56] References Cited UNITED STATES PATENTS 2,822,127 2/1958 Sinn 233/25 X 3,737,096 6/1973 Jones et al. 233/14 R [4 1 Oct. 1, 1974 Primary Examiner-George H. Krizmanich Attorney, Agent, or Firm-Merriam, Marshall, Shapiro & Klose [5 7 ABSTRACT components into the transportation while the lighter components are forced up the conical side wall. A
trigger mechanism opens the valve means to pass the lighter components through the common wall into the aspiration chamber while the centrifuge drum is spinning, closing the valve means when the rate at which the centrifuge drum is spinning falls below a desired level. An automatic sample loading mechanism is also provided which utilizes centrifugal forces to load a sample into the separation chamber of the centrifuge drum.
2 Claims, 4 Drawing Figures ASPIRATE AUTOMATIC SERUM PREPARATION STATION BACKGROUND OF THE INVENTION The present invention relates generally to centrifugal separation of liquids and more particularly to an apparatus for automatically separating the serum, or plasma, from a whole blood sample for subsequent biochemical analysis.
Reference may be made to the following U.S. pa-
tents: U.S. Pat. Nos. 3,586,484; 3,439,871; 3,228,595; 3,211,368; 3,190,547; 3,161,593; 3,129,175; 2,948,462; 2,940,662; 2,906,453; 2,906,452;
2,906,451; 2,906,450; 2,822,315; 2,822,126; 621,706; 436,419; 360,342 and 241,172.
The modern medical research and diagnosic tech niques in use today commonly rely on the analysis of blood samples. Whole blood, however, comprises a variety of immiscible components (e.g., the red cells, the white cells and the platelets) suspended in a colloidal serum, or plasma. Often, however, the analysis must be performed solely on the plasma so that the immiscible components are not present to alter or mask the characteristics to be observed.
In spite of the advent in recent years of many automatic and semiautomatic clinical chemistry analyzers, blood processing techniques have remained unchanged and time consuming. The present centrifugal separation technique commonly used for processing whole blood to serum or plasma (heparinized serum) requires the following steps:
1. Collecting a whole blood sample in a test tube;
2. removing the stopper from the test tube;
3. rimming the specimen with a stirring rod;
4. balancing the test tube (geometrically and symmetrically) in a centrifuge;
5. centrifuging the test tube for 10 minutes at a relative centrifugal force (RCF) of 850 to 1,000;
6. decanting or aspirating the serum into a serum container; and
7. transporting the serum to an analyzer station.
While this technique is commonly used to process blood samples, it requires approximately 30 minutes to process a single sample. Thus, this technique is illsuited for use in modern automated laboratories capable of analyzing up to 120 blood samples per hour.
Batch centrifuging has been utilized to process a plurality of blood samples simultaneously. However,
successive batches may not contain the same number of samples, and accordingly, the centrifuge should be rebalanced after each batch to prevent vibrations which might damage the centrifuge. Moreover, the
batch size (i.e., the number of samples in a batch) is limited because the plasma should be decanted or aspirated as soon as possible after the centrifuge is stopped, or the immiscible components will re-diffuse into the plasma.
Accordingly, complex mechanical devices have been devised to automatically separate the serum or plasma from whole blood. However, the systems heretofore devised liave generally been so mechanically complex and expensive that their use has been limited.
SUMMARY OF THE INVENTION According to the present invention, there is provided a centrifuge apparatus for centrifugally separating a sample mixture into its lighter and heavier components. The apparatus comprises a centrifugal drum having a separation chamber and an aspiration chamber positioned directly thereabove, the chambers being separated by a common wall having valve means connecting the separation chamber and the aspiration chamber. The separation chamber has a truncated conical side wall with a larger diameter trap portion located at the base thereof. A motor is provided for spinning the centrifuge drum to force the heavier components into the trap portion while the lighter components are forced up the conical side wall. A trigger mechanism opens the valve means to pass the lighter components through the common wall while the centrifuge drum is spinning. closing the valve means when the rate at which the centrifuge drum is spinning falls below a desired level.
The centrifuge apparatus further includes an automatic sample loading mechanism for loading a sample into the separation chamber of the centrifuge drum through an aperture in its bottom end. The automatic sample loading mechanism comprises a sample cup having an open top end corresponding to the aperture in the centrifuge drum for containing the sample to be loaded into the drum. A transport means selectively moves the centrifuge drum and the sample cup into juxtaposition during loading so that the open top end of the sample cup is coincident with the aperture in the bottom end of the centrifuge drum. When the sample cup is rotated by thespinning centrifuge drum, the sample flows from the sample cup into the centrifuge drum.
In accordance with one embodiment of the invention, a plurality of samples are simultaneously centrifugally separated into their components by an automatic centrifuging apparatus comprising a plurality of centrifuge units, each unit comprising a centrifugedrum and a motor for spinning the drum. Loading means are pro vided for sequentially loading'each of the drums with one of the samples and brake means for braking the drum to a stop after the sample therein has been centrifugally separated. One of the components is removed from the drum by an aspiration means, and the drum is then washed by wash means to remove any remaining sample from the drum. The centrifuge drum is then rinsed by rinse means and dried by a drying means. Means are provided for sequentially advancing each of the centrifuge units past the loading means, the brake means, the aspiration means, the wash means, the rinse means and the drying means to simultaneously process a plurality of samples.
BRIEF DESCRIPTION OF THE DRAWINGS The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention together with its further objects and advantages thereof, may be best understood, however, by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the several figures and in which:
FIG. 1 is a perspective view of a centrifuge unit in accordance with a referred embodiment of the invention;
FIG. 2 is a sectional view of the centrifuge unit taken along lines 2-2 of FIG. 1 illustrating a method of loading a sample into the centrifuge drum of the centrifuge unit;
FIG. 3 is a detailed sectional view of the centrifuge drum taken along lines 2-2 of FIG. 1; and
FIG. 4 is a schematic representation of an automatic serum preparation apparatus utilizing a plurality of the centrifuge units shown in FIG. 1.
PREFERRED EMBODIMENT OF THE INVENTION In accordance with one embodiment of the present invention, the centrifuge unit shown in FIG. 1 includes a centrifuge drum for centrifuging whole blood to obtain plasma samples for biochemical analysis.
More particularly, the drum 10 is mounted on a shaft 11, coincident with its longitudinal axis, and rotated at high speeds by a hydraulic motor 12 to centrifuge the blood sample, separating the packed red cells from the plasma.
A sample loading mechanism is positioned directly below the drum 10 for automatically loading the whole blood into the drum 10 for subsequent centrifugal separation. The loading mechanism comprises a substantially cylindrical cup 13 removably mounted on a horizontal plate 14 by means of a shaft 15 on the bottom of cup 13 which is insertable into an aperture in plate 14. Further, an arrangement comprising several ball bearings (not shown) mounted in an annular sleeve 16 is interposed between plate 14 and the bottom of cup 13. Accordingly, cup 13 is free to spin about its longitudinal axis (i.e., shaft 15). Moreover, the longitudinal axis of cup 13 is aligned with the rotational axis (i.e., shaft 11) of centrifuge drum 10.
A pair of air cylinders 17, positioned at opposite ends of plate 14, are effective to vertically reposition plate 14 relative to the bottom of centrifuge drum 10 whenever compressed air is introduced, or released as the case may be, into the cylinders through tubing 18. Consequently, cup 13 can be moved along its longitudinal axis until its open top end is coincident, or in juxtaposition, with a corresponding aperture 19 (not shown) in the bottom end of centrifuge drum l0.
Operationally, the blood sample is initially placed in cup 13 for subsequent loading into the centrifuge drum 10. The automatic loading feature of the present invention may be more readily understood by reference now to FIG. 2. Once the sample is placed therein, cup 13 is repositioned so that its open end is in juxtaposition with the aperture 19 in the bottom of drum 10. The top edge of cup 13 is beveled to fit the correspondingly beveled edge of aperture 19. Consequently, when the centrifuge drum is rotated while in juxtaposition with cup 13, the cup 13 is also rotated. A pair of alignment bars 20 (FIG. I) extend from base 21 and pass through corresponding apertures in plate 14 to prevent twisting.
When the drum l0 and the cup 13 are rotated at high speed about their common axis, the blood sample is subjected to powerful centrifugal forces which displace the blood, pressing it against the cylindrical wall of cup l3. Consequently, the blood is also subjected to lateral forces'resulting from the pressure developed between the blood sample and the wall. Accordingly, the sample, in effect,flows up the cylindrical wall and into the centrifuge drum 10. Thus, when drum 10 reaches a certain rotational speed, the entire sample, for all practical purposes, is loaded therein. While still spinning, the cup 13 is then dropped away from aperture 14 by the loading mechansim. Because drum 10 is still spinning, however, the blood sample is pressed against the drums interior wall so that it can not escape through aperture 19.
The interior features of the centrifuge drum 10 are shown in FIG. 3. There, it may be seen that the centrifuge drum 10 is divided into a pair of adjacent chambers, a separation chamber identified generally at 22 and an aspiration chamber identified generally at 23, separated by a common wall 24. In addition to aperture 19 in the bottom of separation chamber 22, a similar aperture 25 is provided in the top end of the aspiration, or pick-up, chamber 23. Thus, the shaft 11 is passed through aperture 25 and is attached to the center of common wall 24 by a suitable fastening arrangement 26.
The interior wall 27 of separation chamber 22 comprises three essentially distinct sections: 270 defining a truncated conical portion while 27b and 27c define a larger diameter trap portion, identified generally at 28, located at its base. During loading, the blood is initially forced into the trap portion 28 where the heavier immiscible cellular components 29 are trapped. Even when the volume of blood loaded into the separation chamber 22 exceeds the volume of trap portion 28, the packed red cells are captured in the trap 28 while the lighter plasma forms a distinct layer 30 interior to the packed red cells. By loading a precise amount of blood into the separation chamber 22, it is insured the volume of trap 28 is sufficient to contain the entire volume of packed red cells in the sample. Consequently, the same lateral forces resulting from centrifugation that were utilized to load the sample into the separation chamber 22 will prevail to force the plasma up the conical wall portion 27a toward the aspiration chamber 23.
As previously mentioned, the separation chamber 22 and the aspiration chamber 23 are separated by a common wall 24. However, a valve orifice 31 is provided in wall 24 to connect the two chambers at a point near the juncture of the conical wall portion 27a and the common wall 24. During centrifuging, therefore, the plasma is forced into the aspiration chamber 23 while the heavy blood cells are retained in the trap portion 28. At all other times, the orifice 31 is closed by a valve plug 32 insertable therein. Thus, if the centrifuge drum 10 is stopped, the plasma cannot flow back into the separation chamber 22 through orifice 31.
More particularly, at a predetermined time during centrifuging, a trigger mechanism, comprising air cylin- -der 33, bar 34, and L-shaped rod 35 (FIG. 1) combine to remove the plug 32 from the orifice 31. In operation, the air cylinder 33, controlled by an influx of compressed air, forces bar 34 downward. The L-shaped rod 35, which passes through a guide slot 36 in the common wall 24, in turn, is effective to disengage the plug 32. Subsequently, when the trigger mechanism (i.e., air cylinder 33) is released just prior to the end of centrifuging, a spring 37 on shaft 1 l forces the bar 34 upward so that plug 32 seals the orifice 31, permanently separating the plasma from the packed red cells. Accordingly, when the centrifuge drum 10 stops spinning, the plasma may be manually or automatically aspirated from the pick-up chamber 23 through the aperture 25. A barrier 38 is also provided to contain the plasma within a limited area of the base of aspiration chamber 23 after the drum 10 stops spinning so that the plasma may be more easily aspirated.
The centrifuge unit of the present invention is especially well suited for adaptation to provide an automatic serum preparation apparatus, such as that shown schematically in FIG. 4. That is, because each centrifuge unit is virtually independent of the other units, several units may be combined to provide an automatic serum preparation unit for simultaneously processing several blood samples.
As shown in FIG. 4, a number of centrifuge units (i.e., 18) are mounted on a conveyor such as circular plate 39 approximately 16 inches in diameter. The plate 39, in turn, is sequentially rotated at a predetermined rate to various positions, or stations, by a step ping motor 40. At input station 41, a centrifuge unit 42 is centered over an automatic loading mechanism so that the cup containing the whole blood can be raised into juxtaposition with the centrifuge drum. Subsequently, the centrifuge motor spins the drum and the cup in the manner previously described, causing the sample to be loaded into the drum. Once the whole blood is loaded, the cup is dropped away, and the stepping motor 40 advances the plate 39, moving centrifuge unit 42 to the next station- Accordingly, blood samples can be introduced into successive centrifuge units at asingle input station 41 by loading the sample into a unit and advancing the plate 39 so that the loaded unit is replaced by an empty unit.
As the centrifuge 42 is advanced, the plasma and packed red cells are separated, and the plasma is isolated in the aspiration chamber of the drum. Subsequently, the centrifuge unit 42 reaches brake stop station 43 where the spinning drum is stopped. The stepping motor 40 next advances the unit 42 to the aspirate station 44 where aspiration of the plasma may be manually or automatically accomplished. The centrifuge unit 42 is then moved to the wash" station 45 where a soap solution is sprayed into both chambers of the drums, cleaning both of all traces of the blood sample. In turn, the unit 42 is advanced to the rinse station 46 where both chambers are thoroughly rinsed, and finally, it is stepped through two successive dry stations 47 and 48 where the centrifuge drum is dried. After completion of this sequence, the centrifuge unit 42, as well as successive centrifuge units, is ready to centrifuge a new sample; and thus, when it once again reaches input station 41, it is loaded with a new blood sample.
Accordingly, there has been shown an automatic loading centrifuge unit which is adaptable for use in a batch processing automatic serum preparation arrangement. Because the plasma, or serum, is automatically separated from the whole blood and isolated in a pick-up chamber where the packed red cells cannot recombine with the plasma. there is less urgency for removing the plasma from the centrifuge. Further, less care need be taken in aspirating the plasma since only the plasma is separated into the pick-up chamber. if that were not the case, as in prior art systems, care would have to be exercised to insure that the end of the aspirating needle is not inserted too deeply into the plasma layer, aspirating the immiscible components as well as the plasma. Finally, the units relatively simple design maintains the cost of each unit at a minimal level, making it extremely attractive for use in hospitals and research laboratories.
While a particular embodiment of the present invention has been shown and described, it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the invention in its broader aspects. Accordingly, the aim in the appended claims is to cover all such changes and modifications as may fall within. the true spirit and scope of the invention.
I claim:
1. An automatic centrifuging apparatus for simultaneously centrifuging a plurality of samples into their components, the apparatus comprising:
a plurality of centrifuge units, each unit comprising a centrifuge drum and a motor for spinning the drum;
loading means for sequentially loading each of the drums with one of the samples;
brake means for braking the drum after the sample therein has been centrifugally separated; aspiration means for removing one of the components from the centrifuge drum;
wash means for washing the centrifuge drum to remove any remaining sample tlherefrom;
rinse means for rinsing the centrifuge drum;
drying means for drying the centrifuge drum; and,
means for sequentially advancing each of the centrifuge units past the loading means, the brake means, the aspiration means, the wash means, the rinse means and the drying means to simultaneously process a plurality of the samples.
2. An automatic centrifuging apparatus in accordance with claim 1 wherein the means comprises a stepping motor driving a conveyor, the plurality of centrifuge units being mounted on the conveyor and sequentially advanced by the stepping motor.

Claims (2)

1. An automatic centrifuging apparatus for simultaneously centrifuging a plurality of samples into their components, the apparatus comprising: a plurality of centrifuge units, each unit comprising a centrifuge drum and a motor for spinning the drum; loading means for sequentially loading each of the drums with one of the samples; brake means for braking the drum after the sample therein has been centrifugally separated; aspiration means for removing one of the components from the centrifuge drum; wash means for washing the centrifuge drum to remove any remaining sample therefrom; rinse means for rinsing the centrifuge drum; drying means for drying the centrifuge drum; and, means for sequentially advancing each of the centrifuge units past the loading means, the brake means, the aspiration means, the wash means, the rinse means and the drying means to simultaneously process a plurality of the samples.
2. An automatic centrifuging apparatus in accordance with claim 1 wherein the means comprises a stepping motor driving a conveyor, the plurality of centrifuge units being mounted on the conveyor and Sequentially advanced by the stepping motor.
US00351631A 1973-04-16 1973-04-16 Automatic serum preparation station Expired - Lifetime US3838809A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US00351631A US3838809A (en) 1973-04-16 1973-04-16 Automatic serum preparation station
US487317A US3908893A (en) 1973-04-16 1974-07-10 Automatic serum preparation station
US05/625,029 US4058252A (en) 1973-04-16 1975-10-23 Automatic sample processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US00351631A US3838809A (en) 1973-04-16 1973-04-16 Automatic serum preparation station
US487317A US3908893A (en) 1973-04-16 1974-07-10 Automatic serum preparation station
US61723675A 1975-09-26 1975-09-26
US05/625,029 US4058252A (en) 1973-04-16 1975-10-23 Automatic sample processing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US487317A Division US3908893A (en) 1973-04-16 1974-07-10 Automatic serum preparation station

Publications (1)

Publication Number Publication Date
US3838809A true US3838809A (en) 1974-10-01

Family

ID=27502819

Family Applications (3)

Application Number Title Priority Date Filing Date
US00351631A Expired - Lifetime US3838809A (en) 1973-04-16 1973-04-16 Automatic serum preparation station
US487317A Expired - Lifetime US3908893A (en) 1973-04-16 1974-07-10 Automatic serum preparation station
US05/625,029 Expired - Lifetime US4058252A (en) 1973-04-16 1975-10-23 Automatic sample processing apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US487317A Expired - Lifetime US3908893A (en) 1973-04-16 1974-07-10 Automatic serum preparation station
US05/625,029 Expired - Lifetime US4058252A (en) 1973-04-16 1975-10-23 Automatic sample processing apparatus

Country Status (1)

Country Link
US (3) US3838809A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007011A (en) * 1974-05-08 1977-02-08 The Secretary Of State For Social Services In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Specimen treatment apparatus
US4148607A (en) * 1975-02-28 1979-04-10 Hoffmann-La Roche Inc. Apparatus and analysis for agglutination reaction
WO1993010455A1 (en) * 1991-11-21 1993-05-27 Cirrus Diagnostics, Inc. Improved centrifuge vessel for automated solid-phase immunoassay
US5316726A (en) * 1991-07-26 1994-05-31 Cirrus Diagnostics, Inc. Automated immunoassay analyzer with pictorial display of assay information
WO1997018022A2 (en) * 1995-11-11 1997-05-22 Laboratory Automation Development And Services Ltd. Apparatus with a plurality of electric-motor driven centrifuges
EP0794824A1 (en) * 1994-12-02 1997-09-17 Bristol-Myers Squibb Company Method and device for separating fibrin monomer from blood plasma
US20040022682A1 (en) * 2002-07-31 2004-02-05 Teruaki Itoh Specimen preprocessing and conveyig system
US6830935B1 (en) * 1998-07-07 2004-12-14 Lamina, Inc. Method for mixing and processing specimen samples

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059108A (en) * 1974-08-15 1977-11-22 Haemonetics Corporation Process for pheresis procedure and disposable pheresis bowl therefor
US4120448A (en) * 1977-06-08 1978-10-17 Baxter Travenol Laboratories, Inc. Centrifugal liquid processing apparatus with automatically positioned collection port
US4402680A (en) * 1981-07-09 1983-09-06 Haemonetics Corporation Apparatus and method for separating fluid into components thereof
US5166889A (en) * 1989-01-10 1992-11-24 Medical Robotics, Inc. Robotic liquid sampling system
US5007892A (en) * 1989-03-20 1991-04-16 Eastman Kodak Company Phase separation container with fixed means preventing remixing
DK119490D0 (en) * 1990-05-14 1990-05-14 Unes As Apparatus for the preparation of a concentrate of coagulation factors, such as the fibrinogen, from a blood portion
DK167517B1 (en) * 1991-11-11 1993-11-15 Squibb & Sons Inc CONTAINER FOR INCLUSION AND SEPARATION OF A FLUID, PRETTY BLOOD PLASMA, IN ITS INGREDIENTS
US5408891A (en) * 1992-12-17 1995-04-25 Beckman Instruments, Inc. Fluid probe washing apparatus and method
ZA948564B (en) * 1993-11-19 1995-07-26 Bristol Myers Squibb Co Liquid separation apparatus and method
US5733446A (en) * 1994-12-02 1998-03-31 Bristol-Myers Squibb Company Centrifuge with annular filter
US5830352A (en) * 1994-12-02 1998-11-03 Bristol-Myers Squibb Company Centrifuge reagent delivery system
US5840253A (en) * 1996-06-20 1998-11-24 Cytek Development Inc Cell wash apparatus
US6709378B2 (en) * 2001-04-05 2004-03-23 Fujisawa Pharmaceutical Co., Ltd. Supernatant liquid collector with balance weight forming function and centrifugal apparatus using the same
DE60234926D1 (en) * 2001-06-06 2010-02-11 Perfusion Partners & Associate CENTRIFUGES TUBE ARRANGEMENT
US7250303B2 (en) 2001-07-20 2007-07-31 Ortho-Clinical Diagnostics, Inc. Chemistry system for a clinical analyzer
WO2009076392A1 (en) 2007-12-11 2009-06-18 Tripath Imaging, Inc. Sequential centrifuge
US8870733B2 (en) 2010-11-19 2014-10-28 Kensey Nash Corporation Centrifuge
US8469871B2 (en) 2010-11-19 2013-06-25 Kensey Nash Corporation Centrifuge
US8317672B2 (en) 2010-11-19 2012-11-27 Kensey Nash Corporation Centrifuge method and apparatus
US8394006B2 (en) 2010-11-19 2013-03-12 Kensey Nash Corporation Centrifuge
US8556794B2 (en) 2010-11-19 2013-10-15 Kensey Nash Corporation Centrifuge
KR102369602B1 (en) 2014-01-31 2022-03-02 디에스엠 아이피 어셋츠 비.브이. Adipose tissue centrifuge and method of use

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822127A (en) * 1952-09-30 1958-02-04 Basf Ag Continuous centrifuge
US3151073A (en) * 1960-10-07 1964-09-29 Res Specialties Co Centrifuging apparatus
US3193358A (en) * 1962-07-02 1965-07-06 Warner Lambert Pharmacentical Automated analytical apparatus
US3235173A (en) * 1960-07-28 1966-02-15 Unger Hans Peter Olof Agitating and/or fractioning centrifuge
US3635394A (en) * 1969-07-30 1972-01-18 Rohe Scientific Corp Automated clinical laboratory
US3706413A (en) * 1970-07-30 1972-12-19 Sorvall Inc Ivan Automatic filling apparatus for cell washing centrifuge
US3722790A (en) * 1969-07-30 1973-03-27 Rohe Scientific Corp Sequential centrifugal treatment of liquid samples
US3737096A (en) * 1971-12-23 1973-06-05 Ibm Blood processing control apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US736976A (en) * 1900-09-21 1903-08-25 Henry B Keiper Centrifugal creamer.
US1534604A (en) * 1925-02-06 1925-04-21 Meer Gustav Ter Outlet valve for centrifugal separators
US3049889A (en) * 1958-01-02 1962-08-21 Carrier Corp Method and apparatus for rendering brine solution potable
US3081158A (en) * 1959-12-28 1963-03-12 Technicon Instr Liquid treatment apparatus
US3475130A (en) * 1965-07-08 1969-10-28 Warner Lambert Pharmaceutical Sample transfer apparatus
US3655123A (en) * 1966-08-08 1972-04-11 Us Health Education & Welfare Continuous flow blood separator
DE1757532C3 (en) * 1968-05-17 1979-08-23 Rudolf F. Ing.(Grad.) 2000 Norderstedt Garbaty Outlet regulator for a centrifugal separator
GB1413987A (en) * 1972-03-15 1975-11-12 Hall Thermotank Int Ltd Heat exchangers
SE379481B (en) * 1972-11-02 1975-10-13 Separex Sa

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822127A (en) * 1952-09-30 1958-02-04 Basf Ag Continuous centrifuge
US3235173A (en) * 1960-07-28 1966-02-15 Unger Hans Peter Olof Agitating and/or fractioning centrifuge
US3151073A (en) * 1960-10-07 1964-09-29 Res Specialties Co Centrifuging apparatus
US3193358A (en) * 1962-07-02 1965-07-06 Warner Lambert Pharmacentical Automated analytical apparatus
US3635394A (en) * 1969-07-30 1972-01-18 Rohe Scientific Corp Automated clinical laboratory
US3722790A (en) * 1969-07-30 1973-03-27 Rohe Scientific Corp Sequential centrifugal treatment of liquid samples
US3706413A (en) * 1970-07-30 1972-12-19 Sorvall Inc Ivan Automatic filling apparatus for cell washing centrifuge
US3737096A (en) * 1971-12-23 1973-06-05 Ibm Blood processing control apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007011A (en) * 1974-05-08 1977-02-08 The Secretary Of State For Social Services In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Specimen treatment apparatus
US4148607A (en) * 1975-02-28 1979-04-10 Hoffmann-La Roche Inc. Apparatus and analysis for agglutination reaction
US5316726A (en) * 1991-07-26 1994-05-31 Cirrus Diagnostics, Inc. Automated immunoassay analyzer with pictorial display of assay information
WO1993010455A1 (en) * 1991-11-21 1993-05-27 Cirrus Diagnostics, Inc. Improved centrifuge vessel for automated solid-phase immunoassay
EP0794824A1 (en) * 1994-12-02 1997-09-17 Bristol-Myers Squibb Company Method and device for separating fibrin monomer from blood plasma
EP0794824A4 (en) * 1994-12-02 1998-10-21 Squibb & Sons Inc Method and device for separating fibrin monomer from blood plasma
WO1997018022A2 (en) * 1995-11-11 1997-05-22 Laboratory Automation Development And Services Ltd. Apparatus with a plurality of electric-motor driven centrifuges
WO1997018022A3 (en) * 1995-11-11 1997-09-04 Lab Automation Dev And Service Apparatus with a plurality of electric-motor driven centrifuges
US6033355A (en) * 1995-11-11 2000-03-07 Laboratory Automation Development And Services Ltd. Centrifuge with a plurality of individual centrifuge devices
US6830935B1 (en) * 1998-07-07 2004-12-14 Lamina, Inc. Method for mixing and processing specimen samples
US20040022682A1 (en) * 2002-07-31 2004-02-05 Teruaki Itoh Specimen preprocessing and conveyig system

Also Published As

Publication number Publication date
US4058252A (en) 1977-11-15
US3908893A (en) 1975-09-30

Similar Documents

Publication Publication Date Title
US3838809A (en) Automatic serum preparation station
US3420437A (en) Cell washing centrifuge
US5047004A (en) Automatic decanting centrifuge
US3701434A (en) Test tube system for separating blood into serum and red cells
US3826622A (en) Containers for use in an automated centrifuge
US5188583A (en) Apparatus for separating two phases of a sample of heterogeneous liquid by centrifuging, the apparatus being particularly suitable for separating plasma from whole blood
US4427415A (en) Manifold vacuum biochemical test method and device
EP0339429B1 (en) Filter and dispenser vial and use thereof
US4999304A (en) Dynamic braking centrifuge
US3722790A (en) Sequential centrifugal treatment of liquid samples
US4847205A (en) Device and method for automated separation of a sample of whole blood into aliquots
JPH10512960A (en) Blood separation apparatus and method for rotation around an axis
US3880592A (en) Blood analysis system including a plasma separator
CA2013021C (en) Blood collection device
DE202014011072U1 (en) Centrifuge for centrifuging a reaction vessel unit
US4068798A (en) Method and apparatus for stopper removal
US4104025A (en) Method of preparing liquid samples for testing
US5935051A (en) Blood separation device
EP0743880A1 (en) Automatic sample container handling centrifuge and a rotor for use therein
US4209548A (en) Method for the preparation of blood samples for automated analysis
JP2008519983A (en) Improved sample preparation system for laboratory equipment
CN112170023B (en) Centrifugal machine
US4449964A (en) Decanting centrifuge
US5730697A (en) Automatically loaded swing bucket centrifuge
KR20220160507A (en) Apparatus for separating of particle and method for separating of particle thereuse