US3832431A - Process for making marbleized soap or detergent - Google Patents

Process for making marbleized soap or detergent Download PDF

Info

Publication number
US3832431A
US3832431A US00229750A US22975072A US3832431A US 3832431 A US3832431 A US 3832431A US 00229750 A US00229750 A US 00229750A US 22975072 A US22975072 A US 22975072A US 3832431 A US3832431 A US 3832431A
Authority
US
United States
Prior art keywords
soap
additive
plodder
stage
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00229750A
Inventor
R Matthaei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lever Brothers Co
Original Assignee
Lever Brothers Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lever Brothers Co filed Critical Lever Brothers Co
Priority to US00229750A priority Critical patent/US3832431A/en
Application granted granted Critical
Publication of US3832431A publication Critical patent/US3832431A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D13/00Making of soap or soap solutions in general; Apparatus therefor
    • C11D13/14Shaping
    • C11D13/18Shaping by extrusion or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/17Articles comprising two or more components, e.g. co-extruded layers the components having different colours
    • B29C48/175Articles comprising two or more components, e.g. co-extruded layers the components having different colours comprising a multi-coloured single component, e.g. striated, marbled or wood-like patterned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D13/00Making of soap or soap solutions in general; Apparatus therefor
    • C11D13/08Colouring, e.g. striated bars or striped bars, or perfuming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped

Definitions

  • This invention relates to a method and apparatus for the production of marbleized soap masses including detergent masses.
  • Soap logs produced in this fashion frequently suffer from a relatively high degree of dyemigration to the outer portion of the soap mass and consequent non-uniform distribution of the dye throughout the soap mass, lack of adequate contrast, and the lack of relatively reproducible variations in the finished soap patterns.
  • a marbleized soap mass can be produced by injecting a soap additive composition under pressure into the compressed soap mass as it passes through one of the stages of a modified twostage soap plodder.
  • the additive injection can be effected through one or more nozzles in either the first or the second compression stage and the additive can be continuously or intermittently injected.
  • a marbleized soap is produced in which the injected additive is a dye and the marbleized product is an otherwise homogeneous mass having colored streaks distributed throughout the mass to produce a variegated appearance.
  • the invention is also useful in producing heterogeneous soap masses in which the injected additive is a composition such as a sequestering agent, a deodorant, a perfume or lanolin.
  • a sequestering agent such as a sequestering agent, a deodorant, a perfume or lanolin.
  • the term marbleized soap referes to all of the described soap masses although for purposes of simplicity the description of my invention hereafter will be directed to the production of variegated soap masses by dye injection.
  • the process and apparatus of my invention will produce a marbleized mass having greater or less contrast between differently colored areas according to the process variables including the soap formulation, the plasticity of the soap mass, the amount of additive used, the point of additive injection, the size of extrusion equipment used and similar variables.
  • the present description is directed to applicants preferred embodiment in which variations within the mass are in distinct zones distributed substantially throughout the mass. Many of the process variables within reasonable limits are non-critical but relate only to degree of contrast to be obtained between differently colored areas of the soap mass.
  • a kettle soap is mixed with desired addition agents such as perfumes, fillers, gennicides, emollients, water, salt, etc. and milled.
  • desired addition agents such as perfumes, fillers, gennicides, emollients, water, salt, etc.
  • the milled chips are fed to the first stage or refiner barrel of a modified two-stage plodder in which the soap chips are compressed under the action of an extrusion screw at a temperature of F to 160F preferably F to F.
  • a dye solution (0.5 to 30 percent solution) is injected into the compressed soap mass as it passes through the first stage of the plodder.
  • the compacted soap is discharged from the first stage of the plodder through a specially designed end plate.
  • the first stage discharge comprises a combination of a 20 to 40 mesh woven screen and a metal backing plate having a myriad of small holes (e.g. in a soap plodder with a 10 inch cylinder diameter the backing plate has inch diameter holes) through which extrusion of the soap mass produces numerous ribbons or filaments of soap; I provide a pressure plate which is relatively open having large holes or shaped apertures.
  • the usual first stage discharge plate and screen has openings which occupy 27% or less of itsface area, i.e., it is 27%, or less, open; the pressure plate used in the method and apparatus of my invention is at least 35% and preferably at least 50% and up to 85% open.
  • the soap with entrapped dye solution is extruded through the relatively large openings of the pressure plate and cut'into pellets as it enters into a vacuum chamber enclosing the discharge side of the pressure plate.
  • FIG. 1 is a somewhat schematic cross-sectional view of a modified two-stage soap plodder and associated apparatus adapted for use according to the teaching of the present invention.
  • FIG. 2 is a plan view of a pressure plate used in the apparatus shown in FIG. 1.
  • FIG. 3 is a plan view of an alternate pressure plate to that shown in FIG. 2.
  • FIG. 4 is a side elevation partly in section of an injection nozzle.
  • FIG. 5 is a side elevationof a modified injection nozzle.
  • a two-stage soap plodder I0 consisting of a water jacketed upper barrel l2 sometimes called the refiner barrel a vacuum chamber 14 and a water jacketed lower barrel 16.
  • Barrels l2 and 16 are cylindrical and contain, respectively, extrusion screws 20 and 28 each of which is rotatably driven by conventional means (not shown) the flights of each screw passing close to the interior wall of each barrel. Particles of soap chips or pellets are introduced to one end of the upper barrel 12 through inlet hopper 18 and are picked up by the feed-end flights of extrusion screw 20.
  • Rotation of extrusion screw 20 in barrel 12 compacts the soap particles and urges the compacted soap along the axis of barrel l2 and through a pressure plate 22.
  • Blade cutter 24 is provided on the face of pressure plate 22 and operates to cut the soap extruded through plate 22 into pellets one-half to 4 inches in length.
  • the soap pellets Having passed through pressure plate 22 and rotary cutter 24, the soap pellets enter vacuum chamber 14in which gases entrapped in the soap are removed by the action of a vacuum on the order of approximately 25-29 inches of mercury. Chamber 14 is evacuated through vacuum line 26. The soap pellets discharged fall upon the feed end flights of a second extrusion screw 28 in lower barrel 16. Rotation of extrusion screw 28 within barrel l6 compacts the pellets, urges the compacted soap along the axis of barrel 16, and extrudes a continuous log 31 of soap through a nose plate 30 having an exit aperture shaped according to the form of soap log desired.
  • a soap additive is injected into the compacted soap during its passage through plodder 10.
  • the injection is made by means of one or more of a series of nozzles 32 37 extending through the walls of the plodder barrels 12 and 16; each nozzle is provided with a stream of additive by a conduit 38 and positive displacement pump 40.
  • these nozzles can be located in either or both of the bottom barrel and the top barrel and the location of each nozzle can be varied along the length of the barrel.
  • the dye should be injected into, and entrapped within the soap while the latter is under the compressive influence of the extrusion screw.
  • the injection nozzle should not be any closer to the feed end of the barrel than the point at which the soap in the barrel becomes compressed nor so close to the discharge end of the barrel that the dye passes out of the barrel as a separate liquid phase, i.e., before it becomes entrapped within the soap.
  • Suitable nozzle positions are spaced from the discharge end of the barrel a distance equal to about to about 75% of the barrel length.
  • FIG. 1 While a series of six nozzles are shown in FIG. 1, this is merely illustrative of different injection sites that can be used. I have found it preferable when working with a single additive to inject the additive at only a single point and this preferably in upper barrel 12 at a point along the axis of barrel 12 at a distance of 5 to 45% of the barrel length from pressure plate 22. However, simultaneous injection through more than one nozzle can be used, especially when it is desired to inject more than one soap additive, e. g., in the injection of different dye streams.
  • Nozzles 32 37 project into the space between barrels l2, l6 and extrusion screws 20, 28.
  • the latter are provided with a registering notch 39 for each nozzle. It is possible to avoid the use of nozzles and accomplish the desired injection through orifices in the flights or shaft of a hollowed out extrusion screw. However, the use of nozzles is preferred since they also act as picker pins to reduce slippage and churning in the plodder barrel and thereby aid in increasing the rate of soap extrusion.
  • FIG. 1 shows the configuration of the discharge end of upper barrel 12 when the additive injection occurs within upper barre] 12.
  • a relatively open pressure plate is used, i.e., one that is at least 35% and preferably 50% open. This can be accomplished by using a plate having a plurality of large holes 42 or shaped apertures distributed across the plate surface each extending through the plate to permit the passage of soap.
  • the openings in plate 22 should be as large as possible while providing for the maintenance of vacuum in chamber 14 and the development of adequate pressure 40 to 350 psig within barrel [2 to compact the soap chips or pellets fed to hopper 18 into a continuous mass of soap.
  • a suitable pressure plate 22 has holes 42 distributed across its surface each hole having an inside diameter of l to 1% inches. This insures that relatively large soap pellets 63 pass into vacuum chamber 14.
  • An alternate construction of pressure plate 22 is shown in FIG. 3. In this instance, a plate 22 is provided having an open face except for a series of struts 44. This type of pressure plate is especially useful with smaller diameter extrusion screws e.g., 6 inch.
  • Screw 20 is provided with the last screw flight terminated a short distance typically 2 inches from pressure plate 22. This permits a heel of soap 62 to form between screw 20 and pressure plate 22 and aids in the maintenance of vacuum in chamber 14 and the development of pressure in barrel 12. In FIG. 1, the soap is shown only at heel 62 and pellets 63. This remainder of the soap throughout plodder 10 has been omitted to allow for the showing of details in the drawmg.
  • the discharge end of upper barrel 12 can be enclosed by the usual form of pressure plate which comprises a combination of a 20 to 40 mesh screen and a metal backing plate having a myriad of small holes distributed across its surface.
  • a baffle plate can be provided in nose plate 30 or between nose plate 30 and barrel 16.
  • FIGS. 4 and 5 typical injection nozzles 32 37 are shown.
  • the nozzle is provided with an end outlet port 45 whereas in FIG. 5 a side outlet port 46 is provided for location in the plodder barrel facing its discharge end.
  • the conditions under which marbleized soap is produced in plodder are those normally encountered in soap plodding.
  • the soap is processed through plodder 10 at temperatures between 70F and 160F and preferably between 85F and l25F; these temperatures referring to the temperature of the soap in the plodder and at the discharge from nose plate 30.
  • the soap plodder can be operated at normal capacity and throughput is limited by the allowable temperature rise within the soap mass. Pressures within barrels 12 and 16 will be 40 350 psig.
  • Example I Green Streaks on White Chips of soap comprising 36.68 percent coconut fatty acid sodium soap, 44.47 percent tallow acid sodium soap and 6.15 percent coconut fatty acids, are
  • the soap chips, germicides, preservative, perfume and water are mixed and milled. Fifty pounds per min ute of milled chips are charged to the hopper 18 and forced by means of extrusion screw 20 through pressure plate 22 into the vacuum chamber 14. A 10 inch (barrel diameter) plodder was used, pressure plate 22 having 1% inch holes 42.
  • a 10 percent dye solution containing Monastral Fast Green dye in aqueous solution was injected through a single nozzle 33 located in barrel 12 approximately 5 inches from plate 22.
  • the dye was injected in a pulsating flow cycle whereby 1 1 ml. were injected in 3 seconds followed by a 28 second period during which no dye was injected.
  • a highly desirable marbleized pattern with sharp contrasting green and white areas extending throughout the soap mass was produced.
  • Example 11 Ingredients Weight 20 coco: 80 tallow sodium soap 82.8 Preservatives .2 Perfume 1.0
  • the above example was processed in the same way as example one, except that the injection was in the lower barrel l6, i.e., the position represented by nozzle 37.
  • the rate of addition of the colorant solution was varied from 1 cc/8.33 lbs. of mixed soap to I cc/.256 lbs. of mixed soap. The best rate found during this ru was around 1 cc/1.28 lbs. of mixed soap.
  • Plasticity can be improved by the additionof suitable agents, e.g., petrolatum, mineral oil, glycerine, or by hardening of certain ingredients prior to use.
  • soap formulations within the following ranges may be used:
  • Coco soap i.e. palm, olive, stearic, etc.
  • Tallow soap i.e. choice white grease etc.
  • Free fatty acid O to 30% preferably 5 to 10%
  • Other known soap formulations may be used and the soap component can be replaced by detergent materials such as sodium fatty alcohol sulfates, alkyloxyhydroxypropane sulfonates, and sodium fatty acyl taurates.
  • Translucent soaps can also be used and these can contain nacreous pigments comprising transparent platelets of high refractive index which produce pearlescent soap bars.
  • Dye compositions containing water or oil soluble dyes particularly color-fast compositions can be used.
  • Suitable dyes used include those sold under the following names:
  • Dye concentrations between 0.5 and 30% are added either continuouly or in a pulsating flow of from 0.04
  • a pulsating flow of dye facilitates the use of larger dye quantities without undue mixing of the dye as the soap passes through the plodder, i.e., the addition of dye in pulses provides a product in which the contrast between additive colored zones and base colored zones is greater than when the dye additive is added at a constant rate.
  • the pulse cycle may vary up to 8 seconds of additive injection followed by a second period during which no additive is injected.
  • the method of making a marbleized soap or detergent mass which comprises simultaneously compressing a base soap or detergent while injecting from 0.04 to 5.01 ml. per pound of said base soap or detergent of an additive composition comprising a 0.5 to 30% dye solution into said base soap or detergent in the extrusion means of a two stage soap plodder at one or more points along the axis of movement of the soap through equal to to 45% of the length of said first stage.

Abstract

A marbleized mass of soap in the form of a log is produced by passing soap particles through a modified two-stage plodder and injecting a soap additive, e.g., a dye, into the compressed soap mass during extrusion of the soap. The process and apparatus can be used also to produce marbleized detergent logs.

Description

United States Patent 1191 1111 3,832,431
Matthaei Aug. 27, 1974 PROCESS FOR MAKING MARBLEIZED [56] References Cited SOAP 0R DETERGENT UNITED STATES PATENTS [75] Inventor: Raymond George Matthaei, 2,414,097 1/1947 Garvey et a1 264/176 R Fairlawn, NJ. 2,803,041 8/1957 Hill et al. 3,089,197 5/1963 Chaffee et a1. 264/349 [731 Asslgneel Level Brothers Company, New 3,485,905 12/1969 Compa et a1. 264/102 York, N.Y. 3,663,671 5/1972 Meye et a1. 264/75 [22] Filed: Feb. 28, 1972 Primary Examiner-Jeffery R. Thurlow [21] App]. No.: 229,750 Atmme Agent, or Firm-John Boustcad Related U.S. Application Data [63] Continuation-impart of Ser. No. 875,091, Nov. 10, 1 1 ABSTRACT 19691 abandoned A marbleized mass of soap in the form of a log is produced b assin soa articles throu h a modified 52 us. 01 264/75, 252/109, 252/134, two stagg gi f andIinJEming a soap agdditive, eg, a I 325 264/89 264/ dye, into the compressed soap mass during extrusion n th Th d t b d 58 Field of Search 264/75, 78,245, 37,211, e soap 6 process appara can 6 use also to produce marbleized detergent logs.
7 Claims, 5 Drawing Figures TO HOPPER 18 PROCESS FOR MAKING MARBLEIZED SOAP OR DETERGENT REFERENCE TO OTHER APPLICATION This application is a continuation-in-part of my copending application, Ser. No. 875,091, filed Nov. 10, 1969, now abandoned.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method and apparatus for the production of marbleized soap masses including detergent masses.
2. Description of the Prior Art Marbleized soap masses have been produced, most frequently in the form of a marbleized soap bar having various colors distributed apparently at random throughout the soap mass. As presently known, such soap masses have been produced either by a framing process or by introduction of a dye into the vacuum chamber between stages of a two-stage soap plodder. Soap framing a batch process has its inherent disadvantages, and the introduction of the dye into the vacuum chamber is subject to the disadvantages that the ability to control the appearance of the finished product is relatively limited in that the dye-addition location is fixed. Soap logs produced in this fashion frequently suffer from a relatively high degree of dyemigration to the outer portion of the soap mass and consequent non-uniform distribution of the dye throughout the soap mass, lack of adequate contrast, and the lack of relatively reproducible variations in the finished soap patterns.
SUMMARY OF THE INVENTION It has now been found that a marbleized soap mass can be produced by injecting a soap additive composition under pressure into the compressed soap mass as it passes through one of the stages of a modified twostage soap plodder. The additive injection can be effected through one or more nozzles in either the first or the second compression stage and the additive can be continuously or intermittently injected.
In the preferred embodiment of this invention, a marbleized soap is produced in which the injected additive is a dye and the marbleized product is an otherwise homogeneous mass having colored streaks distributed throughout the mass to produce a variegated appearance. The invention is also useful in producing heterogeneous soap masses in which the injected additive is a composition such as a sequestering agent, a deodorant, a perfume or lanolin. The addition of these later materials by the method of my invention greatly reduces prior processing problems inherent in the use of such additives. As used herein, the term marbleized soap referes to all of the described soap masses although for purposes of simplicity the description of my invention hereafter will be directed to the production of variegated soap masses by dye injection.
The process and apparatus of my invention will produce a marbleized mass having greater or less contrast between differently colored areas according to the process variables including the soap formulation, the plasticity of the soap mass, the amount of additive used, the point of additive injection, the size of extrusion equipment used and similar variables. Thus, the present description is directed to applicants preferred embodiment in which variations within the mass are in distinct zones distributed substantially throughout the mass. Many of the process variables within reasonable limits are non-critical but relate only to degree of contrast to be obtained between differently colored areas of the soap mass.
In a typical soap production according to my invention a kettle soap is mixed with desired addition agents such as perfumes, fillers, gennicides, emollients, water, salt, etc. and milled. The milled chips are fed to the first stage or refiner barrel of a modified two-stage plodder in which the soap chips are compressed under the action of an extrusion screw at a temperature of F to 160F preferably F to F. A dye solution (0.5 to 30 percent solution) is injected into the compressed soap mass as it passes through the first stage of the plodder.
The compacted soap is discharged from the first stage of the plodder through a specially designed end plate. Whereas in the usual form of a soap plodder the first stage discharge comprises a combination of a 20 to 40 mesh woven screen and a metal backing plate having a myriad of small holes (e.g. in a soap plodder with a 10 inch cylinder diameter the backing plate has inch diameter holes) through which extrusion of the soap mass produces numerous ribbons or filaments of soap; I provide a pressure plate which is relatively open having large holes or shaped apertures. By way of comparison, the usual first stage discharge plate and screen has openings which occupy 27% or less of itsface area, i.e., it is 27%, or less, open; the pressure plate used in the method and apparatus of my invention is at least 35% and preferably at least 50% and up to 85% open.
The soap with entrapped dye solution is extruded through the relatively large openings of the pressure plate and cut'into pellets as it enters into a vacuum chamber enclosing the discharge side of the pressure plate.
In the vacuum chamber entrapped air within the soap pellets is removed. The soap pellets pass through the vacuum chamber and into the plodder second stage which compresses the soap pellets and extrudes the soap as a continuous log of marbleized soap. Thereafter, the marbleized log is cut and stamped into soap bars in the manner known in the art and waste from the cutting and stamping is recycled to the first stage feed.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a somewhat schematic cross-sectional view of a modified two-stage soap plodder and associated apparatus adapted for use according to the teaching of the present invention.
FIG. 2 is a plan view of a pressure plate used in the apparatus shown in FIG. 1.
FIG. 3 is a plan view of an alternate pressure plate to that shown in FIG. 2.
FIG. 4 is a side elevation partly in section of an injection nozzle.
FIG. 5 is a side elevationof a modified injection nozzle.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. I, a two-stage soap plodder I0 is shown consisting of a water jacketed upper barrel l2 sometimes called the refiner barrel a vacuum chamber 14 and a water jacketed lower barrel 16. Barrels l2 and 16 are cylindrical and contain, respectively, extrusion screws 20 and 28 each of which is rotatably driven by conventional means (not shown) the flights of each screw passing close to the interior wall of each barrel. Particles of soap chips or pellets are introduced to one end of the upper barrel 12 through inlet hopper 18 and are picked up by the feed-end flights of extrusion screw 20. Rotation of extrusion screw 20 in barrel 12 compacts the soap particles and urges the compacted soap along the axis of barrel l2 and through a pressure plate 22. Blade cutter 24 is provided on the face of pressure plate 22 and operates to cut the soap extruded through plate 22 into pellets one-half to 4 inches in length.
Having passed through pressure plate 22 and rotary cutter 24, the soap pellets enter vacuum chamber 14in which gases entrapped in the soap are removed by the action of a vacuum on the order of approximately 25-29 inches of mercury. Chamber 14 is evacuated through vacuum line 26. The soap pellets discharged fall upon the feed end flights of a second extrusion screw 28 in lower barrel 16. Rotation of extrusion screw 28 within barrel l6 compacts the pellets, urges the compacted soap along the axis of barrel 16, and extrudes a continuous log 31 of soap through a nose plate 30 having an exit aperture shaped according to the form of soap log desired.
In the practice of the present invention, a soap additive is injected into the compacted soap during its passage through plodder 10. The injection is made by means of one or more of a series of nozzles 32 37 extending through the walls of the plodder barrels 12 and 16; each nozzle is provided with a stream of additive by a conduit 38 and positive displacement pump 40. As shown in FIG. 1, these nozzles can be located in either or both of the bottom barrel and the top barrel and the location of each nozzle can be varied along the length of the barrel. The dye should be injected into, and entrapped within the soap while the latter is under the compressive influence of the extrusion screw. Therefore, the injection nozzle should not be any closer to the feed end of the barrel than the point at which the soap in the barrel becomes compressed nor so close to the discharge end of the barrel that the dye passes out of the barrel as a separate liquid phase, i.e., before it becomes entrapped within the soap. Suitable nozzle positions are spaced from the discharge end of the barrel a distance equal to about to about 75% of the barrel length.
While a series of six nozzles are shown in FIG. 1, this is merely illustrative of different injection sites that can be used. I have found it preferable when working with a single additive to inject the additive at only a single point and this preferably in upper barrel 12 at a point along the axis of barrel 12 at a distance of 5 to 45% of the barrel length from pressure plate 22. However, simultaneous injection through more than one nozzle can be used, especially when it is desired to inject more than one soap additive, e. g., in the injection of different dye streams.
Nozzles 32 37 project into the space between barrels l2, l6 and extrusion screws 20, 28. The latter are provided with a registering notch 39 for each nozzle. It is possible to avoid the use of nozzles and accomplish the desired injection through orifices in the flights or shaft of a hollowed out extrusion screw. However, the use of nozzles is preferred since they also act as picker pins to reduce slippage and churning in the plodder barrel and thereby aid in increasing the rate of soap extrusion.
As stated above, I prefer to inject additive in the upper barrel 12 at a point relatively close to pressure plate 22, i.e., through nozzle 33 in FIG. I. FIG. 1 shows the configuration of the discharge end of upper barrel 12 when the additive injection occurs within upper barre] 12. In order to avoid excessive mixing of the soap and additive mass, a relatively open pressure plate is used, i.e., one that is at least 35% and preferably 50% open. This can be accomplished by using a plate having a plurality of large holes 42 or shaped apertures distributed across the plate surface each extending through the plate to permit the passage of soap.
The openings in plate 22 should be as large as possible while providing for the maintenance of vacuum in chamber 14 and the development of adequate pressure 40 to 350 psig within barrel [2 to compact the soap chips or pellets fed to hopper 18 into a continuous mass of soap. For example when using a 10 inch plodder, i.e., the inside diameter of barrels 12 and 16 is l0 inches, a suitable pressure plate 22 has holes 42 distributed across its surface each hole having an inside diameter of l to 1% inches. This insures that relatively large soap pellets 63 pass into vacuum chamber 14. An alternate construction of pressure plate 22 is shown in FIG. 3. In this instance, a plate 22 is provided having an open face except for a series of struts 44. This type of pressure plate is especially useful with smaller diameter extrusion screws e.g., 6 inch.
Screw 20 is provided with the last screw flight terminated a short distance typically 2 inches from pressure plate 22. This permits a heel of soap 62 to form between screw 20 and pressure plate 22 and aids in the maintenance of vacuum in chamber 14 and the development of pressure in barrel 12. In FIG. 1, the soap is shown only at heel 62 and pellets 63. This remainder of the soap throughout plodder 10 has been omitted to allow for the showing of details in the drawmg.
When additive injection occurs only in the lower barrel 16, the discharge end of upper barrel 12 can be enclosed by the usual form of pressure plate which comprises a combination of a 20 to 40 mesh screen and a metal backing plate having a myriad of small holes distributed across its surface. As an aid to the distribution of additive throughout the soap mass when the additive injection occurs in lower barrel 16, a baffle plate can be provided in nose plate 30 or between nose plate 30 and barrel 16.
In FIGS. 4 and 5, typical injection nozzles 32 37 are shown. In FIG. 4, the nozzle is provided with an end outlet port 45 whereas in FIG. 5 a side outlet port 46 is provided for location in the plodder barrel facing its discharge end.
After log 31 is discharged from nose plate 30 it is treated according to conventional practice by a cutting and stamping apparatus 61 from which individual bars 64 of suitable shape are discharged on conveyor belt 65. Bars 64 having capacity shapes or landed shapes can be produced. I have found that soap scraps from the cutting and stamping apparatus 61 can be recycled to inlet hopper 18, as by conveyor belt and processed through the plodder 10 without destroying the marbleized appearance of the product. Understandably, the soap produced when scraps are recycled is more highly colored than when the soap is processed without recycle but this is often a desirable result. The amount of scrap recycle to hopper 18 can amount to as much as 30% of the total soap fed to hopper 18.
The conditions under which marbleized soap is produced in plodder are those normally encountered in soap plodding. In particular, the soap is processed through plodder 10 at temperatures between 70F and 160F and preferably between 85F and l25F; these temperatures referring to the temperature of the soap in the plodder and at the discharge from nose plate 30. The soap plodder can be operated at normal capacity and throughput is limited by the allowable temperature rise within the soap mass. Pressures within barrels 12 and 16 will be 40 350 psig.
Illustrative of the production of bars of soap having a marbleized appearance are the following examples.
Example I Green Streaks on White Chips of soap comprising 36.68 percent coconut fatty acid sodium soap, 44.47 percent tallow acid sodium soap and 6.15 percent coconut fatty acids, are
mixed with germicide, preservative and perfume in the proportions:
The soap chips, germicides, preservative, perfume and water are mixed and milled. Fifty pounds per min ute of milled chips are charged to the hopper 18 and forced by means of extrusion screw 20 through pressure plate 22 into the vacuum chamber 14. A 10 inch (barrel diameter) plodder was used, pressure plate 22 having 1% inch holes 42.
A 10 percent dye solution containing Monastral Fast Green dye in aqueous solution was injected through a single nozzle 33 located in barrel 12 approximately 5 inches from plate 22.
The dye was injected in a pulsating flow cycle whereby 1 1 ml. were injected in 3 seconds followed by a 28 second period during which no dye was injected. A highly desirable marbleized pattern with sharp contrasting green and white areas extending throughout the soap mass was produced.
Example 11 Ingredients Weight 20 coco: 80 tallow sodium soap 82.8 Preservatives .2 Perfume 1.0
-Continued Ingredients Weight NaCl 0.5 Water 1 5.5
The above example was processed in the same way as example one, except that the injection was in the lower barrel l6, i.e., the position represented by nozzle 37. The rate of addition of the colorant solution was varied from 1 cc/8.33 lbs. of mixed soap to I cc/.256 lbs. of mixed soap. The best rate found during this ru was around 1 cc/1.28 lbs. of mixed soap.
The best results are observed in processing soaps of relatively high plasticity, as these soaps pass through the plodder without excessive mixing of the injected dye throughout the soap .mass. Plasticity can be improved by the additionof suitable agents, e.g., petrolatum, mineral oil, glycerine, or by hardening of certain ingredients prior to use.
In general, soap formulations within the following ranges may be used:
Coco soap (i.e. palm, olive, stearic, etc.) 5 to 95% preferably 5 to 45% Tallow soap (i.e. choice white grease etc.) 5 to 95% preferably 45 to 95% Free fatty acid O to 30% preferably 5 to 10% Water 0 to 26% NaCl 0.1 to 5% Other known soap formulations may be used and the soap component can be replaced by detergent materials such as sodium fatty alcohol sulfates, alkyloxyhydroxypropane sulfonates, and sodium fatty acyl taurates. Translucent soaps can also be used and these can contain nacreous pigments comprising transparent platelets of high refractive index which produce pearlescent soap bars.
Dye compositions containing water or oil soluble dyes particularly color-fast compositions can be used. Suitable dyes used include those sold under the following names:
Monastral Fast Green Monastral Fast Blue l'leliogen Green Heliogen Blue F D & C Red No. 4
D & C Red No. 19
Dye concentrations between 0.5 and 30% are added either continuouly or in a pulsating flow of from 0.04
ml. to 5.0 ml. of dye solution per pound of soap. It has been observed that a pulsating flow of dye facilitates the use of larger dye quantities without undue mixing of the dye as the soap passes through the plodder, i.e., the addition of dye in pulses provides a product in which the contrast between additive colored zones and base colored zones is greater than when the dye additive is added at a constant rate. The pulse cycle may vary up to 8 seconds of additive injection followed by a second period during which no additive is injected.
'1 claim:
1. The method of making a marbleized soap or detergent mass which comprises simultaneously compressing a base soap or detergent while injecting from 0.04 to 5.01 ml. per pound of said base soap or detergent of an additive composition comprising a 0.5 to 30% dye solution into said base soap or detergent in the extrusion means of a two stage soap plodder at one or more points along the axis of movement of the soap through equal to to 45% of the length of said first stage.
4. The method of claim 3 in which the extrusion temperature is 85F to 125F.
5. The method of claim 1 in which injection occurs a stage spaced 5 to 75% of the length of said stage from 5 in the second Stage of Said plodden the point of discharge therefrom and extruding from the soap plodder, at a temperature of about 70F. to about l60F., a marbleized mass of base soap or detergent containing the additive.
2. The method of claim 1 in which the base is soap, and injection occurs in the first stage of said plodder, and the first stage discharges through a relatively open pressure plate.
3. The method of claim 2 in which the point of injection is spaced from the point of discharge a distance free fatty acid, 0 26% water, 0.1 5% NaCl.

Claims (6)

  1. 2. The method of claim 1 in which the base is soap, and injection occurs in the first stage of said plodder, and the first stage discharges through a relatively open pressure plate.
  2. 3. The method of claim 2 in which the point of injection is spaced from the point of discharge a distance equal to 5 to 45% of the length of said first stage.
  3. 4. The method of claim 3 in which the extrusion temperature is 85*F to 125*F.
  4. 5. The method of claim 1 in which injection occurs in the second stage of said plodder.
  5. 6. The method of claim 2 in which said additive injection is accomplished by a pulsating flow injection, the periods of the pulse cycle during which additive is added and during which additive is not added being up to about 8 seconds and 75 seconds respectively.
  6. 7. The method of claim 2 in which the base soap contains 5 - 95% coco soap, 5 - 95% tallow soap, 0 - 30% free fatty acid, 0 - 26% water, 0.1 - 5% NaCl.
US00229750A 1969-11-10 1972-02-28 Process for making marbleized soap or detergent Expired - Lifetime US3832431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00229750A US3832431A (en) 1969-11-10 1972-02-28 Process for making marbleized soap or detergent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87509169A 1969-11-10 1969-11-10
US00229750A US3832431A (en) 1969-11-10 1972-02-28 Process for making marbleized soap or detergent

Publications (1)

Publication Number Publication Date
US3832431A true US3832431A (en) 1974-08-27

Family

ID=26923576

Family Applications (1)

Application Number Title Priority Date Filing Date
US00229750A Expired - Lifetime US3832431A (en) 1969-11-10 1972-02-28 Process for making marbleized soap or detergent

Country Status (1)

Country Link
US (1) US3832431A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119758A (en) * 1975-04-14 1976-10-20 Matsushita Electric Works Ltd Extrusion pelletizer for resin molding material
JPS51119757A (en) * 1975-04-14 1976-10-20 Matsushita Electric Works Ltd Extrusion pelletizer for resin molding material
US4011170A (en) * 1974-07-10 1977-03-08 John Harlan Pickin Marbled detergent bars
US4036775A (en) * 1974-06-28 1977-07-19 Henkel & Cie G.M.B.H. Process for the production of a marbled or mottled soap cake and the product of such process
US4041119A (en) * 1975-07-16 1977-08-09 Colgate-Palmolive Company Method for producing variegated soap
US4090829A (en) * 1974-11-05 1978-05-23 Colgate-Palmolive Company Striated soap bar forming apparatus
US4125582A (en) * 1976-02-23 1978-11-14 The Gillette Company Marbleization of plastic materials
US4247501A (en) * 1978-11-06 1981-01-27 Gillette Company Marbleization of plastic materials
FR2465585A1 (en) * 1979-09-25 1981-03-27 Nokia Oy Ab ADDITIVE INJECTION INTO THE CYLINDER OF AN EXTRUDER
US4393017A (en) * 1981-06-18 1983-07-12 The B. F. Goodrich Company Apparatus and method for making foamed resin products
US4533484A (en) * 1983-10-06 1985-08-06 The Dow Chemical Company Pigments for toiletries
US4634564A (en) * 1983-10-14 1987-01-06 Lever Brothers Company Manufacture of multi-colored detergent bars
US4657499A (en) * 1985-05-30 1987-04-14 Shell Oil Company Screw extruder apparatus adapted for mixing additive fluids
US5238633A (en) * 1991-05-24 1993-08-24 Duraplast Corporation Method and apparatus for recycling plastic waste into a thin profile, mechanically reinforced board
US5246614A (en) * 1991-08-14 1993-09-21 The Mearl Corporation Colored extruded soap bars
US5451338A (en) * 1993-08-06 1995-09-19 Avon Products, Inc. Mar resistant soap formulations
US5589203A (en) * 1993-11-10 1996-12-31 Sato Iron Works Co., Ltd. Vacuum kneading and extruding apparatus
WO1997027280A1 (en) * 1996-01-29 1997-07-31 The Procter & Gamble Company Process for making particulate bleach activator component
FR2760243A1 (en) * 1997-02-28 1998-09-04 Alain Gualina Machine for small=scale manufacture of bars of soap
US6390797B1 (en) 1999-02-05 2002-05-21 The Dial Corporation Apparatus for manufacturing multicolored soap bars
US20030004074A1 (en) * 2001-06-29 2003-01-02 Colgate-Palmolive Company Process, composition and apparatus
US6531077B1 (en) * 1998-05-29 2003-03-11 Sprout-Matador A/S Method and apparatus for extrusion of expanding water holding products such as foodstuff particles or feeding stuff pellets
US20030146534A1 (en) * 2002-02-07 2003-08-07 Chutich Mark W. Apparatus and method for adding a coloring agent to a material for brick making
US20030232025A1 (en) * 2002-06-12 2003-12-18 Colwell Dennis James Personal care product
US20040043094A1 (en) * 2002-08-30 2004-03-04 Wengermanufacturing, Inc. Method and apparatus for extrusion of food products including back pressure valve/diverter
US20040228204A1 (en) * 2003-05-15 2004-11-18 Buss Sms Gmbh Verfahrenstechnik Large-volume reactor having a plurality of process spaces
US20060000575A1 (en) * 2003-11-25 2006-01-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Process to prepare a shaped solid detergent
US20060134255A1 (en) * 2004-12-16 2006-06-22 Myers E G Variable drive marbleizing rotor
US20080214430A1 (en) * 2007-03-01 2008-09-04 Conopco, Inc., D/B/A Unilever Extruded artisan soap having inner vein
US20080247266A1 (en) * 2006-08-23 2008-10-09 Christian Schlummer Metering device
IT201900003951A1 (en) * 2019-03-19 2020-09-19 Desmet Ballestra S P A PLANT FOR THE REALIZATION OF A PRODUCT, IN PARTICULAR CONSTITUTING A SURFACTANT PRODUCT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414097A (en) * 1944-06-01 1947-01-14 Garvey James Manufacture of soap
US2803041A (en) * 1953-02-11 1957-08-20 Celanese Corp Extrusion of plastic materials
US3089197A (en) * 1960-07-25 1963-05-14 Procter & Gamble Method for preparing detergent compositions
US3485905A (en) * 1967-02-17 1969-12-23 Colgate Palmolive Co Process for making variegated soap
US3663671A (en) * 1968-05-02 1972-05-16 Henkel & Cie Gmbh Process for the continuous manufacture of marbelized soap bars

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414097A (en) * 1944-06-01 1947-01-14 Garvey James Manufacture of soap
US2803041A (en) * 1953-02-11 1957-08-20 Celanese Corp Extrusion of plastic materials
US3089197A (en) * 1960-07-25 1963-05-14 Procter & Gamble Method for preparing detergent compositions
US3485905A (en) * 1967-02-17 1969-12-23 Colgate Palmolive Co Process for making variegated soap
US3663671A (en) * 1968-05-02 1972-05-16 Henkel & Cie Gmbh Process for the continuous manufacture of marbelized soap bars

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036775A (en) * 1974-06-28 1977-07-19 Henkel & Cie G.M.B.H. Process for the production of a marbled or mottled soap cake and the product of such process
US4011170A (en) * 1974-07-10 1977-03-08 John Harlan Pickin Marbled detergent bars
US4090829A (en) * 1974-11-05 1978-05-23 Colgate-Palmolive Company Striated soap bar forming apparatus
US4096221A (en) * 1974-11-05 1978-06-20 Colgate-Palmolive Company Striated soap bar forming
JPS51119758A (en) * 1975-04-14 1976-10-20 Matsushita Electric Works Ltd Extrusion pelletizer for resin molding material
JPS51119757A (en) * 1975-04-14 1976-10-20 Matsushita Electric Works Ltd Extrusion pelletizer for resin molding material
JPS532658B2 (en) * 1975-04-14 1978-01-30
JPS532659B2 (en) * 1975-04-14 1978-01-30
US4041119A (en) * 1975-07-16 1977-08-09 Colgate-Palmolive Company Method for producing variegated soap
US4125582A (en) * 1976-02-23 1978-11-14 The Gillette Company Marbleization of plastic materials
US4247501A (en) * 1978-11-06 1981-01-27 Gillette Company Marbleization of plastic materials
FR2465585A1 (en) * 1979-09-25 1981-03-27 Nokia Oy Ab ADDITIVE INJECTION INTO THE CYLINDER OF AN EXTRUDER
US4393017A (en) * 1981-06-18 1983-07-12 The B. F. Goodrich Company Apparatus and method for making foamed resin products
US4533484A (en) * 1983-10-06 1985-08-06 The Dow Chemical Company Pigments for toiletries
US4634564A (en) * 1983-10-14 1987-01-06 Lever Brothers Company Manufacture of multi-colored detergent bars
US4657499A (en) * 1985-05-30 1987-04-14 Shell Oil Company Screw extruder apparatus adapted for mixing additive fluids
US5238633A (en) * 1991-05-24 1993-08-24 Duraplast Corporation Method and apparatus for recycling plastic waste into a thin profile, mechanically reinforced board
US5246614A (en) * 1991-08-14 1993-09-21 The Mearl Corporation Colored extruded soap bars
US5451338A (en) * 1993-08-06 1995-09-19 Avon Products, Inc. Mar resistant soap formulations
US5589203A (en) * 1993-11-10 1996-12-31 Sato Iron Works Co., Ltd. Vacuum kneading and extruding apparatus
WO1997027280A1 (en) * 1996-01-29 1997-07-31 The Procter & Gamble Company Process for making particulate bleach activator component
FR2760243A1 (en) * 1997-02-28 1998-09-04 Alain Gualina Machine for small=scale manufacture of bars of soap
US6531077B1 (en) * 1998-05-29 2003-03-11 Sprout-Matador A/S Method and apparatus for extrusion of expanding water holding products such as foodstuff particles or feeding stuff pellets
USRE42424E1 (en) * 1998-05-29 2011-06-07 Andritz Feed & Biofuel A/S Method and apparatus for extrusion of expanding water holding products such as foodstuff particles or feeding stuff pellets
US6390797B1 (en) 1999-02-05 2002-05-21 The Dial Corporation Apparatus for manufacturing multicolored soap bars
US6805820B1 (en) * 1999-02-05 2004-10-19 The Dial Corporation Multicolored soap bars
US6852260B2 (en) * 2001-06-29 2005-02-08 Colgate-Palmolive Company Process for preparing cleansing bars having well-defined platelet striations therein
US20030004074A1 (en) * 2001-06-29 2003-01-02 Colgate-Palmolive Company Process, composition and apparatus
US6854966B2 (en) 2002-02-07 2005-02-15 Acme Brick Company Apparatus and method for adding a coloring agent to a material for brick making
US20030146534A1 (en) * 2002-02-07 2003-08-07 Chutich Mark W. Apparatus and method for adding a coloring agent to a material for brick making
WO2003105796A1 (en) * 2002-06-01 2003-12-24 The Gillette Company Deodorant having a marbled appearance
US20030232025A1 (en) * 2002-06-12 2003-12-18 Colwell Dennis James Personal care product
US6752982B2 (en) 2002-06-12 2004-06-22 The Gillette Company Personal care product
US20040043094A1 (en) * 2002-08-30 2004-03-04 Wengermanufacturing, Inc. Method and apparatus for extrusion of food products including back pressure valve/diverter
US6773739B2 (en) 2002-08-30 2004-08-10 Wenger Manufacturing, Inc Method and apparatus for extrusion of food products including back pressure valve/diverter
US7083319B2 (en) * 2003-05-15 2006-08-01 Buss Sms Gmbh Verfahrenstechnic Large-volume reactor having a plurality of process spaces
US20040228204A1 (en) * 2003-05-15 2004-11-18 Buss Sms Gmbh Verfahrenstechnik Large-volume reactor having a plurality of process spaces
US20060000575A1 (en) * 2003-11-25 2006-01-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Process to prepare a shaped solid detergent
US8007703B2 (en) * 2003-11-25 2011-08-30 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Process to prepare a shaped solid detergent
US20060134255A1 (en) * 2004-12-16 2006-06-22 Myers E G Variable drive marbleizing rotor
US20080247266A1 (en) * 2006-08-23 2008-10-09 Christian Schlummer Metering device
US20080214430A1 (en) * 2007-03-01 2008-09-04 Conopco, Inc., D/B/A Unilever Extruded artisan soap having inner vein
US7683019B2 (en) 2007-03-01 2010-03-23 Conopco, Inc. Extruded artisan soap having inner vein
US7858571B2 (en) 2007-03-01 2010-12-28 Conopco, Inc. Extruded artisan soap having inner vein
IT201900003951A1 (en) * 2019-03-19 2020-09-19 Desmet Ballestra S P A PLANT FOR THE REALIZATION OF A PRODUCT, IN PARTICULAR CONSTITUTING A SURFACTANT PRODUCT
WO2020188461A1 (en) * 2019-03-19 2020-09-24 Desmet Ballestra S.P.A. Plant for manufacturing a product, in particular composed of a surfactant product, preferably of the anionic type

Similar Documents

Publication Publication Date Title
US3832431A (en) Process for making marbleized soap or detergent
US4077754A (en) Apparatus for making variegated soap bars or cakes
US3398219A (en) Method for making multi-colored soap bars
US3884605A (en) Manufacture of soap bars
US3940220A (en) Method and equipment for the manufacture of variegated detergent bars
US3676538A (en) Method for soap bars having marble-like decoration
US3485905A (en) Process for making variegated soap
US3673294A (en) Method for the manufacture of marbleized soap bars
DE2151842A1 (en) Extruded product of various materials and processes and apparatus for its manufacture
US4092388A (en) Apparatus and process for manufacture of variegated soap bars
US6805820B1 (en) Multicolored soap bars
US4011170A (en) Marbled detergent bars
US3890419A (en) Method and apparatus for producing striped soap bar
US3769225A (en) Process for producing marbleized soap
US4162288A (en) Manufacture of marbled detergent bars
US4224266A (en) Manufacture of detergent bars
US4222979A (en) Manufacture of marbled detergent bars
US3663671A (en) Process for the continuous manufacture of marbelized soap bars
DE2201326A1 (en) Process and device for the production of different colored bar soaps
US4720365A (en) Manufacture of detergent bars
DE2157907C3 (en) Method and device for the production of different colored bar soaps
GB1387567A (en) Manufacture of detergent bars
DE2054865A1 (en) Detergent mass marbled soaps
IE36800B1 (en) Production of soap bars
US4193752A (en) Manufacture of marbled detergent bars