US3819366A - Dental alloy - Google Patents

Dental alloy Download PDF

Info

Publication number
US3819366A
US3819366A US00259856A US25985672A US3819366A US 3819366 A US3819366 A US 3819366A US 00259856 A US00259856 A US 00259856A US 25985672 A US25985672 A US 25985672A US 3819366 A US3819366 A US 3819366A
Authority
US
United States
Prior art keywords
alloy
weight percent
dental
gold
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00259856A
Inventor
M Katz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARGEN PRECIOUS METALS Inc
Original Assignee
Aurium Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aurium Research Corp filed Critical Aurium Research Corp
Priority to US00259856A priority Critical patent/US3819366A/en
Application granted granted Critical
Publication of US3819366A publication Critical patent/US3819366A/en
Anticipated expiration legal-status Critical
Assigned to ARGEN PRECIOUS METALS, INC. reassignment ARGEN PRECIOUS METALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AURIUM RESEARCH CORP.
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • A61K6/844Noble metals

Definitions

  • ABSTRACT Dewayne Rutledge Assistant Examiner-E. L. Wcise Attorney, Agent, or Firm-Amster & Rothstein 571 ABSTRACT A precious alloy for use in dental frames on which ceramic coverings or acrylic coverings are formed. Palladium is used in an amount ranging between 8 and 76 weight percent and indium is used in an amount ranging between 0.2 and 18 weight percent. The remainder of the alloy consists primarily of gold, or gold and silver, or silver and small amounts of trace metals. Zinc may also be included as part of the alloy. With such an alloy, there is no need for the use of platinum as in the prior art dental alloys and such alloys, according to this invention, have the same desirable characteristics as those of the prior art.
  • This invention relates to dental alloys, and more particularly, to precious alloys for use in dental frames on which ceramic and acrylic coverings are disposed.
  • a covering having an appearance of a natural tooth, is usually provided on the exterior of the metal frame.
  • Some of these coverings are of an acrylic material which is spread on the frame and then hardened while other coverings utilize porcelain which, in actuality, is a ceramic material, initially in paste form, which is spread on the frame and then baked. Whether an acrylic or a ceramic material is utilized on the dental frame, it is important that the dental frame be compatible with the material which is disposed thereon.
  • the present invention relates to precious alloys used in dental. frames.
  • a typical prior art alloy consists of gold (85 percent by weight), platinum (8 percent by weight) and palladium (5 percent by weight), with the remaining 2 percent by weight consisting of trace metals (defined as metals other than precious metals, e.g., copper, iron or the like) which are primarily for strengthening the alloy.
  • trace metals defined as metals other than precious metals, e.g., copper, iron or the like
  • Precious metals such as gold, platinum and palladium are used to obtain a white or yellow color which, when baked upon the ceramic covering, contribute to the simulation of a natural tooth appearance. Also, such precious metals do not oxidize and thus do not discolor the ceramic. Because precious metals are generally soft, hardening agents are included in the alloy.
  • Various combinations of different precious metals are used, in preference to an individual metal, primarily to obtain a coefficient of thermal expansion compatible with that of the ceramic, that is, a value which permits the two of them to
  • a further object of my invention is to provide a dental alloy which is compatible with ceramic coverings which are baked thereon.
  • Yet another object of this invention is to provide a dental alloy which is compatible with acrylic coverings disposed on the dental frame.
  • Another object of this invention is to provide a dental alloy having a relatively low specific gravity.
  • a dental alloy having an increased palladium content such dental alloy enabling decreasing amounts of platinum to be utilized without sacrificing any of the desirable characteristics of the prior art.
  • platinum was required primarily to obtain a low coefficient of thermal expansion.
  • trace metals such as tin and copper were utilized.
  • greater amounts of palladium instead of platinum could be used to lower the coefficient of thermal expansion (for the case where the dental alloy was utilized with a ceramic covering)
  • the dental alloy should include at least 98% weight percent of pre cious metal, the term precious metal being used to denote gold, silver, indium, gallium, platinum, palladium, ruthenium, rhodium, osmium, and iridium.
  • the remaining part of the alloy may include trace metals (albeit trace metals which are not toxic or which would otherwise not discolor the ceramic or other material disposed on the dental frame) in amounts not greater than approximately 1% weight percent.
  • the alloy includes precious metals in an amount of weight percent, such precious metals including the requisite amount of palladium and indium mentioned aforesaid.
  • precious metals including the requisite amount of palladium and indium mentioned aforesaid.
  • up to 15 weight percent of zinc may be utilized to harden the dental alloy.
  • a dental frame alloy which includes palladium and indium as the critical ingredients thereof. Additionally (and with the exception of zinc), the trace metals should be in amounts less than 1% weight percent since amounts greater than this produce alloys which are either too brittle, toxic or otherwise incompatibl with materials disposed on the frame.
  • the dental alloy may also include silver; gold; gold and silver; zinc and silver; zinc and gold; and, zinc, gold and silver. The following table summarizes the various ranges of these materials in weight percentages.
  • One particular advantage of the alloys according to the present invention and, more particularly, in the alloy of 11 and V of the aforementioned table is the elimination of gold from the alloy. This is particularly important with the present day gold crises" and difficulty and/or undesirability of using gold for many applications.
  • my alloy may be utilized in the jewelry art or the electronic art, etc.
  • a material compatible alloy consisting essentially of at least weight percent of a precious metal alloy, said precious metal alloy including 8-76 weight percent palladium and 0.2-18 weight percent indium, said compatible alloy further including 0-15 weight percent zinc, said compatible alloy being free of other trace metals in amounts greater than 1% weight percent.
  • said precious metal alloy further includes 0.1-80 weight percent silver and wherein said compatible alloy includes 0.2- weight percent zinc.
  • said precious metal alloy further includes 0.1-78 weight percent gold and 0.l74 weight percent silver and wherein said compatible alloy includes 0.2-14 weight gold and 0.1-72 weight percent silver.

Abstract

A precious alloy for use in dental frames on which ceramic coverings or acrylic coverings are formed. Palladium is used in an amount ranging between 8 and 76 weight percent and indium is used in an amount ranging between 0.2 and 18 weight percent. The remainder of the alloy consists primarily of gold, or gold and silver, or silver and small amounts of trace metals. Zinc may also be included as part of the alloy. With such an alloy, there is no need for the use of platinum as in the prior art dental alloys and such alloys, according to this invention, have the same desirable characteristics as those of the prior art.

Description

[541 DENTAL ALLOY [75] lnventorz. Michel Katz, Forest Hills, N.Y. [73] Assigneef Aurium Research Corporation,
Long lsland City, NY.
The portion of the term of this patent subsequent to June 6, 1989,
has been disclaimed.
[22] Filed: June 5, 1972 [211' App]. 'No.: 259,856
Related U.S. Application Data [63] Continuation-in-part of Ser. No. 809,381, March 21,
1969, Pat. No. 3,667,936.
[ Notice:
52 us, c1. 75/172 n, 75/134 T, 75/165,
, [s11 16:. c1. C220 5/00 [581 Field 61 Search... 75/134 T, 165, 172 R, 172 o [56] References Cited UNITED STATES PATENTS 1,987,451 1935 Taylor 75/134 T 2,967,792 1961 Ruthardt 75/134 T X 2,980,998 4/1961 Coleman 75/134 T X 3,136,634 I 6/1964 zwin gl'nann 75/165 1111 3,819,366 1*June 25, 1974 3,666,540 5/1972 Burnett; .j ....-'75/l6-5X 3,667,936 6/1972 Km 75/134N FOREIGN PATENTS OR APPLICATIONS 683,004 I l/ 1952 Great Britain 803,379 l0/l958 Great Britain 290,657 8/1953 Great Britain Primary ExaminerL. Dewayne Rutledge Assistant Examiner-E. L. Wcise Attorney, Agent, or Firm-Amster & Rothstein 571 ABSTRACT A precious alloy for use in dental frames on which ceramic coverings or acrylic coverings are formed. Palladium is used in an amount ranging between 8 and 76 weight percent and indium is used in an amount ranging between 0.2 and 18 weight percent. The remainder of the alloy consists primarily of gold, or gold and silver, or silver and small amounts of trace metals. Zinc may also be included as part of the alloy. With such an alloy, there is no need for the use of platinum as in the prior art dental alloys and such alloys, according to this invention, have the same desirable characteristics as those of the prior art.
8 Claims, No Drawings DENTAL ALLOY This invention is a continuation-in-part of application Ser. No. 809,381 filed Mar. 21, 1969, now US. Pat. No. 3,667,936 dated June 6, 1972.
This invention relates to dental alloys, and more particularly, to precious alloys for use in dental frames on which ceramic and acrylic coverings are disposed.
There are hundreds of different alloys which are used in dental work for bridges, crowns, inlays, etc. A covering, having an appearance of a natural tooth, is usually provided on the exterior of the metal frame. Some of these coverings are of an acrylic material which is spread on the frame and then hardened while other coverings utilize porcelain which, in actuality, isa ceramic material, initially in paste form, which is spread on the frame and then baked. Whether an acrylic or a ceramic material is utilized on the dental frame, it is important that the dental frame be compatible with the material which is disposed thereon.
More particularly, when utilizing an acrylic material,
' it is important that the hardness of the metal frame be not discolor the'material which is disposed thereon.
This is especially important when the material disposed on the frame is a ceramic.
The present invention relates to precious alloys used in dental. frames. A typical prior art alloy consists of gold (85 percent by weight), platinum (8 percent by weight) and palladium (5 percent by weight), with the remaining 2 percent by weight consisting of trace metals (defined as metals other than precious metals, e.g., copper, iron or the like) which are primarily for strengthening the alloy. Precious metals such as gold, platinum and palladium are used to obtain a white or yellow color which, when baked upon the ceramic covering, contribute to the simulation of a natural tooth appearance. Also, such precious metals do not oxidize and thus do not discolor the ceramic. Because precious metals are generally soft, hardening agents are included in the alloy. Various combinations of different precious metals are used, in preference to an individual metal, primarily to obtain a coefficient of thermal expansion compatible with that of the ceramic, that is, a value which permits the two of them to'be baked together without cracks forming in the ceramic.
' Conventional dental alloys of this type are very expensive primarily because of their use of platinum. Al-
though the day-to-day prices of gold, platinum and palladium vary, approximate respective prices per ounce are $60, $110 and $35. It is apparent that even small quantities of platinum can considerably add to the overall cost of the dental alloy.
Although other alloys are known which eliminate platinum as a part thereof and although it might be contemplated to utilize these alloys in dental frames, such is not the case. For example, many of these alloys include trace metals which are toxic, thereby precluding their use as a dental frame. Specifically, cadmium, lead and berrylium have been included as toxic trace metals in these alloys. Similarly, although yet other alloys do not include these toxic trace metals, these other alloys for one reason or another, are not adaptable for use as dental frames. For example, these latter alloys have included trace metals (such as copper) in amounts which would discolor any ceramic material disposed on the dental frame; others have included trace metals which would be too brittle or otherwise undesirable with the frame covering.
Another problem with prior art alloys has been the high specific gravity of these alloys. Obviously, it is advantageous to provide a dental frame alloy having a low specific gravity since this means that less of the material is required in order to form the dental frame.
It is a general object of my invention to provide a precious alloy for use in dental frames which is cheaper than those of the prior art, but of equal quality.
A further object of my invention is to provide a dental alloy which is compatible with ceramic coverings which are baked thereon.
Yet another object of this invention is to provide a dental alloy which is compatible with acrylic coverings disposed on the dental frame.
Another object of this invention is to provide a dental alloy having a relatively low specific gravity.
Briefly, these and other objects of the present invention are obtained by providing a dental alloy having an increased palladium content, such dental alloy enabling decreasing amounts of platinum to be utilized without sacrificing any of the desirable characteristics of the prior art. In the prior art, platinum was required primarily to obtain a low coefficient of thermal expansion. To harden the alloy, trace metals such as tin and copper were utilized. Although greater amounts of palladium (instead of platinum) could be used to lower the coefficient of thermal expansion (for the case where the dental alloy was utilized with a ceramic covering), in the prior art there were no known satisfactory trace metals which could efficiently harden the alloy with large amounts of palladium. I have found that larger amounts of palladium can be used, instead of platinum, and that the alloy can be sufficiently hardened by using a prescribed amount of zinc. In the alternative, a prescribed amount of indium and/0r zinc plus indium can be utilized to provide the requisite hardness. The coefficient of thermal expansion for such a ceramic material is typically in the range between 0.7 l0" and 0.88Xl0 inch/600 C./inch. Such alloys according to my invention have the necessary hardness as to be compatible with ceramic and acrylic coverings; do not discolor ceramic coverings; are of thermal expansions compatible with ceramic coverings; and, are not toxic.
It is a feature of my invention to include in an alloy used in dental frames on which coverings are formed, palladium in an amount of 8-76 weight percent and indium in the amount of 02-18 weight percent. According to one embodiment of the invention, the dental alloy should include at least 98% weight percent of pre cious metal, the term precious metal being used to denote gold, silver, indium, gallium, platinum, palladium, ruthenium, rhodium, osmium, and iridium. The remaining part of the alloy may include trace metals (albeit trace metals which are not toxic or which would otherwise not discolor the ceramic or other material disposed on the dental frame) in amounts not greater than approximately 1% weight percent. According to another embodiment of the present invention, the alloy includes precious metals in an amount of weight percent, such precious metals including the requisite amount of palladium and indium mentioned aforesaid. However, with this embodiment, up to 15 weight percent of zinc may be utilized to harden the dental alloy.
In accordance with the principles of this invention, 1
i have provided a dental frame alloy which includes palladium and indium as the critical ingredients thereof. Additionally (and with the exception of zinc), the trace metals should be in amounts less than 1% weight percent since amounts greater than this produce alloys which are either too brittle, toxic or otherwise incompatibl with materials disposed on the frame. The dental alloy may also include silver; gold; gold and silver; zinc and silver; zinc and gold; and, zinc, gold and silver. The following table summarizes the various ranges of these materials in weight percentages.
Specific gravity 16.3, Hardness 88. In Accordance With V of the Aforementioned Table:
In Accordance With VI of the Aforementioned Table:
Palladium Indium Gold Silver Zinc 1 11-76% 05-187: 01-78% 01-74% 02-14% 11 8-76% 2-1 8% 0.1-747: lll 8-7671 4-187: 0.1-7871 1V 51-76% 4-1 8% 01-74% 0.1-727: V 8-76% 05-18% 01-80% 0.2-107( V1 01-74% 01-15% In accordance with the principles of my invention, 1
have formed various dental alloys; wherein the number following each element represents the amount of that element, by weight percent, and the specific gravity and hardness are given (unless otherwise indicated, the hardness is in the terms of the Rockwell B hardness):
In Accordance With 1 of the Aforementioned Table:
Example 1:
Palladium (l8), Indium (1), Gold (7), Silver (71.6)
and Zinc (2.4);
Specific gravity 8.4, Hardness 87. Example 2:
Palladium Indium (0.5), Gold (62), Silver (8.5)
' and Zinc (4);
Specific gravity 16.0, Hardness 76.
In Accordance With 11 of the Aforementioned Table:
Example 3:
Palladium (55.5), Indium (12.3), Silver (32.2); Specific gravity l 1.0, Hardness 83.
In Accordance with 111 of the Aforemen tioned Table:
Example 4:
Palladium (16.7), lndium (6.8), Gold (76.5); Specific gravity 17.5, Bernell Hardness 154.
In Accordance With IV of the Aforementioned Table:
Example 5:
Palladium Indium (6.5), Gold (50), Silver (13.5);
Specific gravity 15.6, Hardness 85. Example 6:
Palladium (21), Indium (5.5), Gold (66.5), Silver Example 10:
Palladium (52), Indium (0.5), Gold (37.9), Zinc Specific gravity 15.4, Hardness 82.
One particular advantage of the alloys according to the present invention and, more particularly, in the alloy of 11 and V of the aforementioned table is the elimination of gold from the alloy. This is particularly important with the present day gold crises" and difficulty and/or undesirability of using gold for many applications.
In the prior art, it has generally been necessary to roughen the dental frame prior to placing the material thereon. This was required, for example, when ceramic coverings are utilized, in order to properly adhere the ceramic to the dental frame. Another advantage of my invention is that the use of indium in the aforementioned ranges does not require roughening the frame in order that the covering adhere thereon. It is believed that the indium reacts chemically with conventional ceramic coverings, such as those sold under various trademarks such as Ceramco, Thermalite, Vita, etc.
Although the invention has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the application of the principles of the invention. Numerous modifications may be made thereon without departing from the spirit or scope of the present invention. For example, the alloy according to my invention may be utilized in other applications wherein the alloy must be compatible with a ceramic or acrylic material.
' Thus, my alloy may be utilized in the jewelry art or the electronic art, etc.
What is claimed is:
1. A material compatible alloy consisting essentially of at least weight percent of a precious metal alloy, said precious metal alloy including 8-76 weight percent palladium and 0.2-18 weight percent indium, said compatible alloy further including 0-15 weight percent zinc, said compatible alloy being free of other trace metals in amounts greater than 1% weight percent.
2. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-80 weight percent silver and wherein said compatible alloy includes 0.2- weight percent zinc.
3. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-74 weight percent gold and wherein said compatible alloy includes 0.2- weight percent zinc.
4. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-78 weight percent gold and 0.l74 weight percent silver and wherein said compatible alloy includes 0.2-14 weight gold and 0.1-72 weight percent silver.

Claims (7)

  1. 2. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-80 weight percent silver and wherein said compatible alloy includes 0.2-10 weight percent zinc.
  2. 3. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-74 weight percent gold and wherein said compatible alloy includes 0.2-15 weight percent zinc.
  3. 4. The invention according to claim 1 wherein said precious metal alloy further includes 0.1-78 weight percent gold and 0.1-74 weight percent silver and wherein said compatible alloy includes 0.2-14 weight percent zinc.
  4. 5. The invention according to claim 1 wherein said compatible alloy includes said precious metal alloy in an amount at least 98 1/4 weight percent.
  5. 6. The invention according to claim 5 wherein said precious metal alloy includes 0.1-78 weight percent gold.
  6. 7. The invention according to claim 5 wherein said precious metal alloy includes 0.1-74 weight percent silver.
  7. 8. The invention according to claim 5 wherein said precious metal alloy includes 0.1-74 weight percent gold and 0.1-72 weight percent silver.
US00259856A 1969-03-21 1972-06-05 Dental alloy Expired - Lifetime US3819366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00259856A US3819366A (en) 1969-03-21 1972-06-05 Dental alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80938169A 1969-03-21 1969-03-21
US00259856A US3819366A (en) 1969-03-21 1972-06-05 Dental alloy

Publications (1)

Publication Number Publication Date
US3819366A true US3819366A (en) 1974-06-25

Family

ID=26947571

Family Applications (1)

Application Number Title Priority Date Filing Date
US00259856A Expired - Lifetime US3819366A (en) 1969-03-21 1972-06-05 Dental alloy

Country Status (1)

Country Link
US (1) US3819366A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928913A (en) * 1975-01-23 1975-12-30 Ney Co J M Palladium alloy for ceramic bonding
US4007040A (en) * 1975-03-05 1977-02-08 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Hard copper free dental gold alloys
US4008080A (en) * 1974-11-13 1977-02-15 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Copper free dental gold alloys
US4012228A (en) * 1976-05-14 1977-03-15 Howmedica, Inc. Low intrinsic value alloys
US4046561A (en) * 1976-09-01 1977-09-06 Neoloy Products, Inc. Dental alloy of use in the adhesion of porcelain
US4123262A (en) * 1977-07-06 1978-10-31 Pennwalt Corporation Dental gold alloy
US4165983A (en) * 1977-02-23 1979-08-28 Johnson, Matthey & Co., Limited Jewelry alloys
US4179286A (en) * 1978-03-31 1979-12-18 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Silver free, low gold-noble metal alloys for firing of dental porcelain
US4255191A (en) * 1979-03-02 1981-03-10 Degussa Aktiengesellschaft Gold-silver alloys with good tarnish resistance for the dental art
US4261744A (en) * 1979-10-10 1981-04-14 Boyajian Ben K Palladium-based dental alloy containing indium and tin
US4266973A (en) * 1979-12-14 1981-05-12 The J. M. Ney Company Tarnish-resistant gold color alloy and dental restorations employing same
US4319877A (en) * 1979-10-10 1982-03-16 Boyajian Benjamin K Palladium-based dental alloy containing indium and tin
US4387072A (en) * 1982-04-27 1983-06-07 The J. M. Ney Company Novel palladium alloy and dental restorations utilizing same
US4389370A (en) * 1981-05-06 1983-06-21 Skalabrin Nicholas J Low gold content dental alloy
US4412970A (en) * 1982-12-06 1983-11-01 Jeneric Industries, Inc. Palladium based dental alloys
US4419325A (en) * 1982-07-21 1983-12-06 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
WO1984001788A1 (en) * 1982-10-29 1984-05-10 Wahlbeck H G E Method and apparatus for the manufacture of non-allergy creating precious metal objects
US4451639A (en) * 1982-07-21 1984-05-29 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4459263A (en) * 1982-09-08 1984-07-10 Jeneric Industries, Inc. Cobalt-chromium dental alloys containing ruthenium and aluminum
FR2543488A1 (en) * 1983-03-30 1984-10-05 Inst Elektrokhimii Ural Palladium-based composite material
US4530664A (en) * 1980-09-29 1985-07-23 Jeneric Industries, Inc. Cobalt-chromium alloys
US4539177A (en) * 1982-07-21 1985-09-03 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4539176A (en) * 1984-05-04 1985-09-03 Pennwalt Corporation Low gold dental alloys
US4619810A (en) * 1984-01-13 1986-10-28 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4804517A (en) * 1986-03-06 1989-02-14 Williams Dental Company, Inc. Gold colored palladium - indium alloys
DE3811628A1 (en) * 1988-04-07 1989-10-19 Heraeus Edelmetalle Gmbh METHOD FOR PRODUCING SINTERED METAL SPARE PARTS
US5051235A (en) * 1987-06-26 1991-09-24 Comptoir Lyon-Alemand-Louyot, Societe Anonyme Novel palladium-based alloys containing indium bismuth, silver and copper
US5431875A (en) * 1994-05-02 1995-07-11 The J. M. Ney Company Dental alloy producing light oxides
DE19713925C1 (en) * 1997-04-04 1998-10-29 Degussa Use of silver-palladium alloys for the manufacture of dentures that can be veneered with dental ceramics
GB2358024A (en) * 2000-01-07 2001-07-11 Argen Corp Gold alloy for firing on porcelain
WO2010133555A1 (en) * 2009-05-18 2010-11-25 Heimerle + Meule Gmbh Palladium jewelry alloy
DE102009047909A1 (en) * 2009-09-22 2011-04-07 Heimerle + Meule Gmbh Palladium jewelry alloy, useful for partially, preferably completely making semi-finished products to make jewelry, preferably wedding ring, comprises palladium, silver and copper, element comprising gallium, germanium or indium, and zinc
US20190015300A1 (en) * 2012-03-09 2019-01-17 Ivoclar Vivadent Ag Palladium Based Alloys

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB290657A (en) * 1928-04-02 1929-09-02 Kamesuke Oka A process of purifying sodium glutamate
US1987451A (en) * 1934-09-26 1935-01-08 Spyco Smelting And Refining Co Precious metal alloy composition
GB683004A (en) * 1949-12-14 1952-11-19 Degussa Highly acid-resistant objects
GB803379A (en) * 1954-02-10 1958-10-22 Gerald Sinclair Alloys
US2967792A (en) * 1953-12-01 1961-01-10 Heraeus Gmbh W C Spinnerette
US2980998A (en) * 1957-02-04 1961-04-25 Ney Co J M Dental prosthesis and method of manufacture
US3136634A (en) * 1962-02-02 1964-06-09 Degussa Noble metal alloys having a high specific electric resistance
US3666540A (en) * 1967-07-26 1972-05-30 Ney Co J M Noble metal alloys
US3667936A (en) * 1969-03-21 1972-06-06 Aurium Research Corp Dental alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB290657A (en) * 1928-04-02 1929-09-02 Kamesuke Oka A process of purifying sodium glutamate
US1987451A (en) * 1934-09-26 1935-01-08 Spyco Smelting And Refining Co Precious metal alloy composition
GB683004A (en) * 1949-12-14 1952-11-19 Degussa Highly acid-resistant objects
US2967792A (en) * 1953-12-01 1961-01-10 Heraeus Gmbh W C Spinnerette
GB803379A (en) * 1954-02-10 1958-10-22 Gerald Sinclair Alloys
US2980998A (en) * 1957-02-04 1961-04-25 Ney Co J M Dental prosthesis and method of manufacture
US3136634A (en) * 1962-02-02 1964-06-09 Degussa Noble metal alloys having a high specific electric resistance
US3666540A (en) * 1967-07-26 1972-05-30 Ney Co J M Noble metal alloys
US3667936A (en) * 1969-03-21 1972-06-06 Aurium Research Corp Dental alloy

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008080A (en) * 1974-11-13 1977-02-15 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Copper free dental gold alloys
US3928913A (en) * 1975-01-23 1975-12-30 Ney Co J M Palladium alloy for ceramic bonding
US4007040A (en) * 1975-03-05 1977-02-08 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Hard copper free dental gold alloys
US4012228A (en) * 1976-05-14 1977-03-15 Howmedica, Inc. Low intrinsic value alloys
US4046561A (en) * 1976-09-01 1977-09-06 Neoloy Products, Inc. Dental alloy of use in the adhesion of porcelain
US4165983A (en) * 1977-02-23 1979-08-28 Johnson, Matthey & Co., Limited Jewelry alloys
US4123262A (en) * 1977-07-06 1978-10-31 Pennwalt Corporation Dental gold alloy
US4179286A (en) * 1978-03-31 1979-12-18 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Silver free, low gold-noble metal alloys for firing of dental porcelain
US4255191A (en) * 1979-03-02 1981-03-10 Degussa Aktiengesellschaft Gold-silver alloys with good tarnish resistance for the dental art
US4261744A (en) * 1979-10-10 1981-04-14 Boyajian Ben K Palladium-based dental alloy containing indium and tin
US4319877A (en) * 1979-10-10 1982-03-16 Boyajian Benjamin K Palladium-based dental alloy containing indium and tin
US4266973A (en) * 1979-12-14 1981-05-12 The J. M. Ney Company Tarnish-resistant gold color alloy and dental restorations employing same
US4530664A (en) * 1980-09-29 1985-07-23 Jeneric Industries, Inc. Cobalt-chromium alloys
US4389370A (en) * 1981-05-06 1983-06-21 Skalabrin Nicholas J Low gold content dental alloy
US4387072A (en) * 1982-04-27 1983-06-07 The J. M. Ney Company Novel palladium alloy and dental restorations utilizing same
US4539177A (en) * 1982-07-21 1985-09-03 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4419325A (en) * 1982-07-21 1983-12-06 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4451639A (en) * 1982-07-21 1984-05-29 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4459263A (en) * 1982-09-08 1984-07-10 Jeneric Industries, Inc. Cobalt-chromium dental alloys containing ruthenium and aluminum
WO1984001788A1 (en) * 1982-10-29 1984-05-10 Wahlbeck H G E Method and apparatus for the manufacture of non-allergy creating precious metal objects
US4412970A (en) * 1982-12-06 1983-11-01 Jeneric Industries, Inc. Palladium based dental alloys
FR2543488A1 (en) * 1983-03-30 1984-10-05 Inst Elektrokhimii Ural Palladium-based composite material
US4619810A (en) * 1984-01-13 1986-10-28 Jeneric Industries, Inc. Dental alloys for porcelain-fused-to-metal restorations
US4539176A (en) * 1984-05-04 1985-09-03 Pennwalt Corporation Low gold dental alloys
US4804517A (en) * 1986-03-06 1989-02-14 Williams Dental Company, Inc. Gold colored palladium - indium alloys
WO1990007018A1 (en) * 1986-03-06 1990-06-28 Ivoclar North America, Inc. Gold colored palladium - indium alloys
US5051235A (en) * 1987-06-26 1991-09-24 Comptoir Lyon-Alemand-Louyot, Societe Anonyme Novel palladium-based alloys containing indium bismuth, silver and copper
DE3811628A1 (en) * 1988-04-07 1989-10-19 Heraeus Edelmetalle Gmbh METHOD FOR PRODUCING SINTERED METAL SPARE PARTS
US5431875A (en) * 1994-05-02 1995-07-11 The J. M. Ney Company Dental alloy producing light oxides
DE19713925C1 (en) * 1997-04-04 1998-10-29 Degussa Use of silver-palladium alloys for the manufacture of dentures that can be veneered with dental ceramics
US6290501B1 (en) * 1997-04-04 2001-09-18 Degussa-Huls Aktiengesellschaft Silver-palladium alloys for producing a dental prosthesis which can be covered with dental ceramic
DE19713925C2 (en) * 1997-04-04 2002-10-24 Schaetzlein Helmut Use of silver-palladium alloys for the manufacture of dentures that can be veneered with dental ceramics
GB2358024A (en) * 2000-01-07 2001-07-11 Argen Corp Gold alloy for firing on porcelain
WO2010133555A1 (en) * 2009-05-18 2010-11-25 Heimerle + Meule Gmbh Palladium jewelry alloy
DE102009022357A1 (en) * 2009-05-18 2010-11-25 Heimerle + Meule Gmbh Palladium jewelery alloy
DE102009047909A1 (en) * 2009-09-22 2011-04-07 Heimerle + Meule Gmbh Palladium jewelry alloy, useful for partially, preferably completely making semi-finished products to make jewelry, preferably wedding ring, comprises palladium, silver and copper, element comprising gallium, germanium or indium, and zinc
DE102009047909B4 (en) * 2009-09-22 2015-12-17 Heimerle + Meule Gmbh Palladium jewelery alloy
US20190015300A1 (en) * 2012-03-09 2019-01-17 Ivoclar Vivadent Ag Palladium Based Alloys
US10653585B2 (en) * 2012-03-09 2020-05-19 Ivoclar Vivadent, Inc. Palladium based alloys

Similar Documents

Publication Publication Date Title
US3819366A (en) Dental alloy
US3667936A (en) Dental alloy
US3928913A (en) Palladium alloy for ceramic bonding
US4008080A (en) Copper free dental gold alloys
US3811876A (en) Silver alloys having high sulphuration resistance
US3841860A (en) Dental alloy
DE2509476C3 (en) Hard, copper-free dental gold alloys
GB1444350A (en) Dental alloys
DE3211703C2 (en) Use of low-gold precious metal alloys for dental purposes
US4124382A (en) Dental alloy for use in the adhesion of porcelain
US3574611A (en) High temperature dental gold alloy
GB1471803A (en) Gold/silver alloys
IE43597L (en) Nickel alloys
ES444892A1 (en) Dental constructions and dental alloys
GB1523514A (en) Dental compositions
GB1517309A (en) Alloy powders for the preparation of dental amalgams
US4686082A (en) Dental amalgam alloy
JPS6047903B2 (en) Low karat gold alloy for casting with golden color
DE2139331C3 (en) Copper-free dental gold alloys
AU608715B2 (en) Tarnish-resistant noble metal alloys for dentistry
US3650735A (en) Tin base alloy containing aluminum, zinc and copper
JPS58210132A (en) Low-karat dental gold alloy having discoloration resistance and intensified yellow color
JP3347665B2 (en) Silver alloy for ornaments
US4865809A (en) Copper-free gold alloy composition
US5011311A (en) Dental alloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARGEN PRECIOUS METALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AURIUM RESEARCH CORP.;REEL/FRAME:006483/0933

Effective date: 19930321