US3818415A - Electrical connections to conductors having thin film insulation - Google Patents

Electrical connections to conductors having thin film insulation Download PDF

Info

Publication number
US3818415A
US3818415A US00333242A US33324273A US3818415A US 3818415 A US3818415 A US 3818415A US 00333242 A US00333242 A US 00333242A US 33324273 A US33324273 A US 33324273A US 3818415 A US3818415 A US 3818415A
Authority
US
United States
Prior art keywords
conductor
coating
terminal
electrical connection
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00333242A
Inventor
W Evans
R Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
AMP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMP Inc filed Critical AMP Inc
Priority to US00333242A priority Critical patent/US3818415A/en
Priority to GB377574A priority patent/GB1411932A/en
Priority to IT20062/74A priority patent/IT1007196B/en
Priority to NL7401746A priority patent/NL7401746A/xx
Priority to AU65531/74A priority patent/AU6553174A/en
Priority to DE19742407050 priority patent/DE2407050A1/en
Priority to BE140922A priority patent/BE811045A/en
Priority to ES423227A priority patent/ES423227A1/en
Priority to BR1124/74A priority patent/BR7401124D0/en
Priority to FR7405306A priority patent/FR2218662B3/fr
Priority to SE7402034A priority patent/SE7402034L/en
Priority to JP49019052A priority patent/JPS49135188A/ja
Priority to AR252399A priority patent/AR199430A1/en
Application granted granted Critical
Publication of US3818415A publication Critical patent/US3818415A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands
    • H01R4/2404Connections using contact members penetrating or cutting insulation or cable strands the contact members having teeth, prongs, pins or needles penetrating the insulation
    • H01R4/2412Connections using contact members penetrating or cutting insulation or cable strands the contact members having teeth, prongs, pins or needles penetrating the insulation actuated by insulated cams or wedges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/24Connections using contact members penetrating or cutting insulation or cable strands
    • H01R4/2491Connections using contact members penetrating or cutting insulation or cable strands the contact members penetrating the insulation being actuated by conductive cams or wedges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • H05K3/326Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor the printed circuit having integral resilient or deformable parts, e.g. tabs or parts of flexible circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/091Locally and permanently deformed areas including dielectric material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/1059Connections made by press-fit insertion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10727Leadless chip carrier [LCC], e.g. chip-modules for cards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0067Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto an inorganic, non-metallic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Definitions

  • An electrical connection with a conductor havlng an PP NOS ,242 extremely thin film type insulating covering thereon is formed by providing a terminal having a contact sur- 521 [LS Cl 339 17 F 339/97 R, 339 99 R face to which there IS adhered fine particles Of grit 339/278 C which are covered by a thin coating of a soft metal.
  • a type of conductor which is being used to an increasing extent comprises an extremely thin ribbon-like metal strip having a thin film of plastic insulation thereover.
  • Conductors of this type are used in flexible flat cables and in so called flexible circuitry and the trend is towards thinner and more narrow conductors as the size of solid state electrical devices decreases.
  • Another type of conductor having a film type insulating coating is an extremely fine single strand wire, for example, AWG 36 or finer, having an insulating film such as a polyvinyl formal resin thereon. These film insulated wires have been widely used in the past for coil windings and are now being used for forming point-to-point interconnections among terminal members on a panel board, the terminals of which are extremely close together.
  • connections in accordance with the invention can be provided for flat conductors having insulating film thereon such as the conductors of a flat conductor cable and for extremely fine film insulated wires.
  • a further object is to provide an electrical connection for film insulated conductors.
  • a further object is to provide an electrical connection for a flat conductor having a film type insulating coating thereon.
  • a further object is to provide an electrical connection for a drawn wire having a film type insulating coating thereon.
  • a further object is to provide a terminal member or connecting member having a contact surface which can be electrically connected to a conductor having a film type insulating coating thereon by merely sliding the conductor over the surface.
  • a further object is to provide a method of forming electrical connections with conductors having film-type insulated coatings.
  • FIG. 1 is a perspective view of a fixture for forming electrical connections in accordance with the invention.
  • FIG. 2 is a perspective view of the terminal member of the fixture of FIG. 1.
  • FIG. 3 is a sectional view taken along the lines 3-3 of FIG. 1.
  • FIG. 4 is a cross-sectional view of the conductor shown in FIGS. 1 and 3.
  • FIG. 5 is a sectional view, on a greatly enlarged scale, of the electrical connection formed with the fixture of FIG. 1.
  • FIG. 6 is a fragmentary sectional view on a greatly enlarged scale of the contact surface of the terminal shown in FIG. 2.
  • FIG. 7 is a photomicrograph of the surface of a conductor of the type shown in FIG. 4 which has been electrically connected to a terminal as shown in FIG. 5 and which was then removed.
  • FIG. 8 is a fragmentary view illustrating an application of the invention to the formation of electrical connections between conductors on a panel board and conductors on a circuit unit having an integrated circuit therein.
  • FIG. 9 is a fragmentary exploded view showing structural details of the metallic supporting panel, the flexible circuit panel, and the circuit unit of FIG. 8.
  • FIG. 10 is a cross-sectional view of the circuit panel of FIG. 9.
  • FIG. 11 is a cross-sectional view of two terminal members in accordance with a further embodiment of the invention intended for making electrical connections to relatively fine wires having firm type insulating coatings thereon.
  • FIG. 12 is a fragmentary perspective view of a panel board. having terminals of the type shown in FIG. 11 therein.
  • FIG. 13 is a fragmentary perspective view showing a portion of a memory frame of a computer having a connecting means in accordance with the invention thereon.
  • FIG. 14 is a perspective view of the blank form which the connecting means is formed.
  • FIG. 15 is a perspective view of the formed connecting means.
  • FIGS. 1 6 show a testing jig for testing electrical connections in accordance with the invention and the structure of the contact terminal of a connection in accordance with the invention. Specific applications of the invention are described hereinbelow with references to FIGS. 9 12.
  • FIGS. 1 4 an electrical connection is formed between a conductor 2 and a terminal member 4 mounted on a fixture generally indicated at 5.
  • the conductor comprises a metallic foil 6 having a thin film 8 of insulation material on each side thereof.
  • the foil is advantageously of copper and has a thickness of about 0.0015 inch while the insulating films 8 may be of polyamidimid or Mylar (polyethylene terephthalate) and have a thickness of about 0.0008 inch.
  • the terminal 4 is of sheet metal and has an ear l2 and a depending flange 10 on one side of which there is provided a contact zone which is described in detail below.
  • the terminal is mounted on a pin 22 which in turn is mounted in a slidable block 18.
  • the block 18 is contained in a central opening 16 ofa rectangular frame 14 and adjusting screws 20 are threaded into the frame to permit adjustment of the position of the block 18.
  • the conductor 2 is wrapped over one side of a support block 24 so that one surface 34 of the conductor will be brought against the contact surface of the terminal 4 when the block 24 is slid downwardly into the opening 16.
  • the screws 20 are adjusted so that the contact surface of the terminal will bear against the surface of the conductor with a relatively light pressure, the pressure being such that the thin film conductor will not be torn or otherwise damaged.
  • the contact surface comprises a substrate 26 (the sheet metal of which the terminal is formed) having a thin plating 28 of a hard metal such as nickel on its surface.
  • a hard metal such as nickel
  • deposition is carried out in the presence of fine particles 30 of a hard abrasive material such as tungsten carbide so that the particles are embedded in the plating 28.
  • these particles project from the surface of the plating 28 but do not form a continuous layer; the surface thus has discrete particles thereon which are separated by flat expanses.
  • a softer metal such as tin is then electro-deposited over the entire contact surface and forms a continuous blanket 32 which covers the particles 30 as well as the uninterupted surface areas of the contact surface.
  • the sides of the particles and the thickness of the coatings 28, 32 are discussed in some detail below.
  • the block 24 is simply slid downwardly until it is in the opening 16 and during such movement, the surface 34 of the conductor is slid relatively over the contact surface of the terminal 4. During such sliding movement, the particles penetrate the coating 8 and score it as shown in FIG. 7 and the coating is broken or fractured in some areas to expose the conductor 6. The soft overplating 32 is displaced during this sliding movement and collects in those areas where the film is broken. After the block 24 comes to rest, continuity is thus established between the terminal and the conductor by way of the discontinuities or openings in film 8 and the collected soft plating material 32.
  • the thicknesses of the platings 28, 32 and the size of the particles should be selected with reference to the thickness of the insulating film 8, the thickness, and therefore the robustness, of the conductor 6 and the amount of surface area available for contact. For example, where the terminal has a substantial thickness (0.004 inch) as compared to the conductor (0.001
  • the film 8 has a thickness of 0.0008 inch, good results are obtained with particles having an average size of about 21 microns.
  • the plating 28 may have a thickness of about X 10 inches although the thickness of this plating will vary because of treeing effects which arise during the deposition. Larger particles are used if the coating 8 is relatively thicker than that of the conditions above and smaller particles might be used for thinner coatings.
  • the particles 30 are suspended in the bath while the plating 28 is being deposited and these particles simply become mechanically embedded on the contact surface. Alternatively, the particles might be sprayed against the surface as disclosed in US. Pat. No. 3,697,389 if the surface is relatively soft so that it can be penetrated by the particles.
  • the plating 32 may be of a soft metal other than tin, for example, a soft gold. Under some circumstances, the plating 32 may be eliminated and contact will be obtained by direct engage ment ofthe connector 6 with the contact surface of the terminal.
  • the particles 30 do not form a continuous layer on the contact surface and it has been found that for the size of conductors discussed above, a particle density of about l50 particles per square milimeter will give good results.
  • Particles of the material other than tungsten carbide can be used in the practice of the invention.
  • the particles should be relatively hard and have sharp edges so that they will penetrate the insulating film of the conductor and tungsten carbide particles are well suited to the practice of the invention since they have these characteristics.
  • the particles need not be conductive and ceramic particles can, therefore, be used.
  • Nickel particles can also be used or other metal particles which are available in irregular shapes having sharp edges.
  • FIGS. 8 10 it is necessary in solid state circuit devices to form connections to integrated circuit units or chips and these chips are commonly encapsulated in plastic with metallic leads extending from the sides of the plastic material.
  • a chip is encapsulated in a circuit unit 36 which has terminal members 40 on its edges. These terminal members are connected in any suitable manner to the chip or chips which are contained in the circuit unit and the surfaces of the terminal members 40 are prepared as contact surfaces as discussed above.
  • the circuit unit 36 is to be connected to the conductors 38 of a thin circuit panel 41, the circuit panel is mounted on a firm support panel 44 having an opening 48 therein.
  • the circuit panel as shown in FIG. 10, has a plurality of conductors 38 contained in a film of insulating material and these conductors extend to the edges of a hole in the circuit panel.
  • the circuit panel 41 is positioned on the surface of the panel 44 and the edge portions of the circuit panel are turned downwardly against the flanges 48 of the support panel.
  • the circuit unit 36 is then simply pushed downwardly into the opening 34 and the conductors of the circuit panel ,38 will be connected to the terminals 40 of the circuit unit.
  • a cylindrical terminal member 50 which has a contact surface 52 in accordance with the teaching of the invention on its internal surface.
  • the terminal member 50 of this embodiment has a contact pin 54 extending from its lower end so that the terminal can be disengageably coupled to a complementary receptacle.
  • Terminals of the type shown in F IG. 11 can be used in a panelboard 60, FIG. 12, with the contact pin portions 54 projecting beyond the under surface of the panel board.
  • the terminals can then be interconnected by routing wires between selected terminals and the inserted portions of each wire into the terminals as shown. Two or more wires can be connected to a single terminal by locating the wires at different positions on the plug 58.
  • the panel 60 can be mated with a complementary panel board having contact sockets therein which are adapted to receive the ends 54 of the terminals or individual connectors having contact sockets therein can be mated with the rows of terminals on the underside of the panel board 60.
  • FIGS. 13 show application of the invention to the formation of electrical connections in a computer memory frame.
  • the frame 66 has extremely small memory cores 62 on its upper and lower sides and fine wires 64 are threaded through these cores as shown.
  • a connector block 68 of suitable insulating material is mounted on the end of the frame and has a strip connector device on its side.
  • This connector device is manufactured by metallizing strip 70 of firm plastic at spaced apart locations 72 and preparing these metallized surfaces as contact surfaces having grit particles therein as explained above.
  • Strip 70 is then folded as shown in FIG. 15 so that slots are formed which are lined with contact surfaces in accordance with the invention.
  • the wires 64 are positioned in these slots and electrical connections are formed to the wires by virtue of the contact surfaces 72.
  • said contact surface having thereon discrete fine particles of abrasive material, said particles covering a minor portion of said contact surface, and an electrodeposited coating of a soft conductive metal extending continuously over said surface and blanketing said particles,
  • said conductor member being against said contact surface, said polymeric coating being scored as a result of having been slid relatively over said contact surface, said coating being broken in discrete areas and said metallic conductor in said areas being in electrical contact with said contact surface, and
  • clamping means holding said conductor member against said contact surface.
  • said coating of said soft conductive metal being of tin.
  • said conductor member comprising a round wire
  • said terminal member comprising a hollow cylinder, said contact surface being on the interior of said cylinder, said wire extending into the interior of said cylinder, said clamping means comprising a member inserted into said cylinder.
  • said contact zone comprising a conductive metal substrate, an electrodeposited first coating of a hard conductive metal in said substrate, discrete particles of an abrasive material embedded in and extending beyond said first coating, and
  • clamping means holding member against said contact zone.
  • said conductor member comprising a round wire
  • said terminal member comprising a hollow cylinder
  • said contact zone comprising the interior surface of said cylinder said wire extending into said cylinder
  • said clamping means comprising a member inserted into said cylinder.

Abstract

An electrical connection with a conductor having an extremely thin film type insulating covering thereon is formed by providing a terminal having a contact surface to which there is adhered fine particles of grit which are covered by a thin coating of a soft metal. The connection is made by sliding the conductor relatively over the terminal so that the film is scored and the metallic conductor is exposed. Contact between the terminal and the conductor is established through the soft metal which occupies the space between the conductor and the terminal surface.

Description

United States Patent 1191 Evans et al.
[ June 18, 1974 [54] ELECTRICAL CONNECTIONS T0 3,014,140 12/1961 Tupper 339/97 R x CONDUCTORS HAVING THIN FILM 3,718,750 2/1973 Sayers 339/278 C X INSULATION R b L W 1f Primary Examinero ert o e [75] Inventors g t i g i H Assistant Examiner-Richard P. Tremblay i lgi isg g g i g Pa Attorney, Agent, or Firm-William J. Keating [73] Assignee. AMP Incorporated, Harrisburg, Pa. ABSTRACT [22] Filed: Feb. 16, 1973 An electrical connection with a conductor havlng an PP NOS ,242 extremely thin film type insulating covering thereon is formed by providing a terminal having a contact sur- 521 [LS Cl 339 17 F 339/97 R, 339 99 R face to which there IS adhered fine particles Of grit 339/278 C which are covered by a thin coating of a soft metal.
51 Int. Cl 110 11' 9/08, HOlr 3/00 The Connection made by Sliding the conductor rela- [58] Field of Search 339/97 R 97 P, 98 99 R, tively over the terminal so that the film is scored and 339/95 R, 95 P, 278 C 278 R, 17 F the metallic conductor is exposed. Contact between the terminal and the conductor is established through [56] References Cited the soft metal which occupies the space between the UNITED STATES PATENTS conductor and the terminal surface.
2,576,528 11/1951 Matthysse 339/278 C X 11 Claims, 15 Drawing Figures PATENTEB JUNI 819M SHEET 1 0F 5 PATENTEB JUN 1 81974 SHEET 2 OF 5 PAIENIEnJum 8 Ian SHEET 3 G? 5 PAIENIEnJuM I 81974 SHEET B [If 5 PAIENI [0 JUN 1 81974 SHEET 5 [IF 5 ELECTRICAL CONNECTIONS TO CONDUCTORS HAVING THIN FILM INSULATION BACKGROUND OF THE INVENTION This invention relates to electrical connections between terminal members and conductors, particularly very small conductors having a thin insulating film thereon.
A type of conductor which is being used to an increasing extent comprises an extremely thin ribbon-like metal strip having a thin film of plastic insulation thereover. Conductors of this type are used in flexible flat cables and in so called flexible circuitry and the trend is towards thinner and more narrow conductors as the size of solid state electrical devices decreases. Another type of conductor having a film type insulating coating is an extremely fine single strand wire, for example, AWG 36 or finer, having an insulating film such as a polyvinyl formal resin thereon. These film insulated wires have been widely used in the past for coil windings and are now being used for forming point-to-point interconnections among terminal members on a panel board, the terminals of which are extremely close together.
It has long been recognized that the formation of electrical connections with conductors having thin polymeric film insulating coatings thereon presents substantial problems which are not encountered where connections are to be made to relatively coarse conductors. Film type insulation is extremely tough and tenacious and is removed only with considerable difficulty. Mechanical stripping of these thin film type insulations as by the use of abrasive wheels is not satisfactory for the reason that any abrasion of the film is likely to damage a conductor. Some types of film insulation, particularly the polyvinyl formal resins, can be chemically stripped but processes of this type are awkward and time consuming.
When an electrical connection must be made to a fine conductor having a thin film insulation, further problems after the removal of the insulation because of the extremely small size of the conductor. Conventional mechanical crimps are used to some extent, particularly for wires, but these become impractical for extremely fine wires for the reason that the ferrule of the terminal which is crimped onto the wire becomes extremely massive as compared to the diameter of the wire. Furthermore, the conductors are extremely delicate and may be broken during the crimping operation.
I have found that a good electrical connection with a film insulated conductor can be obtained by providing abrasive particles on a terminal substrate in a manner which is described below and sliding the conductor over the terminal surface while the two parts are held against each other. The abrasive particles on the terminal substrate score the insulating film and cause it to rupture so that the metallic conductor is exposed. When the terminal and conductor come to rest, contact is established through the ruptured areas of the film. Connections in accordance with the invention can be provided for flat conductors having insulating film thereon such as the conductors of a flat conductor cable and for extremely fine film insulated wires.
It is accordingly an object of the invention to provide an improved electrical connection for film insulated conductors. A further object is to provide an electrical connection for a flat conductor having a film type insulating coating thereon. A further object is to provide an electrical connection for a drawn wire having a film type insulating coating thereon. A further object is to provide a terminal member or connecting member having a contact surface which can be electrically connected to a conductor having a film type insulating coating thereon by merely sliding the conductor over the surface. A further object is to provide a method of forming electrical connections with conductors having film-type insulated coatings.
These and other objects of the invention are achieved in a preferred embodiment thereof which is briefly described in the foregoing abstract which is described in detail below and which is shown in the accompanying drawing in which:
FIG. 1 is a perspective view of a fixture for forming electrical connections in accordance with the invention.
FIG. 2 is a perspective view of the terminal member of the fixture of FIG. 1.
FIG. 3 is a sectional view taken along the lines 3-3 of FIG. 1.
FIG. 4 is a cross-sectional view of the conductor shown in FIGS. 1 and 3.
FIG. 5 is a sectional view, on a greatly enlarged scale, of the electrical connection formed with the fixture of FIG. 1.
FIG. 6 is a fragmentary sectional view on a greatly enlarged scale of the contact surface of the terminal shown in FIG. 2.
FIG. 7 is a photomicrograph of the surface of a conductor of the type shown in FIG. 4 which has been electrically connected to a terminal as shown in FIG. 5 and which was then removed.
FIG. 8 is a fragmentary view illustrating an application of the invention to the formation of electrical connections between conductors on a panel board and conductors on a circuit unit having an integrated circuit therein.
FIG. 9 is a fragmentary exploded view showing structural details of the metallic supporting panel, the flexible circuit panel, and the circuit unit of FIG. 8.
FIG. 10 is a cross-sectional view of the circuit panel of FIG. 9.
FIG. 11 is a cross-sectional view of two terminal members in accordance with a further embodiment of the invention intended for making electrical connections to relatively fine wires having firm type insulating coatings thereon.
FIG. 12 is a fragmentary perspective view of a panel board. having terminals of the type shown in FIG. 11 therein.
FIG. 13 is a fragmentary perspective view showing a portion of a memory frame of a computer having a connecting means in accordance with the invention thereon.
FIG. 14 is a perspective view of the blank form which the connecting means is formed.
FIG. 15 is a perspective view of the formed connecting means.
The principles of the invention are described below with reference to FIGS. 1 6 which show a testing jig for testing electrical connections in accordance with the invention and the structure of the contact terminal of a connection in accordance with the invention. Specific applications of the invention are described hereinbelow with references to FIGS. 9 12.
In FIGS. 1 4, an electrical connection is formed between a conductor 2 and a terminal member 4 mounted on a fixture generally indicated at 5. The conductor comprises a metallic foil 6 having a thin film 8 of insulation material on each side thereof. The foil is advantageously of copper and has a thickness of about 0.0015 inch while the insulating films 8 may be of polyamidimid or Mylar (polyethylene terephthalate) and have a thickness of about 0.0008 inch. The terminal 4 is of sheet metal and has an ear l2 and a depending flange 10 on one side of which there is provided a contact zone which is described in detail below. The terminal is mounted on a pin 22 which in turn is mounted in a slidable block 18. The block 18 is contained in a central opening 16 ofa rectangular frame 14 and adjusting screws 20 are threaded into the frame to permit adjustment of the position of the block 18.
The conductor 2 is wrapped over one side of a support block 24 so that one surface 34 of the conductor will be brought against the contact surface of the terminal 4 when the block 24 is slid downwardly into the opening 16. The screws 20 are adjusted so that the contact surface of the terminal will bear against the surface of the conductor with a relatively light pressure, the pressure being such that the thin film conductor will not be torn or otherwise damaged.
The contact surface, FIG. 6, comprises a substrate 26 (the sheet metal of which the terminal is formed) having a thin plating 28 of a hard metal such as nickel on its surface. When this plating 28 is deposited, deposition is carried out in the presence of fine particles 30 of a hard abrasive material such as tungsten carbide so that the particles are embedded in the plating 28. As is apparent from FIG. 6, these particles project from the surface of the plating 28 but do not form a continuous layer; the surface thus has discrete particles thereon which are separated by flat expanses. A softer metal such as tin is then electro-deposited over the entire contact surface and forms a continuous blanket 32 which covers the particles 30 as well as the uninterupted surface areas of the contact surface. The sides of the particles and the thickness of the coatings 28, 32 are discussed in some detail below.
In order to form a connection in accordance with the invention, the block 24 is simply slid downwardly until it is in the opening 16 and during such movement, the surface 34 of the conductor is slid relatively over the contact surface of the terminal 4. During such sliding movement, the particles penetrate the coating 8 and score it as shown in FIG. 7 and the coating is broken or fractured in some areas to expose the conductor 6. The soft overplating 32 is displaced during this sliding movement and collects in those areas where the film is broken. After the block 24 comes to rest, continuity is thus established between the terminal and the conductor by way of the discontinuities or openings in film 8 and the collected soft plating material 32.
In order to achieve good results in the practice of the invention, the thicknesses of the platings 28, 32 and the size of the particles should be selected with reference to the thickness of the insulating film 8, the thickness, and therefore the robustness, of the conductor 6 and the amount of surface area available for contact. For example, where the terminal has a substantial thickness (0.004 inch) as compared to the conductor (0.001
inch) and the film 8 has a thickness of 0.0008 inch, good results are obtained with particles having an average size of about 21 microns. The plating 28 may have a thickness of about X 10 inches although the thickness of this plating will vary because of treeing effects which arise during the deposition. Larger particles are used if the coating 8 is relatively thicker than that of the conditions above and smaller particles might be used for thinner coatings.
The particles 30 are suspended in the bath while the plating 28 is being deposited and these particles simply become mechanically embedded on the contact surface. Alternatively, the particles might be sprayed against the surface as disclosed in US. Pat. No. 3,697,389 if the surface is relatively soft so that it can be penetrated by the particles. The plating 32 may be of a soft metal other than tin, for example, a soft gold. Under some circumstances, the plating 32 may be eliminated and contact will be obtained by direct engage ment ofthe connector 6 with the contact surface of the terminal. As noted above, the particles 30 do not form a continuous layer on the contact surface and it has been found that for the size of conductors discussed above, a particle density of about l50 particles per square milimeter will give good results.
Particles of the material other than tungsten carbide can be used in the practice of the invention. In general, the particles should be relatively hard and have sharp edges so that they will penetrate the insulating film of the conductor and tungsten carbide particles are well suited to the practice of the invention since they have these characteristics. The particles need not be conductive and ceramic particles can, therefore, be used. Nickel particles can also be used or other metal particles which are available in irregular shapes having sharp edges.
It wil be understood from the foregoing that the principles of the invention can be used to form electrical connections under a wide variety of conditions and the following specific examples merely illustrate the use of the invention for three commonly known situations in which a large number of connections must be made to relatively small conductors.
Referring to FIGS. 8 10, it is necessary in solid state circuit devices to form connections to integrated circuit units or chips and these chips are commonly encapsulated in plastic with metallic leads extending from the sides of the plastic material. In the FIG. 8, a chip is encapsulated in a circuit unit 36 which has terminal members 40 on its edges. These terminal members are connected in any suitable manner to the chip or chips which are contained in the circuit unit and the surfaces of the terminal members 40 are prepared as contact surfaces as discussed above. When the circuit unit 36 is to be connected to the conductors 38 of a thin circuit panel 41, the circuit panel is mounted on a firm support panel 44 having an opening 48 therein. The circuit panel, as shown in FIG. 10, has a plurality of conductors 38 contained in a film of insulating material and these conductors extend to the edges of a hole in the circuit panel.
The circuit panel 41 is positioned on the surface of the panel 44 and the edge portions of the circuit panel are turned downwardly against the flanges 48 of the support panel. The circuit unit 36 is then simply pushed downwardly into the opening 34 and the conductors of the circuit panel ,38 will be connected to the terminals 40 of the circuit unit.
Where connections must be made to extremely fine wires 56 (FIG. 11) having a thin film of insulation thereon, a cylindrical terminal member 50 is used which has a contact surface 52 in accordance with the teaching of the invention on its internal surface. The terminal member 50 of this embodiment has a contact pin 54 extending from its lower end so that the terminal can be disengageably coupled to a complementary receptacle.
To connect the wire 56 to the terminal 50, the wire is pushed down into the interior of the terminal by a stuffer 58 so that sliding movement of the wire over the contact surface 52 takes place and electrical contact is established. Terminals of the type shown in F IG. 11 can be used in a panelboard 60, FIG. 12, with the contact pin portions 54 projecting beyond the under surface of the panel board. The terminals can then be interconnected by routing wires between selected terminals and the inserted portions of each wire into the terminals as shown. Two or more wires can be connected to a single terminal by locating the wires at different positions on the plug 58. If the second wire must be connected to the terminal at a later time than the time at which the first wire is connected to the terminal, short plugs can be used as shown at 59 in FIG. 11. The panel 60 can be mated with a complementary panel board having contact sockets therein which are adapted to receive the ends 54 of the terminals or individual connectors having contact sockets therein can be mated with the rows of terminals on the underside of the panel board 60.
FIGS. 13 show application of the invention to the formation of electrical connections in a computer memory frame. The frame 66 has extremely small memory cores 62 on its upper and lower sides and fine wires 64 are threaded through these cores as shown. A connector block 68 of suitable insulating material is mounted on the end of the frame and has a strip connector device on its side. This connector device is manufactured by metallizing strip 70 of firm plastic at spaced apart locations 72 and preparing these metallized surfaces as contact surfaces having grit particles therein as explained above. Strip 70 is then folded as shown in FIG. 15 so that slots are formed which are lined with contact surfaces in accordance with the invention. The wires 64 are positioned in these slots and electrical connections are formed to the wires by virtue of the contact surfaces 72.
Changes in construction will occur to those skilled in the art and various apparently different modifications and embodiments may be made without departing from the scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only.
What is claimed is:
1. An electrical connection between a conductor member and a terminal member, said conductor member comprising a metallic conductor having a thin polymeric coating thereon, said terminal member comprising a metal member having a contact surface,
said contact surface having thereon discrete fine particles of abrasive material, said particles covering a minor portion of said contact surface, and an electrodeposited coating of a soft conductive metal extending continuously over said surface and blanketing said particles,
said conductor member being against said contact surface, said polymeric coating being scored as a result of having been slid relatively over said contact surface, said coating being broken in discrete areas and said metallic conductor in said areas being in electrical contact with said contact surface, and
clamping means holding said conductor member against said contact surface.
2. An electrical connection as set forth in claim 1,
said coating of said soft conductive metal being of tin.
3. An electrical connection as set forth in claim 1, said conductor member comprising a flat ribbon-like metallic conductor.
4. An electrical connection as set forth in claim 1, said conductor member comprising a round wire, said terminal member comprising a hollow cylinder, said contact surface being on the interior of said cylinder, said wire extending into the interior of said cylinder, said clamping means comprising a member inserted into said cylinder.
5. An electrical connection between a conductor member and a terminal member, said conductor member comprising a metallic conductor having a thin polymeric coating thereon, said terminal member having a contact zone,
said contact zone comprising a conductive metal substrate, an electrodeposited first coating of a hard conductive metal in said substrate, discrete particles of an abrasive material embedded in and extending beyond said first coating, and
an electrodeposited second coating of a soft conductive metal extending continuously over said first coating and blanketing said particles, said conductor member being against said contact zone, said polymeric coating being scored as a result of having been slid relatively over said contact surface, said coating being broken in discrete areas and said metallic conductor in said areas being in electrical contact with said first coating, and
clamping means holding member against said contact zone.
6. An electrical connection as set forth in claim 5, said first coating being of nickel.
7. An electrical connection as set forth in claim 5, said second coating being of tin.
8. An electrical connection as set forth in claim 5, said first coating being of nickel, said second coating being of tin.
9. An electrical connection as set forth in claim 5, said conductor member comprising a flat ribbon-like conductor.
10. An electrical connection as set forth in claim 5, said conductor member comprising a round wire, said terminal member comprising a hollow cylinder, said contact zone comprising the interior surface of said cylinder said wire extending into said cylinder, said clamping means comprising a member inserted into said cylinder.
11. An electrical terminal means intended for connection to a conductor member, said conductor member comprising a metallic conductor having a thin polymeric coating thereon, said terminal member comprising:
8 surface and sliding said conductor member relatively over said contact surface, said particles penetrate said polymeric coating and said coating is broken, and electrical contact is established between said metallic con ductor and said contact surface.

Claims (10)

  1. 2. An electrical connection as set forth in claim 1, said coating of said soft conductive metal being of tin.
  2. 3. An electrical connection as set forth in claim 1, said conductor member comprising a flat ribbon-like metallic conductor.
  3. 4. An electrical connection as set forth in claim 1, said conductor member comprising a round wire, said terminal member comprising a hollow cylinder, said contact surface being on the interior of said cylinder, said wire extending into the interior of said cylinder, said clamping means comprising a member inserted into said cylinder.
  4. 5. An electrical connection between a conductor member and a terminal member, said conductor member comprising a metallic conductor having a thin polymeric coating thereon, said terminal member having a contact zone, said contact zone comprising a conductive metal substrate, an electrodeposited first coating of a hard conductive metal in said substrate, discrete particles of an abrasive material embedded in and extending beyond said first coating, and an electrodeposited second coating of a soft conductive metal extending continuously over said first coating and blanketing said particles, said conductor member being against said contact zone, said polymeric coating being scored as a result of having been slid relatively over said contact surface, said coating being broken in discrete areas and said metallic conductor in said areas being in electrical contact with said first coating, and clamping means holding member against said contact zone.
  5. 6. An electrical connection as set forth in claim 5, said firsT coating being of nickel.
  6. 7. An electrical connection as set forth in claim 5, said second coating being of tin.
  7. 8. An electrical connection as set forth in claim 5, said first coating being of nickel, said second coating being of tin.
  8. 9. An electrical connection as set forth in claim 5, said conductor member comprising a flat ribbon-like conductor.
  9. 10. An electrical connection as set forth in claim 5, said conductor member comprising a round wire, said terminal member comprising a hollow cylinder, said contact zone comprising the interior surface of said cylinder said wire extending into said cylinder, said clamping means comprising a member inserted into said cylinder.
  10. 11. An electrical terminal means intended for connection to a conductor member, said conductor member comprising a metallic conductor having a thin polymeric coating thereon, said terminal member comprising: a contact surface having thereon discrete fine particles of abrasive material, said particles covering a minor portion of said contact surface, and an electro-deposited coating of a soft conductive metal extending continuously over said surface and blanketing said particles whereby, upon positioning said conductor member against said surface and sliding said conductor member relatively over said contact surface, said particles penetrate said polymeric coating and said coating is broken, and electrical contact is established between said metallic conductor and said contact surface.
US00333242A 1973-02-16 1973-02-16 Electrical connections to conductors having thin film insulation Expired - Lifetime US3818415A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US00333242A US3818415A (en) 1973-02-16 1973-02-16 Electrical connections to conductors having thin film insulation
GB377574A GB1411932A (en) 1973-02-16 1974-01-28 Methods of and electrical connectors for making electrical connections to fine insulated conductors
IT20062/74A IT1007196B (en) 1973-02-16 1974-01-31 METHOD FOR MAKING ELECTRICAL CONNECTIONS TO INSULATED SUB TILE CONDUCTORS AND RELATIVE ELECTRICAL CONNECTORS
NL7401746A NL7401746A (en) 1973-02-16 1974-02-08
AU65531/74A AU6553174A (en) 1973-02-16 1974-02-12 Electrical connectors
BE140922A BE811045A (en) 1973-02-16 1974-02-14 PROCEDURE FOR MAKING ELECTRICAL CONNECTIONS
DE19742407050 DE2407050A1 (en) 1973-02-16 1974-02-14 METHOD OF MAKING AN ELECTRICAL CONNECTION AND CONNECTORS FOR CARRYING OUT THE PROCEDURE
ES423227A ES423227A1 (en) 1973-02-16 1974-02-14 Electrical connections to conductors having thin film insulation
BR1124/74A BR7401124D0 (en) 1973-02-16 1974-02-15 ELECTRICAL CONNECTING PROCESSES TO MAKE A CONNECTION FOR INSULATED CONDUCTORS
FR7405306A FR2218662B3 (en) 1973-02-16 1974-02-15
SE7402034A SE7402034L (en) 1973-02-16 1974-02-15 Method for providing an electrical contact connection together with a device for carrying out the method
JP49019052A JPS49135188A (en) 1973-02-16 1974-02-16
AR252399A AR199430A1 (en) 1973-02-16 1974-02-18 ELECTRICAL CONNECTION BETWEEN A CONDUCTOR AND A CONNECTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00333242A US3818415A (en) 1973-02-16 1973-02-16 Electrical connections to conductors having thin film insulation

Publications (1)

Publication Number Publication Date
US3818415A true US3818415A (en) 1974-06-18

Family

ID=23301957

Family Applications (1)

Application Number Title Priority Date Filing Date
US00333242A Expired - Lifetime US3818415A (en) 1973-02-16 1973-02-16 Electrical connections to conductors having thin film insulation

Country Status (13)

Country Link
US (1) US3818415A (en)
JP (1) JPS49135188A (en)
AR (1) AR199430A1 (en)
AU (1) AU6553174A (en)
BE (1) BE811045A (en)
BR (1) BR7401124D0 (en)
DE (1) DE2407050A1 (en)
ES (1) ES423227A1 (en)
FR (1) FR2218662B3 (en)
GB (1) GB1411932A (en)
IT (1) IT1007196B (en)
NL (1) NL7401746A (en)
SE (1) SE7402034L (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106842A (en) * 1976-09-23 1978-08-15 Gte Sylvania Incorporated Electrical contact and connector
EP0022143A1 (en) * 1979-07-09 1981-01-14 AMP INCORPORATED (a New Jersey corporation) Electrical connection to multilayer cable
US4404489A (en) * 1980-11-03 1983-09-13 Hewlett-Packard Company Acoustic transducer with flexible circuit board terminals
US4467237A (en) * 1980-06-25 1984-08-21 Commissariat A L'energie Atomique Multielement ultrasonic probe and its production process
US4479069A (en) * 1981-11-12 1984-10-23 Hewlett-Packard Company Lead attachment for an acoustic transducer
US4563050A (en) * 1984-07-13 1986-01-07 Thomas & Betts Corporation Device for flat multiconductor cable connection
US4589714A (en) * 1984-02-06 1986-05-20 Minnesota Mining And Manufacturing Company Ground clip for photoconductive film
US4618203A (en) * 1985-04-08 1986-10-21 Thomas & Betts Corporation Isolated ground device for flat undercarpet cable
EP0198566A2 (en) * 1985-04-18 1986-10-22 Innovus Electrical interconnect system, method of making the same and mass flow meter incorporating such system
US4717357A (en) * 1984-07-13 1988-01-05 Thomas & Betts Corporation System and method for electrical power installation
US4909746A (en) * 1989-05-31 1990-03-20 Amp Incorporated Contact for stackable electrical connector
US4935312A (en) * 1987-06-25 1990-06-19 Nippon Mining Co., Ltd. Film carrier having tin and indium plated layers
US5028492A (en) * 1990-03-13 1991-07-02 Olin Corporation Composite coating for electrical connectors
WO1991012108A1 (en) * 1990-02-14 1991-08-22 Bahl, Kenneth, S. Particle-enhanced joining of metal surfaces
US5137461A (en) * 1988-06-21 1992-08-11 International Business Machines Corporation Separable electrical connection technology
US5141702A (en) * 1990-03-13 1992-08-25 Olin Corporation Method of making coated electrical connectors
US5169057A (en) * 1989-08-10 1992-12-08 Emc Technology, Inc. Method for soldering and apparatus therefor
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
USRE34190E (en) * 1986-05-27 1993-03-09 Rogers Corporation Connector arrangement
US5298685A (en) * 1990-10-30 1994-03-29 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5430254A (en) * 1993-09-15 1995-07-04 Queen's University Reverse crimp connector
US5471151A (en) * 1990-02-14 1995-11-28 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5599193A (en) * 1994-08-23 1997-02-04 Augat Inc. Resilient electrical interconnect
US5600099A (en) * 1994-12-02 1997-02-04 Augat Inc. Chemically grafted electrical devices
US5615824A (en) * 1994-06-07 1997-04-01 Tessera, Inc. Soldering with resilient contacts
US5632631A (en) * 1994-06-07 1997-05-27 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
US5692922A (en) * 1993-10-13 1997-12-02 Hoechst Aktiengesellschaft Molding with electrical contact
US5802699A (en) * 1994-06-07 1998-09-08 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
US5810609A (en) * 1995-08-28 1998-09-22 Tessera, Inc. Socket for engaging bump leads on a microelectronic device and methods therefor
EP0909118A2 (en) * 1997-09-16 1999-04-14 Thomas & Betts International, Inc. Conductive elastomer for grafting to an elastic substrate
US5949029A (en) * 1994-08-23 1999-09-07 Thomas & Betts International, Inc. Conductive elastomers and methods for fabricating the same
US5983492A (en) * 1996-11-27 1999-11-16 Tessera, Inc. Low profile socket for microelectronic components and method for making the same
US6072324A (en) * 1996-03-19 2000-06-06 Micron Technology, Inc. Method for testing semiconductor packages using oxide penetrating test contacts
US6082609A (en) * 1996-05-24 2000-07-04 Heraeus Electro-Nite International N.V. Process for producing a sensor arrangement for measuring temperature
US6271482B1 (en) 1994-08-23 2001-08-07 Thomas & Betts International, Inc. Conductive elastomer interconnect
US6547586B2 (en) * 2001-05-14 2003-04-15 Delphi Technologies, Inc. Sealed electrical distribution center
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
DE102004036829A1 (en) * 2004-07-29 2006-03-23 Sennheiser Electronic Gmbh & Co. Kg Electrical contact for very fine wire, holds and clamps wire between two plates, one with recess and one with contacting region
US20160109530A1 (en) * 2014-10-21 2016-04-21 Analog Devices Technology Combination of a battery stack and a battery monitor, and a method of connecting a battery monitor to a stack of batteries
CN107710511A (en) * 2015-06-08 2018-02-16 泰连德国有限公司 Electrical contact element and mechanical and/or electrical property the method for changing its at least one region
US20190069423A1 (en) * 2017-08-25 2019-02-28 Hewlett Packard Enterprise Development Lp Integrated stand-offs for printed circuit boards
US20190100160A1 (en) * 2016-04-05 2019-04-04 Autonetworks Technologies, Ltd. Connector, connection state detection system and terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026013A (en) * 1976-03-17 1977-05-31 Amp Incorporated Method and structure for terminating fine wires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576528A (en) * 1948-08-07 1951-11-27 Burndy Engineering Co Inc Connector with hard particle lining
US3014140A (en) * 1959-03-30 1961-12-19 Gen Electric Contact terminal and lamination securing arrangement for electric devices and method of assembling same
US3718750A (en) * 1971-10-12 1973-02-27 Gen Motors Corp Electrical connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576528A (en) * 1948-08-07 1951-11-27 Burndy Engineering Co Inc Connector with hard particle lining
US3014140A (en) * 1959-03-30 1961-12-19 Gen Electric Contact terminal and lamination securing arrangement for electric devices and method of assembling same
US3718750A (en) * 1971-10-12 1973-02-27 Gen Motors Corp Electrical connector

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4106842A (en) * 1976-09-23 1978-08-15 Gte Sylvania Incorporated Electrical contact and connector
EP0022143A1 (en) * 1979-07-09 1981-01-14 AMP INCORPORATED (a New Jersey corporation) Electrical connection to multilayer cable
US4467237A (en) * 1980-06-25 1984-08-21 Commissariat A L'energie Atomique Multielement ultrasonic probe and its production process
US4404489A (en) * 1980-11-03 1983-09-13 Hewlett-Packard Company Acoustic transducer with flexible circuit board terminals
US4479069A (en) * 1981-11-12 1984-10-23 Hewlett-Packard Company Lead attachment for an acoustic transducer
US4589714A (en) * 1984-02-06 1986-05-20 Minnesota Mining And Manufacturing Company Ground clip for photoconductive film
US4563050A (en) * 1984-07-13 1986-01-07 Thomas & Betts Corporation Device for flat multiconductor cable connection
US4717357A (en) * 1984-07-13 1988-01-05 Thomas & Betts Corporation System and method for electrical power installation
US4618203A (en) * 1985-04-08 1986-10-21 Thomas & Betts Corporation Isolated ground device for flat undercarpet cable
EP0198566A2 (en) * 1985-04-18 1986-10-22 Innovus Electrical interconnect system, method of making the same and mass flow meter incorporating such system
US4647133A (en) * 1985-04-18 1987-03-03 Innovus Electrical interconnect system
EP0198566A3 (en) * 1985-04-18 1988-07-20 Innovus Electrical interconnect system, method of making the same and mass flow meter incorporating such system
USRE34190E (en) * 1986-05-27 1993-03-09 Rogers Corporation Connector arrangement
US4935312A (en) * 1987-06-25 1990-06-19 Nippon Mining Co., Ltd. Film carrier having tin and indium plated layers
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
US5137461A (en) * 1988-06-21 1992-08-11 International Business Machines Corporation Separable electrical connection technology
US4909746A (en) * 1989-05-31 1990-03-20 Amp Incorporated Contact for stackable electrical connector
US5169057A (en) * 1989-08-10 1992-12-08 Emc Technology, Inc. Method for soldering and apparatus therefor
US5642055A (en) * 1990-02-14 1997-06-24 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5083697A (en) * 1990-02-14 1992-01-28 Difrancesco Louis Particle-enhanced joining of metal surfaces
WO1991012108A1 (en) * 1990-02-14 1991-08-22 Bahl, Kenneth, S. Particle-enhanced joining of metal surfaces
US5334809A (en) * 1990-02-14 1994-08-02 Particle Interconnect, Inc. Particle enhanced joining of metal surfaces
US5471151A (en) * 1990-02-14 1995-11-28 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5506514A (en) * 1990-02-14 1996-04-09 Particle Interconnect, Inc. Electrical interconnect using particle enhanced joining of metal surfaces
US5835359A (en) * 1990-02-14 1998-11-10 Particle Interconnect Corporation Electrical interconnect using particle enhanced joining of metal surfaces
US5141702A (en) * 1990-03-13 1992-08-25 Olin Corporation Method of making coated electrical connectors
US5028492A (en) * 1990-03-13 1991-07-02 Olin Corporation Composite coating for electrical connectors
US5298685A (en) * 1990-10-30 1994-03-29 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5435057A (en) * 1990-10-30 1995-07-25 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5430254A (en) * 1993-09-15 1995-07-04 Queen's University Reverse crimp connector
US5692922A (en) * 1993-10-13 1997-12-02 Hoechst Aktiengesellschaft Molding with electrical contact
US6205660B1 (en) 1994-06-07 2001-03-27 Tessera, Inc. Method of making an electronic contact
US5934914A (en) * 1994-06-07 1999-08-10 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
US5615824A (en) * 1994-06-07 1997-04-01 Tessera, Inc. Soldering with resilient contacts
US5632631A (en) * 1994-06-07 1997-05-27 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
US5812378A (en) * 1994-06-07 1998-09-22 Tessera, Inc. Microelectronic connector for engaging bump leads
US5802699A (en) * 1994-06-07 1998-09-08 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
US6938338B2 (en) 1994-06-07 2005-09-06 Tessera, Inc. Method of making an electronic contact
US5980270A (en) * 1994-06-07 1999-11-09 Tessera, Inc. Soldering with resilient contacts
US6271482B1 (en) 1994-08-23 2001-08-07 Thomas & Betts International, Inc. Conductive elastomer interconnect
US5949029A (en) * 1994-08-23 1999-09-07 Thomas & Betts International, Inc. Conductive elastomers and methods for fabricating the same
US5599193A (en) * 1994-08-23 1997-02-04 Augat Inc. Resilient electrical interconnect
US5600099A (en) * 1994-12-02 1997-02-04 Augat Inc. Chemically grafted electrical devices
US6286205B1 (en) * 1995-08-28 2001-09-11 Tessera, Inc. Method for making connections to a microelectronic device having bump leads
US6202297B1 (en) 1995-08-28 2001-03-20 Tessera, Inc. Socket for engaging bump leads on a microelectronic device and methods therefor
US5810609A (en) * 1995-08-28 1998-09-22 Tessera, Inc. Socket for engaging bump leads on a microelectronic device and methods therefor
US6072324A (en) * 1996-03-19 2000-06-06 Micron Technology, Inc. Method for testing semiconductor packages using oxide penetrating test contacts
US6285204B1 (en) 1996-03-19 2001-09-04 Micron Technology, Inc. Method for testing semiconductor packages using oxide penetrating test contacts
US6082609A (en) * 1996-05-24 2000-07-04 Heraeus Electro-Nite International N.V. Process for producing a sensor arrangement for measuring temperature
US6229100B1 (en) 1996-11-27 2001-05-08 Tessera, Inc. Low profile socket for microelectronic components and method for making the same
US5983492A (en) * 1996-11-27 1999-11-16 Tessera, Inc. Low profile socket for microelectronic components and method for making the same
EP0909118A2 (en) * 1997-09-16 1999-04-14 Thomas & Betts International, Inc. Conductive elastomer for grafting to an elastic substrate
EP0909118A3 (en) * 1997-09-16 2000-09-06 Thomas & Betts International, Inc. Conductive elastomer for grafting to an elastic substrate
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
US6547586B2 (en) * 2001-05-14 2003-04-15 Delphi Technologies, Inc. Sealed electrical distribution center
DE102004036829A1 (en) * 2004-07-29 2006-03-23 Sennheiser Electronic Gmbh & Co. Kg Electrical contact for very fine wire, holds and clamps wire between two plates, one with recess and one with contacting region
US20160109530A1 (en) * 2014-10-21 2016-04-21 Analog Devices Technology Combination of a battery stack and a battery monitor, and a method of connecting a battery monitor to a stack of batteries
CN107710511A (en) * 2015-06-08 2018-02-16 泰连德国有限公司 Electrical contact element and mechanical and/or electrical property the method for changing its at least one region
US10777912B2 (en) 2015-06-08 2020-09-15 Te Connectivity Germany Gmbh Electrical contact element and method for altering mechanical and/or electrical properties of at least one area of such
CN107710511B (en) * 2015-06-08 2021-07-20 泰连德国有限公司 Electrical contact element and method for modifying the mechanical and/or electrical properties of at least one region of an electrical contact element
US20190100160A1 (en) * 2016-04-05 2019-04-04 Autonetworks Technologies, Ltd. Connector, connection state detection system and terminal
US10647269B2 (en) * 2016-04-05 2020-05-12 Autonetworks Technologies, Ltd. Connector, connection state detection system and terminal
US20190069423A1 (en) * 2017-08-25 2019-02-28 Hewlett Packard Enterprise Development Lp Integrated stand-offs for printed circuit boards
US10959343B2 (en) * 2017-08-25 2021-03-23 Hewlett Packard Enterprise Development Lp Integrated stand-offs for printed circuit boards

Also Published As

Publication number Publication date
AU6553174A (en) 1975-08-14
FR2218662A1 (en) 1974-09-13
GB1411932A (en) 1975-10-29
IT1007196B (en) 1976-10-30
DE2407050A1 (en) 1974-08-29
ES423227A1 (en) 1976-05-01
AR199430A1 (en) 1974-08-30
BE811045A (en) 1974-08-14
FR2218662B3 (en) 1976-11-26
BR7401124D0 (en) 1974-11-05
SE7402034L (en) 1974-08-19
JPS49135188A (en) 1974-12-26
NL7401746A (en) 1974-08-20

Similar Documents

Publication Publication Date Title
US3818415A (en) Electrical connections to conductors having thin film insulation
US5451169A (en) Connector with monolithic multi-contact array
JP3534478B2 (en) Electrical connector
US3745509A (en) High density electrical connector
US3569900A (en) Electrical connector assembly
US4838800A (en) High density interconnect system
JPH069151B2 (en) Connector assembly
EP0192349A2 (en) Polyimide embedded conductor process
US4824384A (en) Electrical cable connector and method of use
US4935284A (en) Molded circuit board with buried circuit layer
JPS61195507A (en) Flexible cable and manufacture thereof
EP0970543A1 (en) Compression connector
JPH08236225A (en) Electric connector
US20020132502A1 (en) Molded and plated electrical interface component
AU620449B2 (en) Controlled impedance plug and receptacle
US6851953B2 (en) Card-edge connector and card member
CA1235765A (en) Modular plug connector
US4187606A (en) Flexible electrical jumper and method of making same
US4288916A (en) Method of making mass terminable shielded flat flexible cable
US5060369A (en) Printed wiring board construction
JPH09180787A (en) Method and device for connecting cable to electrical connector
EP0282194A1 (en) Electrical cable connector
US5536181A (en) Connector socket alignment guide
US6299749B1 (en) Method of fabricating an electrical component
US4923410A (en) Low-permittivity connector and flat-cable