US3817094A - Well monitoring apparatus - Google Patents

Well monitoring apparatus Download PDF

Info

Publication number
US3817094A
US3817094A US00058439A US5843970A US3817094A US 3817094 A US3817094 A US 3817094A US 00058439 A US00058439 A US 00058439A US 5843970 A US5843970 A US 5843970A US 3817094 A US3817094 A US 3817094A
Authority
US
United States
Prior art keywords
bar
transducer
walking beam
secured
rod string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00058439A
Inventor
R Montgomery
J Stoltz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to US00058439A priority Critical patent/US3817094A/en
Priority to CA105,604A priority patent/CA948438A/en
Priority to DE2136670A priority patent/DE2136670C3/en
Priority to AT647371A priority patent/AT317118B/en
Application granted granted Critical
Publication of US3817094A publication Critical patent/US3817094A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B47/009Monitoring of walking-beam pump systems

Definitions

  • ABSTRACT Method and apparatus for monitoring the operation of a well which is produced by a beam pumping unit.
  • a load transducer is secured to the surface support structure of the beam pumping unit such that it generates a signal representative of load changes in the support structure as the walking beam is reciprocated.
  • the transducer may take the form of an elongated bar which is secured to the support structure by longitudinally spaced rigid connections.
  • the transducer bar as disclosed is mounted on the top of the walking beam.
  • This invention relates to the production of wells by means of beam pumping units and more particularly to processes and systems for monitoring the operation of wells produced by beam pumping units.
  • Beam pumping units are widely used in the petroleum industry in order to recover fluids from wells extending into subterranean formations. Such units are employed to reciprocate a sucker rod string which extends into the well to actuate a downhole pump.
  • the sucker rod string is suspended at the surface of the well from a support structure which consists of a sampson post and a walking beam pivotallly mounted on the sampson post.
  • the sucker rod string is connected to one end of the walking beam.
  • the other end of the walking beam is connected to a prime mover through a suitable crank and pitman connection.
  • the walking beam and the sucker rod string are driven in a reciprocal mode by the prime mover.
  • the present invention provides a new and improved apparatus for monitoring the operation of a well produced by a downhole pump.
  • the pump is actuated by a sucker rod string suspended from a surface support unit consisting of a walking beam pivotally mounted on a sampson post for reciprocal movement as described above.
  • a load transducer is secured to the support unit on either the sampson post or the walking beam. This transducer functions to generate a signal representative of load changes in the support unit as the walking beam is reciprocated to operate the downhole pump. This signal then may be applied to a suitable utilization device such as a recorder or controller.
  • the transducer is secured to the top of the walking beam such that it responds to deformation in the beam resulting from tensile stresses induced by the sucker rod loading.
  • the trans ducer comprises an elongated bar which is secured to the beam by means of longitudinally spaced rigid connections and means responsive to deformation in the bar between such connections for generating the load signal.
  • FIG. 1 is an illustration of a well and a beam pumping unit employing attendant equipment in accordance with the present invention.
  • FIG. 2 is an illustration showing a transducer bar attached to a walking beam in accordance with a preferred embodiment of the invention.
  • FIG. 3 is an illustration of a preferred form of transducer bar and strain gauge arrangement.
  • FIG. 4 is an illustration showing an electrical schematic of a circuit employed in the transducer.
  • FIG. 1 there is illustrated the wellhead ll0 of a well which extends from the earths surface 12 into a subterranean oil producing formation (not shown).
  • the wellhead comprises the upper portions of a casing string M and tubing string 16.
  • the tub ing string extends from the wellhead to a suitable depth within the well, e.g., adjacent the subterranean formation. Liquid from the well is produced through the tubing string 16 by means of a downhole pump (not shown) to the surface where it passes into a flowline 17.
  • the downhole pump is actuated by reciprocal movement of a sucker rod string 18.
  • Rod string 18 is suspended in the well from a surface support unit 20 consisting of a sampson post 21 and a walking beam 22 which is pivotally mounted on the sampson post by a pin connection 23.
  • the sucker rod string includes a polished rod section 18a which extends through a stuffing box (not shown) at the top of the tubing string and a section 18b formed of a flexible cable.
  • the cable section 118! is connected to the walking beam 22 by means of a horsehead 24.
  • the walking beam is reciprocated by a prime mover 26 such as an electric motor.
  • the prime mover drives the walking beam through a drive system which includes a belt drive 27, crank 23, crank arm 29, and a pitman 30 which is pivotally connected between the crank arm and walking beam by means of pin connections 32 and 33.
  • the outer end of crank arm 29 is provided with a counterweight 33 which balances a portion of the load on the sucker rod string in order to provide for a fairly consistent load on the prime mover.
  • a system for monitoring the operation of a pumping unit by measuring load changes induced in the surface support unit as the sucker rod string is reciprocated. This is accomplished by locating on the support unit a load transducer which generates a signal representative of load changes induced in the support unit during operation of the pump.
  • the support unit loading may not be directly proportional to the sucker rod loading during pumping operation, the relationship between the two loads is predictable.
  • the beam loading is directly proportional to the sucker rod loading when the beam is horizontal and departs from such direct relationship by a predictable function as the beam moves from this mid position during an upstroke or downstroke.
  • the load transducer may be of any suitable type which generates a signal representative of the load changes in the walking beam as it is driven by prime mover 26.
  • the load transducer is mounted at the top of the walking beam 22, as shown, where only tension loading occurs.
  • the signal output from transducer ll) is applied via a communications channel 41. to a utilization device 42 which performs suitable recording and- /or control functions.
  • the utilization device may apply a readout to a strip chart recorder d4 via channel 45 and/or apply control functions via channel 46 to the prime mover, as discussed in greater detail hereinafter.
  • the transducer is located on the front section of beam 22 between the pivotal connection 23 and the connection of sucker rod string to the walking beam. At this location little if any extraneous loading is induced in beam 22 and the load changes in the beam result for all practical purposes only from changes in the sucker rod loading.
  • the system described above is especially well suited for real-time control of the pumping unit. Because of its location on the sampson post or walking beam, there is little liklihood of damage to the transducer from normal maintenance operations such as are involved in repair or adjustment of the sucker rod string. Thus, the transducer can be left in place permanently to provide a continuous signal output for real-time control of the pumping unit.
  • the utilization device 42 shovm in FIG. 11 can be provided with one or more constraint functions for comparison with the signal from the transducer.
  • Device 42 thus acts as a comparator which generates a utilization function such as actuating an alarm, shutting down the prime mover 26, or changing the speed of the prime mover, in response to the transducer signal matching the constraint function.
  • a utilization function such as actuating an alarm, shutting down the prime mover 26, or changing the speed of the prime mover, in response to the transducer signal matching the constraint function.
  • Exemplary of the conditions for which constraint functions may be established are well pumpoff, traveling valve obstruction in the downhole pump, and sucker rod breakage.
  • well pump-off resulting from producing a well at a rate greater than the rate at which fluid flows into the well from the formation, is characterized by a gradual increase in minimum signal amplitude.
  • device 42 may be programmed to generate a control function which reduces the speed of the prime mover when the transducer signal reaches the constraint function, that is, when the maximum signal amplitude undergoes a predetermined decrease in amplitude within a specified time interval.
  • a break in the sucker rod string 18 will be characterized by a pronounced reduction in load.
  • utilization device 42 may be programmed to actuate an alarm and/or shut down the prime mover 26 when the amplitude of the transducer signal reaches a specified low value. It will be recognized that the aforementioned control actions are exemplary only and that various other constraints may be established for comparison with the load signal from the transducer in order to generate appropriate control functions. Also, while FIG.
  • ll illustrates an arrangement for local control and analysis, such functions can of course be carried out remotely.
  • the signal from transducer 40 can be applied to a remote facility such as a digital computer which is programmed to perform appropriate control and/or recording actions. This is advantageous where the invention is employed in a large number of wells within a field.
  • FIG. 2 there is illustrated a preferred transducer system which includes an elongated bar rigidly secured to the support unit by longitudinally spaced connections and means for measuring the deformation in the bar between such connections. More particularly, and with reference to FIG. 2, there is illustrated an elongated bar 48 which is secured at its ends to the top flange 50 of a walking beam.
  • the rigid connections may be provided by any suitable technique such as by welding or bolting the ends of the bar to the walking beam.
  • a deformation responsive means 52 such as a bonded strain gauge transducer.
  • Means 52 measures the deformation in the bar 48 is induced by changes in the beam loading and applies an output signal through suitable circuitry (not shown) to an appropriate utilization device such as shown in FIG. ll.
  • the strain in the bar is representative of the average strain in the walking beam between the rigid connections. This greatly reduces the effect of small areas of abnormal strain such as may result from heterogeneities in the beam. It is preferred that the rigid connections be separated by a distance of at least 6 inches in order to avoid erroneous measurements clue to small areas of abnormal strain.
  • an intermediate portion of the bar between the rigid connections is offset from the contiguous portion of the walking beam surface.
  • spacer elements 53 and 54 may be interposed between the bar and the walking beam to provide an offset as indicated by reference numeral 56. This offset avoids frictional engagement between the bar and walking beam between the rigid connections and thus further ensures that the strain in bar is representative of the average strain in the beam between the rigid connections.
  • the transducer bar can be attached to the top flange of the I-beam which will always be stressed in tension while the unit is in operation.
  • the transducer bar can be connected either to the upper surface of the top flange as shown in FIG. 2 or to the underside thereof. In either case, the strain in the transducer bar will remain in tension during operation of the pumping unit, thus ensuring that the output signal from the transducer is unipolar.
  • FIG. 3 there is illustrated another embodiment of the transducer which provides for amplification of changes in strain induced during operation of the pump, thus lessening the electronic amplification required for an output signal of a given amplitude.
  • This unit which preferably is mounted on the walking beam as described above with reference to FIG. 2, comprises an elongated bar 56 which has a gauge section 58 of reduced cross section.
  • the bar 56 may exhibit dimensions of 1 inch X 1 inch X 24 inches with a 1 inch section of the bar turned down to a diameter of approximately one-half inch to provide the gauge section.
  • a hole 59 of a diameter of thirteensixtheenths inch is drilled along the center line of the bar to further reduce the cross-sectional area of the gauge section.
  • gauge section 58 Mounted on gauge section 58 is a suitable means for measuring deformation of the bar.
  • a suitable means for measuring deformation of the bar comprises a plurality of strain gauges connected to form the arms of a wheatstone bridge circuit and bonded to section 58 alternately in tension and poisson.
  • opposed strain gauges 61 and 62 are bonded to the gauge section 58 in tension to measure longitudinal strain in the bar and opposed strain gauges 63 and 6 are bonded to section 58 in poisson to measure lateral strain in the bar.
  • FIG. 4 illustrates the local electronics associated with the transducer bar.
  • This system includes an adjustable biasing means in the output circuit of the strain gauge bridge for imposing a bias on the output signal in order to balance the bridge at a given stress condition in the bar.
  • the transducer bar can be prestressed in tension when it is welded or otherwise secured to the walking beam and the potentiometer adjusted to null out the initial imbalance in the bridge. This is particularly desirable since it avoids nonrepeatability of the bridge signal associated with low strain in the transducer bar.
  • tension strain gauges 61 and 62 and poisson strain gauges 63 and 64 are connected in the opposed arms of a wheatstone bridge circuit 66 such that resistance changes induced by longitudinal and lateral strain in the bar are cumulative in unbalancing the bridge.
  • the circuitry associated with the wheastone bridge 66 functions to convert the output signal from the bridge to an appropriate current level.
  • Such circuitry includes a potentiometer 68 for imposing a bias as desired on the bridge signal.
  • the wiper arm of the potentiometer can be adjusted as desired in order to compensate for initial imbalance of the bridge.
  • the bridge output is then applied through series-connected operational amplifiers 70 and 72.
  • Amplifier 72 is provided with a rheostat 72a in its feedback circuit which may be used to adjust the gain of the amplifier.
  • the output from amplifier 72 is then applied through a Zener diode 73 to an emitter-follower circuit 74 which converts the amplifier output to a current signal for transmission to a utilization device.
  • Power for the bridge circuit and amplifiers is supplied from a dc. power source 75 through a voltage regulator circuit 76 which functions to stabilize the voltage supply.
  • the power supply may be 24 volts do with the amplifiers 70 and 72 exhibiting a combined gain of 1,000 to amplify the bridge signal to a level within the range of 1 to 5 volts.
  • the emitter-follower converts the amplifier output to a current signal within the range of 4 to 20, or optionally, within the range of 10 to 50 milliamps.
  • T In a system for monitoring a well produced by a downhole pump, the combination comprising:
  • a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover
  • transducer means secured to the top of said beam at a location between said pivotal mounting and the connection between said beam and said rod string for generating a signal representative of load changes in said beam as it is reciprocated.
  • a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover
  • transducer means secured to said beam for generating a signal representative of load changes in said beam as it is reciprocated, said transducer means comprising an elongated bar secured to a surface of said beam by longitudinally spaced rigid connections and means responsive to deformation in said bar between said connections for generating said signal.
  • a surface support unit including a sampson post and an I-shaped walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover
  • said deformation responsive means comprises a plurality of strain gauges connected to form the arms of a wheatstone bridge and bonded to said bar alternately in tension and poisson.

Abstract

Method and apparatus for monitoring the operation of a well which is produced by a beam pumping unit. A load transducer is secured to the surface support structure of the beam pumping unit such that it generates a signal representative of load changes in the support structure as the walking beam is reciprocated. The transducer may take the form of an elongated bar which is secured to the support structure by longitudinally spaced rigid connections. The transducer bar as disclosed is mounted on the top of the walking beam.

Description

QR ateivtoqq United States Patent [191 Montgomery et a1.
[ June 18, 1974 WELL MONITORING APPARATUS Inventors: Richard C. Montgomery; .lacque R.
Stoltz, both of Midland, Tex.
Assignee: Mobil Oil Corporation, New York,
Filed: July 27, 1970 Appl. No.: 58,439
US. Cl. 73/151 Int. Cl E21b 47/00 Field of Search 73/151, 168, 88.5
References Cited UNITED STATES PATENTS 6/1939 Carr et al 73/151 10/ l 954 Morris l/l960 Hines 9/1963 Mason 73/88.5 R
3,199,685 8/1965 Bopp 212/39 MS 3,343,409 9/1967 Gibbs 3,359,791 12/1967 Pantages 73/151 Primary Examiner-Jerry W. Myracle Attorney, Agent, or FirmA. L. Gaboriault; William D. Jackson [5 7] ABSTRACT Method and apparatus for monitoring the operation of a well which is produced by a beam pumping unit. A load transducer is secured to the surface support structure of the beam pumping unit such that it generates a signal representative of load changes in the support structure as the walking beam is reciprocated. The transducer may take the form of an elongated bar which is secured to the support structure by longitudinally spaced rigid connections. The transducer bar as disclosed is mounted on the top of the walking beam.
13 Claims, 4 Drawing Figures FIG.I
RICHARD C. MONTGOMERY JACQUE R. STOLTZ INVENTORS WELL MONITORING APPARATUS BACKGROUND OF THE INVENTION This invention relates to the production of wells by means of beam pumping units and more particularly to processes and systems for monitoring the operation of wells produced by beam pumping units.
Beam pumping units are widely used in the petroleum industry in order to recover fluids from wells extending into subterranean formations. Such units are employed to reciprocate a sucker rod string which extends into the well to actuate a downhole pump. The sucker rod string is suspended at the surface of the well from a support structure which consists of a sampson post and a walking beam pivotallly mounted on the sampson post. The sucker rod string is connected to one end of the walking beam. The other end of the walking beam is connected to a prime mover through a suitable crank and pitman connection. Thus, the walking beam and the sucker rod string are driven in a reciprocal mode by the prime mover.
In order to analyze the performance of a well produced by means of a beam pumping unit, it is a conventional practice to measure the load on the rod string as the unit is in operation. Such load measurements normally are taken by means of a dynamometer which is attached to the sucker rod string (normally in the polished rod section thereof) to monitor variations in the stress in the sucker rod string. The output from the dynamometer may be recorded for future analysis or it may be used for realtime control of the pumping unit. For example, US. Pat. No. 3,359,791 to Pantages discloses a dynamometer which is mounted on the polished rod and which functions to generate an alarm or to initiate a control action such as shut down of the prime mover in response to abnormally high or low loads on the polished rod. Similar control measures can be taken through the action of a central control facility. For example, as described by Boggus, C. (3., Lets Weigh Those Wells Automatically, OIL AND GAS JOURNAL, Vol. 62, No. 5, Feb. 3, 1964, p. 78, the output from a large number of pump dynamometers can be applied to a central computer which is programmed to take appropriate control actions.
While sucker rod dynamometers have been most widely used for beam pumping analysis and/or control, various other techniques have been proposed. For example, in US. Pat. No. 3,192,336 to Lowery, there is disclosed a pump safety system which employs an inertial switch mounted on the walking beam. The switch is actuated in response to sudden movements of the walking beam, such as may result from a break in the sucker rod string, to cut off the prime mover. Another system employed for the analysis of beam pumping units is disclosed in U. S. Pat. No. 2,691,300 to Morris. In the Morris system, strain gage and sine function potentiometer units are mounted on the pitman. The outputs of these units together with the output from a dc. generator driven proportionately to the crank arm are applied through a circuit to achieve a readout representative of the torque on the crank shaft.
SUMMARY OF THE INVENTION The present invention provides a new and improved apparatus for monitoring the operation of a well produced by a downhole pump. The pump is actuated by a sucker rod string suspended from a surface support unit consisting of a walking beam pivotally mounted on a sampson post for reciprocal movement as described above. In accordance with the present invention, a load transducer is secured to the support unit on either the sampson post or the walking beam. This transducer functions to generate a signal representative of load changes in the support unit as the walking beam is reciprocated to operate the downhole pump. This signal then may be applied to a suitable utilization device such as a recorder or controller.
In a preferred embodiment of the invention, the transducer is secured to the top of the walking beam such that it responds to deformation in the beam resulting from tensile stresses induced by the sucker rod loading. In a further aspect of the invention, the trans ducer comprises an elongated bar which is secured to the beam by means of longitudinally spaced rigid connections and means responsive to deformation in the bar between such connections for generating the load signal.
DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration of a well and a beam pumping unit employing attendant equipment in accordance with the present invention.
FIG. 2 is an illustration showing a transducer bar attached to a walking beam in accordance with a preferred embodiment of the invention.
FIG. 3 is an illustration of a preferred form of transducer bar and strain gauge arrangement.
FIG. 4 is an illustration showing an electrical schematic of a circuit employed in the transducer.
DESCRIPTION OF SPECIFIC EMBODIMENTS With reference to FIG. 1, there is illustrated the wellhead ll0 of a well which extends from the earths surface 12 into a subterranean oil producing formation (not shown). The wellhead comprises the upper portions of a casing string M and tubing string 16. The tub ing string extends from the wellhead to a suitable depth within the well, e.g., adjacent the subterranean formation. Liquid from the well is produced through the tubing string 16 by means of a downhole pump (not shown) to the surface where it passes into a flowline 17.
The downhole pump is actuated by reciprocal movement of a sucker rod string 18. Rod string 18 is suspended in the well from a surface support unit 20 consisting of a sampson post 21 and a walking beam 22 which is pivotally mounted on the sampson post by a pin connection 23. The sucker rod string includes a polished rod section 18a which extends through a stuffing box (not shown) at the top of the tubing string and a section 18b formed of a flexible cable. The cable section 118!) is connected to the walking beam 22 by means of a horsehead 24.
The walking beam is reciprocated by a prime mover 26 such as an electric motor. The prime mover drives the walking beam through a drive system which includes a belt drive 27, crank 23, crank arm 29, and a pitman 30 which is pivotally connected between the crank arm and walking beam by means of pin connections 32 and 33. The outer end of crank arm 29 is provided with a counterweight 33 which balances a portion of the load on the sucker rod string in order to provide for a fairly consistent load on the prime mover.
It will be recognized that the well structure and pumping equipment thus far described are conventional and merely exemplary, and that other suitable beam pumping units may be utilized in carrying out the present invention. For a more detailed description of such equipment, reference is made to Uren, L. C., PETROLEUM PRODUCTION ENGINEERING OIL FIELD EXPLOITATION, Third Edition, McGraw-I-Iill Book Company, Inc., New York, Toronto, and London, 1953, and more particularly to the description of beam pumping units appearing in Chapter VI thereof.
As the pumping unit is operated, the loading on the sucker rod string varies greatly. By analyzing this variance in sucker rod loading, a determination can be made as to the efficiency and operating characteristics of the pumping unit. As noted previously, such analysis normally is carried out by measuring the stress in the sucker rod string by means of a dynamometer mounted thereon. In accordance with the present invention, there is provided a system for monitoring the operation of a pumping unit by measuring load changes induced in the surface support unit as the sucker rod string is reciprocated. This is accomplished by locating on the support unit a load transducer which generates a signal representative of load changes induced in the support unit during operation of the pump. While the support unit loading may not be directly proportional to the sucker rod loading during pumping operation, the relationship between the two loads is predictable. For example, when the transducer is mounted on the top of the walking beam, as is preferred, the beam loading is directly proportional to the sucker rod loading when the beam is horizontal and departs from such direct relationship by a predictable function as the beam moves from this mid position during an upstroke or downstroke.
Referring again to FIG. I, there is illustrated a load transducer 4-0 mounted on the top of walking beam 22. The load transducer may be of any suitable type which generates a signal representative of the load changes in the walking beam as it is driven by prime mover 26. Preferably, the load transducer is mounted at the top of the walking beam 22, as shown, where only tension loading occurs. The signal output from transducer ll) is applied via a communications channel 41. to a utilization device 42 which performs suitable recording and- /or control functions. For example, the utilization device may apply a readout to a strip chart recorder d4 via channel 45 and/or apply control functions via channel 46 to the prime mover, as discussed in greater detail hereinafter.
Preferably, the transducer is located on the front section of beam 22 between the pivotal connection 23 and the connection of sucker rod string to the walking beam. At this location little if any extraneous loading is induced in beam 22 and the load changes in the beam result for all practical purposes only from changes in the sucker rod loading.
The system described above is especially well suited for real-time control of the pumping unit. Because of its location on the sampson post or walking beam, there is little liklihood of damage to the transducer from normal maintenance operations such as are involved in repair or adjustment of the sucker rod string. Thus, the transducer can be left in place permanently to provide a continuous signal output for real-time control of the pumping unit.
In effecting control of the pumping unit, the utilization device 42 shovm in FIG. 11 can be provided with one or more constraint functions for comparison with the signal from the transducer. Device 42 thus acts as a comparator which generates a utilization function such as actuating an alarm, shutting down the prime mover 26, or changing the speed of the prime mover, in response to the transducer signal matching the constraint function. Exemplary of the conditions for which constraint functions may be established are well pumpoff, traveling valve obstruction in the downhole pump, and sucker rod breakage. For example, well pump-off, resulting from producing a well at a rate greater than the rate at which fluid flows into the well from the formation, is characterized by a gradual increase in minimum signal amplitude. Thus, device 42 may be programmed to generate a control function which reduces the speed of the prime mover when the transducer signal reaches the constraint function, that is, when the maximum signal amplitude undergoes a predetermined decrease in amplitude within a specified time interval. A break in the sucker rod string 18 will be characterized by a pronounced reduction in load. Accordingly, utilization device 42 may be programmed to actuate an alarm and/or shut down the prime mover 26 when the amplitude of the transducer signal reaches a specified low value. It will be recognized that the aforementioned control actions are exemplary only and that various other constraints may be established for comparison with the load signal from the transducer in order to generate appropriate control functions. Also, while FIG. ll illustrates an arrangement for local control and analysis, such functions can of course be carried out remotely. Thus, the signal from transducer 40 can be applied to a remote facility such as a digital computer which is programmed to perform appropriate control and/or recording actions. This is advantageous where the invention is employed in a large number of wells within a field.
Turning now to FIG. 2, there is illustrated a preferred transducer system which includes an elongated bar rigidly secured to the support unit by longitudinally spaced connections and means for measuring the deformation in the bar between such connections. More particularly, and with reference to FIG. 2, there is illustrated an elongated bar 48 which is secured at its ends to the top flange 50 of a walking beam. The rigid connections may be provided by any suitable technique such as by welding or bolting the ends of the bar to the walking beam. Secured to bar 48 between the rigid connections is a deformation responsive means 52 such as a bonded strain gauge transducer. Means 52 measures the deformation in the bar 48 is induced by changes in the beam loading and applies an output signal through suitable circuitry (not shown) to an appropriate utilization device such as shown in FIG. ll.
By leaving the intermediate portion of the bar disconnected from the walking beam, the strain in the bar is representative of the average strain in the walking beam between the rigid connections. This greatly reduces the effect of small areas of abnormal strain such as may result from heterogeneities in the beam. It is preferred that the rigid connections be separated by a distance of at least 6 inches in order to avoid erroneous measurements clue to small areas of abnormal strain.
Preferably, an intermediate portion of the bar between the rigid connections is offset from the contiguous portion of the walking beam surface. Thus, as illustrated in FIG. 2, spacer elements 53 and 54 may be interposed between the bar and the walking beam to provide an offset as indicated by reference numeral 56. This offset avoids frictional engagement between the bar and walking beam between the rigid connections and thus further ensures that the strain in bar is representative of the average strain in the beam between the rigid connections.
As will be recognized by those skilled in the art, most commercially available pumping units employ a walking beam of an l-beam configuration. The present invention is particularly well suited for use with such units since the transducer bar can be attached to the top flange of the I-beam which will always be stressed in tension while the unit is in operation. The transducer bar can be connected either to the upper surface of the top flange as shown in FIG. 2 or to the underside thereof. In either case, the strain in the transducer bar will remain in tension during operation of the pumping unit, thus ensuring that the output signal from the transducer is unipolar.
In FIG. 3 there is illustrated another embodiment of the transducer which provides for amplification of changes in strain induced during operation of the pump, thus lessening the electronic amplification required for an output signal of a given amplitude. This unit, which preferably is mounted on the walking beam as described above with reference to FIG. 2, comprises an elongated bar 56 which has a gauge section 58 of reduced cross section. By way of example, the bar 56 may exhibit dimensions of 1 inch X 1 inch X 24 inches with a 1 inch section of the bar turned down to a diameter of approximately one-half inch to provide the gauge section. In addition, a hole 59 of a diameter of thirteensixtheenths inch is drilled along the center line of the bar to further reduce the cross-sectional area of the gauge section.
Mounted on gauge section 58 is a suitable means for measuring deformation of the bar. Preferably such means comprises a plurality of strain gauges connected to form the arms of a wheatstone bridge circuit and bonded to section 58 alternately in tension and poisson. Thus as illustrated in FIG. 3, opposed strain gauges 61 and 62 are bonded to the gauge section 58 in tension to measure longitudinal strain in the bar and opposed strain gauges 63 and 6 are bonded to section 58 in poisson to measure lateral strain in the bar.
FIG. 4 illustrates the local electronics associated with the transducer bar. This system includes an adjustable biasing means in the output circuit of the strain gauge bridge for imposing a bias on the output signal in order to balance the bridge at a given stress condition in the bar. Thus, the transducer bar can be prestressed in tension when it is welded or otherwise secured to the walking beam and the potentiometer adjusted to null out the initial imbalance in the bridge. This is particularly desirable since it avoids nonrepeatability of the bridge signal associated with low strain in the transducer bar. More particularly, and with reference to FIG. 4, tension strain gauges 61 and 62 and poisson strain gauges 63 and 64 are connected in the opposed arms of a wheatstone bridge circuit 66 such that resistance changes induced by longitudinal and lateral strain in the bar are cumulative in unbalancing the bridge.
The circuitry associated with the wheastone bridge 66 functions to convert the output signal from the bridge to an appropriate current level. Such circuitry includes a potentiometer 68 for imposing a bias as desired on the bridge signal. Thus, the wiper arm of the potentiometer can be adjusted as desired in order to compensate for initial imbalance of the bridge. The bridge output is then applied through series-connected operational amplifiers 70 and 72. Amplifier 72 is provided with a rheostat 72a in its feedback circuit which may be used to adjust the gain of the amplifier. The output from amplifier 72 is then applied through a Zener diode 73 to an emitter-follower circuit 74 which converts the amplifier output to a current signal for transmission to a utilization device. Power for the bridge circuit and amplifiers is supplied from a dc. power source 75 through a voltage regulator circuit 76 which functions to stabilize the voltage supply. By way of example, the power supply may be 24 volts do with the amplifiers 70 and 72 exhibiting a combined gain of 1,000 to amplify the bridge signal to a level within the range of 1 to 5 volts. The emitter-follower converts the amplifier output to a current signal within the range of 4 to 20, or optionally, within the range of 10 to 50 milliamps.
What is claimed is:
T. In a system for monitoring a well produced by a downhole pump, the combination comprising:
a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover,
a sucker rod string for operating said pump connected to said walking beam, and
transducer means secured to the top of said beam at a location between said pivotal mounting and the connection between said beam and said rod string for generating a signal representative of load changes in said beam as it is reciprocated.
2. In a system for monitoring a well produced by a downhole pump, the combination comprising:
a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover,
a sucker rod string for operating said pump connected to said walking beam, and
transducer means secured to said beam for generating a signal representative of load changes in said beam as it is reciprocated, said transducer means comprising an elongated bar secured to a surface of said beam by longitudinally spaced rigid connections and means responsive to deformation in said bar between said connections for generating said signal.
3. The system of claim 2 wherein said bar is secured to the top of said beam.
4. The system of claim 3 wherein said bar is prestressed in tension with respect to said beam.
5. The system of claim 2 wherein at least a portion of said bar intermediate said rigid connections is offset from said surface of said beam.
6. The system of claim 2 wherein said rigid connections are spaced by a distance of at least 6 inches.
7. In a system for monitoring a well produced by a downhole pump, the combination comprising:
a surface support unit including a sampson post and an I-shaped walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover,
a sucker rod string for operating said pump connected to said walking beam,
an elongated transducer bar secured to the top flange of said walking beam by longitudinally spaced rigid connections, and
means responsive to deformation in said bar between said connections for generating a signal representative of load changes in said beam as it is reciprocated.
8. The system of claim 7 wherein at least a portion of said bar intermediate said rigid connections is offset from said flange.
9. The system of claim 8 wherein said rigid connections are spaced by a distance of at least 6 inches.
10. The system of claim 9 wherein said bar includes a section of reduced cross section intermediate said rigid connections and said deformation responsive means is located on said section.
11. The system of claim 9 wherein said deformation responsive means comprises a plurality of strain gauges connected to form the arms of a wheatstone bridge and bonded to said bar alternately in tension and poisson.
load changes in said beam as it oscillates.

Claims (13)

1. In a system for monitoring a well produced by a downhole pump, the combination comprising: a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover, a sucker rod string for operating said pump connected to said walking beam, and transducer Means secured to the top of said beam at a location between said pivotal mounting and the connection between said beam and said rod string for generating a signal representative of load changes in said beam as it is reciprocated.
2. In a system for monitoring a well produced by a downhole pump, the combination comprising: a surface support unit including a sampson post and a walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover, a sucker rod string for operating said pump connected to said walking beam, and transducer means secured to said beam for generating a signal representative of load changes in said beam as it is reciprocated, said transducer means comprising an elongated bar secured to a surface of said beam by longitudinally spaced rigid connections and means responsive to deformation in said bar between said connections for generating said signal.
3. The system of claim 2 wherein said bar is secured to the top of said beam.
4. The system of claim 3 wherein said bar is prestressed in tension with respect to said beam.
5. The system of claim 2 wherein at least a portion of said bar intermediate said rigid connections is offset from said surface of said beam.
6. The system of claim 2 wherein said rigid connections are spaced by a distance of at least 6 inches.
7. In a system for monitoring a well produced by a downhole pump, the combination comprising: a surface support unit including a sampson post and an I-shaped walking beam pivotally mounted on said sampson post for reciprocal movement by a prime mover, a sucker rod string for operating said pump connected to said walking beam, an elongated transducer bar secured to the top flange of said walking beam by longitudinally spaced rigid connections, and means responsive to deformation in said bar between said connections for generating a signal representative of load changes in said beam as it is reciprocated.
8. The system of claim 7 wherein at least a portion of said bar intermediate said rigid connections is offset from said flange.
9. The system of claim 8 wherein said rigid connections are spaced by a distance of at least 6 inches.
10. The system of claim 9 wherein said bar includes a section of reduced cross section intermediate said rigid connections and said deformation responsive means is located on said section.
11. The system of claim 9 wherein said deformation responsive means comprises a plurality of strain gauges connected to form the arms of a wheatstone bridge and bonded to said bar alternately in tension and poisson.
12. The system of claim 11 further comprising an output circuit for said bridge including means for imposing an adjustable bias on the output signal from said bridge.
13. An apparatus for monitoring the strain level in a well pumping rod string comprising: a pumping unit for actuating said rod string, said pumping unit including an oscillating beam and means pivotally supporting said beam and deformation responsive transducer means secured to said beam for generating a signal representative of load changes in said beam as it oscillates.
US00058439A 1970-07-27 1970-07-27 Well monitoring apparatus Expired - Lifetime US3817094A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US00058439A US3817094A (en) 1970-07-27 1970-07-27 Well monitoring apparatus
CA105,604A CA948438A (en) 1970-07-27 1971-02-17 Well monitoring process and apparatus
DE2136670A DE2136670C3 (en) 1970-07-27 1971-07-22 Pump device for boreholes
AT647371A AT317118B (en) 1970-07-27 1971-07-26 Apparatus for producing oil from a borehole and method for monitoring the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00058439A US3817094A (en) 1970-07-27 1970-07-27 Well monitoring apparatus

Publications (1)

Publication Number Publication Date
US3817094A true US3817094A (en) 1974-06-18

Family

ID=22016807

Family Applications (1)

Application Number Title Priority Date Filing Date
US00058439A Expired - Lifetime US3817094A (en) 1970-07-27 1970-07-27 Well monitoring apparatus

Country Status (4)

Country Link
US (1) US3817094A (en)
AT (1) AT317118B (en)
CA (1) CA948438A (en)
DE (1) DE2136670C3 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951209A (en) * 1975-06-09 1976-04-20 Shell Oil Company Method for determining the pump-off of a well
US4034808A (en) * 1976-09-20 1977-07-12 Shell Oil Company Method for pump-off detection
US4058757A (en) * 1976-04-19 1977-11-15 End Devices, Inc. Well pump-off controller
US4302157A (en) * 1979-02-05 1981-11-24 End Devices, Inc. High fluid level pump off controller and process
US4318674A (en) * 1975-03-28 1982-03-09 Mobil Oil Corporation Automatic liquid level controller
US4389164A (en) * 1977-08-08 1983-06-21 Mobil Oil Corporation Automatic liquid level controller
US4487061A (en) * 1982-12-17 1984-12-11 Fmc Corporation Method and apparatus for detecting well pump-off
US4541274A (en) * 1984-05-10 1985-09-17 Board Of Regents For The University Of Oklahoma Apparatus and method for monitoring and controlling a pump system for a well
US4553872A (en) * 1984-02-15 1985-11-19 Fmc Corporation Load cell clamping apparatus
US4561299A (en) * 1984-02-13 1985-12-31 Fmc Corporation Apparatus for detecting changes in inclination or acceleration
US4873635A (en) * 1986-11-20 1989-10-10 Mills Manual D Pump-off control
WO1993002289A1 (en) * 1991-07-22 1993-02-04 Westerman G Wayne Pump control using calculated downhole dynagraph information
US5435385A (en) * 1993-10-29 1995-07-25 Double-E, Inc. Integrated wellhead tubing string
CN1080834C (en) * 1999-04-23 2002-03-13 翟灵光 Dual-speed energy saving beam-pumping unit with shaped wheel
CN1083942C (en) * 1999-12-10 2002-05-01 华北石油管理局第一机械厂 Curved beam pumping unit
CN102635336A (en) * 2012-04-10 2012-08-15 西安长油油气装备工程有限责任公司 Pumping unit with concrete-precast load-bearing frame
CN102979484A (en) * 2011-09-06 2013-03-20 东营市大势石油装备生产力促进中心有限公司 Dip angle beam counterweight pumping unit
CN103883289A (en) * 2014-04-19 2014-06-25 长江大学 Novel beam-pumping unit dynamic balance intelligent adjusting device
CN103924959A (en) * 2013-01-10 2014-07-16 中国石油天然气股份有限公司 Method for measuring water content in oil well production liquid
CN104727806A (en) * 2013-12-24 2015-06-24 中国石油天然气股份有限公司 Load sensor monitoring method and system
CN104847311A (en) * 2015-05-27 2015-08-19 山西晋煤集团技术研究院有限责任公司 Adaptive device for flowing pressure during coalbed methane exploitation
US20150345280A1 (en) * 2012-12-20 2015-12-03 Schneider Electric USA, Inc. Polished rod-mounted pump control apparatus
CN105484730A (en) * 2015-12-28 2016-04-13 江西飞尚科技有限公司 Upper and lower dead point accurate extraction method based on sucker rod indicator diagram
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104912521A (en) * 2015-04-15 2015-09-16 吕传庆 Novel pumping unit convenient to integrally seal
CN105156073A (en) * 2015-06-19 2015-12-16 常盛杰 Simple oil pumping unit mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163665A (en) * 1936-07-15 1939-06-27 Pure Oil Co Well drilling indicator
US2691300A (en) * 1951-12-17 1954-10-12 Phillips Petroleum Co Torque computer
US2920298A (en) * 1956-02-16 1960-01-05 Baldwin Lima Hamilton Corp Resistance strain gage
US3102420A (en) * 1960-08-05 1963-09-03 Bell Telephone Labor Inc High strain non-linearity compensation of semiconductive sensing members
US3199685A (en) * 1964-03-02 1965-08-10 Greater Iowa Corp Overload safety device for material handling mechanism
US3343409A (en) * 1966-10-21 1967-09-26 Shell Oil Co Method of determining sucker rod pump performance
US3359791A (en) * 1964-10-19 1967-12-26 Well Sentry Inc System responsive to well pumping loads

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1739724A (en) * 1927-07-18 1929-12-17 Union Oil Co Recording dynamometer and method of measuring load variations
US2142551A (en) * 1936-10-07 1939-01-03 Int Stacey Corp Emergency cut-out switch for well pumping mechanism
US2661697A (en) * 1951-12-26 1953-12-08 Shell Dev Control system for oil well pumps
US3075466A (en) * 1961-10-17 1963-01-29 Jersey Prod Res Co Electric motor control system
US3192336A (en) * 1963-04-22 1965-06-29 Lowery Charles Walking beam safety switch
US3269320A (en) * 1964-06-16 1966-08-30 Chevron Res Pump control method and apparatus
US3509824A (en) * 1967-07-06 1970-05-05 G C Electronics Inc Well pumping control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163665A (en) * 1936-07-15 1939-06-27 Pure Oil Co Well drilling indicator
US2691300A (en) * 1951-12-17 1954-10-12 Phillips Petroleum Co Torque computer
US2920298A (en) * 1956-02-16 1960-01-05 Baldwin Lima Hamilton Corp Resistance strain gage
US3102420A (en) * 1960-08-05 1963-09-03 Bell Telephone Labor Inc High strain non-linearity compensation of semiconductive sensing members
US3199685A (en) * 1964-03-02 1965-08-10 Greater Iowa Corp Overload safety device for material handling mechanism
US3359791A (en) * 1964-10-19 1967-12-26 Well Sentry Inc System responsive to well pumping loads
US3343409A (en) * 1966-10-21 1967-09-26 Shell Oil Co Method of determining sucker rod pump performance

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318674A (en) * 1975-03-28 1982-03-09 Mobil Oil Corporation Automatic liquid level controller
US3951209A (en) * 1975-06-09 1976-04-20 Shell Oil Company Method for determining the pump-off of a well
US4058757A (en) * 1976-04-19 1977-11-15 End Devices, Inc. Well pump-off controller
US4034808A (en) * 1976-09-20 1977-07-12 Shell Oil Company Method for pump-off detection
US4389164A (en) * 1977-08-08 1983-06-21 Mobil Oil Corporation Automatic liquid level controller
US4302157A (en) * 1979-02-05 1981-11-24 End Devices, Inc. High fluid level pump off controller and process
US4487061A (en) * 1982-12-17 1984-12-11 Fmc Corporation Method and apparatus for detecting well pump-off
US4561299A (en) * 1984-02-13 1985-12-31 Fmc Corporation Apparatus for detecting changes in inclination or acceleration
US4553872A (en) * 1984-02-15 1985-11-19 Fmc Corporation Load cell clamping apparatus
US4541274A (en) * 1984-05-10 1985-09-17 Board Of Regents For The University Of Oklahoma Apparatus and method for monitoring and controlling a pump system for a well
US4873635A (en) * 1986-11-20 1989-10-10 Mills Manual D Pump-off control
WO1993002289A1 (en) * 1991-07-22 1993-02-04 Westerman G Wayne Pump control using calculated downhole dynagraph information
US5435385A (en) * 1993-10-29 1995-07-25 Double-E, Inc. Integrated wellhead tubing string
CN1080834C (en) * 1999-04-23 2002-03-13 翟灵光 Dual-speed energy saving beam-pumping unit with shaped wheel
CN1083942C (en) * 1999-12-10 2002-05-01 华北石油管理局第一机械厂 Curved beam pumping unit
CN102979484A (en) * 2011-09-06 2013-03-20 东营市大势石油装备生产力促进中心有限公司 Dip angle beam counterweight pumping unit
CN102635336A (en) * 2012-04-10 2012-08-15 西安长油油气装备工程有限责任公司 Pumping unit with concrete-precast load-bearing frame
US20150345280A1 (en) * 2012-12-20 2015-12-03 Schneider Electric USA, Inc. Polished rod-mounted pump control apparatus
CN103924959A (en) * 2013-01-10 2014-07-16 中国石油天然气股份有限公司 Method for measuring water content in oil well production liquid
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
CN104727806A (en) * 2013-12-24 2015-06-24 中国石油天然气股份有限公司 Load sensor monitoring method and system
CN104727806B (en) * 2013-12-24 2017-10-17 中国石油天然气股份有限公司 A kind of load transducer monitoring method and system
CN103883289A (en) * 2014-04-19 2014-06-25 长江大学 Novel beam-pumping unit dynamic balance intelligent adjusting device
CN104847311A (en) * 2015-05-27 2015-08-19 山西晋煤集团技术研究院有限责任公司 Adaptive device for flowing pressure during coalbed methane exploitation
CN104847311B (en) * 2015-05-27 2018-04-03 山西晋煤集团技术研究院有限责任公司 Coal-bed gas exploitation stream presses self-reacting device
CN105484730A (en) * 2015-12-28 2016-04-13 江西飞尚科技有限公司 Upper and lower dead point accurate extraction method based on sucker rod indicator diagram

Also Published As

Publication number Publication date
DE2136670C3 (en) 1981-12-03
DE2136670A1 (en) 1972-02-17
DE2136670B2 (en) 1981-04-09
CA948438A (en) 1974-06-04
AT317118B (en) 1974-08-12

Similar Documents

Publication Publication Date Title
US3817094A (en) Well monitoring apparatus
US6857474B2 (en) Methods, apparatus and products useful in the operation of a sucker rod pump during the production of hydrocarbons
US8036829B2 (en) Apparatus for analysis and control of a reciprocating pump system by determination of a pump card
US4363605A (en) Apparatus for generating an electrical signal which is proportional to the tension in a bridle
US6155347A (en) Method and apparatus for controlling the liquid level in a well
US3951209A (en) Method for determining the pump-off of a well
US4561299A (en) Apparatus for detecting changes in inclination or acceleration
US6957577B1 (en) Down-hole pressure monitoring system
EP2771541B1 (en) Calculating downhole cards in deviated wells
US10508522B2 (en) Automatic sucker rod spacing device and methods of using same
US5064349A (en) Method of monitoring and controlling a pumped well
US6580268B2 (en) Sucker rod dimension measurement and flaw detection system
US6343515B1 (en) Method and apparatus for improved measurement of tension and compression in a wireline
US9938805B2 (en) Method for monitoring and optimizing the performance of a well pumping system
US11408271B2 (en) Well pump diagnostics using multi-physics sensor data
US3527094A (en) Apparatus for analyzing sucker-rod wave motion
US3712129A (en) Simplified wellbore pressure testing apparatus
US20030026167A1 (en) System and methods for detecting pressure signals generated by a downhole actuator
US11168549B2 (en) Automated sucker rod spacing device and associated methods
US11572770B2 (en) System and method for determining load and displacement of a polished rod
US3926047A (en) Well production signal means
US11542809B2 (en) Polished rod load cell
US5184507A (en) Surface hydraulic pump/well performance analysis method
RU2752068C1 (en) Multiple sensor device with different parameters to monitor the reservoir flow profile by multiple methods
Amezcua Comparative analysis of pump-off control systems for field applications