US3816894A - Multi-layer well sand screen - Google Patents

Multi-layer well sand screen Download PDF

Info

Publication number
US3816894A
US3816894A US00298152A US29815272A US3816894A US 3816894 A US3816894 A US 3816894A US 00298152 A US00298152 A US 00298152A US 29815272 A US29815272 A US 29815272A US 3816894 A US3816894 A US 3816894A
Authority
US
United States
Prior art keywords
sand
screen
spacing
percentile point
percentile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00298152A
Inventor
G Howard
W Bearden
E Bearden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP America Production Co
Original Assignee
BP America Production Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US00077492A priority Critical patent/US3712373A/en
Priority to GB4306671A priority patent/GB1367535A/en
Priority to DE19712148161 priority patent/DE2148161C/en
Priority to FR7135490A priority patent/FR2110183B1/fr
Application filed by BP America Production Co filed Critical BP America Production Co
Priority to US00298152A priority patent/US3816894A/en
Application granted granted Critical
Publication of US3816894A publication Critical patent/US3816894A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/088Wire screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/082Screens comprising porous materials, e.g. prepacked screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/496Multiperforated metal article making
    • Y10T29/49604Filter

Landscapes

  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Filtration Of Liquid (AREA)
  • Paper (AREA)

Abstract

This is a special downhole multi-layer sand screen for oil and other fluids containing sand. The preferred embodiment of the sand filter includes an outer screen, an intermediate screen and an inner screen although another embodiment may have only an outer and an inner screen. The outermost screen is of larger spacing to retain only the coarser sand particles and the openings in the inner two screens are progressively smaller to retain the less coarse sand material. The coarser sand particles bridge about the larger openings in the outer screens and progressively finer sand materials bridge across the intermediate and inner screens.

Description

United States Patent [191 Howard et al. 1
[ 1 June 18, 1974 1 MULTl-LAYER WELL SAND SCREEN [73] Assignee: Amoco Production Company, Tulsa,
Okla.
Nov. 6, 1972 (Under Rule 47) [21] Appl. No: 298,152
Related US. Application Data [62] Division of Ser. No. 077,492, Oct. 2, 1970, Pat. No.
[22] Filed:
[52] US. Cl. 29/l63.5 F, 29/l63.5 CW [51] Int. Cl E2lb 43/08, 1323p 15/16 [58] Field of Search 29/l63.5 F, 163.5 CW; 166/227-236; 210/4971 [56] References Cited UNlTED STATES PATENTS 713,544 11/1902 Ware .1 166/233 X 1,406,825 2/1922 Dobson 166/233 X 2,458,118 H1949 Tursky 29/l63.5 CW 2,729,294 l/l956 Adams 166/231 2,877,852 3/1959 Bashara 166/234 X 3,101,526 8/1963 Paullus et al. 29/l63.5 CW 3,385,373 5/1968 Brown 166/232 3,389,797 6/1968 Giordini 210/497.l X 3,525,139 8/1970 Fournier 29/163.5 CW
FOREIGN PATENTS OR APPLICATIONS 213,162 7/1956 Australia 210/4971 5,703 4/1906 France 2l0/497.1
Primary Examiner-David H. Brown Attorney, Agent, or Firm-Paul F. Hawley; John D. Gassett 5 7] ABSTRACT This is a special downhole multi-layer sand screen for oil and other fluids containing sand. The preferred embodiment of the sand filter includes an outer screen, an intermediate screen and an inner screen although another embodiment may have only an outer and an inner screen. The outermost screen is of larger spacing to retain only the coarser sand particles and the openings in the inner two screens are progressively smaller to retain the less coarse sand material. The coarser sand particles bridge about the larger openings in the outer screens and progressively finer sand materials bridge across the intermediate and inner screens.
7 Claims, 5 Drawing Figures PEIENYEMMM m4 38161894 sum 2 BF 4 I FIG.2
PATENTEBJM: 18 m4 3816 89 1 SHEET u or 4 32 k IFIG.3I
FIG.5
1 MULTl-LAYER WELL SAND SCREEN CROSS-REFERENCE TO RELATED APPLICATION This application is a division of co-pending application Ser. No. 077,492, now US. Pat. No. 3,712,373 entitled Multi-Layer Well Screen, filed Oct. 2, 1970, William G. Bearden and George C. Howard, inventors.
BACKGROUND OF THE INVENTION 3 I. Field ofthe Invention i This invention relates to a sand filter for producing fluids through well bores from subsurface formations. It relates especially to a multi-layer sand screen for removing the sand before it is produced through the well bore. 7
2. Setting of the Invention Oil and gas are produced from underground formations through well bores drilled from the surface to the formation. Some oil and gas are contained in the pores of consolidated rocks or sand. When this oil is produced through the well bore, it is relatively free of any rock particles or sand. However, many oil and gas wells produce fluid from underground formations which are not consolidated. That is, the various sand particles are not strongly attached to each other and when the fluid is produced it carries entrained sand with it. This sand causes serious damage to well equipment. In producing oil and gas from such unconsolidated formations some method must be provided to restrain the sand inflow into the well. There are four primary methods previously in use for this. These are:
l. Consolidation of the formation with plastic binding agent.
2. Placing a screen in the well with sufficiently small openings to prevent inflow of all undesired material.
3. Use ofa gravel pack placed in the annular area between a screen and the formation; the voids between the gravel grains being small enough to prevent inflow.
4. Placing a screen in a well consisting of a mechanical screen and a preformed gravel pack" attached to the screen.
All of these methods, with the exception of the first one. have one common characteristic; they restrain material all on one surface. This provides a perfect environment for plugging, i.e., coarse and fine materials are restrained together, permitting progressive plugging of the screen until essentially complete plugging occurs.
Method number 1, whiledesired, is very difficult and in some instances impossibleto perform in the field. Screens as descirbed in number 4 above have been utilized in the Tar Sands project of Northern Canada with success. but they are easily plugged during installation. This plugging again all occurs at essentially the outer surface of the liner.
Thus, there is a need for a sand filter which prevents such surface plugging and the tendency to plug during installation.
BRIEF DESCRIPTION OF THE INVENTION This is a well screen or sand filter which is made by wrapping multiple layers of wire around a slotted pipe connected to the lower end of a stringof tubing. The outer layer of wire forms a screen which has a wide spacing between adjacent spirals of wire which retains only the coarser sand particles. The spacing between these wires should be as great or greater than the diameter of the grain size at the five percentile point on a eumulative screen analysis curve. The spacing of the wire of the intermediate layer is smaller and is typically greater than the grain size of the diameter of the grain at the twenty percentile point of the cumulative screen analysis curve. The innermost layer, if one is used, is of a reduced spacing from that of the intermediate layer and the spacing is typically greater than the grain size at tthe fifty percentile point but less than two times the grain size at the fifteen percentile point. The pores of the sand particles trapped at the outer layer are noticeably large. The pores of sand particles become smaller at each successive layer of screen.
BRIEF DESCRIPTION OF THE DRAWINGS Various objectives and a better understanding can be had of the invention by the following description taken in conjunction with the invention in which:
FIG. 1 illustrates a downhole view of a sand screen of this invention connected to the lower end of a string of tubing.
FIG. 2 illustrates an enlarged view of the sand filter of this invention shown partly in full face and partly in cutaway.
FIG. 3 is a partial view of the multi-layer well screen indicating dimensions between the wire of the various layers.
FIG. 4 illustrates typical cumulative screen analysis curves of sand samples.
FIG. 5 illustrates an apparatus for determining the effectiveness of a sand filter.
DETAILED DESCRIPTION OF THE INVENTION Attention is first directed to FIG. 1. Shown in FIG. I is a well bore 10 having a casing 12 therein. Well bore 10 extends through formation 14 which is an unconsolidated formation which produces sand with the produced fluid. Shown in casing 12 is a tubing string 16 to which is attached a triple wire-wrapped screen filter 18 of this invention. Immediately above sand filter 18 is a plurality of centralizers 20 mounted on tubing 16. Im mediately below filter 18 is a centralizer 22. A bull plug 24 closes the lower end of the sand filter 18. Oil is produced through perforations 26 in casing 12 into annulus 28 and then through sand screen 18 and up the well bore through tubing 16. There should be some space between the outer surface of filter 18 and the inner surface of casing 12. This should be sufficient to allow washing over the screen, if necessary, when it is removed from the well. Typically for 5% inch OD casing 12, screen 18 would have a maximum OD of about 3% inches. 1
Attention is next directed to FIG. 2 which shows a cutaway view illustrating the three layers of wrapped wire of the sand filter 18. This includes an inner layer 30, an intermediate layer 32 and an outer layer 34. Spacer bars or ribs 36 hold layer 32 from layer 30 and spacer bars 38 likewise hold layer 32 from outer layer 34. A spacer bar 37 is preferably provided between the inner layer 30 and slotted pipe 40. A sufficient number of spacer bars 36, 37 and 38 are preferably provided to give the proper support and radial spacing between the various layers although such ribs are not essential. All of these layers enclose a slotted pipe section 40. Each layer, 30, 32 and 34, of the filter is made, in the example shown in FIG. 2, by a keystoneshaped wire wrapped in a slightly spiralling configuration. The spacing between the wires of the outer layer 34 is the largest and the spacing of the other layers, 32 and 30, is preferably progressively reduced. As shown in FIG. 3 the spacing between adjacent spirals of wire in the outer layer is indicated by a, the spacing of the intermediate layer by b and the innermost layer by c. For best results in most sand problems a is greater than b and b is greater than c.
To determine the dimensions of a, b and c, in the best method we presently know, one should first prepare a cumulative screen analysis curve of the sand which the screen is supposed to restrain. It is sometimes difi'lcult to obtain accurate sampling of the sand which causes the problem. However, if a well has sanded up, the sand must be removed from the well. There are conventional means for washing out such sand. The sand thus removed is collected and a sample taken of such sand. This sample is then analyzed to determine the cumulative screen analysis curve. Two such typical curves are shown in FIG. 4. The ordinate is cumulative weight percent and the abscissa represents the sand size. Curve 42 represents a sample of a Miocene sand in the High Island Field, Galveston County, Texas. Curve 44 represents a sample of the Miocene sand in the Edgerly Field, Calcasieu Parish, Louisiana. The method of obtaining these curves is rather straightforward. The sample is passed through a large screen and the weight of the sample retained is noted. Progressively smaller sized screens are used and the retention of sand on each such screen is recorded. From these data a cumulative screen analysis curve can readily be plotted. It has been found that the spacing of the wire in the various layers 30, 32 and 34 has a relationship to the cumulative screen analysis curve. Typically, the spacing of the wires of the outer layer should be equal to or slightly greater than the diameter of the sand particles or grain size at the five percentile point of the cumulative screen analysis curve for the sample of the sand which causes all the problems. The spacing of the wire of the middle'layer 32 should be equal to or slightly greater than the grain size at the twenty percentile point of the cumulative screen analysis curve and the spacing of the wire of the inner layer 30 should be greater than the sand dimension at the fifty percentile point, but less than two times the grain dimension at the fifteen percentile point. Using this criteria then for the cumulative screen analysis curve in the Miocene sand in the Edgerly Field, is greater than 0.012, b greater than 0.0084 and 0 between .007 and .018.
In using the sand filter of this invention it is seen that the pores of the sand particles trapped at the outer layer are relatively large and become smaller at each successive layer of wrapping. The innermost layer 30 is fine enough to trap the sand particles but allows passage of silty material, often contained in the water used during installation. After installation, influx and entrapment of the sand within the screen forms a pre-cast permeable filter in situ.
It is anticipated that at least in the near future the largest use of these screen filters will be in wells drilled which have experienced sanding problems. There is no great difficulty in installing the filter of the type shown in FIG. 1, for example, in these wells. The accumulated sand is washed from the well with preferably clean brine. Ordinarily there is a packer element positioned above the screen assembly. Due to this, the tubing to which the assembly is attached should be lowered at a slow rate, e.g., about one 30-foot joint per minute, to keep from surging the formation and to prevent sand from entering the well before the screen is set on bottom.
This filter device when properly sized can merely be set opposite the producing formation. When the well is produced, the unconsolidated sand will fill the annular space between the casing and the screen but it will not plug the screen because of the gradation of the openings. If desired, however, the multi-layered screen could be gravel packed in place by filling the annulus between the filter and the casing with a large sized sand. The use of the multi-layered screen in this instance will allow the use of larger sized gravel than normally used and would still resist plugging from any sand particles penetrating the gravel pack, and would provide greatly increased resistance to erosional failures, since erosion of a hole in the outer layer would not prevent the other layers from filtering.
A multi-layer well screen filter was evaluated at Pan Americans Research Center in Tulsa, Oklahoma, for its ability to restrain sand production into a well bore. In that particular well filter, three separate layers of keystone-shaped wire were wrapped around 5 /2 slotted casing. Spacing between the outer, intermediate and inner wire was 0.030 inch, 0.020 inch and 0.010 inch, respectively. The cross-sections of the wire were 0.125 X 0.125 X 0.100 inch. Each wire wrap layer was separated from the other layer by longitudinal ribs as indicated in FIG. 2. These ribs separate the layers by a distance at least as great as the dimension of the spacing between the outer of the two layers involved. Typically, these ribs separate the layers by about 0.080 inch. The use of these ribs also provides for vertical flow within the screen assembly. The filter was mounted in a flow test model as shown in FIG. 5. This includes a screen filter assembly 50 mounted within a cylindrical cell 52 which has inlets 54. Screen filter assembly 50 is connected to an upper pipe section 56 and a lower pipe section 58. These two sections are sealed with cell 52. Cell 52 has a top 60 so that sand 62 can be placed within the cell. In one experiment sand 62 was a clean Athabasca Tar Sand which has a fifty percentile grain diameter of about 0.0058 inch. Its grain size distribution falls between the two curves of FIG. 4. Diesel oil was flowed inwardly through inlets 54 through the sand 62, the screen filter assembly 50 and out the lower pipe 58 and valve 64. The data obtained in the performance of this test are summarized in Table I below:
TABLE I Summary of Flow Test Data The data shown in Table 1 indicate that approximately 88 grams of sand were produced while flowing the initial approximately 3,000 gallons (72 bbls) of diesel oil through the sand-packed screen and that only a trace of fines were produced with the last 789 gallons of fluid (18.8 bbls). The amount of sand produced per unit volume decreases sharply with the successive rungs, indicating that effective bridging of the sand particles occurred after flowing a relatively small volume of fluid through the screen. Theoretically, only these fines should continue to be produced. In actual field practice a trace of fines would not produce any difficulties with well equipment. The data also indicate that very high production rates may be maintained with a multi-layer screen.
A triple wire wrapped screen as described in FIG. 2 and having spacings of a of 0.030, b of 0.020 and c of 0.010 was built and then placed on test in the Edgerly Field, Calcasicu Parish, Louisiana. For five months now the well has produced 120 barrels of fluid per day with about a 60 percent water cut. No sand has been produced and no apparent restriction in the flow capacity of the screen has been observed. Only future production history will determine the duration or time that this filter is effective. In the past, gravel pack sand retention means had been provided. The gravel pack causes a certain amount of flow restriction and ordi narily has to be replaced and cleaned every /2-24 months.
Another recent installation of the screen assembly was made in the High Island Field, Galveston County, Texas. A sand screen assembly was installed in which the dimensions of the spacing between the various layers of screens a, b and c equaled 0.030 inch, 0.015 inch and 0.008 inch, respectively. Initially, the well pro duced 120 barrels of load fluid and 300 barrels of oil with no show of sand. However, after about 3 /2 months the assembly became plugged. The exact cause of the plugging has not been determined. However, it is the preliminary opinion that most of the plugging was caused by hack-washing with dirty fluid. Since these installations, similar screens have been satisfactorily installed in several other wells with apparent good results.
While the above embodiments have been described with a great amount of detail, it is possible to make other variations without departing from the'spirit and the scope of the invention.
We claim:
1. A method of constructing amulti-layer screen filter assembly for use in a well drilled to a fluid producing formation containing unconsolidated sand which comprises:
obtaining for said unconsolidated sand a cumulative screen analysis curve which provides an indication of the grain sizes of the sand at various percentile points including the 50 percentile point, the 20 percentile point. the percentile point and the 5 percentile point; forming an inner screen having a spacing c which is greater than the size of the sand at about the 50 percentile point and less than two times the grain dimension of the sand at about the 15 percentile point of the said cumulative sand analysis curve; forming an intermediate screen spaced around said inner screen and having a spacing b which is greater than the sand dimension at about the 20 percentile point of said cumulative screen analysis curve, b being selected to be greater than c;
forming an outer screen spaced about said intermediate screen and having a spacing a which is greater than the sand dimension at about the 5 percentile point of said cumulative screen analysis curve, a being selected to be greater than b; and
closing the spaces at the upper end and the lower end between the three screens.
2. A method as defined in claim 1 including the step of providing vertical spacers bars between the screens providing radial spacing between the outer and intermediate screens at least equal to a and providing radial spacing between the intermediate and the inner screen equal to or greater than b.
3. A method as defined in claim 1 in which the step of forming each screen includes the step of winding a wire segmeg into a cylindrical shape.
4. A method as defined in claim 3 including the step of providing vertical spacer bars between the screens providing radial spacing between the outer and intermediate screens at least equal to a and providing radial spacing between the intermediate and the inner screen equal to or greater than b.
5. A method of constructing a multi-layer sand screen filter assemy for use in a well drilled to a fluidproducing formation containing unconsolidated sand which comprises:
collecting a sample of sand from said formation;
obtaining for said collected sand a cumulative screen analysis curve providing an indication of grain size at various percentile points including the grain sizes of the sand at a first percentile point, at a second percentile point, and a third percentile point;
winding a wire segment into an inner cylindrical member having a spacing 0 between adjacent turns which is greater than the size of the sand at said first percentile point of said cumulative sand analysis curve; winding a wire segment into an intermediate cylindrical member spaced around said inner cylindrical member and having a spacing b which is about equal to the sand dimension at the second percentile point of said cumulative screen analysis cue, b being greater than c;
winding a third wire segment into an outer cylindrical member spaced around said intermediate cylindrical member and having a spacing a which is about equal to sand dimension at the said third percentile point of said cumulative screen analysis curve, a being greater than b;
closing the spaces at the upper end and the lower end between the three cylindrical wire segments.
6. A method as defined in claim 5 including the step of providing vertical spacer bars between the outer and intermediate cylindrical members for a spacing at least equal to a and further providing radial spacing bars between the intermediate and inner cylindrical members for a spacing equal to or greater that b.
7. A method as defined in claim 5 in which said first, second and third percentile points are about 50, 20, and 5.

Claims (7)

1. A method of constructing a multi-layer screen filter assembly for use in a well drilled to a fluid-producing formation containing unconsolidated sand which comprises: obtaining for said unconsolidated sand a cumulative screen analysis curve which provides an indication of the grain sizes of the sand at various percentile points including the 50 percentile point, the 20 percentile point, the 15 percentile point and the 5 percentile point; forming an inner screen having a spacing c which is greater than the size of the sand at about the 50 percentile point and less than two times the grain dimension of the sand at about the 15 percentile point of the said cumulative sand analysis curve; forming an intermediate screen spaced around said inner screen and having a spacing b which is greater than the sand dimension at about the 20 percentile point of said cumulative screen analysis curve, b being selected to be greater than c; forming an outer screen spaced about said intermediate screen and having a spacing a which is greater than the sand dimension at about the 5 percentile point of said cumulative screen analysis curve, a being selected to be greater than b; and closing the spaces at the upper end and the lower end between the three screens.
2. A method as defined in claim 1 including the step of providing vertical spacers bars between the screens providing radial spacing between the outer and intermediate screens at least equal to a and providing radial spacing between the intermediate and the inner screen equal to or greater than b.
3. A method as defined in claim 1 in which the step of forming each screen includes the step of winding a wire segmeg into a cylindrical shape.
4. A method as defined in claim 3 including the step of providing vertical spacer bars between the screens providing radial spacing between the outer and intermediate screens at least equal to a and providing radial spacing between the intermediate and the inner screen equal to or greater than b.
5. A method of constructing a multi-layer sand screen filter assemy for use in a well drilled to a fluid-producing formation containing unconsolidated sand which comprises: collecting a sample of sand from said formation; obtaining for said collected sand a cumulative screen analysis curve proviDing an indication of grain size at various percentile points including the grain sizes of the sand at a first percentile point, at a second percentile point, and a third percentile point; winding a wire segment into an inner cylindrical member having a spacing c between adjacent turns which is greater than the size of the sand at said first percentile point of said cumulative sand analysis curve; winding a wire segment into an intermediate cylindrical member spaced around said inner cylindrical member and having a spacing b which is about equal to the sand dimension at the second percentile point of said cumulative screen analysis cue, b being greater than c; winding a third wire segment into an outer cylindrical member spaced around said intermediate cylindrical member and having a spacing a which is about equal to sand dimension at the said third percentile point of said cumulative screen analysis curve, a being greater than b; closing the spaces at the upper end and the lower end between the three cylindrical wire segments.
6. A method as defined in claim 5 including the step of providing vertical spacer bars between the outer and intermediate cylindrical members for a spacing at least equal to a and further providing radial spacing bars between the intermediate and inner cylindrical members for a spacing equal to or greater that b.
7. A method as defined in claim 5 in which said first, second and third percentile points are about 50, 20, and 5.
US00298152A 1970-10-02 1972-11-06 Multi-layer well sand screen Expired - Lifetime US3816894A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US00077492A US3712373A (en) 1970-10-02 1970-10-02 Multi-layer well screen
GB4306671A GB1367535A (en) 1970-10-02 1971-09-15 Multi-layer well screen
DE19712148161 DE2148161C (en) 1970-10-02 1971-09-27 Sand coil gap filter, sand coil gap filter arrangement and multi-layer coil gap filter arrangement for boreholes
FR7135490A FR2110183B1 (en) 1970-10-02 1971-10-01
US00298152A US3816894A (en) 1970-10-02 1972-11-06 Multi-layer well sand screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7749270A 1970-10-02 1970-10-02
US00298152A US3816894A (en) 1970-10-02 1972-11-06 Multi-layer well sand screen

Publications (1)

Publication Number Publication Date
US3816894A true US3816894A (en) 1974-06-18

Family

ID=26759323

Family Applications (2)

Application Number Title Priority Date Filing Date
US00077492A Expired - Lifetime US3712373A (en) 1970-10-02 1970-10-02 Multi-layer well screen
US00298152A Expired - Lifetime US3816894A (en) 1970-10-02 1972-11-06 Multi-layer well sand screen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US00077492A Expired - Lifetime US3712373A (en) 1970-10-02 1970-10-02 Multi-layer well screen

Country Status (3)

Country Link
US (2) US3712373A (en)
FR (1) FR2110183B1 (en)
GB (1) GB1367535A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064938A (en) * 1976-01-12 1977-12-27 Standard Oil Company (Indiana) Well screen with erosion protection walls
US4421646A (en) * 1976-07-28 1983-12-20 Societe Nationale Elf Aquitaine (Production) Filtering device
US4657079A (en) * 1980-12-11 1987-04-14 Nagaoka Kanaai Kabushiki Kaisha Screen
US4818403A (en) * 1985-12-27 1989-04-04 Nagaoka Kanaami Kabushiki Kaisha Double cylinder screen
US5611399A (en) * 1995-11-13 1997-03-18 Baker Hughes Incorporated Screen and method of manufacturing
US5642781A (en) * 1994-10-07 1997-07-01 Baker Hughes Incorporated Multi-passage sand control screen
US5849188A (en) * 1995-04-07 1998-12-15 Baker Hughes Incorporated Wire mesh filter
US6006829A (en) * 1996-06-12 1999-12-28 Oiltools International B.V. Filter for subterranean use
US20020178582A1 (en) * 2000-05-18 2002-12-05 Halliburton Energy Services, Inc. Methods of fabricating a thin-wall expandable well screen assembly
US20040007058A1 (en) * 2002-07-09 2004-01-15 Erik Rylander Formation testing apparatus and method
US6715544B2 (en) 2000-09-29 2004-04-06 Weatherford/Lamb, Inc. Well screen
US6848510B2 (en) 2001-01-16 2005-02-01 Schlumberger Technology Corporation Screen and method having a partial screen wrap
US20070199973A1 (en) * 2006-02-27 2007-08-30 Ruediger Tueshaus Tubular filter material machine and methods
US20070199889A1 (en) * 2006-02-27 2007-08-30 Ruediger Tueshaus Tubular filter material assemblies and methods
EP2013444A2 (en) * 2006-05-04 2009-01-14 Purolator Facet, Inc. Particle control screen with depth filtration
US20090045130A1 (en) * 2007-08-17 2009-02-19 Huan-Jun Chien Construction of the wedge filtration media laminated by wedge filter plate
EP2454448A2 (en) * 2009-07-15 2012-05-23 Baker Hughes Incorporated Apparatus and method for controlling flow of solids into wellbores using filter media containing an array of three-dimensional elements
US8230913B2 (en) 2001-01-16 2012-07-31 Halliburton Energy Services, Inc. Expandable device for use in a well bore
US20120211408A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter With Internal Support Structures
US20120211411A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method
US8844627B2 (en) 2000-08-03 2014-09-30 Schlumberger Technology Corporation Intelligent well system and method
NO342297B1 (en) * 2006-05-04 2018-04-30 Purolator Facet Inc Particle control screen with depth filtration and method for filtering a fluid
RU200711U1 (en) * 2020-08-26 2020-11-06 Айдар Данирович Музипов OIL WELL FILTER
US20210146291A1 (en) * 2019-11-14 2021-05-20 Paul NEISER Filtration apparatus and method
US11927082B2 (en) 2019-02-20 2024-03-12 Schlumberger Technology Corporation Non-metallic compliant sand control screen

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937281A (en) * 1974-06-27 1976-02-10 Texaco Inc. High load self-cleaning helical spring filters
FR2319403A1 (en) * 1975-07-31 1977-02-25 Erap FILTRATION DEVICE
US4434054A (en) * 1982-12-20 1984-02-28 Texaco Canada Resources Ltd. Filter for separating discrete solid elements from a fluid stream
AU614020B2 (en) * 1988-06-07 1991-08-15 Leigh, John Walton Apertured pipe segment
JP2891568B2 (en) * 1991-08-09 1999-05-17 株式会社ナガオカ Screen with protective frame for horizontal or inclined wells
JP2891582B2 (en) * 1991-12-27 1999-05-17 株式会社ナガオカ Method of manufacturing selective isolation screen
US5460416A (en) * 1993-08-02 1995-10-24 Ameron, Inc. Perforated fiber reinforced pipe and couplings for articulating movement
US5411084A (en) * 1994-06-13 1995-05-02 Purolator Products N.A., Inc. Sand filter system for use in a well
DE9419512U1 (en) 1994-12-06 1995-02-02 Mann & Hummel Filter Flange, in particular for a device for separating oil aerosol from air
DE4446261C2 (en) * 1994-12-23 1996-10-31 Mann & Hummel Filter Gap filter for liquids or gases
US6089316A (en) 1997-08-01 2000-07-18 Spray; Jeffery A. Wire-wrapped well screen
AU738914C (en) * 1997-10-16 2002-04-11 Halliburton Energy Services, Inc. Methods and apparatus for completing wells in unconsolidated subterranean zones
GB0224807D0 (en) 2002-10-25 2002-12-04 Weatherford Lamb Downhole filter
US6478091B1 (en) * 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US6457518B1 (en) * 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
US6698518B2 (en) * 2001-01-09 2004-03-02 Weatherford/Lamb, Inc. Apparatus and methods for use of a wellscreen in a wellbore
US20020088744A1 (en) * 2001-01-11 2002-07-11 Echols Ralph H. Well screen having a line extending therethrough
JP4372427B2 (en) * 2003-01-20 2009-11-25 株式会社日立製作所 Storage device controller
US20070246212A1 (en) * 2006-04-25 2007-10-25 Richards William M Well screens having distributed flow
US8002983B2 (en) * 2007-04-10 2011-08-23 Exxonmobil Research & Engineering Company Back flushable strainer device
SG10201602806RA (en) * 2011-10-12 2016-05-30 Exxonmobil Upstream Res Co Fluid filtering device for a wellbore and method for completing a wellbore
CN114653111B (en) * 2022-03-29 2023-06-23 孙非 Screen pipe convenient to clearance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US713544A (en) * 1901-10-04 1902-11-11 John Mckenzie Strainer for well-tubing.
US1406825A (en) * 1919-06-04 1922-02-14 John A Dobson Oil-well screen
US2458118A (en) * 1945-02-08 1949-01-04 Charles M Tursky Adjustable strainer
US2729294A (en) * 1953-08-07 1956-01-03 Carrol Vernon Radke Well screen
US2877852A (en) * 1954-09-20 1959-03-17 Frank J Bashara Well filters
US3101526A (en) * 1960-02-12 1963-08-27 Edward E Johnson Inc Process for fabricating screens
US3385373A (en) * 1966-10-27 1968-05-28 James D. Brown Well screen with reinforced plastic rope wrap
US3389797A (en) * 1965-12-20 1968-06-25 Bendix Corp Filtering system having dual cleaning means
US3525139A (en) * 1966-01-26 1970-08-25 Universal Oil Prod Co Method of making reinforced oval-form tubular screens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US85428A (en) * 1868-12-29 Sachusetts
US65276A (en) * 1867-05-28 John w

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US713544A (en) * 1901-10-04 1902-11-11 John Mckenzie Strainer for well-tubing.
US1406825A (en) * 1919-06-04 1922-02-14 John A Dobson Oil-well screen
US2458118A (en) * 1945-02-08 1949-01-04 Charles M Tursky Adjustable strainer
US2729294A (en) * 1953-08-07 1956-01-03 Carrol Vernon Radke Well screen
US2877852A (en) * 1954-09-20 1959-03-17 Frank J Bashara Well filters
US3101526A (en) * 1960-02-12 1963-08-27 Edward E Johnson Inc Process for fabricating screens
US3389797A (en) * 1965-12-20 1968-06-25 Bendix Corp Filtering system having dual cleaning means
US3525139A (en) * 1966-01-26 1970-08-25 Universal Oil Prod Co Method of making reinforced oval-form tubular screens
US3385373A (en) * 1966-10-27 1968-05-28 James D. Brown Well screen with reinforced plastic rope wrap

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064938A (en) * 1976-01-12 1977-12-27 Standard Oil Company (Indiana) Well screen with erosion protection walls
US4421646A (en) * 1976-07-28 1983-12-20 Societe Nationale Elf Aquitaine (Production) Filtering device
US4657079A (en) * 1980-12-11 1987-04-14 Nagaoka Kanaai Kabushiki Kaisha Screen
US4818403A (en) * 1985-12-27 1989-04-04 Nagaoka Kanaami Kabushiki Kaisha Double cylinder screen
US5642781A (en) * 1994-10-07 1997-07-01 Baker Hughes Incorporated Multi-passage sand control screen
US5980745A (en) * 1994-10-07 1999-11-09 Baker Hughes Incorporated Wire mesh filter
US5849188A (en) * 1995-04-07 1998-12-15 Baker Hughes Incorporated Wire mesh filter
US5611399A (en) * 1995-11-13 1997-03-18 Baker Hughes Incorporated Screen and method of manufacturing
US6006829A (en) * 1996-06-12 1999-12-28 Oiltools International B.V. Filter for subterranean use
US20020178582A1 (en) * 2000-05-18 2002-12-05 Halliburton Energy Services, Inc. Methods of fabricating a thin-wall expandable well screen assembly
US6799686B2 (en) 2000-05-18 2004-10-05 Halliburton Energy Services, Inc. Tubular filtration apparatus
US6941652B2 (en) * 2000-05-18 2005-09-13 Halliburton Energy Services, Inc. Methods of fabricating a thin-wall expandable well screen assembly
US8844627B2 (en) 2000-08-03 2014-09-30 Schlumberger Technology Corporation Intelligent well system and method
US6715544B2 (en) 2000-09-29 2004-04-06 Weatherford/Lamb, Inc. Well screen
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45099E1 (en) 2000-10-20 2014-09-02 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45244E1 (en) 2000-10-20 2014-11-18 Halliburton Energy Services, Inc. Expandable tubing and method
US8230913B2 (en) 2001-01-16 2012-07-31 Halliburton Energy Services, Inc. Expandable device for use in a well bore
US6848510B2 (en) 2001-01-16 2005-02-01 Schlumberger Technology Corporation Screen and method having a partial screen wrap
US20040007058A1 (en) * 2002-07-09 2004-01-15 Erik Rylander Formation testing apparatus and method
US7155967B2 (en) * 2002-07-09 2007-01-02 Schlumberger Technology Corporation Formation testing apparatus and method
US20070199973A1 (en) * 2006-02-27 2007-08-30 Ruediger Tueshaus Tubular filter material machine and methods
US20070199889A1 (en) * 2006-02-27 2007-08-30 Ruediger Tueshaus Tubular filter material assemblies and methods
NO342297B1 (en) * 2006-05-04 2018-04-30 Purolator Facet Inc Particle control screen with depth filtration and method for filtering a fluid
EP2013444A2 (en) * 2006-05-04 2009-01-14 Purolator Facet, Inc. Particle control screen with depth filtration
EP2013444A4 (en) * 2006-05-04 2014-11-19 Purolator Facet Inc Particle control screen with depth filtration
US8083941B2 (en) * 2007-08-17 2011-12-27 Huan-Jun Chien Construction of the wedge filtration media laminated by wedge filter plate
US20090045130A1 (en) * 2007-08-17 2009-02-19 Huan-Jun Chien Construction of the wedge filtration media laminated by wedge filter plate
EP2454448A4 (en) * 2009-07-15 2014-07-09 Baker Hughes Inc Apparatus and method for controlling flow of solids into wellbores using filter media containing an array of three-dimensional elements
EP2454448A2 (en) * 2009-07-15 2012-05-23 Baker Hughes Incorporated Apparatus and method for controlling flow of solids into wellbores using filter media containing an array of three-dimensional elements
US20120211411A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter
US20120211408A1 (en) * 2011-02-21 2012-08-23 Purolator Facet, Inc. Extended Area Filter With Internal Support Structures
US11927082B2 (en) 2019-02-20 2024-03-12 Schlumberger Technology Corporation Non-metallic compliant sand control screen
US20210146291A1 (en) * 2019-11-14 2021-05-20 Paul NEISER Filtration apparatus and method
RU200711U1 (en) * 2020-08-26 2020-11-06 Айдар Данирович Музипов OIL WELL FILTER

Also Published As

Publication number Publication date
FR2110183A1 (en) 1972-06-02
FR2110183B1 (en) 1974-03-29
US3712373A (en) 1973-01-23
DE2148161A1 (en) 1972-04-06
GB1367535A (en) 1974-09-18

Similar Documents

Publication Publication Date Title
US3816894A (en) Multi-layer well sand screen
Matanovic et al. Sand control in well construction and operation
US7048048B2 (en) Expandable sand control screen and method for use of same
US5004049A (en) Low profile dual screen prepack
US2905245A (en) Liner packing method
US6857476B2 (en) Sand control screen assembly having an internal seal element and treatment method using the same
US20040134655A1 (en) Sand control screen assembly having an internal isolation member and treatment method using the same
US5938925A (en) Progressive gap sand control screen and process for manufacturing the same
US5690175A (en) Well tool for gravel packing a well using low viscosity fluids
CA2119521A1 (en) Sand screen completion
Schwartz Successful sand control design for high rate oil and water wells
US3768557A (en) Prepacked multi-graded sand screen
CA2871591A1 (en) Wellbore screens and methods of use thereof
USRE31604E (en) Multi-layer well screen
US6152218A (en) Apparatus for reducing the production of particulate material in a subterranean well
AU2004304246B2 (en) Wellbore gravel packing apparatus and method
US5411090A (en) Method for isolating multiple gravel packed zones in wells
Gringarten et al. Evaluating fissured formation geometry from well test data: a field example
US2171884A (en) Method of finishing oil wells with gravel packs
US2083625A (en) Method of depositing foraminate beds around well casings
Clark et al. Experiments to assess the hydraulic efficiency of well screens
Matanovic et al. Sand control methods
Baker et al. Large scale NORM/NOW disposal through slurry waste injection: Data Analysis and Modeling
US3548937A (en) Retrievable well screen
Asadpour et al. A Short Review of Sand Production Control