US3815673A - Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations - Google Patents

Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations Download PDF

Info

Publication number
US3815673A
US3815673A US00226843A US22684372A US3815673A US 3815673 A US3815673 A US 3815673A US 00226843 A US00226843 A US 00226843A US 22684372 A US22684372 A US 22684372A US 3815673 A US3815673 A US 3815673A
Authority
US
United States
Prior art keywords
drilling fluid
pressure
drilling
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00226843A
Inventor
G Bruce
W Ilfrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Priority to US00226843A priority Critical patent/US3815673A/en
Priority to CA158,880A priority patent/CA967550A/en
Application granted granted Critical
Publication of US3815673A publication Critical patent/US3815673A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/001Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure

Definitions

  • a surface detectable signal is generated which is proportional to the hydrostatic head exerted by the drilling fluid within the return conduit.
  • Hydrostatic head of the drilling fluid within the return conduit is controlled in response to the signal, as by injecting gas into the conduit near its lower end, to regulate the hydrostatic head of the fluid in the borehole.
  • This invention relates to an improved system for drilling from a floating vessel which involves monitoring and controlling the hydrostatic head of the drilling fluid returns to control bottom hole pressure.
  • Control of the influx of fluid from pressurized subsurfaceformations is an important aspect of any drilling operation. If uncontrolled, fluid influx can lead to a blowout and fire, frequently with catastrophic results in terms of loss of life, damage to property, and pollution of the seaway.
  • well control is established by maintaining the density of the drilling fluid and thus the hydrostatic pressure exerted on the subsurface formations at a level sufficient to overcome formation pressures.
  • caution is necessary to assure that the density and hence pressure gradient of the column of fluid does not exceed the natural fracture gradient of the formation, i.e., the pressure gradient necessary to initiate and propagate a fracture in the formation.
  • the natural fracture gradient of shallow formations is particularly critical factor. It isdirectly related to the bulk density of the sediments resting on top of the pressurized formation and thus at the floor of the body of water is for all practical purposes the pressure gradient of water.
  • the natural fracture gradient will be greatly influenced by thegradient of the overlying body of water. Because of the higher bulk density of rock, however, the fracture gradient rapidly increases with the depth of penetration into the sea floor and will not represent a serious problem after the first few thousand feet of hole are drilled.
  • the hydrostatic head of the drilling fluid should not greatly exceed that of a column of salt water to minimize the possibility of formation fracture.
  • normally pressured formations have a pressure similar to that exerted by a column of salt water corresponding to formation depth. It will therefore be apparent that in deep water, achieving a hydrostatic head high enough to control the well and yet low enough to prevent fracturing subsurface formations will require careful control of the pressure gradient of the drilling fluid.
  • the present invention permits close control over the pressure gradient of the drilling fluid at no sacrifice of penetration rate and with no increase in circulation rate and thus alleviates the difflculties encountered in deep water drilling which are outlined above.
  • the hydrostatic pressure exerted by the drilling fluid within the drilling riser or other return conduit is monitored and its density is regulated to control the hydrostatic head of the mud column and thereby assuresufficient hydrostatic pressure to counterbalance formation pressures without exceeding their fracture gradients.
  • the system of the present invention is particularly applicable to drilling operations wherein a floating vessel is situated at the surface of a body of water above a wellhead positioned on the floor thereof. Drilling fluid is introduced into a drill string that extends between the vessel and wellhead and is returned through a separate conduit.
  • the apparatus of the invention includes a means mounted on the conduit for generating a signal proportional to the pressure therein and detectable at said vessel.
  • the method involves monitoring the hydrostatic head of the fluid flowing within the conduit and regulating its density to control the hydrostatic head of the column of drilling fluid acting on subsurface formations.
  • the pressure gradient of the fluid within the return conduit can be reduced by injecting gas into the conduit.
  • the rate of gas injection is controlled in response to the pressure within the riser to maintain the hydrostatic head at a substantially constant level, thereby assuring the proper hydrostatic head will be maintained on formations exposed to the borehole.
  • the present invention will permit the hydrostatic pressures exerted by drilling fluids and entrained .cuttings to be closely controlled without any substantial reduction in drilling rate or-increase in circulation rate.
  • the present invention thus permits control of pressurized formations during normaldrilling operations while reducing the danger of exceeding their fracture gradients and offers significant advantages over systems existing heretofore.
  • FIG. 1 depicts typical curves relating fracture gradient to formation depths beneath the water surface.
  • FIG. 2 is an elevation view, partially in'section, of a floating drilling vessel provided with apparatus necessary to carry out the method of the invention.
  • FIG. 3 is a schematic flow diagram of a system for monitoring and regulating the hydrostatic head of the drilling fluid within the return conduit in accordance with the present invention.
  • FIG. 1 is a plot of formation depth in thousands of feet versus the natural fracture gradient expressed both in psi/ft and as an equivalent mud density in lbs/gal (ppg). The curves shown are for a particular geographic area but illustrate the general relationship between water depth and formation fracture gradient. It will be apparent from an inspection of FIG. 1 that for any particular depth from the water surface, the fracture gradient decreases markedly as water depth increases.
  • Curve A relates the fracture gradients of formations encountered onshore to depth. These range from 0.60 psi/ft at 1,000 ft up to about 0.69 psi/ft at 3,000 ft. Curve B is for similar strata at a water depth of 750 ft. The fracture gradient is thus that of sea water, about 0.44 psi/ft, for depths to 750 ft. A formation buried under 1,000 ft of sediments is 1,750 ft below the water surface and will be noted to have a fracture gradient-on the order of 0.54 psi/ft. The gradient at 3,000 ft beneath the sea floor (3,750 ft below the water surface) is 0.64 psi/ft.
  • Curve C represents identical sediments under l,500 ft of water.
  • the natural fracture gradient for a formation under 1,000 ft of sediments corresponds to a depth of 2,500 ft and will be noted to be 0.51 psi/ft, corresponding to a mud weight just under ppg.
  • the fracture gradient is 0.61 psi/ft. It will therefore be apparent that for any particular depthof penetration into the substrata, the fracture gradient decreases as water depth increases.
  • a normally pressured subsurface formation can be anticipated to have a formation pressure equivalent to the pressure exerted by a column of salt water having'a height equal to formation depth.
  • a gas formation 1,000 ft beneath the floor of a 1,500 ft body of water could therefore be expected to have a pressure equal to the product of the salt water gradient and the depth of the formation beneath the water surface or about 1,1 10 psi and a drilling fluid having a salt water gradient (0.445 psi/ft, or about 8.5 ppg) could be expected to balance the formation pressure.
  • An alternative approach is to drill at a rapid penetration rate and at the same time reduce the bottom hole pressure of the drilling fluid by injecting gas orother low density material into the riser to lighten the mud.
  • a gas injection program undertaken in deep water requires careful control to assure that the hydrostatic head of the drilling fluid remains between that necessary to control the well and that which would result in a fracturing of the formation.
  • Control of fluid density is preferably accomplished by injecting gas into the riser near the lower end at a rate regulated in response to the pressure therewithin to' maintain the total hydrostatic head of the drilling fluid acting on a subsurface formation within the range necessary to assure control of the well without fracturing the formation.
  • FIG. 2 shows a drilling vessel 11 floating on a body of water 13 and equipped to carry out the method of the present invention.
  • a wellhead 15 is positioned on the floor 17 of the body of water.
  • a drill string 19 is susand 1,275 psi. This in turn dictates a mud density bepended from derrick 21 mounted on the vessel and extends between it and the wellhead.
  • Drilling fluid is pumped down the string of drill pipe through the bit and into the borehole and returns to the vessel via a return condit shown as drilling riser 23.
  • a high pressure gas source 25 is situated aboard the vessel.
  • Injection conduit 31 extends from the control valve down the length of the riser to a level near the wellhead.
  • One or preferably a plurality of gas lift valves 33 are positioned between the injection line and the drilling riser.
  • the lift valves are normally preset to open at a given differenf tial pressure.
  • a pressure sensor 35 is shown positioned near the lower end of the drilling riser and arranged to sense riser internal pressure. It may for example be a pressure transducer which generates an electrical signal proportional to pressure within the return'conduit.
  • the signal is conducted to the surface by means of elec trical .conductor 37 extending between the pressure transducer and the drilling vessel. It may be directed to controller 39 which controls the position of routing valve 29 in response to the amplitude of the pressure signal to regulate the rate at which gas is introduced into the lower portion of the drilling riser.
  • controller 39 controls the position of routing valve 29 in response to the amplitude of the pressure signal to regulate the rate at which gas is introduced into the lower portion of the drilling riser.
  • FIG. 3 is an exemplary flow diagram of apparatus which can be used to implement the method of the invention.
  • An inert gas source is designated by numeral 41 and is preferably engine exhaust gas or the product from an inert gas generator. Exhaust gas is routed through conduit 43 to gas treater 45. Nitrogen oxide and water are separated from the source gas and the residue, which consists primarily of nitrogen, carbon dioxide and water, is piped through conduit 47 to compressor 49. The gas is then compressed through stages, as required, to sufficiently increase its pressure. For depths of l,000-2,000 ft, 1,500 psi will normally suffice. The high pressure gas is conveyed to cooler 53 which condenses any residual water and cools the compressed gas to about 100F.
  • the dry, high pressure gas passes from treating unit 53 via line 27 to routing valve 29.
  • release valve 55 opens and discharges the gas through exhaust line 57, returning the inert gas to the atmosphere.
  • routing valve 29 diverts part of the gas down injection line 31 to lighten the drilling fluid and recycles the remainder through conduit 59 leading back to the compressor.
  • the percentage of gas diverted into the riser is controlled by valve controller 39 in response to a surface detectable signal proportional to pressure within the riser which is generated from pressure sensor 35 situated near the base of the riser and may, for example, be conducted to the vessel by means of electrical conductor 37 leading to the valve controller.
  • the signal could alternatively be transmitted acoustically, pneumatically or by other means as well.
  • High pressure gas routed into injection conduit 31 travels downwardly and into the riser through differential-pressure actuated gas lift valves 33. These valves are preferably vertically spaced to assist in unloading the riser whenever drilling operations have been interrupted for a period of time.
  • Gas is injected into the interior of the conductor pipe in the annulus surrounding the drill pipe and the lift gas and drilling fluid flow upwardly to rotating drilling head 61 which diverts the gas-mud mixture away from the drill floor. Both gas and mud are diverted through conduit 63 to separator 65 wherein the inert gas is separated from the mud as by means of gravity segregation. The gas is exhausted to the atmosphere via exhaust conduit 57 while the mud is returned through line 67 to the mud pits for recirculation.
  • a floating vessel is situated at the surface of a body of water and drilling fluid is introduced into a drill string extending from the vessel into a borehole in the floor of the body of water and returned to the vessel through a separate conduit which conduit is provided with means for injecting a gas thereinto near its lower end
  • the improvement comprising measuring the hydrostatic pressure of the drilling fluid within said return conduit beneath the gas injection point and adjusting the pressure gradient of the fluid contained within the return conduit to maintain the hydrostatic pressure of the drilling fluid within the borehole at a level sufficient to counterbalance formation pressure without exceeding its fracture gradient.

Abstract

An improved system for offshore drilling is disclosed which is particularly useful in those operations where a floating vessel is situated at the surface of a body of water and circulation of drilling fluid is accomplished by introducing drilling fluid into a drill string extending from the vessel into a borehole in the floor of the body of water and returning it through a separate conduit to the vessel. A surface detectable signal is generated which is proportional to the hydrostatic head exerted by the drilling fluid within the return conduit. Hydrostatic head of the drilling fluid within the return conduit is controlled in response to the signal, as by injecting gas into the conduit near its lower end, to regulate the hydrostatic head of the fluid in the borehole.

Description

United States Patent [1 1 Bruce et al.
METHOD AND APPARATUS FOR CONTROLLING I'IYDROSTATIC PRESSURE GRADIENT IN OFFSHORE DRILLING OPERATIONS Inventors: George H. Bruce; William T. Ilfrey,
both of Houston, Tex.
Esso Production Research Company, Houston, Tex.
Filed: Feb. 16, 1972 Appl. No.: 226,843
Assignee:
McNeilI et al.
Bauer ct al.
Townsend 175/5 Ragland et a1 175/69 1 June 11, 1974 3,459,259 8/1969 Matthews 175/7 X 3,595,075 7/1971 Dower v 175/48 3,603,409 9/1971 Watkins 175/25 Primary Examiner-Henry C. Sutherland Assistant Examiner-Richard E. Favreau Attorney, Agent, or Firm-James E. Gilchrist [57] ABSTRACT An improved system for offshore drilling is disclosed which is particularly useful in those operations where a floating vessel is situated at the surface of a body of water and circulation of drilling fluid is accomplished by introducing drilling fluid into a drill string extending from the vessel into a borehole in the floor of the body of water and returning it through a separate conduit to the vessel. A surface detectable signal is generated which is proportional to the hydrostatic head exerted by the drilling fluid within the return conduit. Hydrostatic head of the drilling fluid within the return conduit is controlled in response to the signal, as by injecting gas into the conduit near its lower end, to regulate the hydrostatic head of the fluid in the borehole.
2 Claims, 3 Drawing Figures \PATENTEDJUN 1 1 mm DEPTH FROM WATER SURFACE IOOO FEET SHEET 10F 3 FIG.|
METHOD AND APPARATUS FOR CONTROLLING HYDROSTATIC PRESSURE GRADIENT IN OFFSHORE DRILLING OPERATIONS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improved system for drilling from a floating vessel which involves monitoring and controlling the hydrostatic head of the drilling fluid returns to control bottom hole pressure.
2. Description of the Prior Art In recent years the search for offshore deposits of crude oil and natural gas has been extended into ever deeper waters overlying the continental shelves. With increased water depths the conduct of drilling operations from floating vessels has become more prevalent since economic considerations militate against the use of bottom-founded drilling platforms commonly used in shallow water. In these operations the drill rig and associated equipment are positioned aboard a floating vessel which is stationed over the wellsite. The drill string extends from the vessel to a wellhead situated on the floor of the body of water and a separate return conduit, normally a riser pipe, is provided to permit circulation of drilling fluid.
Control of the influx of fluid from pressurized subsurfaceformations is an important aspect of any drilling operation. If uncontrolled, fluid influx can lead to a blowout and fire, frequently with catastrophic results in terms of loss of life, damage to property, and pollution of the seaway. Conventionally, well control is established by maintaining the density of the drilling fluid and thus the hydrostatic pressure exerted on the subsurface formations at a level sufficient to overcome formation pressures. At the same time, caution is necessary to assure that the density and hence pressure gradient of the column of fluid does not exceed the natural fracture gradient of the formation, i.e., the pressure gradient necessary to initiate and propagate a fracture in the formation.
In deep water, the natural fracture gradient of shallow formations is particularly critical factor. It isdirectly related to the bulk density of the sediments resting on top of the pressurized formation and thus at the floor of the body of water is for all practical purposes the pressure gradient of water. For a formation situated 500 feet below the floor of a body of water having a depth of 2,000 feet, the natural fracture gradient will be greatly influenced by thegradient of the overlying body of water. Because of the higher bulk density of rock, however, the fracture gradient rapidly increases with the depth of penetration into the sea floor and will not represent a serious problem after the first few thousand feet of hole are drilled.
During the drilling of the surface hole (the first few thousand feet) the hydrostatic head of the drilling fluid should not greatly exceed that of a column of salt water to minimize the possibility of formation fracture. On the other hand normally pressured formations have a pressure similar to that exerted by a column of salt water corresponding to formation depth. It will therefore be apparent that in deep water, achieving a hydrostatic head high enough to control the well and yet low enough to prevent fracturing subsurface formations will require careful control of the pressure gradient of the drilling fluid.
In offshore operations controlling the density of the fluid as it is pumped into the well is not an entirely satisfactory approach since at normal drilling rates the drill cuttings suspended in the returning drilling fluid may sufficiently increase its density to yield a gradient exceeding normal fracture gradient. Heretofore, the only available system to assure a balanced condition in these circumstances was to greatly increase drilling fluid circulation rate or to reduce the rate of penetration; both practices are economically unattractive. A need therefore exists for a system for controlling the hydrostatic head of the drilling fluid within close limits without either increasing drilling fluid circulation rate or reducing the penetration rate.
SUMMARY OF THE INVENTION The present invention permits close control over the pressure gradient of the drilling fluid at no sacrifice of penetration rate and with no increase in circulation rate and thus alleviates the difflculties encountered in deep water drilling which are outlined above. In accordance with the present invention the hydrostatic pressure exerted by the drilling fluid within the drilling riser or other return conduit is monitored and its density is regulated to control the hydrostatic head of the mud column and thereby assuresufficient hydrostatic pressure to counterbalance formation pressures without exceeding their fracture gradients.
The system of the present invention is particularly applicable to drilling operations wherein a floating vessel is situated at the surface of a body of water above a wellhead positioned on the floor thereof. Drilling fluid is introduced into a drill string that extends between the vessel and wellhead and is returned through a separate conduit. The apparatus of the invention includes a means mounted on the conduit for generating a signal proportional to the pressure therein and detectable at said vessel. The method involves monitoring the hydrostatic head of the fluid flowing within the conduit and regulating its density to control the hydrostatic head of the column of drilling fluid acting on subsurface formations. The pressure gradient of the fluid within the return conduit can be reduced by injecting gas into the conduit. The rate of gas injection is controlled in response to the pressure within the riser to maintain the hydrostatic head at a substantially constant level, thereby assuring the proper hydrostatic head will be maintained on formations exposed to the borehole.
It will theerefore be apparent that the present invention will permit the hydrostatic pressures exerted by drilling fluids and entrained .cuttings to be closely controlled without any substantial reduction in drilling rate or-increase in circulation rate. The present invention thus permits control of pressurized formations during normaldrilling operations while reducing the danger of exceeding their fracture gradients and offers significant advantages over systems existing heretofore.
BRIEF DESCRIPTION or THE DRAWINGS FIG. 1 depicts typical curves relating fracture gradient to formation depths beneath the water surface. I
FIG. 2 is an elevation view, partially in'section, of a floating drilling vessel provided with apparatus necessary to carry out the method of the invention.
FIG. 3 is a schematic flow diagram of a system for monitoring and regulating the hydrostatic head of the drilling fluid within the return conduit in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plot of formation depth in thousands of feet versus the natural fracture gradient expressed both in psi/ft and as an equivalent mud density in lbs/gal (ppg). The curves shown are for a particular geographic area but illustrate the general relationship between water depth and formation fracture gradient. It will be apparent from an inspection of FIG. 1 that for any particular depth from the water surface, the fracture gradient decreases markedly as water depth increases.
Curve A relates the fracture gradients of formations encountered onshore to depth. These range from 0.60 psi/ft at 1,000 ft up to about 0.69 psi/ft at 3,000 ft. Curve B is for similar strata at a water depth of 750 ft. The fracture gradient is thus that of sea water, about 0.44 psi/ft, for depths to 750 ft. A formation buried under 1,000 ft of sediments is 1,750 ft below the water surface and will be noted to have a fracture gradient-on the order of 0.54 psi/ft. The gradient at 3,000 ft beneath the sea floor (3,750 ft below the water surface) is 0.64 psi/ft. Curve C represents identical sediments under l,500 ft of water. The natural fracture gradient for a formation under 1,000 ft of sediments corresponds to a depth of 2,500 ft and will be noted to be 0.51 psi/ft, corresponding to a mud weight just under ppg. At 3 ,000 ft of penetration, the fracture gradient is 0.61 psi/ft. It will therefore be apparent that for any particular depthof penetration into the substrata, the fracture gradient decreases as water depth increases.
The importance of the decrease in fracture gradient with water depth can be demonstrated by an example comparison of the hydrostatic pressure required to maintain well control to that which will fracture the formation. A normally pressured subsurface formation can be anticipated to have a formation pressure equivalent to the pressure exerted by a column of salt water having'a height equal to formation depth. A gas formation 1,000 ft beneath the floor of a 1,500 ft body of water could therefore be expected to have a pressure equal to the product of the salt water gradient and the depth of the formation beneath the water surface or about 1,1 10 psi and a drilling fluid having a salt water gradient (0.445 psi/ft, or about 8.5 ppg) could be expected to balance the formation pressure. It is normally desirable to drill with a fluid having a degree of overbalance, i.e., exerting a hydrostatic head greater than formation pressure. On the other hand, the fracture gradient at this depth is 0.51 psi/ft, which corresponds to a bottom hole pressure of 1,275 psi. Thus the pressure exerted by the mud must be kept between 1,110
- could of course be overcome by drillingat reduced rates and simultaneously increasing the rate of circulation, thereby assuring that the drilling fluid density remains within the critical range. This approach is however economically very unattractive in view of the daily expense of maintaining drilling equipment at the wellsite.
An alternative approach is to drill at a rapid penetration rate and at the same time reduce the bottom hole pressure of the drilling fluid by injecting gas orother low density material into the riser to lighten the mud. At the same time, however, a gas injection program undertaken in deep water requires careful control to assure that the hydrostatic head of the drilling fluid remains between that necessary to control the well and that which would result in a fracturing of the formation.
It is therefore an important aspect of the present inven-.
tion to monitor the'pressure exerted by the drilling fluid within the return conduit and to adjust the density of r the fluid therein to control bottom hole pressure. Control of fluid density is preferably accomplished by injecting gas into the riser near the lower end at a rate regulated in response to the pressure therewithin to' maintain the total hydrostatic head of the drilling fluid acting on a subsurface formation within the range necessary to assure control of the well without fracturing the formation.
FIG. 2 shows a drilling vessel 11 floating on a body of water 13 and equipped to carry out the method of the present invention. A wellhead 15 is positioned on the floor 17 of the body of water. A drill string 19 is susand 1,275 psi. This in turn dictates a mud density bepended from derrick 21 mounted on the vessel and extends between it and the wellhead. Drilling fluid is pumped down the string of drill pipe through the bit and into the borehole and returns to the vessel via a return condit shown as drilling riser 23. A high pressure gas source 25 is situated aboard the vessel. Injection conduit 31 extends from the control valve down the length of the riser to a level near the wellhead. One or preferably a plurality of gas lift valves 33 are positioned between the injection line and the drilling riser. The lift valves are normally preset to open at a given differenf tial pressure. A pressure sensor 35 is shown positioned near the lower end of the drilling riser and arranged to sense riser internal pressure. It may for example be a pressure transducer which generates an electrical signal proportional to pressure within the return'conduit.
The signal is conducted to the surface by means of elec trical .conductor 37 extending between the pressure transducer and the drilling vessel.. It may be directed to controller 39 which controls the position of routing valve 29 in response to the amplitude of the pressure signal to regulate the rate at which gas is introduced into the lower portion of the drilling riser. By properly adjusting the response characteristics of the valve controller, the pressure gradient of the fluid within the drilling riser can be closely controlled.
FIG. 3 is an exemplary flow diagram of apparatus which can be used to implement the method of the invention. An inert gas source is designated by numeral 41 and is preferably engine exhaust gas or the product from an inert gas generator. Exhaust gas is routed through conduit 43 to gas treater 45. Nitrogen oxide and water are separated from the source gas and the residue, which consists primarily of nitrogen, carbon dioxide and water, is piped through conduit 47 to compressor 49. The gas is then compressed through stages, as required, to sufficiently increase its pressure. For depths of l,000-2,000 ft, 1,500 psi will normally suffice. The high pressure gas is conveyed to cooler 53 which condenses any residual water and cools the compressed gas to about 100F. Normally, the dry, high pressure gas passes from treating unit 53 via line 27 to routing valve 29. In the event of excess pressure, however, release valve 55 opens and discharges the gas through exhaust line 57, returning the inert gas to the atmosphere. Under normal pressure conditions, the release valve remains closed and routing valve 29 diverts part of the gas down injection line 31 to lighten the drilling fluid and recycles the remainder through conduit 59 leading back to the compressor. The percentage of gas diverted into the riser is controlled by valve controller 39 in response to a surface detectable signal proportional to pressure within the riser which is generated from pressure sensor 35 situated near the base of the riser and may, for example, be conducted to the vessel by means of electrical conductor 37 leading to the valve controller. The signal could alternatively be transmitted acoustically, pneumatically or by other means as well.
High pressure gas routed into injection conduit 31 travels downwardly and into the riser through differential-pressure actuated gas lift valves 33. These valves are preferably vertically spaced to assist in unloading the riser whenever drilling operations have been interrupted for a period of time. Gas is injected into the interior of the conductor pipe in the annulus surrounding the drill pipe and the lift gas and drilling fluid flow upwardly to rotating drilling head 61 which diverts the gas-mud mixture away from the drill floor. Both gas and mud are diverted through conduit 63 to separator 65 wherein the inert gas is separated from the mud as by means of gravity segregation. The gas is exhausted to the atmosphere via exhaust conduit 57 while the mud is returned through line 67 to the mud pits for recirculation.
What is claimed is:
1. In a method of drilling wherein a floating vessel is situated at the surface of a body of water and drilling fluid is introduced into a drill string extending from the vessel into a borehole in the floor of the body of water and returned to the vessel through a separate conduit which conduit is provided with means for injecting a gas thereinto near its lower end, the improvement comprising measuring the hydrostatic pressure of the drilling fluid within said return conduit beneath the gas injection point and adjusting the pressure gradient of the fluid contained within the return conduit to maintain the hydrostatic pressure of the drilling fluid within the borehole at a level sufficient to counterbalance formation pressure without exceeding its fracture gradient.
2. The method of claim 1 wherein said gas is an inert gas.

Claims (2)

1. In a method of drilling wherein a floating vessel is situated at the surface of a body of water and drilling fluid is introduced into a drill string extending from the vessel into a borehole in the floor of the body of water and returned to the vessel through a separate conduit which conduit is provided with means for injecting a gas thereinto near its lower end, the improvement comprising measuring the hydrostatic pressure of the drilling fluid within said return conduit beneath the gas injection point and adjusting the pressure gradient of the fluid contained within the return conduit to maintain the hydrostatic pressure of the drilling fluid within the borehole at a level sufficient to counterbalance formation pressure without exceeding its fracture gradient.
2. The method of claim 1 wherein said gas is an inert gas.
US00226843A 1972-02-16 1972-02-16 Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations Expired - Lifetime US3815673A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00226843A US3815673A (en) 1972-02-16 1972-02-16 Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations
CA158,880A CA967550A (en) 1972-02-16 1972-12-14 Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00226843A US3815673A (en) 1972-02-16 1972-02-16 Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations

Publications (1)

Publication Number Publication Date
US3815673A true US3815673A (en) 1974-06-11

Family

ID=22850648

Family Applications (1)

Application Number Title Priority Date Filing Date
US00226843A Expired - Lifetime US3815673A (en) 1972-02-16 1972-02-16 Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations

Country Status (2)

Country Link
US (1) US3815673A (en)
CA (1) CA967550A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976148A (en) * 1975-09-12 1976-08-24 The Offshore Company Method and apparatus for determining onboard a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connecting between the wellhouse and the vessel
US4046191A (en) * 1975-07-07 1977-09-06 Exxon Production Research Company Subsea hydraulic choke
US4091881A (en) * 1977-04-11 1978-05-30 Exxon Production Research Company Artificial lift system for marine drilling riser
US4099583A (en) * 1977-04-11 1978-07-11 Exxon Production Research Company Gas lift system for marine drilling riser
US4135841A (en) * 1978-02-06 1979-01-23 Regan Offshore International, Inc. Mud flow heave compensator
US4210208A (en) * 1978-12-04 1980-07-01 Sedco, Inc. Subsea choke and riser pressure equalization system
US4282939A (en) * 1979-06-20 1981-08-11 Exxon Production Research Company Method and apparatus for compensating well control instrumentation for the effects of vessel heave
US4291772A (en) * 1980-03-25 1981-09-29 Standard Oil Company (Indiana) Drilling fluid bypass for marine riser
US4440239A (en) * 1981-09-28 1984-04-03 Exxon Production Research Co. Method and apparatus for controlling the flow of drilling fluid in a wellbore
FR2682715A1 (en) * 1991-10-21 1993-04-23 Elf Aquitaine Gas inrush detector
US5875848A (en) * 1997-04-10 1999-03-02 Reading & Bates Development Co. Weight management system and method for marine drilling riser
WO2000004269A3 (en) * 1998-07-15 2000-04-20 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US6102673A (en) * 1998-03-27 2000-08-15 Hydril Company Subsea mud pump with reduced pulsation
US6105689A (en) * 1998-05-26 2000-08-22 Mcguire Fishing & Rental Tools, Inc. Mud separator monitoring system
WO2000075477A1 (en) 1999-06-03 2000-12-14 Exxonmobil Upstream Research Company Controlling pressure and detecting control problems in gas-lift riser during offshore well drilling
WO2001020120A1 (en) * 1999-09-17 2001-03-22 Exxonmobil Upstream Research Company Method and system for storing gas for use in offshore drilling and production operations
US6216799B1 (en) * 1997-09-25 2001-04-17 Shell Offshore Inc. Subsea pumping system and method for deepwater drilling
US6230824B1 (en) 1998-03-27 2001-05-15 Hydril Company Rotating subsea diverter
US6263981B1 (en) * 1997-09-25 2001-07-24 Shell Offshore Inc. Deepwater drill string shut-off valve system and method for controlling mud circulation
US6276455B1 (en) * 1997-09-25 2001-08-21 Shell Offshore Inc. Subsea gas separation system and method for offshore drilling
US6325159B1 (en) 1998-03-27 2001-12-04 Hydril Company Offshore drilling system
US6328107B1 (en) 1999-09-17 2001-12-11 Exxonmobil Upstream Research Company Method for installing a well casing into a subsea well being drilled with a dual density drilling system
WO2001094740A1 (en) * 2000-06-08 2001-12-13 Maurer Technology Incorporated Multi-gradient drilling method and system
US6378628B1 (en) * 1998-05-26 2002-04-30 Mcguire Louis L. Monitoring system for drilling operations
US6401823B1 (en) * 2000-02-09 2002-06-11 Shell Oil Company Deepwater drill string shut-off
US6408948B1 (en) 1998-07-15 2002-06-25 Deep Vision Llc Tubing handling for subsea oilfield tubing operations
WO2002068787A2 (en) * 2001-02-23 2002-09-06 Exxonmobil Upstream Research Company Method and apparatus for controlling bottom-hole pressure during dual-gradient drilling
US6470975B1 (en) 1999-03-02 2002-10-29 Weatherford/Lamb, Inc. Internal riser rotating control head
US20030062199A1 (en) * 2001-09-21 2003-04-03 Gjedebo Jon G. Method or drilling sub-sea oil and gas production wells
US20030066650A1 (en) * 1998-07-15 2003-04-10 Baker Hughes Incorporated Drilling system and method for controlling equivalent circulating density during drilling of wellbores
US20030075332A1 (en) * 2001-10-24 2003-04-24 Krill Ross Michael Method and apparatus for providing a stream of pressurized substantially inert gas
US20040031623A1 (en) * 2002-03-18 2004-02-19 Baker Hughes Incorporated System and method for recovering return fluid from subsea wellbores
US20040069504A1 (en) * 2002-09-20 2004-04-15 Baker Hughes Incorporated Downhole activatable annular seal assembly
US20040112642A1 (en) * 2001-09-20 2004-06-17 Baker Hughes Incorporated Downhole cutting mill
US6802379B2 (en) 2001-02-23 2004-10-12 Exxonmobil Upstream Research Company Liquid lift method for drilling risers
US20040206548A1 (en) * 1998-07-15 2004-10-21 Baker Hughes Incorporated Active controlled bottomhole pressure system & method
US20040256161A1 (en) * 1998-07-15 2004-12-23 Baker Hughes Incorporated Modular design for downhole ECD-management devices and related methods
US20050098349A1 (en) * 1998-07-15 2005-05-12 Baker Hughes Incorporated Control systems and methods for active controlled bottomhole pressure systems
US20050252685A1 (en) * 2004-01-23 2005-11-17 Baker Hughes Incorporated Floatable drill cuttings bag and method and system for use in cuttings disposal
US20060169491A1 (en) * 2003-03-13 2006-08-03 Ocean Riser Systems As Method and arrangement for performing drilling operations
WO2006118920A2 (en) * 2005-04-29 2006-11-09 Shell Internationale Research Maatschappij B.V. Systems and methods for managing downhole pressure
US20070007041A1 (en) * 1998-07-15 2007-01-11 Baker Hughes Incorporated Active controlled bottomhole pressure system and method with continuous circulation system
US20070119621A1 (en) * 2003-11-27 2007-05-31 Agr Subsea As Method and device for controlling drilling fluid pressure
US20090084604A1 (en) * 2004-06-17 2009-04-02 Polizzotti Richard S Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US20090090559A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Compressible objects combined with a drilling fluid to form a variable density drilling mud
US20090090558A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Compressible Objects Having A Predetermined Internal Pressure Combined With A Drilling Fluid To Form A Variable Density Drilling Mud
US20090091053A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Method for fabricating compressible objects for a variable density drilling mud
US20090114443A1 (en) * 2007-11-02 2009-05-07 Ability Group Asa Anchored riserless mud return systems
US20090143253A1 (en) * 2007-11-29 2009-06-04 Smith Kevin W Drilling fluids containing microbubbles
US20090188721A1 (en) * 2008-01-30 2009-07-30 Smith Kevin W Membrane method of making drilling fluids containing microbubbles
US20090200037A1 (en) * 2003-03-13 2009-08-13 Ocean Riser Systems As Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
US20100006297A1 (en) * 2006-07-14 2010-01-14 Agr Subsea As Pipe string device for conveying a fluid from a well head to a vessel
US20100018715A1 (en) * 2006-11-07 2010-01-28 Halliburton Energy Services, Inc. Offshore universal riser system
US7836946B2 (en) 2002-10-31 2010-11-23 Weatherford/Lamb, Inc. Rotating control head radial seal protection and leak detection systems
US20110036591A1 (en) * 2008-02-15 2011-02-17 Pilot Drilling Control Limited Flow stop valve
US7926593B2 (en) 2004-11-23 2011-04-19 Weatherford/Lamb, Inc. Rotating control device docking station
US20110168399A1 (en) * 2008-05-02 2011-07-14 Jean Francois Saint-Marcoux Mid water gas lift
US7997345B2 (en) 2007-10-19 2011-08-16 Weatherford/Lamb, Inc. Universal marine diverter converter
US8011450B2 (en) 1998-07-15 2011-09-06 Baker Hughes Incorporated Active bottomhole pressure control with liner drilling and completion systems
US20110253445A1 (en) * 2010-04-16 2011-10-20 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US20110278014A1 (en) * 2010-05-12 2011-11-17 William James Hughes External Jet Pump for Dual Gradient Drilling
USRE43199E1 (en) * 2001-09-10 2012-02-21 Ocean Rider Systems AS Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US20120067590A1 (en) * 2001-09-10 2012-03-22 Ocean Riser Systems As Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US20120234550A1 (en) * 2011-03-17 2012-09-20 Hydril Usa Manufacturing Llc Mudline Managed Pressure Drilling and Enhanced Influx Detection
US8286734B2 (en) 2007-10-23 2012-10-16 Weatherford/Lamb, Inc. Low profile rotating control device
US8322432B2 (en) 2009-01-15 2012-12-04 Weatherford/Lamb, Inc. Subsea internal riser rotating control device system and method
US8347983B2 (en) 2009-07-31 2013-01-08 Weatherford/Lamb, Inc. Drilling with a high pressure rotating control device
US8826988B2 (en) 2004-11-23 2014-09-09 Weatherford/Lamb, Inc. Latch position indicator system and method
US8833488B2 (en) 2011-04-08 2014-09-16 Halliburton Energy Services, Inc. Automatic standpipe pressure control in drilling
US8844652B2 (en) 2007-10-23 2014-09-30 Weatherford/Lamb, Inc. Interlocking low profile rotating control device
US8973676B2 (en) 2011-07-28 2015-03-10 Baker Hughes Incorporated Active equivalent circulating density control with real-time data connection
US9175542B2 (en) 2010-06-28 2015-11-03 Weatherford/Lamb, Inc. Lubricating seal for use with a tubular
US9222320B2 (en) 2010-12-29 2015-12-29 Halliburton Energy Services, Inc. Subsea pressure control system
US9347286B2 (en) 2009-02-16 2016-05-24 Pilot Drilling Control Limited Flow stop valve
US9359853B2 (en) 2009-01-15 2016-06-07 Weatherford Technology Holdings, Llc Acoustically controlled subsea latching and sealing system and method for an oilfield device
NO338020B1 (en) * 2013-09-10 2016-07-18 Mhwirth As A deep water drill riser pressure relief system comprising a pressure release device, as well as use of the pressure release device.
WO2016134442A1 (en) * 2015-02-26 2016-09-01 Reitsma Donald G Mud lift drilling system using ejector assembly in mud return line
US9816323B2 (en) * 2008-04-04 2017-11-14 Enhanced Drilling As Systems and methods for subsea drilling
US20170328193A1 (en) * 2016-05-13 2017-11-16 Pason Systems Corp. Method, system, and medium for controlling rate of penetration of a drill bit
US10041335B2 (en) 2008-03-07 2018-08-07 Weatherford Technology Holdings, Llc Switching device for, and a method of switching, a downhole tool
US20200056477A1 (en) * 2018-08-15 2020-02-20 China University Of Petroleum - Beijing Experimental device for simulating invasion of shallow fluid into wellbore
US11454103B2 (en) 2018-05-18 2022-09-27 Pason Systems Corp. Method, system, and medium for controlling rate of a penetration of a drill bit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726063A (en) * 1952-05-10 1955-12-06 Exxon Research Engineering Co Method of drilling wells
US2808230A (en) * 1955-01-17 1957-10-01 Shell Oil Co Off-shore drilling
US2923531A (en) * 1956-04-26 1960-02-02 Shell Oil Co Drilling
US3434550A (en) * 1966-06-06 1969-03-25 Mobil Oil Corp Method and apparatus for lightening the load on a subsea conductor pipe
US3459259A (en) * 1966-09-09 1969-08-05 Mobil Oil Corp Mudline suspension system
US3595075A (en) * 1969-11-10 1971-07-27 Warren Automatic Tool Co Method and apparatus for sensing downhole well conditions in a wellbore
US3603409A (en) * 1969-03-27 1971-09-07 Regan Forge & Eng Co Method and apparatus for balancing subsea internal and external well pressures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726063A (en) * 1952-05-10 1955-12-06 Exxon Research Engineering Co Method of drilling wells
US2808230A (en) * 1955-01-17 1957-10-01 Shell Oil Co Off-shore drilling
US2923531A (en) * 1956-04-26 1960-02-02 Shell Oil Co Drilling
US3434550A (en) * 1966-06-06 1969-03-25 Mobil Oil Corp Method and apparatus for lightening the load on a subsea conductor pipe
US3459259A (en) * 1966-09-09 1969-08-05 Mobil Oil Corp Mudline suspension system
US3603409A (en) * 1969-03-27 1971-09-07 Regan Forge & Eng Co Method and apparatus for balancing subsea internal and external well pressures
US3595075A (en) * 1969-11-10 1971-07-27 Warren Automatic Tool Co Method and apparatus for sensing downhole well conditions in a wellbore

Cited By (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046191A (en) * 1975-07-07 1977-09-06 Exxon Production Research Company Subsea hydraulic choke
US3976148A (en) * 1975-09-12 1976-08-24 The Offshore Company Method and apparatus for determining onboard a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connecting between the wellhouse and the vessel
US4091881A (en) * 1977-04-11 1978-05-30 Exxon Production Research Company Artificial lift system for marine drilling riser
US4099583A (en) * 1977-04-11 1978-07-11 Exxon Production Research Company Gas lift system for marine drilling riser
US4135841A (en) * 1978-02-06 1979-01-23 Regan Offshore International, Inc. Mud flow heave compensator
US4210208A (en) * 1978-12-04 1980-07-01 Sedco, Inc. Subsea choke and riser pressure equalization system
US4282939A (en) * 1979-06-20 1981-08-11 Exxon Production Research Company Method and apparatus for compensating well control instrumentation for the effects of vessel heave
US4291772A (en) * 1980-03-25 1981-09-29 Standard Oil Company (Indiana) Drilling fluid bypass for marine riser
US4440239A (en) * 1981-09-28 1984-04-03 Exxon Production Research Co. Method and apparatus for controlling the flow of drilling fluid in a wellbore
FR2682715A1 (en) * 1991-10-21 1993-04-23 Elf Aquitaine Gas inrush detector
US5875848A (en) * 1997-04-10 1999-03-02 Reading & Bates Development Co. Weight management system and method for marine drilling riser
US6276455B1 (en) * 1997-09-25 2001-08-21 Shell Offshore Inc. Subsea gas separation system and method for offshore drilling
US6216799B1 (en) * 1997-09-25 2001-04-17 Shell Offshore Inc. Subsea pumping system and method for deepwater drilling
US6263981B1 (en) * 1997-09-25 2001-07-24 Shell Offshore Inc. Deepwater drill string shut-off valve system and method for controlling mud circulation
US6325159B1 (en) 1998-03-27 2001-12-04 Hydril Company Offshore drilling system
US6505691B2 (en) 1998-03-27 2003-01-14 Hydril Company Subsea mud pump and control system
US6102673A (en) * 1998-03-27 2000-08-15 Hydril Company Subsea mud pump with reduced pulsation
US6230824B1 (en) 1998-03-27 2001-05-15 Hydril Company Rotating subsea diverter
US6105689A (en) * 1998-05-26 2000-08-22 Mcguire Fishing & Rental Tools, Inc. Mud separator monitoring system
US6378628B1 (en) * 1998-05-26 2002-04-30 Mcguire Louis L. Monitoring system for drilling operations
US6408948B1 (en) 1998-07-15 2002-06-25 Deep Vision Llc Tubing handling for subsea oilfield tubing operations
WO2000004269A3 (en) * 1998-07-15 2000-04-20 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US7096975B2 (en) 1998-07-15 2006-08-29 Baker Hughes Incorporated Modular design for downhole ECD-management devices and related methods
US7174975B2 (en) 1998-07-15 2007-02-13 Baker Hughes Incorporated Control systems and methods for active controlled bottomhole pressure systems
GB2356657A (en) * 1998-07-15 2001-05-30 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US20060124352A1 (en) * 1998-07-15 2006-06-15 Baker Hughes Incorporated Control systems and methods for active controlled bottomhole pressure systems
US7114581B2 (en) 1998-07-15 2006-10-03 Deep Vision Llc Active controlled bottomhole pressure system & method
US6415877B1 (en) 1998-07-15 2002-07-09 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US20060065402A9 (en) * 1998-07-15 2006-03-30 Baker Hughes Incorporated Drilling system and method for controlling equivalent circulating density during drilling of wellbores
US20040124008A1 (en) * 1998-07-15 2004-07-01 Baker Hughes Incorporated Subsea wellbore drilling system for reducing bottom hole pressure
US20070007041A1 (en) * 1998-07-15 2007-01-11 Baker Hughes Incorporated Active controlled bottomhole pressure system and method with continuous circulation system
US7353887B2 (en) 1998-07-15 2008-04-08 Baker Hughes Incorporated Control systems and methods for active controlled bottomhole pressure systems
US7270185B2 (en) 1998-07-15 2007-09-18 Baker Hughes Incorporated Drilling system and method for controlling equivalent circulating density during drilling of wellbores
GB2356657B (en) * 1998-07-15 2003-03-19 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US20050098349A1 (en) * 1998-07-15 2005-05-12 Baker Hughes Incorporated Control systems and methods for active controlled bottomhole pressure systems
US20030066650A1 (en) * 1998-07-15 2003-04-10 Baker Hughes Incorporated Drilling system and method for controlling equivalent circulating density during drilling of wellbores
US7806203B2 (en) 1998-07-15 2010-10-05 Baker Hughes Incorporated Active controlled bottomhole pressure system and method with continuous circulation system
US6854532B2 (en) 1998-07-15 2005-02-15 Deep Vision Llc Subsea wellbore drilling system for reducing bottom hole pressure
US20040256161A1 (en) * 1998-07-15 2004-12-23 Baker Hughes Incorporated Modular design for downhole ECD-management devices and related methods
US6648081B2 (en) 1998-07-15 2003-11-18 Deep Vision Llp Subsea wellbore drilling system for reducing bottom hole pressure
US8011450B2 (en) 1998-07-15 2011-09-06 Baker Hughes Incorporated Active bottomhole pressure control with liner drilling and completion systems
US20040206548A1 (en) * 1998-07-15 2004-10-21 Baker Hughes Incorporated Active controlled bottomhole pressure system & method
US6470975B1 (en) 1999-03-02 2002-10-29 Weatherford/Lamb, Inc. Internal riser rotating control head
WO2000075477A1 (en) 1999-06-03 2000-12-14 Exxonmobil Upstream Research Company Controlling pressure and detecting control problems in gas-lift riser during offshore well drilling
US6668943B1 (en) 1999-06-03 2003-12-30 Exxonmobil Upstream Research Company Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser
WO2001020120A1 (en) * 1999-09-17 2001-03-22 Exxonmobil Upstream Research Company Method and system for storing gas for use in offshore drilling and production operations
US6328107B1 (en) 1999-09-17 2001-12-11 Exxonmobil Upstream Research Company Method for installing a well casing into a subsea well being drilled with a dual density drilling system
US6578637B1 (en) 1999-09-17 2003-06-17 Exxonmobil Upstream Research Company Method and system for storing gas for use in offshore drilling and production operations
US6401823B1 (en) * 2000-02-09 2002-06-11 Shell Oil Company Deepwater drill string shut-off
WO2001094740A1 (en) * 2000-06-08 2001-12-13 Maurer Technology Incorporated Multi-gradient drilling method and system
US6530437B2 (en) 2000-06-08 2003-03-11 Maurer Technology Incorporated Multi-gradient drilling method and system
WO2002068787A3 (en) * 2001-02-23 2003-02-20 Exxonmobil Upstream Res Co Method and apparatus for controlling bottom-hole pressure during dual-gradient drilling
US6802379B2 (en) 2001-02-23 2004-10-12 Exxonmobil Upstream Research Company Liquid lift method for drilling risers
US6571873B2 (en) 2001-02-23 2003-06-03 Exxonmobil Upstream Research Company Method for controlling bottom-hole pressure during dual-gradient drilling
WO2002068787A2 (en) * 2001-02-23 2002-09-06 Exxonmobil Upstream Research Company Method and apparatus for controlling bottom-hole pressure during dual-gradient drilling
USRE43199E1 (en) * 2001-09-10 2012-02-21 Ocean Rider Systems AS Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US20120067590A1 (en) * 2001-09-10 2012-03-22 Ocean Riser Systems As Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US8322439B2 (en) * 2001-09-10 2012-12-04 Ocean Riser Systems As Arrangement and method for regulating bottom hole pressures when drilling deepwater offshore wells
US6981561B2 (en) 2001-09-20 2006-01-03 Baker Hughes Incorporated Downhole cutting mill
US20040112642A1 (en) * 2001-09-20 2004-06-17 Baker Hughes Incorporated Downhole cutting mill
US20030062199A1 (en) * 2001-09-21 2003-04-03 Gjedebo Jon G. Method or drilling sub-sea oil and gas production wells
US6745857B2 (en) * 2001-09-21 2004-06-08 National Oilwell Norway As Method of drilling sub-sea oil and gas production wells
US20040074637A1 (en) * 2001-10-24 2004-04-22 Krill Ross Michael Method for providing a stream of pressurized substantially inert gas
US6662885B2 (en) * 2001-10-24 2003-12-16 Precision Drilling Technology Services Group, Inc. Method and apparatus for providing a stream of pressurized substantially inert gas
US20040074673A1 (en) * 2001-10-24 2004-04-22 Krill Ross Michael Apparatus for providing a stream of pressurized substantially inert gas
US20030075332A1 (en) * 2001-10-24 2003-04-24 Krill Ross Michael Method and apparatus for providing a stream of pressurized substantially inert gas
US7185705B2 (en) * 2002-03-18 2007-03-06 Baker Hughes Incorporated System and method for recovering return fluid from subsea wellbores
US20040031623A1 (en) * 2002-03-18 2004-02-19 Baker Hughes Incorporated System and method for recovering return fluid from subsea wellbores
US20040069504A1 (en) * 2002-09-20 2004-04-15 Baker Hughes Incorporated Downhole activatable annular seal assembly
US6957698B2 (en) 2002-09-20 2005-10-25 Baker Hughes Incorporated Downhole activatable annular seal assembly
US7836946B2 (en) 2002-10-31 2010-11-23 Weatherford/Lamb, Inc. Rotating control head radial seal protection and leak detection systems
US8113291B2 (en) 2002-10-31 2012-02-14 Weatherford/Lamb, Inc. Leak detection method for a rotating control head bearing assembly and its latch assembly using a comparator
US8353337B2 (en) 2002-10-31 2013-01-15 Weatherford/Lamb, Inc. Method for cooling a rotating control head
US7934545B2 (en) 2002-10-31 2011-05-03 Weatherford/Lamb, Inc. Rotating control head leak detection systems
US8714240B2 (en) 2002-10-31 2014-05-06 Weatherford/Lamb, Inc. Method for cooling a rotating control device
US7950463B2 (en) 2003-03-13 2011-05-31 Ocean Riser Systems As Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
US7513310B2 (en) * 2003-03-13 2009-04-07 Ocean Riser Systems As Method and arrangement for performing drilling operations
US20090200037A1 (en) * 2003-03-13 2009-08-13 Ocean Riser Systems As Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
US20060169491A1 (en) * 2003-03-13 2006-08-03 Ocean Riser Systems As Method and arrangement for performing drilling operations
US20070119621A1 (en) * 2003-11-27 2007-05-31 Agr Subsea As Method and device for controlling drilling fluid pressure
US7677329B2 (en) * 2003-11-27 2010-03-16 Agr Subsea As Method and device for controlling drilling fluid pressure
US7261164B2 (en) 2004-01-23 2007-08-28 Baker Hughes Incorporated Floatable drill cuttings bag and method and system for use in cuttings disposal
US20050252685A1 (en) * 2004-01-23 2005-11-17 Baker Hughes Incorporated Floatable drill cuttings bag and method and system for use in cuttings disposal
US20090091053A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Method for fabricating compressible objects for a variable density drilling mud
US8076269B2 (en) 2004-06-17 2011-12-13 Exxonmobil Upstream Research Company Compressible objects combined with a drilling fluid to form a variable density drilling mud
US8088717B2 (en) 2004-06-17 2012-01-03 Exxonmobil Upstream Research Company Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US8088716B2 (en) 2004-06-17 2012-01-03 Exxonmobil Upstream Research Company Compressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud
US20090090558A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Compressible Objects Having A Predetermined Internal Pressure Combined With A Drilling Fluid To Form A Variable Density Drilling Mud
US20090090559A1 (en) * 2004-06-17 2009-04-09 Polizzotti Richard S Compressible objects combined with a drilling fluid to form a variable density drilling mud
US7972555B2 (en) 2004-06-17 2011-07-05 Exxonmobil Upstream Research Company Method for fabricating compressible objects for a variable density drilling mud
US20090084604A1 (en) * 2004-06-17 2009-04-02 Polizzotti Richard S Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud
US8701796B2 (en) 2004-11-23 2014-04-22 Weatherford/Lamb, Inc. System for drilling a borehole
US9404346B2 (en) 2004-11-23 2016-08-02 Weatherford Technology Holdings, Llc Latch position indicator system and method
US7926593B2 (en) 2004-11-23 2011-04-19 Weatherford/Lamb, Inc. Rotating control device docking station
US8408297B2 (en) 2004-11-23 2013-04-02 Weatherford/Lamb, Inc. Remote operation of an oilfield device
US10024154B2 (en) 2004-11-23 2018-07-17 Weatherford Technology Holdings, Llc Latch position indicator system and method
US8939235B2 (en) 2004-11-23 2015-01-27 Weatherford/Lamb, Inc. Rotating control device docking station
US8826988B2 (en) 2004-11-23 2014-09-09 Weatherford/Lamb, Inc. Latch position indicator system and method
US9784073B2 (en) 2004-11-23 2017-10-10 Weatherford Technology Holdings, Llc Rotating control device docking station
GB2439492B (en) * 2005-04-29 2009-05-06 Shell Int Research Systems and methods for managing downhole pressure
WO2006118920A3 (en) * 2005-04-29 2007-07-12 Shell Oil Co Systems and methods for managing downhole pressure
US20070235223A1 (en) * 2005-04-29 2007-10-11 Tarr Brian A Systems and methods for managing downhole pressure
GB2439492A (en) * 2005-04-29 2007-12-27 Shell Int Research Systems and methods for managing downhole pressure
WO2006118920A2 (en) * 2005-04-29 2006-11-09 Shell Internationale Research Maatschappij B.V. Systems and methods for managing downhole pressure
US20100006297A1 (en) * 2006-07-14 2010-01-14 Agr Subsea As Pipe string device for conveying a fluid from a well head to a vessel
US20120292106A1 (en) * 2006-11-07 2012-11-22 Halliburton Energy Services, Inc. Offshore universal riser system
US9157285B2 (en) * 2006-11-07 2015-10-13 Halliburton Energy Services, Inc. Offshore drilling method
CN103556946A (en) * 2006-11-07 2014-02-05 哈利伯顿能源服务公司 Drilling method
US20120292107A1 (en) * 2006-11-07 2012-11-22 Halliburton Energy Services, Inc. Offshore universal riser system
CN103643925B (en) * 2006-11-07 2017-10-27 哈利伯顿能源服务公司 The method that pressure test is carried out to water proof tubing string
US8887814B2 (en) 2006-11-07 2014-11-18 Halliburton Energy Services, Inc. Offshore universal riser system
US9376870B2 (en) 2006-11-07 2016-06-28 Halliburton Energy Services, Inc. Offshore universal riser system
CN103643925A (en) * 2006-11-07 2014-03-19 哈利伯顿能源服务公司 Method performing pressure measurement on water-isolating pipe
US9127512B2 (en) * 2006-11-07 2015-09-08 Halliburton Energy Services, Inc. Offshore drilling method
US8776894B2 (en) 2006-11-07 2014-07-15 Halliburton Energy Services, Inc. Offshore universal riser system
US9127511B2 (en) 2006-11-07 2015-09-08 Halliburton Energy Services, Inc. Offshore universal riser system
US8881831B2 (en) 2006-11-07 2014-11-11 Halliburton Energy Services, Inc. Offshore universal riser system
US9085940B2 (en) 2006-11-07 2015-07-21 Halliburton Energy Services, Inc. Offshore universal riser system
US9051790B2 (en) 2006-11-07 2015-06-09 Halliburton Energy Services, Inc. Offshore drilling method
US20100018715A1 (en) * 2006-11-07 2010-01-28 Halliburton Energy Services, Inc. Offshore universal riser system
US7997345B2 (en) 2007-10-19 2011-08-16 Weatherford/Lamb, Inc. Universal marine diverter converter
US9004181B2 (en) 2007-10-23 2015-04-14 Weatherford/Lamb, Inc. Low profile rotating control device
US8844652B2 (en) 2007-10-23 2014-09-30 Weatherford/Lamb, Inc. Interlocking low profile rotating control device
US8286734B2 (en) 2007-10-23 2012-10-16 Weatherford/Lamb, Inc. Low profile rotating control device
US10087701B2 (en) 2007-10-23 2018-10-02 Weatherford Technology Holdings, Llc Low profile rotating control device
US20090114443A1 (en) * 2007-11-02 2009-05-07 Ability Group Asa Anchored riserless mud return systems
US7938190B2 (en) * 2007-11-02 2011-05-10 Agr Subsea, Inc. Anchored riserless mud return systems
US20090143253A1 (en) * 2007-11-29 2009-06-04 Smith Kevin W Drilling fluids containing microbubbles
US20090140444A1 (en) * 2007-11-29 2009-06-04 Total Separation Solutions, Llc Compressed gas system useful for producing light weight drilling fluids
US20090188721A1 (en) * 2008-01-30 2009-07-30 Smith Kevin W Membrane method of making drilling fluids containing microbubbles
US8776887B2 (en) 2008-02-15 2014-07-15 Pilot Drilling Control Limited Flow stop valve
US9677376B2 (en) 2008-02-15 2017-06-13 Pilot Drilling Control Limited Flow stop valve
US20110036591A1 (en) * 2008-02-15 2011-02-17 Pilot Drilling Control Limited Flow stop valve
US8590629B2 (en) 2008-02-15 2013-11-26 Pilot Drilling Control Limited Flow stop valve and method
US8752630B2 (en) 2008-02-15 2014-06-17 Pilot Drilling Control Limited Flow stop valve
US10041335B2 (en) 2008-03-07 2018-08-07 Weatherford Technology Holdings, Llc Switching device for, and a method of switching, a downhole tool
US9816323B2 (en) * 2008-04-04 2017-11-14 Enhanced Drilling As Systems and methods for subsea drilling
US20110168399A1 (en) * 2008-05-02 2011-07-14 Jean Francois Saint-Marcoux Mid water gas lift
US8770297B2 (en) 2009-01-15 2014-07-08 Weatherford/Lamb, Inc. Subsea internal riser rotating control head seal assembly
US8322432B2 (en) 2009-01-15 2012-12-04 Weatherford/Lamb, Inc. Subsea internal riser rotating control device system and method
US9359853B2 (en) 2009-01-15 2016-06-07 Weatherford Technology Holdings, Llc Acoustically controlled subsea latching and sealing system and method for an oilfield device
US9347286B2 (en) 2009-02-16 2016-05-24 Pilot Drilling Control Limited Flow stop valve
US8636087B2 (en) 2009-07-31 2014-01-28 Weatherford/Lamb, Inc. Rotating control system and method for providing a differential pressure
US9334711B2 (en) 2009-07-31 2016-05-10 Weatherford Technology Holdings, Llc System and method for cooling a rotating control device
US8347983B2 (en) 2009-07-31 2013-01-08 Weatherford/Lamb, Inc. Drilling with a high pressure rotating control device
US20130118806A1 (en) * 2010-04-16 2013-05-16 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US20150034326A1 (en) * 2010-04-16 2015-02-05 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US9260927B2 (en) * 2010-04-16 2016-02-16 Weatherford Technology Holdings, Llc System and method for managing heave pressure from a floating rig
US20110253445A1 (en) * 2010-04-16 2011-10-20 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US8347982B2 (en) * 2010-04-16 2013-01-08 Weatherford/Lamb, Inc. System and method for managing heave pressure from a floating rig
US8863858B2 (en) * 2010-04-16 2014-10-21 Weatherford/Lamb, Inc. System and method for managing heave pressure from a floating rig
US8403059B2 (en) * 2010-05-12 2013-03-26 Sunstone Technologies, Llc External jet pump for dual gradient drilling
US20110278014A1 (en) * 2010-05-12 2011-11-17 William James Hughes External Jet Pump for Dual Gradient Drilling
US9175542B2 (en) 2010-06-28 2015-11-03 Weatherford/Lamb, Inc. Lubricating seal for use with a tubular
US9222320B2 (en) 2010-12-29 2015-12-29 Halliburton Energy Services, Inc. Subsea pressure control system
US20120234550A1 (en) * 2011-03-17 2012-09-20 Hydril Usa Manufacturing Llc Mudline Managed Pressure Drilling and Enhanced Influx Detection
US9016381B2 (en) * 2011-03-17 2015-04-28 Hydril Usa Manufacturing Llc Mudline managed pressure drilling and enhanced influx detection
US8833488B2 (en) 2011-04-08 2014-09-16 Halliburton Energy Services, Inc. Automatic standpipe pressure control in drilling
US8973676B2 (en) 2011-07-28 2015-03-10 Baker Hughes Incorporated Active equivalent circulating density control with real-time data connection
US9869158B2 (en) 2013-09-10 2018-01-16 Mhwirth As Deep water drilling riser pressure relief system
NO338020B1 (en) * 2013-09-10 2016-07-18 Mhwirth As A deep water drill riser pressure relief system comprising a pressure release device, as well as use of the pressure release device.
WO2016134442A1 (en) * 2015-02-26 2016-09-01 Reitsma Donald G Mud lift drilling system using ejector assembly in mud return line
US20170328193A1 (en) * 2016-05-13 2017-11-16 Pason Systems Corp. Method, system, and medium for controlling rate of penetration of a drill bit
US10591625B2 (en) * 2016-05-13 2020-03-17 Pason Systems Corp. Method, system, and medium for controlling rate of penetration of a drill bit
US11454103B2 (en) 2018-05-18 2022-09-27 Pason Systems Corp. Method, system, and medium for controlling rate of a penetration of a drill bit
US20200056477A1 (en) * 2018-08-15 2020-02-20 China University Of Petroleum - Beijing Experimental device for simulating invasion of shallow fluid into wellbore
US10876397B2 (en) * 2018-08-15 2020-12-29 China University Of Petroleum-Beijing Experimental device for simulating invasion of shallow fluid into wellbore

Also Published As

Publication number Publication date
CA967550A (en) 1975-05-13

Similar Documents

Publication Publication Date Title
US3815673A (en) Method and apparatus for controlling hydrostatic pressure gradient in offshore drilling operations
US4091881A (en) Artificial lift system for marine drilling riser
US4099583A (en) Gas lift system for marine drilling riser
US6415877B1 (en) Subsea wellbore drilling system for reducing bottom hole pressure
US10087752B2 (en) Oilfield operation using a drill string
US7497266B2 (en) Arrangement and method for controlling and regulating bottom hole pressure when drilling deepwater offshore wells
US4063602A (en) Drilling fluid diverter system
US20070235223A1 (en) Systems and methods for managing downhole pressure
US11085255B2 (en) System and methods for controlled mud cap drilling
US6454022B1 (en) Riser tube for use in great sea depth and method for drilling at such depths
US3955411A (en) Method for measuring the vertical height and/or density of drilling fluid columns
US4210208A (en) Subsea choke and riser pressure equalization system
US20040065440A1 (en) Dual-gradient drilling using nitrogen injection
US3963077A (en) Method of preventing well bore drilling fluid overflow and formation fluid blowouts
US3809170A (en) Method and apparatus for detecting fluid influx in offshore drilling operations
Lopes et al. Feasibility study of a dual density mud system for deepwater drilling operations
Grosso An Analysis Of Well Kicks On Off Shore Floating Drilling Vessels
Ekpe et al. SPE/IADC-214638-MS
Lepine et al. Drilling in overpressured formations in Australia and Papua New Guinea
Chrzanowski Managed Pressure Drilling from floaters: Feasibility studies for applying managed pressure drilling from a floater on the Skarv/Idun field on the Norwegian Continental Shelf by PGNiG Norway AS
Cohen et al. Dual-gradient drilling
Whittaker Lost Circulation, Hydraulic Fracturing, and Kicks
Assaad et al. Drilling technology in petroleum geology
Winchell Two World Depth Records-How to Do It
Gates et al. Geological And Drilling Aspects Of Columbia's Mingo County Prospect