US3813026A - Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same - Google Patents

Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same Download PDF

Info

Publication number
US3813026A
US3813026A US12339271A US3813026A US 3813026 A US3813026 A US 3813026A US 12339271 A US12339271 A US 12339271A US 3813026 A US3813026 A US 3813026A
Authority
US
United States
Prior art keywords
tube
strip
layer
outer strip
penultimate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
J Biancamaria
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lhomme SA
Menasha Corp
Original Assignee
Lhomme SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lhomme SA filed Critical Lhomme SA
Priority to US12339271 priority Critical patent/US3813026A/en
Application granted granted Critical
Publication of US3813026A publication Critical patent/US3813026A/en
Assigned to MENASHA CORPORATION reassignment MENASHA CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MENASHA 1980 CORPORATION
Assigned to MENASHA 1980 CORPORATION, A WI CORP. reassignment MENASHA 1980 CORPORATION, A WI CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MENASHA CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31CMAKING WOUND ARTICLES, e.g. WOUND TUBES, OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31C3/00Making tubes or pipes by feeding obliquely to the winding mandrel centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31982Wood or paper

Landscapes

  • Making Paper Articles (AREA)

Abstract

In order to obtain helically wound multi-layer cardboard tubes of accurate diameter and very smooth external surface, the tubes are coated with a thermo-setting resin and forced through the bore of a heated jacket to cause (1) curing of the resin and (2) reduction of the tube diameter to the precise desired dimensions. This reduction is taken up by a radially compressible layer of the tube.

Description

Unite States atent 1 1 Biancamaria 1 1 May 28, 1974 ACCURATELY DIMENSEONED SMOOTH-SURFACE!) MULTl-LAYER CARDBOARD TUBES AND METHOD OF AND APPARATUS FOR MAKING THE SAME Inventor: Joseph Biancamaria, lvry sur Seine,
France Assignee: Lhomme (Societe Anonyme), Paris,
France Filed: Mar. 11, 1971 Appl. No.: 123,392
Related US. Application Data Division of Ser. No. 797,487, Feb. 7, 1969, Pat. No. 3,580,146.
Foreign Application Priority Data Feb. 7, 1968 France 68.139051 US. Cl 229/45, 93/83, 138/144, 138/150, 156/188, 161/268, 229/ R, 229/93 Int. Cl Bd 3/04 Field of Search 229/45, 93, 3.5 R;
AL lG/VED SURF/1 05 [755,85
138/141, 144, 150, 140; 93/94 R, 80, 83, 94 FC; 156/188, 161/268, 270
[56] References Cited UNITED STATES PATENTS 1,287,945 12/1918 Ford 138/150 1,301,840 4/1919 Hawkins 229/45 1,605,953 11/1926 Howard 229/35 R Primary ExaminerGeorge E. Lowrance Assistant Examiner-Stephen P. Garbe Attorney, Agent, or Firm-Edwin E. Greigg [57] ABSTRACT In order to obtain helically wound multi-layer cardboard tubes of accurate diameter and very smooth external surface, the tubes are coated with a thermosetting resin and forced through the bore of a heated jacket to cause (1) curing of the resin and (2) reduction of the tube diameter to the precise desired dimensions. This reduction is taken up by a radially compressible layer of the tube.
7 Claims, Drawing ale-1302s PATENTEB MAY 2 8 \914 SHEET Ir BF 4 3 N .u m9 NS g. mg 3 5 M N\ \\\\s\ \k \\\x vs g mg mg Na 9 ACCURATELY DTMENSIONED SMOOTH-SURFACED MULTI-LAYER CARDBOARD TUBES AND METHOD OF AND APPARATUS FOR MAKHNG THE SAME This application is a divisional application of application Ser. No. 797,487, filed Feb. 7, 1969. now US. Pat. No. 3,580,146.
BACKGROUND OF THE INVENTION It is well known to make cardboard tubes from a plurality of strips or layers of fibrous material, suitably glued, which are wound around a mandrel in a helix with a pitch approximately equal to the width of one strip. The successive superposed strips are offset relative to one another in the longitudinal direction of the tube. 7
Usually, for the manufacture of such tubes winding machines are used in which each of the strips is stored on a reel and passes, with the exception of the first, through a glueing bath before being wound around a fixed mandrel at a fixed angle relative to the axis thereof and slightly offset relative to the preceding, underlying strip. The tube thus formed is caused to rotate about the mandrel and is simultaneously longitudinally advanced by an endless belt turning about said mandrel.
In this manner a continuous tube is obtained which is cut into separate tubes of a given length by a severing device located at a distance from the winding head of the tube winding machine.
The surface condition of such a tube depends, in the first place, on the material constituting the outside layer, but is also affected by the setting of the tube winding machine. Since it is not possible to regulate the pitch of the winding in a perfect manner so as to obtain accurately abutting adjacent turns of the helically extending strip, small tolerances have to be accepted. For this reason it may occur that adjoining edges of two consecutive spiral turns are positioned either with a slight gap or with a slight overlap.
Similarly, it is necessary to accept a small tolerance in the outside diameter of the tube. Such a tolerance is a function of the tolerances of the thickness of the strips and of the tension applied to the said strips. Such tubes, with the imperfections noted, are acceptable for the majority of uses.
When, however, tubes of the aforenoted type are intended, for example, for the reeling of thin sheets or films, such as plastic films or any other product which may be easily damaged by defects in the surface of the tube, particularly when its material is sensitive to humidity or to heat, it is essential to use precisely gauged tubes having a perfectly smooth surface void of any irregularity or any helically extending depression.
Presently known processes relating to the manufacture of precisely gauged smooth tubes involve prohibitive expenses.
OBJECTS AND SUMMARY OF THE INVENTION It is an object of the invention to provide an improved, helically wound, multi-layer cardboard tube having a very smooth external face and an exact, predetermined diameter.
It is a further object of the invention to provide an improved method of manufacturing helically wound,
multi-layer cardboard tubes having a very smooth external face and an exact, predetermined diameter.
It is a further object of the invention to provide an improved apparatus for the manufacturing of helically wound, multi-layer cardboard tubes having a very smooth external face and an exact, predetermined diameter.
Briefly stated, according to the invention, first a multi-layer, helically wound rough tube of continuous length is prepared, preferably on a mandrel-type tube winding machine of known structure. One of the layers is of a low density material and is thus substantially compressible in a radial direction. Then the rough tube is externally coated with a thermosetting resin, cut into predetermined lengths and dried. Finally, the rough tubes are forcibly introduced, by means of a pusher head, into the bore of a heated matrix to reduce the circumference of the tube to the desired precise diameter and to cause polymerization of the resin coating. The diameter of the bore is smaller than that of the rough tubes. The circumferential shrinkage of the tubes is taken up by said low density layer which is compressed radially under the external, radially inwardly directed force generated by the cooperation of said pusher head and said bore.
The invention will be better understood and further objects as well as'advantages will become apparent from the ensuing detailed specification taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammatic view of a tube winding machine and some of the treating stations according to the invention;
FIG. 2 is a perspective view illustrating the winding of the outer layer of a rough tube according to the invention;
FIG. 3 is a partial longitudinal section on an enlarged scale of the rough tube of FIG. 2.;
FIG. 4 is a diagrammatic view of a surfacing machine to ensure the precise gauging and the finishing of the tube surface according to the invention;
FIG. 5 is a partial longitudinal section on an enlarged scale of the last two layers of a rough tube according to another embodiment of the invention, and
FIG. 6 is a view similar to FIG. 5, showing the embodiment in a finished condition.
DESCRIPTION OF THE APPARATUS AND THE ARTICLE MADE THEREWITH Turning now to FIG. 1, first a rough tube 1 is prepared from which, ultimately, precisely gauged and smooth lengths of cardobard tube such as 1a, (FIG. 1) or lb, (FIG. 4) are obtained. Tube 1 is made by the helical winding of a plurality of suitably gummed strips, thirteen in the example shown, each strip representing a fraction or layer of the thickness of the wall of the tube.
The winding is performed in a tube winding machine 2. The machine incorporates a fixed mandrel 3 on which there are first wound a base strip 3 and ten intermediate strips 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, Si and Sj, constituting a basic tube onto which are then wound a penultimate strip 6 and a final strip 7. Each of the strips is stored on a reel; the strip 4 is disposed on a simple reel 8 while all the others are held on two-spindle reels, such as reel 9 carrying strips 5e and 5f.
In the example illustrated, said two-spindle reels are each provided with a gumming device to coat the lower face of each strip with adhesive. Any other gumming means may be used; for example, both surfaces of each strip may be coated with the exception of the first strip 4 and the last strip 7.
The first eleven strips, that is, strips 4 and 5a 5j form the basic tube and are made of fibrous material, such as kraft board, and are of substantially equal widths. The strip 6, forming the penultimate layer is of a low-density fibrous material, for example, felt board, having a normal thickness. The strip 7 constitutes the outside layer and is made of a dense material having long fibers, such as absorbent paper. The strip 7 is only slightly gummed; it has a width slightly greater than that of the other strips and is provided with a chamfered edge 70 opposite to the direction of advance of the tube (FIGS. 2 and 3). Said chamfered edge is the result of an abrading operation.
Each strip approaches the mandrel tangentially and is wound thereon in such a manner that it is out of alignment therealong relative to the preceding, underlying strip.
The article thus prepared constitutes the rough tube 1 which is driven so that it rotates about the mandrel 3 and is axially advanced in the direction of arrow Fl away from the head 10 by an endless belt 11 following a course 11a about the tube. Belt 11 is driven by two driving pulleys 12a and 12b, the axes of which are perpendicular to that of the mandrel. The directions of motion of the pulleys and the belt flights are indicated by the arrows F2, F3, F4, F5 and F6. I
The winding pitch is controlled in such a manner that adjacent edges of two consecutive turns of any layer, with the exception of the final strip 7, are as close as possible without risking overlapping. Stated in different terms, the only tolerance to be accepted will merely vary the size of a slight spacing, such as 13a, 13b, 13c (FIGS. 2 and 3). Since the strip 7 is broader than the others, the adjacent edges of its successive turns overlap: the simple edge 7b of the strip 7 covers the chamfered edge 7a. It is to be noted that the tolerance discussed hereinabove may vary only the size of the slight overlap of the edge 7b on the beginning of the chamfer.
With the tube winding machine 2 there is associated a cutting station 14 in which a saw or knives sever the tube 1 into predetermined lengths such as 1a (FIG. 1),
Between the tube winding'machine and the cutting station 14 there are disposed a sanding station 15 and a coating station 16. For sake of clarity, the stations 15 and 16 are shown in elevation while the tube winding machine 2 is shown in a plan view in FIG. 1.
In the example illustrated, the sanding station 15 is constituted by an endless abrasive belt 17 tensioned between two rollers 18a, l8b, one of which provides the drive. The whole unit is contained in a casing open towards the tube to be treated and linked by a conduit 20 to a dust-removing vacuum unit (not shown). The belt 17 bears upon the external surface of the tube 1, and erases the rough, helically extending-portions formed by the edge 7b of the outside strip 7 and, at the same time, straightens'out or aligns its long fibers. On leaving the sanding station 15, the outer surface of the still rough tube 1 is thus uniform and felted.
Next, the tube 1 arrives at the coating station 16. In the example shown, this station comprises a roller 21 partially immersed in a bath 22 containing the coating liquid 23. The latter is constituted by an aqueous solution of thermosetting resin to which a polymerization catalyst is added. Good results are obtained with a phenol resin in aqueous solution having a pH value in the vicinity of 8.5 and containing 35-50 eEfitJaE/ex- The number and the thickness of the layers, the adhesive and resin coatings, are calculated in such a manner as to obtain an external tube diameter 1 2 percent greater than the nominal diameter desired for the finished tubes.
From the outlet of the cutting station 14 the lengths la are advanced into a drier, not shown, heated to a temperature below the polymerization temperature of the resin for example C) yet sufficient to cause evaporation of the solvents.
Finally, the dried lengths are conveyed to a surfacing machine (FIG. 4) which comprises stand 24 on which there are coaxially arranged a hydraulic jack 25 and a steel die or matrix 26. Th jack 25 comprises, in a known manner, a plunger 27 integral with a rod 28 tcrminating in a head 29. The plunger 27 reciprocates in a cylinder 30, one end of which has a fluid-tight opening 30a through which the rod 28 extends. The cylinder is further provided at each of its ends with an aperture 31a and 31b serving alternately for the admission and the discharge of the actuating fluid. The total stroke of the plunger 27 is greater than a cut tube length. The matrix 26 is formed of a cylindrical jacket having an inner wall 26a which has a length substantially equal to a cut tube length. One end of inner wall 26a facing jack 25 terminates in a conically flaring inlet opening 26b. The jacket further has an outer wall 32 which, together with inner wall 26a, defines an annular space 33 in which a heated fluid circulates. This fluid isintroduced into annular space 33 through a channel 340 and taken out through a channel 34b. The outer wall 32 is thermally insulated; the fluid therein is circulated with a speed that is'sufficiently great to ensure a substantially uniform and constant temperature of the inner wall 260 of the matrix. This temperature should correspond to the polymerization temperature of the resinflsed at station 16. The inner wall 26a is accurately dimensioned; its bore taking into account its heat expansion corresponds to the desired nominal external diameter for the finished tubes. Further, the internal surface of inner wall 26a is chromed so that the lubricant added to the resin suffices to prevent the adhesion of the resin to the hot metal.
OPERATION OF THE SURFACING MACHINE In view of theforegoing structural description of the surfacing machine the method practiced therewith will be easily understood:
First, the plunger 27 is in a withdrawn position adjacent the aperture 3lb and the head 29 is spaced from the cylinder 30 when the cut length 1a has completely I entered the inner wall 26a. In order to be received by inner wall 26a, the diameter of tube ta undergoes a reduction which is made possible to a large extent by the radial compression of the penultimate layer a made of felt board. By virtue of the temperature of the inner wall 26a, the resin deposited on the outside surface of the tube undergoes a polymerization which gives said surface a very smooth finish and a certain degree of hardness. The driving fluid of the jack is then reversed by admitting it under pressure through the aperture 31a. Simultaneously, the aperture 31b is relieved of all pressure to allow the evacuation of the fluid filling the rear chamber of the jack. The plunger 27 withdraws and returns to its initial position in the vicinity of the aperture 31b. The cycle restarts when a new cut tube length lb is engaged by the head 29. As tube lb enters into the matrix, it displaces finished tube 1a, which is thus ejected.
DESCRIPTION OF AN ALTERNATE TUBE STRUCTURE Turning now to FIGS. 5 and 6, there is shown a modified tube structure before (FIG. 5) and after (FIG. 6) treatment in the surfacing machine described in connection with FIG. 4. In these figures only a penultimate layer 101 and a final layer 1 .02 are shown; both are wound helically. The basic tube structure is thus not shown.
The penultimate layer 101 is a strip of a low-density material, for example, felted board, between the consecutive turns Mia, 101b, Mile, of which there is shown a spacing 103a, 1103b.
the final layer 102 is a strip of abosrbent paper, both edges 105a, 1105b of which are chamfered. The width of this strip is such that its consecutive turns 102a, 102b do not overlap but define a smallest possible spacing 104.
The final layer 102 is glued to the penultimate layer by means of a coating 1% of a thermosetting adhesive resin.
The treatment of the advancing rough tube having a structure according to H6. 5, is, with the exception of the sanding step, identical to that described hereinbefore. Thus, its treatment comprises coating with a thermosetting resin mixed with a polymerization catalyst, cutting the tube into lengths, drying and finally reduction of circumference and setting in a surfacing machine.
The shrinkage or reduction in circumference is, to a large extent, taken up by the penultimate layer 101 which is compressed under the effect of external forces (FIG. 6). This compression or collapse of strip 101 is irregular: it is greater along the central part of the final layer 102 than along the chamfered edges a, 1051] thereof. At the same time, the spacings 103a, 1031; between the turns of the layer 101 are reduced to a greater or lesser extent.
Since the diametrical reduction of the tubes takes place in the matrix under elevated temperatures, simultaneously with the polymerization of the external resin coating R07, a polymerization of the layer 1% of adhesive resin is also achieved. This last-named polymerization stabilizes the layer 101, the deformation of which, as shown in FIG. 6, becomes permanent, while the cured resin in the helical space or gap 104 between consecutive turns of the external layer 102 acts as a seal.
Again, very smooth and accurately gauged tubes are obtained.
What is claimed is:
i. A multi-layer, helically wound cardboard tube comprising, in combination:
A. a basic tube;
B. a compressed penultimate strip of low-density, compressible material helically wound about said basic tube, adjacent edges of consecutive turns of said strip disposed in a close, non-overlapping relation;
C. an outer strip of high-density material helically wound about and slightly glued to said penultimate strip; and
D. an external polymerized thermosetting layer coherently covering the outside of said outer strip.
2. A tube as defined in claim 1, wherein at least one edge of said outer strip is provided with a chamfer.
3. A tube as defined in claim 1, wherein the external face of said outer strip is provided with aligned fibers.
4. A tube as defined in claim 2, wherein both edges of said outer strip are provided with a chamfer said penultimate layer completely fills the space defined by the juxtaposed chamfers of adjacent edges of said outer strip.
5. A tube as defined in claim 4, wherein said penultimate strip and said outer strip are glued together by a polymerized adhesive thermosetting resin layer forming a seal at adjacent chamfered edges of said outer strip.
6. A tube as defined in claim 1, wherein said lowdensity material is fibrous.
7. A tube as defined in claim 1, wherein said highdensity material is a dense-material having long fibers. =9: i=

Claims (7)

1. A multi-layer, helically wound cardboard tube comprising, in combination: A. a basic tube; B. a compressed penultimate strip of low-density, compressible material helically wound about said basic tube, adjacent edges of consecutive turns of said strip disposed in a close, nonoverlapping relation; C. an outer strip of high-density material helically wound about and slightly glued to said penultimate strip; and D. an external polymerized thermosetting layer coherently covering the outside of said outer strip.
2. A tube as defined in claim 1, wherein at least one edge of said outer strip is provided with a chamfer.
3. A tube as defined in claim 1, wherein the external face of said outer strip is provided with aligned fibers.
4. A tube as defined in claim 2, wherein both edges of said outer strip are provided with a chamfer said penultimate layer completely fills the space defined by the juxtaposed chamfers of adjacent edges of said outer strip.
5. A tube as defined in claim 4, wherein said penultimate strip and said outer strip are glued together by a polymerized adhesive thermosetting resin layer forming a seal at adjacent chamfered edges of said outer strip.
6. A tube as defined in claim 1, wherein said low-density material is fibrous.
7. A tube as defined in claim 1, wherein said high-density material is a dense material having long fibers.
US12339271 1968-02-07 1971-03-11 Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same Expired - Lifetime US3813026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12339271 US3813026A (en) 1968-02-07 1971-03-11 Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR139051 1968-02-07
US79748769A 1969-02-07 1969-02-07
US12339271 US3813026A (en) 1968-02-07 1971-03-11 Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same

Publications (1)

Publication Number Publication Date
US3813026A true US3813026A (en) 1974-05-28

Family

ID=27244783

Family Applications (1)

Application Number Title Priority Date Filing Date
US12339271 Expired - Lifetime US3813026A (en) 1968-02-07 1971-03-11 Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same

Country Status (1)

Country Link
US (1) US3813026A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645553A (en) * 1984-07-03 1987-02-24 L'homme, S.A. Process and apparatus for forming a multilayer tube
US4792326A (en) * 1987-03-30 1988-12-20 Kimberly-Clark Corporation Rapidly disintegrating paper tubes
US4872933A (en) * 1987-03-30 1989-10-10 Kimberly-Clark Corporation Method of forming rapidly disintegrating paper tubes
US5106356A (en) * 1991-05-30 1992-04-21 Sonoco Products Company Method and apparatus for the manufacture of paperboard tubes having controlled outside diameter
EP0627306A1 (en) * 1993-06-04 1994-12-07 Sonoco Products Company Enhanced crush strength construction multi-grade paperboard tubes
US5505395A (en) * 1993-06-04 1996-04-09 Sonoco Products Company Multi-grade paperboard winding cores for yarns and films having enhanced resistance to inside diameter reduction
US20030232162A1 (en) * 2002-06-18 2003-12-18 Sonoco Development, Inc. Laminated structures constructed from adhesively joined sheet material layers
US6851643B2 (en) 2003-01-27 2005-02-08 Sonoco Development, Inc. Spirally wound tube with enhanced inner diameter stiffness, and method of making same
US20080128583A1 (en) * 2006-07-17 2008-06-05 Doug Smoljo Form and method and apparatus for making a form
US20110057069A1 (en) * 2009-09-09 2011-03-10 Sonoco Development, Inc. Coated Paperboard Core For Elastomeric Fiber Production
US20140319202A1 (en) * 2013-04-24 2014-10-30 Smyly Kine Paper Tube for Winding Materials
US20160347021A1 (en) * 2014-01-29 2016-12-01 Futura S.P.A. Equipment and method for the production of cardboard tubes
US20180265326A1 (en) * 2015-11-20 2018-09-20 Voith Patent Gmbh Fibrous web winding and unwinding reel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1287945A (en) * 1918-04-11 1918-12-17 Ben K Ford Tube.
US1301840A (en) * 1918-07-06 1919-04-29 Edwin C Hawkins Waterproofed paper container.
US1605953A (en) * 1926-11-09 Chusetts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1605953A (en) * 1926-11-09 Chusetts
US1287945A (en) * 1918-04-11 1918-12-17 Ben K Ford Tube.
US1301840A (en) * 1918-07-06 1919-04-29 Edwin C Hawkins Waterproofed paper container.

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645553A (en) * 1984-07-03 1987-02-24 L'homme, S.A. Process and apparatus for forming a multilayer tube
US4792326A (en) * 1987-03-30 1988-12-20 Kimberly-Clark Corporation Rapidly disintegrating paper tubes
US4872933A (en) * 1987-03-30 1989-10-10 Kimberly-Clark Corporation Method of forming rapidly disintegrating paper tubes
US5106356A (en) * 1991-05-30 1992-04-21 Sonoco Products Company Method and apparatus for the manufacture of paperboard tubes having controlled outside diameter
EP0627306A1 (en) * 1993-06-04 1994-12-07 Sonoco Products Company Enhanced crush strength construction multi-grade paperboard tubes
US5505395A (en) * 1993-06-04 1996-04-09 Sonoco Products Company Multi-grade paperboard winding cores for yarns and films having enhanced resistance to inside diameter reduction
US20030232162A1 (en) * 2002-06-18 2003-12-18 Sonoco Development, Inc. Laminated structures constructed from adhesively joined sheet material layers
US6815022B2 (en) * 2002-06-18 2004-11-09 Sonoco Development, Inc. Laminated structures constructed from adhesively joined sheet material layers
US6851643B2 (en) 2003-01-27 2005-02-08 Sonoco Development, Inc. Spirally wound tube with enhanced inner diameter stiffness, and method of making same
US20080128583A1 (en) * 2006-07-17 2008-06-05 Doug Smoljo Form and method and apparatus for making a form
US20110174956A1 (en) * 2006-07-17 2011-07-21 Doug Smoljo Form and method and apparatus for making a form
US20110057069A1 (en) * 2009-09-09 2011-03-10 Sonoco Development, Inc. Coated Paperboard Core For Elastomeric Fiber Production
US20140319202A1 (en) * 2013-04-24 2014-10-30 Smyly Kine Paper Tube for Winding Materials
US9090039B2 (en) * 2013-04-24 2015-07-28 Kline Smyly Paper tube for winding materials
US20160347021A1 (en) * 2014-01-29 2016-12-01 Futura S.P.A. Equipment and method for the production of cardboard tubes
US11312098B2 (en) * 2014-01-29 2022-04-26 Futura S.P.A. Equipment and method for the production of cardboard tubes
US20180265326A1 (en) * 2015-11-20 2018-09-20 Voith Patent Gmbh Fibrous web winding and unwinding reel
US10793393B2 (en) * 2015-11-20 2020-10-06 Voith Patent Gmbh Fibrous web winding and unwinding reel

Similar Documents

Publication Publication Date Title
US3813026A (en) Accurately dimensioned smooth-surfaced multi-layer cardboard tubes and method of and apparatus for making the same
US2564695A (en) Plastic cartridge case and method of making same
US4645553A (en) Process and apparatus for forming a multilayer tube
SU651676A3 (en) Method of continuous manufacture of reinforced plastic pipe
CA2335828C (en) Paint roller with integrated core and cover and method and apparatus for production of same
EP0627306B2 (en) Enhanced crush strength construction multi-grade paperboard tubes
US5746863A (en) Method of making wood tubing
US3580146A (en) Method of making accurately dimensioned smooth-surfaced multi-layer cardboard tubes
US2760549A (en) Method and apparatus for making highpressure non-metallic tubing
US4395298A (en) Method and apparatus for making toothed belts and belt made employing same
US2748830A (en) Method and apparatus for making spiral wound synthetic piping and tubing
US2785700A (en) Paper tube and method of making the same
US3226799A (en) Paint roller and method of making same
US8257534B2 (en) Methods for manufacturing a paint roller with grooved substrate
US3697348A (en) Method of making gaskets
DE2912308C2 (en) Process for producing wound, surface-coated tubes and apparatus for carrying out this process
US2352533A (en) Manufacture of wood tubing and the like
US2884957A (en) Flexible tubing
US3455521A (en) Forming tube for glass fibers
US2402040A (en) Wood tubing and the like
US2010475A (en) Method of producing articles from fibers and the product thereof
US2984182A (en) Shotgun shell tube or cartridge
US3296945A (en) Method and apparatus for making a container or the like on a fluid covered and/or vibrated mandrel
US3544406A (en) Method and apparatus for making light pipes
US2019890A (en) Method and apparatus for making fibrous shapes

Legal Events

Date Code Title Description
AS Assignment

Owner name: MENASHA 1980 CORPORATION, P.O. BOX 367, HWY. 41, N

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MENASHA CORPORATION;REEL/FRAME:003929/0607

Effective date: 19810320

Owner name: MENASHA CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:MENASHA 1980 CORPORATION;REEL/FRAME:003929/0612

Effective date: 19810325

Owner name: MENASHA CORPORATION, WISCONSIN

Free format text: CHANGE OF NAME;ASSIGNOR:MENASHA 1980 CORPORATION;REEL/FRAME:003929/0612

Effective date: 19810325