US3810458A - Minimizing tissue reaction to glove powder - Google Patents

Minimizing tissue reaction to glove powder Download PDF

Info

Publication number
US3810458A
US3810458A US00349875A US34987573A US3810458A US 3810458 A US3810458 A US 3810458A US 00349875 A US00349875 A US 00349875A US 34987573 A US34987573 A US 34987573A US 3810458 A US3810458 A US 3810458A
Authority
US
United States
Prior art keywords
powder
glove
polyglycolic acid
polymer
gloves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00349875A
Inventor
B Semp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US00349875A priority Critical patent/US3810458A/en
Application granted granted Critical
Publication of US3810458A publication Critical patent/US3810458A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0082Details
    • A41D19/0096Means for resisting mechanical agressions, e.g. cutting or piercing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • A61B42/10Surgical gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B50/00Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
    • A61B2050/005Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers with a lid or cover
    • A61B2050/0065Peelable cover

Definitions

  • the polyglycolic acid powder is' readily absorbed by living tissue without deleterious tissue reaction, thus minimizing tissue reaction from the transfer of the powder from the element such as'a glove to internal sites in a subject.
  • the rubber surgical elements are conveniently stored in a strippable package.
  • Polyglycolic acid aids in reducing infection and promotes healing, when in contact with tissue.
  • This invention relates to a natural or synthetic rubber surgical glove which is lubricated with a biodegradable dusting powder, and to other rubber elements which contact raw tissue.
  • Various dusting powders have been procedures, powder almost inevitably falls or is rubbed from the surgeons gloved hand into an exposed body cavity, and may be carried from other areas of the operating room into the exposed body cavity by air currents.
  • the powder should have no adverse effect within the body such as the creation of lesions (i.e., adhesions, granulomas, or such).
  • the glove powder must be capable of sterilization by convenient hospital techniques, preferably both autoclaving and gaseous ethylene oxide sterilization, as well as by radiation, ultrasonic energy, or combinations of-these;
  • the powder must possess sufficient lubricity to permit-ready insertion of the hand into the glove'and must be of sufficiently fine particle size and have characteristics permitting such lubricity.
  • Talc was among the earliest surgical glove powders used by the medical profession. However, after the re port by Antopol (Lycopodium Granuloma, Arch. Path. 16, pg. 326 1933)) that talc caused granulomas in the body, the use of talc as a glove powder was rapidly abandoned. Talc was replaced by starch glove powders since starch was known to be biodegradable and was not believed to cause granulomas or other aggravating conditions within the body. Currently, a-widely used commercial surgical glove powder is specially treated homogeneous amylose which contains about 2 percent magnesium oxide to prevent clumping of the powder.
  • starch glove powders have a number of dishydrin, which partially etheri fies the starch in order to make the'powder free flowing after steam sterilization.
  • Starch is also an excellent nutrient medium forvirtually all vegetative bacteria such as various pathogenic microorganisms and is objectionable for that reason.
  • This invention discloses a natural or synthetic rubber surgical glove having a lubricating coating of powdered polyglycolic acid, hereinafter abbreviated as PGA.
  • the PGA of this invention is completely absorbed by living tissue withhin days with no observable adverse effects.
  • the polyglycolic acid powder causes no significant formation of lesions such as adhesions or granulomas (see Example 3 hereinbelow).
  • the powdered glove may be sterilized by autoclaving with no adverse effect upon its desirable properties such as, for example, its ability to flow freely without clumping (see Example 2).
  • the powder can also be sterilized by other known methods such'as, for example, gaseous ethylene oxide sterilization.
  • the powder is non-toxic to living tissue, non-irritating to the skin and can be readily prepared synthetically.
  • Polyglycolic acid can be prepared by methods disclosed in U.S. Pat. No. 3,297,033, Schmitt and Polistina Surgical Sutures, January 1967, which patent is incorporated herein by reference.
  • U.S. Pat. No. 3,297,033 describes an absorbable surgical suture of polyglycolic acid and discusses in greater detail the unusual biodegradable properties of polyglycolic acid. As set forth therein, a small quantity of methoxyacetic acid,
  • alkyl hydroxyacetic esters may be present during the polymerization as an end group stabilizer controlling the molecular weight and viscosity.
  • Small quantities of other materials may be present in the chain, as for example, d,l-lactic acid, its optically active forms, homologs, and analogs.
  • Example 4 of said U.S. Pat. No. 2,668,162 shows reaction conditions.
  • Surgical powders of polyglycolic acid can be better seen in most surgical fields if colored so as to contrast with blood and tissue or bandages or other background materials.
  • the present polyglycolic acid powder provides a synthetic powder which is absorbable by living tissue and is nontoxic.
  • the powder is readily sterilized by autocl aving, preferably in sealed enclosures, or with ethylene oxide vapor.
  • Natural rubber or synthetic rubber surgical elements have many uses. Probably the most common is that of a rubber glove used by a surgeon or nurse during a surgical procedure or examination of a patient. Other sterile surgical elements may be used such as catheters, or
  • any powder on the surface of the rubber may be transferred into the subject.
  • Foreign elements in tissue usually cause adverse reactions. The degree of the adverse reaction can vary over a wide limit but even though the reactionmay be minimal, it is desired that it be reduced as far as possible.
  • polyglycolic acid to be used on the surface of the rubber gloves and other rubber goods as a dusting powder need not be mechanically strong, and may, in fact, be somewhat elastic
  • a copolymer of polyglycolic acid containing lactic acid moieties, as for example, by the copolymerization of polyglycolic acid and lactic acid is acceptable. Usually, this is produced from glycolide and lactide, mixed. Usually a copolymer tends to be more elastic or rubbery than a homopolymer.
  • the polyglycolic acid is an acid and as suchhas a low pH, which low pH is not favorable to the der such as here where tensile strength is not a criteria, a copolymer gives good lubricity.
  • lactic acid linkages change the characteristics of the powder but slightly. Over 15 percent lactic increases the solubility in solvents'such as chloroform or xylene'or toluene.
  • solvents' such as chloroform or xylene'or toluene.
  • Such copolymer may be powdered by spray drying a solution.
  • Polyglycolic acid in the form of a suture has a tensile strength that compares favorably with that of steel on a size basis and on a weight basis compares favorably with alloy steel but as a lubricant in connection with surgical glove, the strength requirements are such that batches of polyglycolic acid which do not meet the tensile strength requirements of a suture may be pulverized and used as a perfectly satisfactory glove powder.
  • a high molecular weight polymer has greater strength, and absorbs more slowly.
  • a lower molecular weight and rapid absorption is acceptable, and often an advantage.
  • FIG. l is a surgical glove having on the surface thereof polyglycolic acid.
  • FIG. 2 shows a user donning a surgical glove.
  • the inventive dusting powder may be prepared by grinding or otherwise pulverizing polyglycolic acid to the desired particle size by the use of conventional grinding equipment and techniques well known to those skilled in the art.
  • polyglycolic fiber or filament as prepared in US. Pat. No. 3,297,033 is placed in an ordinary ball mill and ground for periods of anywhere from to 48 hours.
  • the grinding equipment is preferably grounded during the grinding operation to prevent undesirable aggregation of the particles caused by the static electrical charges which can accumulate on the particles during grinding.
  • the ground material can then be removed from the mill and vibrated through a series of screens of varying mesh mounted on a Ro-Tap testing sieve shaker as supplied by W. S. Tyler Co.
  • Particle size of the ground polymer is an important criteria in selecting a powder which is suitable for a glove powder.
  • all the powder particles be small enough to pass through a 100 mesh screen (149 micron designation in the U.S. Sieve Series). However, small amounts (up to about 1 percent by weight) of somewhat larger sized particles can also be present in the powder without unduly adverse effect on the lubricating properties of the polyglycolic acid powder. It is preferred that all of the powder particles pass through a 200 mesh screen (74 micron designation in the US Sieve Series).
  • the powder In preparing the glove powder, it is equally important that it not be made too fine in order to minimize the escape of excessive powder into the environment in the course of powdcring the hands, surgical gloves, or other items.
  • the powder should not be of an excessively large particle size nor should it contain substantial amounts of exceptionally large particles since this will create an undesirable abrasive effect upon the skin of the hand when the powder is used.
  • a suitable particle size range is from about 0.5 to about 149 microns with a range of from about 10 to microns preferred.
  • polyglycolic acid powder When polyglycolic acid powder is to be sterilized in an environment which contains substantial amounts of water such as, for example, in an autoclave, it is essential that the powder be contained within a package which is substantially impervious to the water or steam. If this precaution is not taken, the water can hydrolyze the polymer causing it to become gummy and sticky.
  • a particularly suitable water impervious container is the laminate of Mylar and polyethylene such as that described in US. Pat. No. 2,949,181, said patent being herein incorporated by reference. US. Pat. No. 3,728,839, supra, discloses a very useful metal foil laminate for polyglycolic acid products. When polyglycolic acid is packaged in water impervious containers such as those described above, it can be autoclaved and still retain the free flowing properties required ofa medical dusting powder (see Example 2).
  • Glove powder is used in a variety of ways by the medical profession. Rubber surgical gloves are typically sold unsterile in pairs with a package of glove powder inserted in the cuff of one of the gloves. When it is desired to use the gloves, the gloves and the package of glove powder are sterilized, usually by autoclaving. The
  • the surgeon will then open the package of glove powder (the package usually contains about 1.5 grams of powder) and pour the powder onto his hands. After working the powder over the surface of his hands, the surgeon inserts his powdered hands into the surgical gloves, the glove powder providing the lubricity required to facilitate this insertion.
  • the gloves In cases where the gloves are reusable, the gloves, at the end of the operation, will be washed, dried, inspected for holes and then repowdered, usually on both the internal and external surfaces of the glove for subsequent reuse of the glove. This powdcring is ordinarily accomplished by placing the gloves and a prescribed amount of glove powder in a tumbler and tumbling for a sufficient period of time to powder the inside and outside surfaces of the glove. The powdered gloves are then repackaged, autoclaved, and presented to the surgeon for use. Since the outside of the glove is often powdered, it is readily apparent how some of the powder may spill off the glove and into the exposed surgical cavity of a patient.
  • Disposable surgical gloves usually made of latex are .also available to the medical profession. These gloves can be offered as a unit of one pair of gloves and one package of glove powder contained in a suitable package. However, they are ordinarily offered as a powdered glove, i.e., the inner and outer surfaces of the glove are prepowdered with a suitable dusting powder.
  • a powdered glove i.e., the inner and outer surfaces of the glove are prepowdered with a suitable dusting powder.
  • the contents of the envelope i.e., the gloves and the powder are sterile, the entire envelope must first be autoclaved or otherwise sterilized. At the end of the operation the gloves are discarded.
  • the gloves of the present invention may be sealed in a strippable enclosure of the type shown in US. Pat. No. 2,949,181, there described for sutures, but adaptable to surgical gloves.
  • a larger size strippable laminate enclosure is used for gloves.
  • the glove powder of this invention can be offered either separately in a single package of a suitable material or in combination with a pair of surgical gloves in either a steril or unsterile condition.
  • the powder itself may be either sterile or non-sterile. 5
  • a sterile powdered surgical glove, sterile powder, or a sterile combination of a surgical glove and separately packaged glove powder is to be offered, to package the aforementioned sterile items in a sterile inner enclosure which is then packaged in a sterile outer enclosure.
  • the outer enclosure is provided with a strippable seal, which then allows for convenient serving of said sterile item to the potential user by merely stripping away the outer enclosure to present a totally sterile enclosure, i.e., the outer surface as well as the contents of the inner enclosure are sterile, containing the sterile item to the user. The user can then open the package and remove the sterile item therein without risk of contaminating the contents from contact with the outer surface of the inner enclosure.
  • the product ground on the Wiley Mill was then ball milled for 3 hours and examined microscopically to determine if a further breakdown in size had occurred. Acicular particles were found ranging in size from 0.5 micron to large fragments of the chopped filaments.
  • Ball milling of the product was continued for another 15 hours. At this point, more than 90 percent of the ground material passed through a 7 mil sieve opening and the bulk of this material was found to have a particle size ranging from less than 0.5 micron to 15 microns.
  • the larger sized material which passed through the 7 mil sieve was either acicular with a diameter in the aforementioned'range 'or static aggregates. The powder retained by the 7 mil sieve was discarded, or reground.
  • Example 2 STERILIZATION OF POLYGLYCOLIC ACID DUSTING POWDER
  • the powder prepared in Example l was placed in a transparent envelope fabricated from a laminate of the The package was then heat sealed and placed in a standard autoclave 15 psig steam pressure, 250F.) for 1 hour. The package-was then removed and opened. The package contents were free flowing and gave no indication of being tacky or-sticky.
  • the powder was applied to the hands of a subject who then proceeded to glove his hands with a pair of rubber surgical gloves.
  • the portion of the wall treated with polyglycolic acid powder was substantially free from lesions except for EXAMPLE 4 IN-VIVO BACTERIOSTATIC AND BACTERICIDAL PROPERTIES OF POLYGLYCOLIC ACID POWDER
  • Two ventral incisions were made in two albino New Zealand female rabbits. Both incisions were deliberately infected with Staphylococcus aureus.Sterile polyglycolic acid powder as prepared in Example 2 was applied to one of thewounds. No powder was applied to the other wound. Both wounds were then repaired by suturing. After a 7 day healing time, there was no evidence of any infection whatsoever in the wound which had been treated with polyglycolic acid powder and-the wound appeared to have healed satisfactorily. It was readily apparent from examination of the untreated wound, however, that this would was still badly infected.
  • EXAMPLE 6 Powdered Gloves A group of freshly dipped latex gloves as manufactured and before dusting were placed in a drum with about 1 gram per glove of the dusting powder of Example l. The gloves were tumbled and shakened till the gloves were uniformly coated with the powder after which the gloves were shaken to remove excess powder, paired. and folded and then placed between two sheets ofa laminate of polyester film and polyethylene. The material is described in detail in US. Pat. No. 2,949,181. The laminate was sealed polyethylene to polyethylene, leaving a lip and a strippable seal as described in said US. Pat. No. 2,949,181 and then a group of packaged gloves were placed in an autoclave and heated to sterilizing temperature.
  • the gloves could be released by stripping the package, to release the gloves in sterile condition and were then ready to be donned by a user.
  • EXAMPLE 7 A group of the gloves dusted with powdered polyglycolic acid as described in the preceding example were sealed between a polyester, polyethylene laminate asabove described using a strippable seal and a group of the gloves were then placed in an ethylene oxide chamber to allow the ethylene oxide to penetrate through the laminate seal as described in more detail in US. Pat. No. 2,917,878 Canarius and Kaufman.
  • the individual gloves before sterilization are indicated in FIG. I.
  • the surface of the glove 11 has powdered polyglycolic acid 12 spread thereover.
  • FIG. 2 shows the surgeon donning the glove.
  • the glove 13 is held by a nurse whose hands 14 hold the glove with the cuff slightly stretched while the hand of the surgeon 15 is inserted therein to.
  • the glove It is convenient to powder the glove with the finely divided polyglycolic acid before the glove is sterilized, and sterilize the powdered glove and keep it in sterile condition until ready for use. It is also convenient to use the powdered polyglycolic acid in sterile form to be applied to the surface of sterile gloves at the time they are being put on.
  • the time of powdering the glove and the time for storing can vary with the technique and schedules of the particular user, such as a hospital or individual surgeon. 1f sterile gloves are used, a single use disposable glove is convenient. 1f the gloves are to be reused, the time of applying the powder and the sterilizing can be varied depending upon the number of gloves used in the inventory available or preferences.
  • a method of minimizing tissue reaction in a surgical procedure which comprises contacting living tissue with a rubber surgical element having on the surface thereofa lubricity imparting quantity of a finely divided biodegradable polymer containing hydrolytically degradable glycolic acid ester linkages.
  • a method of minimizing tissue reaction in a surgical procedure which comprises contacting living tissue where deleterious microorganisms may be present with an acidifying quantity of a finely divided polymer containing hydrolytically degradable glycolic acid ester linkages, whereby wound healing is accelerated by the slight acidification and microorganism inhibition resulting from the presence of the hydrolytically available glycolic acid.

Abstract

Natural or synthetic rubber surgical elements such as tubing, catheters, drains and gloves are ''''lubricated'''' so as to prevent sticking during storage, and permit easier emplacement, such as putting on the gloves by a surgeon or nurse, by applying to the surface of the rubber element finely divided polyglycolic acid powder. The polyglycolic acid powder is readily absorbed by living tissue without deleterious tissue reaction, thus minimizing tissue reaction from the transfer of the powder from the element such as a glove to internal sites in a subject. The rubber surgical elements are conveniently stored in a strippable package. Polyglycolic acid aids in reducing infection and promotes healing, when in contact with tissue.

Description

' I United States Patent [191 Semp [ MINIMIZING TISSUE REACTION TO GLOVE POWDER 22 Filed: Apr. 10,1973
[21] App1.No.:349,875
Related U.S. Application Data [63] Continuation-impart of Ser. No. 117,998, Feb. 23, 1971, Pat. No. 3,728,739, which is a continuation-in-part of Ser. No. 770,792, Oct. 25, 1968, abandoned.
[52] US. Cl 128/1 R, 128/221, 128/260,
- 1/1967 Schmittet a1 128/3355 [45] May 14, 1974 9/1969 Schmitt et al 260/783 R 4/1973 Semp 260/783 R Primary Examiner-Aldrich F. Medbery Attorney, Agent, or FirmSamuel Branch Walker 5 7] ABSTRACT Natural or synthetic rubber surgical elements such as tubing, catheters, drains and glovesiare lubricated" so as to prevent sticking during storage, and permit easier emplacement, such as putting on the gloves by asurgeon or nurse, by applying to the surface of the rubber element finely divided polyglycolic acid powder. The polyglycolic acid powder is' readily absorbed by living tissue without deleterious tissue reaction, thus minimizing tissue reaction from the transfer of the powder from the element such as'a glove to internal sites in a subject. The rubber surgical elements are conveniently stored in a strippable package. Polyglycolic acid aids in reducing infection and promotes healing, when in contact with tissue.
11 Claims, 2 Drawing Figures 72 POWDERED POL YGL YCOLL/C ACID 7'0 LUBE/GATE SURFACE MllNlMlZllNG TISSUE REACTION TO GLOVE rownrza RELATED APPLICATIONS This is acontinuation-in-part of Ser. No. 117,998, filed Feb. 23, 1971, now U.S. Pat. No. 3,728,739, Apr. 24, 1973, which application is a continuation-in-part of Ser. No. 770,792, filed Oct. 25, 1968, now abandoned.
BACKGROUND OF THE lNVENTlON This invention relates to a natural or synthetic rubber surgical glove which is lubricated with a biodegradable dusting powder, and to other rubber elements which contact raw tissue. Various dusting powders have been procedures, powder almost inevitably falls or is rubbed from the surgeons gloved hand into an exposed body cavity, and may be carried from other areas of the operating room into the exposed body cavity by air currents.
3. The powder should have no adverse effect within the body such as the creation of lesions (i.e., adhesions, granulomas, or such).
4. The glove powder must be capable of sterilization by convenient hospital techniques, preferably both autoclaving and gaseous ethylene oxide sterilization, as well as by radiation, ultrasonic energy, or combinations of-these; I
5. The powder must possess sufficient lubricity to permit-ready insertion of the hand into the glove'and must be of sufficiently fine particle size and have characteristics permitting such lubricity.
6. It must be reasonably priced and readily available.
7. It must be non-irritating to skin of both the surgeon or nurse and the patient.
Talc was among the earliest surgical glove powders used by the medical profession. However, after the re port by Antopol (Lycopodium Granuloma, Arch. Path. 16, pg. 326 1933)) that talc caused granulomas in the body, the use of talc as a glove powder was rapidly abandoned. Talc was replaced by starch glove powders since starch was known to be biodegradable and was not believed to cause granulomas or other aggravating conditions within the body. Currently, a-widely used commercial surgical glove powder is specially treated homogeneous amylose which contains about 2 percent magnesium oxide to prevent clumping of the powder.
However, starch glove powders have a number of dishydrin, which partially etheri fies the starch in order to make the'powder free flowing after steam sterilization.
Starch is also an excellent nutrient medium forvirtually all vegetative bacteria such as various pathogenic microorganisms and is objectionable for that reason.
According to Lee and Lehman (Surgery, Gynecology, and Obstetrics 84, pgs. 689-695 (1947)), starch, unlike talc, was completely absorbed within the peritoneal cavity without causing adhesions. This conclusion was challenged by Sneierson and Woo (Annals of Surgery 132, pgs. 1045-1050 (1955)) who reported two cases of large granulomas occurring in surgical wounds as a result of starch powder contamination. McA dams (Sugery 39, pgs. 329-336 1936)) reported three cases of intraperiton'eal granulomas caused by starch glove powder. The Saxens (Acta Pathology Microbiology Scand. 64, pgs. 55-70 (1965)) posulated that the magadvantages. They offer high resistance to flow and they tend to gelatinize or agglutinate in the presence of hot water thereby creating problems when they are sterilnesium oxide which acts as an anti-clurnping material was causing the lesions. Myllarniemi and Frilander (Journal of the International College of Surgeons 44, No. 6681, pgs. 677-681 (1965)) concluded that the harmful effects of starch glove powders containing magnesium oxide might be due to a combined effect of two irritating constituents. 'Other publications which indicate the serious concern of the medical-profession.
over granulomas traced to starch glove powders are those of Lehman and Wilder (Journal of Abdominal Surgery 4, No. 3, pgs. 77-80 (1962)), Webb and Regan (Archives of Surgery 84, No. 3, pgs. 282-285 (1962)), and Walczak and Collura (American Journal of Surgery 103, No. 5, pgs. 611-612 (1962)).
' Despite the aforementioned disadvantages associated with starch glove powders, they are still used by the medical profession due to the unavailability of an improved substitute It is clear that a dusting powder which is readily absorbed by tissue without deleterious interactions is desirable, and no powder meeting these requirements is obvious to the medical profession. The present powder meets all these requirements.
SUMMARY .OF THE INVENTION This invention discloses a natural or synthetic rubber surgical glove having a lubricating coating of powdered polyglycolic acid, hereinafter abbreviated as PGA. The PGA of this invention is completely absorbed by living tissue withhin days with no observable adverse effects. In the course'of biological degradation, the polyglycolic acid powder causes no significant formation of lesions such as adhesions or granulomas (see Example 3 hereinbelow). The powdered glove may be sterilized by autoclaving with no adverse effect upon its desirable properties such as, for example, its ability to flow freely without clumping (see Example 2). The powder can also be sterilized by other known methods such'as, for example, gaseous ethylene oxide sterilization. The powder is non-toxic to living tissue, non-irritating to the skin and can be readily prepared synthetically.
There are also' significant indications that when the powder of this invention is applied to living tissue, an
environment is created which is bactericidal of bacteriostatic. This is indicated by the ability of wounds deliberately infected with Staphylococcus aureus to heal with no evidence of continuing infection when the wound has also been treated with the powder of this invention (see Example 4). It is further indicated by the failure of aqueous suspensions of the powder to support the growth of organisms such as Staphyloccus aureus (see Example 5). It is apparent that a medical dusting powder which is also bacteriostatic and bactericidal is a most desirable item.
Polyglycolic acid can be prepared by methods disclosed in U.S. Pat. No. 3,297,033, Schmitt and Polistina Surgical Sutures, January 1967, which patent is incorporated herein by reference. U.S. Pat. No. 3,297,033 describes an absorbable surgical suture of polyglycolic acid and discusses in greater detail the unusual biodegradable properties of polyglycolic acid. As set forth therein, a small quantity of methoxyacetic acid,
or their homologs, such as higher alkoxyacetic acids,
or alkyl hydroxyacetic esters may be present during the polymerization as an end group stabilizer controlling the molecular weight and viscosity. Small quantities of other materials may be present in the chain, as for example, d,l-lactic acid, its optically active forms, homologs, and analogs.
Said U.S. Pat. No. 3,297,033 incorporates a reference to U.S. Pat. No. 2,668,162 Lowe which quantifies a small amount of lactides as up to percent, disclosing, for example, the preparation ofa copolymer of 90/10 glycolide/lactide offers two advantages over the homopolymer of glycolide. One advantage is that the melting point of the copolymer is lower than the homopolymer, being'in the neighborhood of 200C; and the entire reaction can be conducted at approximately the melting point of the copolymer. Operation at the lower temperatures decreases the rate of degradation of the polymer which gives a polymer of lighter color.
Example 4 of said U.S. Pat. No. 2,668,162 shows reaction conditions.
Surgical powders of polyglycolic acid can be better seen in most surgical fields if colored so as to contrast with blood and tissue or bandages or other background materials.
BRIEF DESCRIPTION OF PRIOR ART DEVICES.
U.S. Pat. No. 3,565,077 February 23, 1971, Glick, DENSIFIED ABSORBABLE POLYGLYCOLIC ACID SUTURE BRAID, AND METHOD FOR PREPARING I SAME.
U.S. Pat. No. 3,620,218, Nov. 16, 1971, Schmitt and Polistina, CYLINDRICAL PROSTHETIC DEVICES OF POLYGLYCOLIC ACID.
U.S. Pat. No. 3,626,948, Dec. 14, 1971, Glick and McPherson, ABSORBABLE POLYGLYCOLIC ACID SUTURE OF- ENHANCED IN-VIVO STRENGTH RETENTION.
U.S. Pat. No. 3,728,839, Apr. 24, 1973, Glick, STORAGE STABLE SURGICALLY ABSORBABLE POLYGLYCOLIC ACID PRODUCTS.
Reference is made to these patents which show additional prior art and for the definitions therein set forth.
Related data incorporated herein by this reference on manufacturing of polyglycolic acid, producing surgical elements thereof and its use for surgical purposes are disclosed in:
U.S. Pat. No. 3,414,939 Dec. 10, 1968, Chirgwin, APPARATUS FOR QUENCHING MELT-SPUN FI- BERS.
U.S. Pat. No. 3,422,181 Jan. 14, 1969, Chirgwin, METHOD FOR HEAT SETTING OF STRETCH ORI- ENTED POLYGLYCOLIC ACID FILAMENT.
U.S. Pat. No. 3,435,008 Mar. 25, 1969, Schmitt, Epstein and Polistina, METHOD FOR PREPARA- TION OF ISOMERICALLY PURE B-GLYCOLIDE AND POLYMERIZATION METHOD FOR GLYCO- LIDE COMPOSITIONS EMPLOYING PARTIAL HY- DROLYZAT-E OF SAID B-GLYCOLIDE.
U.S. Pat. No. 3,442,871 May 6, 1969, Schmitt, Epstein and Polistina, PROCESS'FOR POLYMERIZ- ING A GLYCOLIDE.
U.S. Pat. No. 3,457,280 July 22, 1969, Schmitt, Epstein and Polistina, ,B-GLYCOLIDE AND METH- ODS FOR THE ISOLATION THEREOF.
U.S. Pat. No. 3,468,853 Sept. 23, 1969, Schmitt and Polistina, PROCESS OF POLYMERIZING A GLYCOLIDE.
U.S. Pat. No.. 3,565,769 Feb. 23, 1971, DeProspero, EXTRUDABLE AND STRETCHABLE POLY- GLYCOLIC ACID AND PROCESS FOR PREPAR- ING SAME.
U.S. Pat. No. 3,597,449, Aug. 3, 1971, DeProspero and Schmitt, STABLE GLYCOLIDE AND LACTIDE COMPOSITIONS.
U.S. Pat. No. 3,597,450, Aug. 3, 1971, Schmitt, Polistina, Epstein and DeProspero, PREPARATION OF GLYCOLIDE POLYMERIZABLE INTO POLY- GLYCOLIC ACID OF CONSISTENTLY HIGH MO- LECULAR WEIGHT.
U.S. Pat. No. 3,600,223, Aug. 17, 1971, Glick and McCusker, PROCESS FOR CLEANING POLY- GLYCOLIC ACID FILAMENTS USEFUL AS AB- 7 SORBABLE SURGICAL SUTURES.
U.S. Ser. No. 34,593, May 4, 1970, Schmitt and Bailey, SOLUTIONS OF POLYGLYCOLIC ACID, now abandoned.
U.S. Ser. No. 118,974, Feb. 25, 1971, Ramsey and Delapp, PREPARATION OF POLYGLYCOLIC ACID IN FINELY DIVIDED FORM.
U.S. Ser. No. 157,521, June 28, 1971, Schmitt and Polistina, POLYGLYCOLIC ACID PROSTHETIC DEVICES.
U.S. Ser. No. 171,320, Aug. 12, 1971, Schmitt and Bailey, POLYGLYCOLIC ACID IN SOLUTIONS.
U.S. Ser. No. 176,291, Aug. 30, 1971, Glick and Chirgwin, DOPE-DYED POLYGLYCOLIC ACID SU- TURES.
U.S. Ser. No. 190,290, Oct. 18, 1971, Schmitt and Epstein, COPOLYMERS ABSOBABLE BY LIVING MAMMALIAN TISSUES.
U.S. Sen-No. 277,537, Aug. 3, 1972, Glick and Chirgwin, GREEN POLYGLYCOLIC AClD SU- TURES AND SURGICAL ELEMENTS.
Other United States and foreign patents disclose surgical elements in which biodegradability and absorption results from the hydrolytic attack of tissue components on glycolic acid ester linkages in the polymer composing such surgical elements.
The present polyglycolic acid powder provides a synthetic powder which is absorbable by living tissue and is nontoxic. The powder is readily sterilized by autocl aving, preferably in sealed enclosures, or with ethylene oxide vapor.
Natural rubber or synthetic rubber surgical elements have many uses. Probably the most common is that of a rubber glove used by a surgeon or nurse during a surgical procedure or examination of a patient. Other sterile surgical elements may be used such as catheters, or
rubber drainage tubes which are placed in the site of a wound to permit drainage during the healing process. Such drains are often removed as soon as the healing process proceeds to the'point that a discharge is no longer occurring. Whether the surgical elements such as a drainage tube is to remain in the patient for a matter of several days or whether it is a surgical glove which is to be in contact with the raw tissues of a wound for only a period of a few minutes, any powder on the surface of the rubber may be transferred into the subject. Foreign elements in tissue usually cause adverse reactions. The degree of the adverse reaction can vary over a wide limit but even though the reactionmay be minimal, it is desired that it be reduced as far as possible.
To prevent rubber elements from sticking to each other, for example, the turns of a rubber tube or the folds of a surgical glove, during storage in a package,
6 growth of deleterious microorganisms, so that up until the acidity of the polyglycolic acid is neutralized by contact with other materials, the growth of many microorganisms is at least partially inhibited. I
Although surgical elements other than surgeons gloves do have considerable use, the biggest use is that of the dusting powder for the surface of the surgeons glove. Therefore, the present invention will be described in greatest detail in connection with such gloves, having a coating of lubricity imparting polyglycolic acid.
Because the polyglycolic acid to be used on the surface of the rubber gloves and other rubber goods as a dusting powder need not be mechanically strong, and may, in fact, be somewhat elastic, a copolymer of polyglycolic acid containing lactic acid moieties, as for example, by the copolymerization of polyglycolic acid and lactic acid is acceptable. Usually, this is produced from glycolide and lactide, mixed. Usually a copolymer tends to be more elastic or rubbery than a homopolymer. Where maximum strengthis desired, frequently a homopolymer has unique characteristics, but in a powit isdesirable that the surface be coated with a finely It has now been found that finely divided polyglycolic acid imparts the desired lubricity to rubber and if present in a wound appears to be completely absorbed by living tissue within a surgical acceptable period of time. When used as a suture, polyglycolic acid is completely absorbed in less than 90 days in normal muscular tissue..Polyglycolic acid dusting powder whether on a drainage tube which is left in a wound or on a glove which is transferred into the wound, is normally present I in the wound in but small quantities and appears to be completely undetectable in far less than 90 days. Whereas the-quantities which would rub off in the wound are comparatively small, when for test purposes larger quantities are deliberately introduced into a wound site and the wound closed, polyglycolic acid is absorbed with minimal tissue reaction.
Additionally, the polyglycolic acid is an acid and as suchhas a low pH, which low pH is not favorable to the der such as here where tensile strength is not a criteria, a copolymer gives good lubricity.
Up to about 15 percent lactic acid linkages change the characteristics of the powder but slightly. Over 15 percent lactic increases the solubility in solvents'such as chloroform or xylene'or toluene. Such copolymer may be powdered by spray drying a solution. The production techniques required .for maximum tensile strength which are advantageous where polyglycolic acid is used as a suture, are not necessary in'a glove powder as in the glove powder the lubricity is the key feature, and if the rubber glove having the dusting powder on its surface permits ready gloving, that is, permits the surgeon to insert his hand into the glove readily, with the glove sliding onto his hand even ifsomewhat moist, in such fashionas to give the feel to which the surgeon is accustomed, the powder-has filled its requirements. It is, of course, necessary that the glove slide on the surface of the skin of the surgeon suffrciently that the thin rubber membrane does not interfere with the sensitivity of the surgeons fingers so that the surgeon may readily feel through the glove. The low pH of the polyglycolic acid powder tends to retard growth of many microorganisms on the surgeons hands inside the rubber gloves.
Polyglycolic acid in the form of a suture has a tensile strength that compares favorably with that of steel on a size basis and on a weight basis compares favorably with alloy steel but as a lubricant in connection with surgical glove, the strength requirements are such that batches of polyglycolic acid which do not meet the tensile strength requirements of a suture may be pulverized and used as a perfectly satisfactory glove powder.
A high molecular weight polymer has greater strength, and absorbs more slowly. For a powder, a lower molecular weight and rapid absorption is acceptable, and often an advantage.
DRAWINGS In the drawings: FIG. l is a surgical glove having on the surface thereof polyglycolic acid.
FIG. 2 shows a user donning a surgical glove.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventive dusting powder may be prepared by grinding or otherwise pulverizing polyglycolic acid to the desired particle size by the use of conventional grinding equipment and techniques well known to those skilled in the art. For example, polyglycolic fiber or filament as prepared in US. Pat. No. 3,297,033 is placed in an ordinary ball mill and ground for periods of anywhere from to 48 hours. The grinding equipment is preferably grounded during the grinding operation to prevent undesirable aggregation of the particles caused by the static electrical charges which can accumulate on the particles during grinding. The ground material can then be removed from the mill and vibrated through a series of screens of varying mesh mounted on a Ro-Tap testing sieve shaker as supplied by W. S. Tyler Co.
Particle size of the ground polymer is an important criteria in selecting a powder which is suitable for a glove powder.
It is desirable that all the powder particles be small enough to pass through a 100 mesh screen (149 micron designation in the U.S. Sieve Series). However, small amounts (up to about 1 percent by weight) of somewhat larger sized particles can also be present in the powder without unduly adverse effect on the lubricating properties of the polyglycolic acid powder. It is preferred that all of the powder particles pass through a 200 mesh screen (74 micron designation in the US Sieve Series).
In preparing the glove powder, it is equally important that it not be made too fine in order to minimize the escape of excessive powder into the environment in the course of powdcring the hands, surgical gloves, or other items. As discussed heretofore, the powder, on the other hand, should not be of an excessively large particle size nor should it contain substantial amounts of exceptionally large particles since this will create an undesirable abrasive effect upon the skin of the hand when the powder is used. A suitable particle size range is from about 0.5 to about 149 microns with a range of from about 10 to microns preferred.
When polyglycolic acid powder is to be sterilized in an environment which contains substantial amounts of water such as, for example, in an autoclave, it is essential that the powder be contained within a package which is substantially impervious to the water or steam. If this precaution is not taken, the water can hydrolyze the polymer causing it to become gummy and sticky. A particularly suitable water impervious container is the laminate of Mylar and polyethylene such as that described in US. Pat. No. 2,949,181, said patent being herein incorporated by reference. US. Pat. No. 3,728,839, supra, discloses a very useful metal foil laminate for polyglycolic acid products. When polyglycolic acid is packaged in water impervious containers such as those described above, it can be autoclaved and still retain the free flowing properties required ofa medical dusting powder (see Example 2).
Glove powder is used in a variety of ways by the medical profession. Rubber surgical gloves are typically sold unsterile in pairs with a package of glove powder inserted in the cuff of one of the gloves. When it is desired to use the gloves, the gloves and the package of glove powder are sterilized, usually by autoclaving. The
surgeon will then open the package of glove powder (the package usually contains about 1.5 grams of powder) and pour the powder onto his hands. After working the powder over the surface of his hands, the surgeon inserts his powdered hands into the surgical gloves, the glove powder providing the lubricity required to facilitate this insertion. In cases where the gloves are reusable, the gloves, at the end of the operation, will be washed, dried, inspected for holes and then repowdered, usually on both the internal and external surfaces of the glove for subsequent reuse of the glove. This powdcring is ordinarily accomplished by placing the gloves and a prescribed amount of glove powder in a tumbler and tumbling for a sufficient period of time to powder the inside and outside surfaces of the glove. The powdered gloves are then repackaged, autoclaved, and presented to the surgeon for use. Since the outside of the glove is often powdered, it is readily apparent how some of the powder may spill off the glove and into the exposed surgical cavity of a patient.
Disposable surgical gloves usually made of latex are .also available to the medical profession. These gloves can be offered as a unit of one pair of gloves and one package of glove powder contained in a suitable package. However, they are ordinarily offered as a powdered glove, i.e., the inner and outer surfaces of the glove are prepowdered with a suitable dusting powder. When the contents of the envelope, i.e., the gloves and the powder are sterile, the entire envelope must first be autoclaved or otherwise sterilized. At the end of the operation the gloves are discarded.
Typical glove packages are described in US. Pat. Nos. 3,107,786 and 3,181,695. I
The gloves of the present invention may be sealed in a strippable enclosure of the type shown in US. Pat. No. 2,949,181, there described for sutures, but adaptable to surgical gloves. A larger size strippable laminate enclosure is used for gloves.
From the foregoing it becomes apparent that the glove powder of this invention can be offered either separately in a single package of a suitable material or in combination with a pair of surgical gloves in either a steril or unsterile condition. The powder itself may be either sterile or non-sterile. 5
It is desirable when a sterile powdered surgical glove, sterile powder, or a sterile combination of a surgical glove and separately packaged glove powder is to be offered, to package the aforementioned sterile items in a sterile inner enclosure which is then packaged in a sterile outer enclosure. The outer enclosure is provided with a strippable seal, which then allows for convenient serving of said sterile item to the potential user by merely stripping away the outer enclosure to present a totally sterile enclosure, i.e., the outer surface as well as the contents of the inner enclosure are sterile, containing the sterile item to the user. The user can then open the package and remove the sterile item therein without risk of contaminating the contents from contact with the outer surface of the inner enclosure.
The following examples are provided to further illustrate the invention.
EXAMPLE I PREPARATION OF POLYGLYCOLlC AClD LUBRlCATlNG POWDER Polyglycolic acid filaments such as typically prepared by the teachings of US. Pat. No. 3,297,033 were placed in a Wiley Milland ground for several hours. The ground product consisted of chopped pieces of filament ranging from 2 to 4 mils in width and 12 to 20 mils in length. The particles were flat rather than cylindrical in shape and fibrillated.
The product ground on the Wiley Mill was then ball milled for 3 hours and examined microscopically to determine if a further breakdown in size had occurred. Acicular particles were found ranging in size from 0.5 micron to large fragments of the chopped filaments.
Ball milling of the product was continued for another 15 hours. At this point, more than 90 percent of the ground material passed through a 7 mil sieve opening and the bulk of this material was found to have a particle size ranging from less than 0.5 micron to 15 microns. The larger sized material which passed through the 7 mil sieve was either acicular with a diameter in the aforementioned'range 'or static aggregates. The powder retained by the 7 mil sieve was discarded, or reground.
EXAMPLE 2 STERILIZATION OF POLYGLYCOLIC ACID DUSTING POWDER The powder prepared in Example l was placed in a transparent envelope fabricated from a laminate of the The package was then heat sealed and placed in a standard autoclave 15 psig steam pressure, 250F.) for 1 hour. The package-was then removed and opened. The package contents were free flowing and gave no indication of being tacky or-sticky. The powder was applied to the hands of a subject who then proceeded to glove his hands with a pair of rubber surgical gloves.
The performance of the powder'in facilitating insertion of the hands into the gloves was quite satisfactory. Continued wearing of the gloves indicated that the powder was non-irritating to the skin.
EXAMPLE .3
IN-VIVO COMPARISON OF THE LESION PRODUCING PROPERTIES OF STARCH AND POLYGLYCOLIC ACID DUSTING POWDER Lateral incisions were made through the peritoneal wall on both sides-oftwo albino New Zealand female rabbits. On one side, a 5 percent solution of sterile saline and the polyglycolic acid powder prepared in Example l was placed on the peritoneal wall. On the other side was placed an identical solution of a widely used commercial starch powder. w w The rabbits were sacrificed after 3 months and gross and histological examinations of the peritoneal wall were made for, and of, any lesions which were present. The portion of the wall treated with polyglycolic acid powder was substantially free from lesions except for EXAMPLE 4 IN-VIVO BACTERIOSTATIC AND BACTERICIDAL PROPERTIES OF POLYGLYCOLIC ACID POWDER Two ventral incisions were made in two albino New Zealand female rabbits. Both incisions were deliberately infected with Staphylococcus aureus.Sterile polyglycolic acid powder as prepared in Example 2 was applied to one of thewounds. No powder was applied to the other wound. Both wounds were then repaired by suturing. After a 7 day healing time, there was no evidence of any infection whatsoever in the wound which had been treated with polyglycolic acid powder and-the wound appeared to have healed satisfactorily. It was readily apparent from examination of the untreated wound, however, that this would was still badly infected.
The above results indicate that polyglycolic acid powder appears to have in-vivo bacteriostatic and bactericidal properties.
A current discussion on the effect of acidity appears in Medical World News, Dec. 15, 1972, at page 25 ACIDITY: KEY TO WOUND HEALING, which discloses that at a more acid pH, the oxygen supply is improved.
EXAMPLE 5 lN-VITRO BACTERIOSTATIC AND BACTERICIDAL PROPERTIES OF POLYGLYCOLIC ACID POWDER Four grams of polyglycolic acid powder as prepared in Example I were added to 80 cc. of water. The pH of the resulting suspension was slightly less than 2. 10 cc. of this suspension were placed in a test tube labeled No. l. The pH of the remaining cc. was raised to 6 by adding approximately 0.5 gm. of sodium bicarbonate. 10 cc. of the pH 6 suspension was placed in testtube No. 2. The pH of the remaining 60 cc. was raised to 7 by adding approximately 0.4 gm. of sodium bicarbonate. l0 cc. of the pH 7 suspension was placed in test tube No. 3. Test tube No. 4 contained deionized water.
I 0.5 cc. of a 58 hour nutrient broth suspension of Staphylococcus aureus were added to each of the four test tubes. The tubes were incubated at 37 C. for 24 hours. At this point, 0.4 cc. of each tube were removed and transferred to agar pour plates. These plates were incubated at 37 C. for 48 hours.
Results are shown below:
TUBE No. pH RESULT l 2 No growth 2 6 Moderate growth 3 7 Heavy growth 4 Heavy growth The above results show that aqueous suspensions of polyglycolic acid powder have in-vitro bacteriostatic and bactericidal properties. The acid pH is an important factor on gloves or in a wound. Until the pH is increased, the environment is not favorable for many microorganisms.
EXAMPLE 6 Powdered Gloves A group of freshly dipped latex gloves as manufactured and before dusting were placed in a drum with about 1 gram per glove of the dusting powder of Example l. The gloves were tumbled and shakened till the gloves were uniformly coated with the powder after which the gloves were shaken to remove excess powder, paired. and folded and then placed between two sheets ofa laminate of polyester film and polyethylene. The material is described in detail in US. Pat. No. 2,949,181. The laminate was sealed polyethylene to polyethylene, leaving a lip and a strippable seal as described in said US. Pat. No. 2,949,181 and then a group of packaged gloves were placed in an autoclave and heated to sterilizing temperature.
' As so produced, the gloves could be released by stripping the package, to release the gloves in sterile condition and were then ready to be donned by a user.
EXAMPLE 7 A group of the gloves dusted with powdered polyglycolic acid as described in the preceding example were sealed between a polyester, polyethylene laminate asabove described using a strippable seal and a group of the gloves were then placed in an ethylene oxide chamber to allow the ethylene oxide to penetrate through the laminate seal as described in more detail in US. Pat. No. 2,917,878 Canarius and Kaufman.
The individual gloves before sterilization are indicated in FIG. I. the surface of the glove 11 has powdered polyglycolic acid 12 spread thereover.
FIG. 2 shows the surgeon donning the glove. The glove 13 is held by a nurse whose hands 14 hold the glove with the cuff slightly stretched while the hand of the surgeon 15 is inserted therein to.
It is convenient to powder the glove with the finely divided polyglycolic acid before the glove is sterilized, and sterilize the powdered glove and keep it in sterile condition until ready for use. It is also convenient to use the powdered polyglycolic acid in sterile form to be applied to the surface of sterile gloves at the time they are being put on. The time of powdering the glove and the time for storing can vary with the technique and schedules of the particular user, such as a hospital or individual surgeon. 1f sterile gloves are used, a single use disposable glove is convenient. 1f the gloves are to be reused, the time of applying the powder and the sterilizing can be varied depending upon the number of gloves used in the inventory available or preferences.
When used in patients during surgical procedures, no deleterious effects which could be ascribed to the glove powder were observed.
1 claim:
1. A method of minimizing tissue reaction in a surgical procedure which comprises contacting living tissue with a rubber surgical element having on the surface thereofa lubricity imparting quantity ofa finely divided biodegradable polymer containing hydrolytically degradable glycolic acid ester linkages.
2. The method of claim 1 in which the powdered polymer is substantially all smaller than mesh.
3. The method of claim 2 in which substantially all polymer powder particles are smaller than 200 mesh.
4. The method of claim 1 in which the polymer is homopolymeric glycolic acid.
5. The method of claim 4 in which substantially all polymer powder particles are smaller than 200 mesh.
6. The method of claim 4 in which the rubber surgical element is a surgical glove, and the powdered polymer has a particle size range of about 10 to about 20 microns.
7. The method of claim 1 in which the biodegradable polymer of glycolic acid has a small quantity of lactic acid copolymerized therewith.
8. The method of claim 7 in which the powdered polymer is substantially all smaller than 100 mesh.
9. The method of claim 8 in which the powdered polymer is substantially all smaller than 100 mesh.
10. A method of minimizing tissue reaction in a surgical procedure which comprises contacting living tissue where deleterious microorganisms may be present with an acidifying quantity of a finely divided polymer containing hydrolytically degradable glycolic acid ester linkages, whereby wound healing is accelerated by the slight acidification and microorganism inhibition resulting from the presence of the hydrolytically available glycolic acid.
11. The method of claim 11 in which the finely divided polymer is .homopolymeric polyglycolic acid smaller than 200 mesh size.
UNITE STATES PATENT UFFIQE EETiiCAiE or Patent zuslomwia D ed y 97 Inventofls) Bevmqr fi A'I'hert Semp It is certified that error appears in the above-identified patent and that said'Letters Patent are hereby corrected as shown below:
601.. 2, line 6 5, delete "of" and substitute therefor or Col 4, line 50.; delete I" and substitute therefor 1:11;
1 i 559 Sham-g9 "535 597 9" to 595 51 9 o Signed and sealed this 2th day of November 1974.
(SEAL) A'C'CESE:
McCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents I FORM PO-IOSO (10-69) USCOMM-DC 60376-P69 u.s. GOVERNMENT PRINTING OFFICE: was o-ass-au

Claims (10)

  1. 2. The method of claim 1 in which the powdered polymer is substantially all smaller than 100 mesh.
  2. 3. The method of claim 2 in which substantially all polymer powder particles are smaller than 200 mesh.
  3. 4. The method of claim 1 in which the polymer is homopolymeric glycolic acid.
  4. 5. The method of claim 4 in which substantially all polymer powder particles are smaller than 200 mesh.
  5. 6. The method of claim 4 in which the rubber surgical element is a surgical glove, and the powdered polymer has a particle size range of about 10 to about 20 microns.
  6. 7. The method of claim 1 in which the biodegradable polymer of glycolic acid has a small quantity of lactic acid copolymerized therewith.
  7. 8. The method of claim 7 in which the powdered polymer is substantially all smaller than 100 mesh.
  8. 9. The method of claim 8 in which the powdered polymer is substantially all smaller than 100 mesh.
  9. 10. A method of minimizing tissue reaction in a surgical procedure which comprises contacting living tissue where deleterious microorganisms may be present with an acidifying quantity of a finely divided polymer containing hydrolytically degradable glycolic acid ester linkages, whereby wound healing is accelerated by the slight acidification and microorganism inhibition resulting from the presence of the hydrolytically available glycolic acid.
  10. 11. The method of claim 11 in which the finely divided polymer is homopolymeric polyglycolic acid smaller than 200 mesh size.
US00349875A 1971-02-23 1973-04-10 Minimizing tissue reaction to glove powder Expired - Lifetime US3810458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00349875A US3810458A (en) 1971-02-23 1973-04-10 Minimizing tissue reaction to glove powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11799871A 1971-02-23 1971-02-23
US00349875A US3810458A (en) 1971-02-23 1973-04-10 Minimizing tissue reaction to glove powder

Publications (1)

Publication Number Publication Date
US3810458A true US3810458A (en) 1974-05-14

Family

ID=26815872

Family Applications (1)

Application Number Title Priority Date Filing Date
US00349875A Expired - Lifetime US3810458A (en) 1971-02-23 1973-04-10 Minimizing tissue reaction to glove powder

Country Status (1)

Country Link
US (1) US3810458A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976071A (en) * 1974-01-07 1976-08-24 Dynatech Corporation Methods of improving control of release rates and products useful in same
US4059097A (en) * 1976-11-03 1977-11-22 American Cyanamid Company Method of minimizing tissue reaction during surgery with chitin
US4064564A (en) * 1976-11-03 1977-12-27 American Cyanamid Company Chitin derived surgical glove powder
US4068757A (en) * 1976-11-03 1978-01-17 American Cyanamid Company Chitin derived powder in sterile surgical element package
US4080969A (en) * 1973-11-21 1978-03-28 American Cyanamid Company Suture or ligature carrying on the exposed surface thereof a coating of a polyester resin
US4152783A (en) * 1977-10-19 1979-05-08 American Hospital Supply Corporation Lubricant for surgeon's gloves and method of applying same
US4700701A (en) * 1985-10-23 1987-10-20 Montaldi David H Sterilization method and apparatus
US4844098A (en) * 1985-07-26 1989-07-04 Mitchen Joel R Non-invasive collection means and method
US4883699A (en) * 1984-09-21 1989-11-28 Menlo Care, Inc. Polymeric article having high tensile energy to break when hydrated
US4911691A (en) * 1984-09-21 1990-03-27 Menlo Care, Inc. Assembly for adminstering IV solution
US20210085515A1 (en) * 2011-12-01 2021-03-25 Lrc Products Limited Coated condom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3468853A (en) * 1966-06-15 1969-09-23 American Cyanamid Co Process of polymerizing a glycolide
US3728739A (en) * 1971-02-23 1973-04-24 American Cyanamid Co Sterile surgical gloves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3468853A (en) * 1966-06-15 1969-09-23 American Cyanamid Co Process of polymerizing a glycolide
US3728739A (en) * 1971-02-23 1973-04-24 American Cyanamid Co Sterile surgical gloves

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080969A (en) * 1973-11-21 1978-03-28 American Cyanamid Company Suture or ligature carrying on the exposed surface thereof a coating of a polyester resin
US3976071A (en) * 1974-01-07 1976-08-24 Dynatech Corporation Methods of improving control of release rates and products useful in same
US4059097A (en) * 1976-11-03 1977-11-22 American Cyanamid Company Method of minimizing tissue reaction during surgery with chitin
US4064564A (en) * 1976-11-03 1977-12-27 American Cyanamid Company Chitin derived surgical glove powder
US4068757A (en) * 1976-11-03 1978-01-17 American Cyanamid Company Chitin derived powder in sterile surgical element package
US4152783A (en) * 1977-10-19 1979-05-08 American Hospital Supply Corporation Lubricant for surgeon's gloves and method of applying same
US4883699A (en) * 1984-09-21 1989-11-28 Menlo Care, Inc. Polymeric article having high tensile energy to break when hydrated
US4911691A (en) * 1984-09-21 1990-03-27 Menlo Care, Inc. Assembly for adminstering IV solution
US4844098A (en) * 1985-07-26 1989-07-04 Mitchen Joel R Non-invasive collection means and method
US4700701A (en) * 1985-10-23 1987-10-20 Montaldi David H Sterilization method and apparatus
US20210085515A1 (en) * 2011-12-01 2021-03-25 Lrc Products Limited Coated condom

Similar Documents

Publication Publication Date Title
US3728739A (en) Sterile surgical gloves
US3892314A (en) Sterile rubber glove or catheter package
US4068757A (en) Chitin derived powder in sterile surgical element package
Carbonell et al. The susceptibility of prosthetic biomaterials to infection
US2507244A (en) Surgical gelatin dusting powder and process for preparing same
US3991766A (en) Controlled release of medicaments using polymers from glycolic acid
Kehoe et al. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy
US3810458A (en) Minimizing tissue reaction to glove powder
US3988411A (en) Spinning and shaping poly-(N-acetyl-D-glucosamine)
US4074713A (en) Poly(N-acetyl-D-glucosamine) products
US4668224A (en) Oxidized cellulose as a medical lubricant
CN105555328B (en) film and manufacturing method
US4064564A (en) Chitin derived surgical glove powder
US3989535A (en) Solution of poly(N-acetyl-D-glucosamine)
CA2366880A1 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
RU2188206C2 (en) Method of sterilization of native collagen in liquid medium, prepared sterile native collagen, composition comprising thereof and their using
WO2024012190A1 (en) Double-layer bionic drug-loaded hydrogel, and preparation and use thereof
Givissis et al. Suction during orthopaedic surgery. How safe is the suction tip?
RU2650648C2 (en) Absorbable monofilament fibers based on a copolymer of p-dioxanone and glycolide retaining strength in the medium term after implantation
Lashgari et al. Excision of Bartholin duct cysts using the CO2 laser
WO2006066483A1 (en) Adhesion preventing biologic film for tendon ligament and its application
US4059097A (en) Method of minimizing tissue reaction during surgery with chitin
Afewerki et al. Polymers for surgical sutures
Cesarano et al. Emergency management of open fractures
CN114796625B (en) Antibacterial antioxidant bioabsorbable material and preparation method and application thereof