US3810073A - Connector locking mechanism - Google Patents

Connector locking mechanism Download PDF

Info

Publication number
US3810073A
US3810073A US00326987A US32698773A US3810073A US 3810073 A US3810073 A US 3810073A US 00326987 A US00326987 A US 00326987A US 32698773 A US32698773 A US 32698773A US 3810073 A US3810073 A US 3810073A
Authority
US
United States
Prior art keywords
plug
sleeve
receptacle
members
plug member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00326987A
Inventor
D Zajac
J Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Com Omni Spectra Inc
Original Assignee
Omni Spectra Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omni Spectra Inc filed Critical Omni Spectra Inc
Priority to US00326987A priority Critical patent/US3810073A/en
Application granted granted Critical
Publication of US3810073A publication Critical patent/US3810073A/en
Assigned to M/A-COM OMNI SPECTRA, INC. reassignment M/A-COM OMNI SPECTRA, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). 1-23-84 Assignors: OMNI SPECTRA, INC.
Assigned to M/A-COM OMNI SPECTRA, INC., A CORP. OF DE. reassignment M/A-COM OMNI SPECTRA, INC., A CORP. OF DE. MERGER (SEE DOCUMENT FOR DETAILS). 3-15-79 Assignors: OMNI SPECTRA, INC.,
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6277Snap or like fastening comprising annular latching means, e.g. ring snapping in an annular groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/45Separable-fastener or required component thereof [e.g., projection and cavity to complete interlock]
    • Y10T24/45225Separable-fastener or required component thereof [e.g., projection and cavity to complete interlock] including member having distinct formations and mating member selectively interlocking therewith
    • Y10T24/45471Projection having movable connection between components thereof or variable configuration
    • Y10T24/45482Projection having movable connection between components thereof or variable configuration and operator therefor
    • Y10T24/45487Projection having movable connection between components thereof or variable configuration and operator therefor including camming or wedging element on projection member

Definitions

  • the invention relates to couplers of the quickdisconnect type, and although'the invention is particularly useful for electrical conduits, it is also applicable to hydraulic or mechanical connections.
  • the invention has particular use in discouraging the pulling of an electrical wire or cable in order to disconnect the coupling, such pulling being likely to damage the terminal.
  • the present invention has the advantage that the two parts of the connector can be joined and locked together by simply pushing one part onto the other. This is a one hand operation. Separate manipulation of two or more parts with both hands to effect coupling is not necessary as in the case of many prior art connectors.
  • the instant connector comprises interfitting plug and receptacle members provided with confronting annular surfaces, formed with offset-annular grooves which have facing locking ends, preferably in the form of frustoconical surfaces.
  • a coupling sleeve is slidably mounted on one of the members and has axially extending spring fingers with inclined ends.
  • the plug member and the coupling sleeve are simply pushed into the receptacle member with one hand while the receptacle member is held with the other hand.
  • This simple operation automatically locks the two'members securely together.
  • the inclined ends of the locking fingers snap into the grooveof the receptacle as the latter is pushed home and they wedge firmly between the locking ends of the grooves to positively resist any separating force exerted directly on the plug and receptacle members by reason of the fact that the separating force merely causes compression of the spring ends between the locking ends of the grooves.
  • Uncoupling is effected merelyby slidably retracting the coupling sleeve so as to withdraw the spring ends from between the locking ends of the grooves.
  • Variations of the invention are provided to permit disengagement despite large or moderate axial separating forces on the carriers, that is, the conduits or cables secured to the plug and receptacle members.
  • Other modifications are provided which prevent disengagement of the coupling with light, moderate or heavy pulling forces on the carriers.
  • 'coupling and uncoupling of the connector will take place only by applying the proper axial forces to the coupling sleeve. Disengagement can never take place when the separating forces are applied to the carriers only.
  • FIG. 4 is a view similar to FIGS. 2 and 3 showing a semi-open locking angle which permits connector disengagement despite a moderate axial separating force applied to the carriers.
  • FIG. 5 is a similar view showing still another embodi-.
  • FIG. 6 illustrates another variation of the invention inwhich fully closed locking angles prevent connector disengagement with light axial separating forces on the carriers.
  • FIG. 7 is a cross-sectional view in elevation illustratinga typical'electrical connector application using the connector locking mechanismof this invention.
  • FIG. 8 is a cross-sectional view in elevation showing the application of the invention to a hydraulic coupling
  • I FIG. 9 is a cross-sectional view in elevation showing how the invention can be applied to a mechanical coupling.
  • the connector comprises three basic parts, a plug member generally indicated at 11, a receptacle member generally indicated at 12, and a coupling sleeve generally indicated at 13. All three of these elements ll, 12 and 13, and therefor the connector itself, are of circular cross-sectional shape but they may be of rectangular or other suitable shape.
  • the plug and receptacle members are normally secured to the ends of conduits, cables, wires, hoses, or other elongated elements for electrical, mechanical .or hydraulic uses. These elements, not illustrated in FIGS. 1 to 6 but shown in FIGS. 7 through 9, are generically referred to herein as carriers.-
  • the plug member 11 here shown is of elongated generally cylindrical shape and has an inner bore 14 extending therethrough.
  • the end 15 of plug member 11 here shown is flat, and an annular groove 16 is formed on the external annular surface 17 of the plug.
  • Groove 16 has a pair of frustoconical surfaces 18 and 19 at its opposite'ends.
  • the receptacle member 12 is of larger diameter than I the plug member 11 and it has a bore 20 extending thereth'rough which is aligned with the bore 14 when the connector is coupled.
  • the outer end 21 of the reerally indicated at 22 extends inwardly threfrom and confronts the surface 17 of the plug.
  • the surface 22 is formed with a flared entrance 23 which leads to a cylindrical bore 24, and the latter in turn is followed by a frustoconical ramp 25..T his ramp 25 in turn is followed by a relatively short cylindrical surface 26 which leads to an annular groove 27 having frustoconical end surfaces 28 and 29.
  • a shortcylindrical bore 31 extends inwardly from the groove 27 and ends in a flat surface 32.
  • groove 16 which may be termed the inner groove
  • groove 27 the outer groove
  • the diameter of surfaces 26 and 31 is only slightly greater than the external diameter of plug member 11, and that when the plug member is fully entered into the receptacle member frustoconical surfaces 18 and 28, which are of substantially the same angle, are-in facing spaced relation. 7
  • Coupling sleeve 13 is slidably mounted on surface 17 of plug member 11 and comprises a main finger gripping portion 33 having one or more gripping grooves 34, and a central bore 35 which rides on the plug member.
  • a plurality of circumferentially spaced spring fingers 36 extend axially from one end of sleeve 13. Each of these fingers has a main axially extending portion followed by an inwardly tapered portion 37, a short axially extending portion 38 and then flared ends 39.
  • the distance of fingers 36 from the sleeve centerline is such that in their normal unstressed position they will assume the approximate configuration shown in FIGS. 1
  • portions 38 of the fingers will be disposed in groove 16 of the plug, retaining sleeve 13 thereon.
  • the spring fingers are capable of being flexed inwardly when ends 39 engage ramp 25 as the connector is being coupled, and then springing outwardly between locking surfaces 18 and 28.
  • the fingerends 39 engage the ramp 25, causing the fingers to flex inwardly, and as the coupling motion proceeds, the spring finger ends are guided by surface 26 unil they spring outwardly between the locking end of the grooves 16 and 27 for mutual engagement by the surfaces 18 and 28. The connector will then be in its pled.
  • FIG. 3 shows a modification of the invention which is basically similar to that previously described but in which the connector can be uncoupled despite fairly large axial separating forces applied to plug member 101 and receptacle member 102.
  • frustoconical-surface 103 on receptacle member 102 has a 1 shallower angle thanthat of end 104 of spring member 105.
  • Frustoconical surface 106 of plug member 101 has a steeper angle than that of spring end 104.
  • the resuit is that the frustoconical surfaces of theplug and receptacle members will not fully engage the spring finger ends as in the case of the first embodiment. Therefore, withdrawal frictional resistance of the spring fingers will be minimized, permitting uncoupling of the connector despite fairly large axial separating forces applied to the plug and receptacle members.
  • FIG. 4 illustrates a third embodiment of the invention in which uncoupling is permitted despite moderate axial separating forces applied to the plug and receptacle members.
  • the plug member is indicated at 201 .and
  • FIG. 5 illustrates a fourth embodiment of the invention in which uncoupling of the connector will be prevented if moderate to heavy axial separating forcesare applied to the plug and receptacle members.
  • the plug member is indicated at 301 in FIG. 5 and the receptacle member at 302.
  • frustoconical surface 303 of plug member 301 has the same-angle as spring end 304.
  • surface 305 of member 302 has a steeper angle than the spring end. This will create a relatively large frictional force which keeps the spring fingers locked in place when moderate to heavy separating forces are applied to the plug and receptacle memcoupling can be accomplished by shifting coupling sleeve 13 to the right as described above.
  • FIG. 6 is a fifth embodiment of the invention in which even light axial separating forces on the plug and receptacle members will prevent uncoupling of the connector.
  • the plug member is here indicated at 401 and the receptacle member at 402.
  • Both frustoconical surfaces 403 and 404 of the plug and receptacle members respectively have steeper angles than spring ends 405. The result will be that very large frictional forces will be created even with light axial separating forces on the two members, thus not permitting withdrawal of. the spring fingers by a rightward force applied to the coupling sleeve.
  • the degrees of the angular differences between the frustoconical surfaces and the spring member ends may be varied in all of these embodiments, thus achieving any desired combination of closed or open angles and therefore controlling to a great extent the conditions under which the connector can be uncoupled.
  • FIG. 7 illustrates a typical electrical connector application using this invention.
  • the connector is generally indicated at 501 and comprises a plug member generally indicated at 502, a receptacle member generally indicated at 503 and a coupler sleeve generally indicated at 504.
  • the carrier in this case is the coaxial cable 505 which is attached to plug member 502 with sleeve 506.
  • the plug half of the electrical connectors also comprises male pin 507 and insulator 508 disposed within member 502.
  • the receptacle half of the connector includes female contact 509 and insulator Sill disposed within receptacle member 503.
  • the outer conductor electrical contact is assured by outer contact ring 512, which is very important for radio frequency transmission requirements. in this connection, however, it will be readily appreciated that, while the male pin 507 is here shown associated with the plug member 502 and the female contact is shown associated with the receptacle member 503, this arrangement can be and sometimes is reversed. Weather sealing can be obtained by compression ofa gasket 513. This gasket may be of conductive material to minimize radio frequency radiation or leakage.
  • Receptacle member 503 is attached to a conventional panel 514 by a jam nut 515 and washer 516.
  • the receptacle could have another configuration such as a coaxial cable type with similar cable attachments as shown for the plug.
  • coupling of the connector may be effected as previously described. Uncoupling of the connector cannot be effected by an axial pull exerted on cable 505, but only by sliding coupling sleeve 504 to the right to withdraw the spring finger ends from between the facing frustoconical surfaces of the plug and receptacle members.
  • FIG. 8 shows the connector of this invention applied to a typical garden hose having sections 601 and 602.
  • Section 601 is mounted on the plug member which is generally indicated at 603 while section 602 is attached to receptacle member 604.
  • a pressure sealing gasket 605 is disposed between the members.
  • Standard hose attachments 606 and 607 may be used to attach the hose to the members in a manner which prevents leakage.
  • FIG. 8 The operation of the embodiment of FIG. 8 is similar to the previous embodiments. Coupling of the connector will be effected by inserting plug member 603 in receptacle member 604 and then sliding coupling sleeve 608 to the left until spring finger ends 609 enter between the facing frustoconical surfaces on the plug and receptacle members. Uncoupling will be accomplished by pulling coupling sleeve 608 to the right.
  • FIGS. 3 or 4 could be particularly useful in hydraulic applications of the invention, if an axial separating force is applied to the plug and receptacle members due to the weight of the carrier or the equipment with which the connector is used.
  • HO. 9 illustrates an application of the invention to mechanical purposes, namely to connect a pair of cables 701 and 702. These cables are secured to plug members 703 and receptacle member 704 respectively.
  • a connector comprising detachably interfitting plug and receptacle members having radially spaced confronting annular surfaces provided with inner and outer facing locking shoulders, an annular coupling sleeve slidable on said plug member, means attaching an elongated element to said plug member, said sleeve having axially extending, radially flexible spring fingers disposed between said annular surfaces when the members interfit and formed with flared ends insertable between said facing locking shoulders, whereby to resist axial separating forces applied to said members and to lock said members securely together, said finger ends being deflectable radially by one of said locking shoulders upon axial sliding movement of said sleeve relative to the plug member, thus uncoupling said members so they may be separated, the sleeve being completely withdrawable from said plug member at least in an uncoupling direction past said attaching means after the members have been separated, and facing abutment means on said plug and receptacle members separate from said annular surfaces and said sleeve and directly engageable when the
  • said elongated member comprising an electrical conduit having a pin, the receptacle being secured to a female contact.
  • said electrical conduit comprising a coaxial cable, said receptacle member being panel mount.
  • said elongated member comprising a hose
  • said receptacle member also being attached to a hose
  • said facing shoulders comprising a gasket disposed between the outer end of said plug member and a shoulder within said receptacle member, the members both having passages connected to said hoses.
  • said fingers and plug member groove having additional surfaces coacting in response to withdrawal of said sleeve after separation of the members to flex said fingers outwardly and permit continued withdrawal of the sleeve in an uncoupling direction, all other parts of said plug member being in non-obstructing relation with said sleeve whereby the sleeve is withdrawable from the plug member in either direction when the plug and receptacle members are separated.
  • a coaxial plug connector for use in conjunction with a receptacle member having an inwardly facing annular surface with an annular locking shoulder, said connector comprising an annular plug member having an outwardly facing groove, means securing an elongated element to said plug member, a coupling sleeve having an annularly closed portion slidably mounted on said plug member, the sleeve having a plurality of axially extending resilient fingers, said fingers having intermediate portions disposed in said groove to releasably retain the sleeve on said plug member, and flared end portions, the internal diameter of said annularly closed portion of the sleeve being greater than the external diameter of any portion of said plug member or element securing means, whereby said sleeve is removable from and replaceable on the plug member from the front or back thereof but only by axial sliding movement relative thereto.

Abstract

A quick-disconnect device for electrical, mechanical or hydraulic couplings. Plug and receptacle members have longitudinally offset annular grooves with facing locking ends. A coupling sleeve on one member has spring fingers with inclined ends insertable between the facing locking ends to resist axial separating forces of the plug and receptacle members. Uncoupling is effected by sliding the sleeve to extract the fingers. Modifications of the invention control connector disengagement with varying predetermined axial separating forces on the plug and receptacle members.

Description

' United States Patent Zajac et a1.
Assignee: Omni Spectra, lnc., Farmington,
Mich.
Filed: Jan. 26, 1973 Appl. No.: 326,987
Related US. Application Data Continuation of Ser. No. 166,363, July 16, 1971, abandoned.
US. Cl. 339/91 R, 24/211 R, 285/319, 339/130 C Int. Cl H01r 13/54 Field of Search 339/16, 75, 91, 45, 143, 339/177, 217, 258 A; 24/211; 85/81;
References Cited 7 UNITED STATES PATENTS 8/1949 Adams 339/217 S 11/1954 Watts 339/217 .1
[111 3,810,073 1 May 7, 1974 2,877,437 3/1959 Flanagan, Jr. 339/91 P 3,091,749 5/1963 Felts 339/75 R 3,160,457 12/1964 Fischer 339/91 R 3,136,366 6/1964 Brown et a1. 285/306 X 3,297,978 1/1967 Stark 339/177 R 3,601,361 8/1971 l-lundhausen 285/319 X 3,603,621 9/1971 Parsons 285/319 3,639,890 2/1972 Stevens et a1. 339/91 R Primary Examiner--Richard E. Moore Attorney, Agent, or Firm-Harness, Dickey & Pierce [57] ABSTRACT A quick-disconnect device for electrical, mechanical or hydraulic couplings. Plug and receptacle members have longitudinally offset annular grooves with facing locking ends. A coupling sleeve on one member has spring fingers with inclined ends insertable between 16 Claims, 9 Drawing Figures jdi 1 CONNECTOR LOCKING MECHANISM This is a continuation of application Ser. No. 166,363 filed July 16, 1971, now abandoned.
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to couplers of the quickdisconnect type, and although'the invention is particularly useful for electrical conduits, it is also applicable to hydraulic or mechanical connections. The invention has particular use in discouraging the pulling of an electrical wire or cable in order to disconnect the coupling, such pulling being likely to damage the terminal.
2. Description of the Prior Art Applicant is aware of no prior connectors of this type having a similar construction. Various connectors are available having bayonet slots, sliding springs or pressed plungers, but they are generally of a much more complex and expensive construction. In addition to the art of record in the parent application, the constructions'of the following United States patents are also known: Brown et al No. 3,136,366, Fischer No. 3,160,457, and Stevens No. 3,639,890.
BRIEF SUMMARY OF THE INVENTION simple straight in or straight out, push-pull kind of motion. No twisting or turning is necessary as in a bayonet or threaded connection, for example. Furthermore, the present invention has the advantage that the two parts of the connector can be joined and locked together by simply pushing one part onto the other. This is a one hand operation. Separate manipulation of two or more parts with both hands to effect coupling is not necessary as in the case of many prior art connectors.
More particularly, the instant connector comprises interfitting plug and receptacle members provided with confronting annular surfaces, formed with offset-annular grooves which have facing locking ends, preferably in the form of frustoconical surfaces. A coupling sleeve is slidably mounted on one of the members and has axially extending spring fingers with inclined ends.
To couple, the plug member and the coupling sleeve are simply pushed into the receptacle member with one hand while the receptacle member is held with the other hand. This simple operation automatically locks the two'members securely together. The inclined ends of the locking fingers snap into the grooveof the receptacle as the latter is pushed home and they wedge firmly between the locking ends of the grooves to positively resist any separating force exerted directly on the plug and receptacle members by reason of the fact that the separating force merely causes compression of the spring ends between the locking ends of the grooves. Uncoupling is effected merelyby slidably retracting the coupling sleeve so as to withdraw the spring ends from between the locking ends of the grooves.
Variations of the invention are provided to permit disengagement despite large or moderate axial separating forces on the carriers, that is, the conduits or cables secured to the plug and receptacle members. Other modifications are provided which prevent disengagement of the coupling with light, moderate or heavy pulling forces on the carriers. In all embodiments,'coupling and uncoupling of the connector will take place only by applying the proper axial forces to the coupling sleeve. Disengagement can never take place when the separating forces are applied to the carriers only.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a view similar to FIGS. 2 and 3 showing a semi-open locking angle which permits connector disengagement despite a moderate axial separating force applied to the carriers.
FIG. 5 is a similar view showing still another embodi-.
ment of the invention in which a semi-closed" locking angle prevents connector disengagement with moderate to heavy axial separating forces on the carriers.
FIG. 6 illustrates another variation of the invention inwhich fully closed locking angles prevent connector disengagement with light axial separating forces on the carriers. I
FIG. 7 is a cross-sectional view in elevation illustratinga typical'electrical connector application using the connector locking mechanismof this invention.
FIG. 8 is a cross-sectional view in elevation showing the application of the invention to a hydraulic coupling, and I FIG. 9 is a cross-sectional view in elevation showing how the invention can be applied to a mechanical coupling.
' DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to the embodiment of FIGSLI and 2, the connector comprises three basic parts, a plug member generally indicated at 11, a receptacle member generally indicated at 12, and a coupling sleeve generally indicated at 13. All three of these elements ll, 12 and 13, and therefor the connector itself, are of circular cross-sectional shape but they may be of rectangular or other suitable shape. The plug and receptacle members are normally secured to the ends of conduits, cables, wires, hoses, or other elongated elements for electrical, mechanical .or hydraulic uses. These elements, not illustrated in FIGS. 1 to 6 but shown in FIGS. 7 through 9, are generically referred to herein as carriers.-
As'suggested, the plug member 11 here shown is of elongated generally cylindrical shape and has an inner bore 14 extending therethrough. The end 15 of plug member 11 here shown is flat, and an annular groove 16 is formed on the external annular surface 17 of the plug. Groove 16 has a pair of frustoconical surfaces 18 and 19 at its opposite'ends.
The receptacle member 12 is of larger diameter than I the plug member 11 and it has a bore 20 extending thereth'rough which is aligned with the bore 14 when the connector is coupled.'The outer end 21 of the reerally indicated at 22 extends inwardly threfrom and confronts the surface 17 of the plug. The surface 22 is formed with a flared entrance 23 which leads to a cylindrical bore 24, and the latter in turn is followed by a frustoconical ramp 25..T his ramp 25 in turn is followed by a relatively short cylindrical surface 26 which leads to an annular groove 27 having frustoconical end surfaces 28 and 29. A shortcylindrical bore 31 extends inwardly from the groove 27 and ends in a flat surface 32. The entire distance from the surfaces 21 to 32 is such that the plug member 11 may enter the receptacle member 12 sufficiently to achieve the locking condition described below. In this position, groove 16, which may be termed the inner groove, and groove 27 (the outer groove) are axially offset. It should be noted that the diameter of surfaces 26 and 31 is only slightly greater than the external diameter of plug member 11, and that when the plug member is fully entered into the receptacle member frustoconical surfaces 18 and 28, which are of substantially the same angle, are-in facing spaced relation. 7
Coupling sleeve 13 is slidably mounted on surface 17 of plug member 11 and comprises a main finger gripping portion 33 having one or more gripping grooves 34, and a central bore 35 which rides on the plug member. A plurality of circumferentially spaced spring fingers 36 extend axially from one end of sleeve 13. Each of these fingers has a main axially extending portion followed by an inwardly tapered portion 37, a short axially extending portion 38 and then flared ends 39. The distance of fingers 36 from the sleeve centerline is such that in their normal unstressed position they will assume the approximate configuration shown in FIGS. 1
.and 2. In this position, portions 38 of the fingers will be disposed in groove 16 of the plug, retaining sleeve 13 thereon. The spring fingers are capable of being flexed inwardly when ends 39 engage ramp 25 as the connector is being coupled, and then springing outwardly between locking surfaces 18 and 28.
In operation, assuming an initial condition in which the plug and receptacle members are uncoupled and coupling sleeve 13 is in same position on the plug member within'the limits of its travel permitted by the groove 16, the sleeve is held in one hand and the receptacle member is held in the other hand and the two are simply pushed together. This motion, of course, also causes the plug member 11 to be inserted. into the receptacle member 12 until the surface of the plug member engages or substantially engages the surface 32 of the receptacle member. When the members 11 and 12 first come together in the coupling motion, the fingerends 39 engage the ramp 25, causing the fingers to flex inwardly, and as the coupling motion proceeds, the spring finger ends are guided by surface 26 unil they spring outwardly between the locking end of the grooves 16 and 27 for mutual engagement by the surfaces 18 and 28. The connector will then be in its pled.
To uncouple the connector, a rightward force will be exerted by the operators fingers on coupling sleeve 13, sliding finger ends' 39 out of the space between surfaces 18 and 28. The fingers will be bent inwardly, entering groove 16 with the finger ends passing ramp 25. The connector will then be unlocked and may be uncou- FIG. 3 shows a modification of the invention which is basically similar to that previously described but in which the connector can be uncoupled despite fairly large axial separating forces applied to plug member 101 and receptacle member 102. In this case, frustoconical-surface 103 on receptacle member 102 has a 1 shallower angle thanthat of end 104 of spring member 105. Frustoconical surface 106 of plug member 101 has a steeper angle than that of spring end 104. The resuit is that the frustoconical surfaces of theplug and receptacle members will not fully engage the spring finger ends as in the case of the first embodiment. Therefore, withdrawal frictional resistance of the spring fingers will be minimized, permitting uncoupling of the connector despite fairly large axial separating forces applied to the plug and receptacle members.
FIG. 4 illustrates a third embodiment of the invention in which uncoupling is permitted despite moderate axial separating forces applied to the plug and receptacle members. The plug member is indicated at 201 .and
the receptacle member at 202, and frustoconical sur- "open" condition with respect to the spring finger ends, uncoupling can be effected even though a moderate axial separating force is being-applied to the plug and receptacle members. l
- FIG. 5 illustrates a fourth embodiment of the invention in which uncoupling of the connector will be prevented if moderate to heavy axial separating forcesare applied to the plug and receptacle members. The plug member is indicated at 301 in FIG. 5 and the receptacle member at 302. In this case, frustoconical surface 303 of plug member 301 has the same-angle as spring end 304. However, surface 305 of member 302 has a steeper angle than the spring end. This will create a relatively large frictional force which keeps the spring fingers locked in place when moderate to heavy separating forces are applied to the plug and receptacle memcoupling can be accomplished by shifting coupling sleeve 13 to the right as described above.
FIG. 6 is a fifth embodiment of the invention in which even light axial separating forces on the plug and receptacle members will prevent uncoupling of the connector. The plug member is here indicated at 401 and the receptacle member at 402. Both frustoconical surfaces 403 and 404 of the plug and receptacle members respectively have steeper angles than spring ends 405. The result will be that very large frictional forces will be created even with light axial separating forces on the two members, thus not permitting withdrawal of. the spring fingers by a rightward force applied to the coupling sleeve.
It will be noted that the degrees of the angular differences between the frustoconical surfaces and the spring member ends may be varied in all of these embodiments, thus achieving any desired combination of closed or open angles and therefore controlling to a great extent the conditions under which the connector can be uncoupled.
FIG. 7 illustrates a typical electrical connector application using this invention. The connector is generally indicated at 501 and comprises a plug member generally indicated at 502, a receptacle member generally indicated at 503 and a coupler sleeve generally indicated at 504. The carrier in this case is the coaxial cable 505 which is attached to plug member 502 with sleeve 506. The plug half of the electrical connectors also comprises male pin 507 and insulator 508 disposed within member 502.
The receptacle half of the connector includes female contact 509 and insulator Sill disposed within receptacle member 503. The outer conductor electrical contact is assured by outer contact ring 512, which is very important for radio frequency transmission requirements. in this connection, however, it will be readily appreciated that, while the male pin 507 is here shown associated with the plug member 502 and the female contact is shown associated with the receptacle member 503, this arrangement can be and sometimes is reversed. Weather sealing can be obtained by compression ofa gasket 513. This gasket may be of conductive material to minimize radio frequency radiation or leakage. Receptacle member 503 is attached to a conventional panel 514 by a jam nut 515 and washer 516. The receptacle could have another configuration such as a coaxial cable type with similar cable attachments as shown for the plug.
in operation of the embodiment of FIG. 7, it will be noted that coupling of the connector may be effected as previously described. Uncoupling of the connector cannot be effected by an axial pull exerted on cable 505, but only by sliding coupling sleeve 504 to the right to withdraw the spring finger ends from between the facing frustoconical surfaces of the plug and receptacle members.
FIG. 8 shows the connector of this invention applied to a typical garden hose having sections 601 and 602. Section 601 is mounted on the plug member which is generally indicated at 603 while section 602 is attached to receptacle member 604. A pressure sealing gasket 605 is disposed between the members. Standard hose attachments 606 and 607 may be used to attach the hose to the members in a manner which prevents leakage.
The operation of the embodiment of FIG. 8 is similar to the previous embodiments. Coupling of the connector will be effected by inserting plug member 603 in receptacle member 604 and then sliding coupling sleeve 608 to the left until spring finger ends 609 enter between the facing frustoconical surfaces on the plug and receptacle members. Uncoupling will be accomplished by pulling coupling sleeve 608 to the right.
It should be mentioned that the embodiments of FIGS. 3 or 4 could be particularly useful in hydraulic applications of the invention, if an axial separating force is applied to the plug and receptacle members due to the weight of the carrier or the equipment with which the connector is used.
HO. 9 illustrates an application of the invention to mechanical purposes, namely to connect a pair of cables 701 and 702. These cables are secured to plug members 703 and receptacle member 704 respectively.
The remaining parts of this embodiment, including coupling sleeve 705, are similarfto the previous embodiments, and the operation will be the same.
What is claimed is:
1. A connector comprising detachably interfitting plug and receptacle members having radially spaced confronting annular surfaces provided with inner and outer facing locking shoulders, an annular coupling sleeve slidable on said plug member, means attaching an elongated element to said plug member, said sleeve having axially extending, radially flexible spring fingers disposed between said annular surfaces when the members interfit and formed with flared ends insertable between said facing locking shoulders, whereby to resist axial separating forces applied to said members and to lock said members securely together, said finger ends being deflectable radially by one of said locking shoulders upon axial sliding movement of said sleeve relative to the plug member, thus uncoupling said members so they may be separated, the sleeve being completely withdrawable from said plug member at least in an uncoupling direction past said attaching means after the members have been separated, and facing abutment means on said plug and receptacle members separate from said annular surfaces and said sleeve and directly engageable when the plug member is inserted in the receptacle member to limit their relative movement in an engaging direction independently of said sleeve.
2. The combination according to claim 1, intermediate portions of said spring fingers being bent inwardly and disposed in an annular groove of the plug member to retain the coupling sleeve thereon.
3. The combination according to claim 1, said locking shoulders forming the ends of grooves, the locking ends of said grooves being formed by surfaces at least one of which is angularly related to said spring finger ends.
4. The combination according to claim 3, the angle of said receptacle member surface being less than the angle of said spring finger ends and the angle of said plug member surface being greater than the angle of said spring finger ends, whereby withdrawal frictional resistance of said spring ends will be minimized, permitting uncoupling of the connector despite relatively large axial separating forces applied to said plug and receptacle members.
5. The combination according to claim 3, the angle of one of said groove end surfaces being substantially the same as said spring finger ends, the angle of the other surface being less than said spring finger ends, whereby uncoupling of said connector will be permitted despite moderate axial separating forces being applied to said plug and receptacle members.
6. The combination according to claim 3, the angle of one of said groove end surfaces being substantially the same as said spring finger ends, the angle of the other surface being greater than said spring finger ends, whereby uncoupling of said connection will be prevented when moderate to heavy axial separating forces are applied to said plug and receptacle members.
7. The combination according to claim 3, the angles of said groove end surfaces being greater than said spring finger ends, whereby uncoupling of said connection will be prevented when relatively light axial separating forces are applied to said plug and receptacle members.
8. The combination according to claim 1, said elongated member comprising an electrical conduit having a pin, the receptacle being secured to a female contact.
9. The combination according to claim 8, said electrical conduit comprising a coaxial cable, said receptacle member being panel mount.
10. The combination according to claim 1, said elongated member comprising a hose, said receptacle member also being attached to a hose, said facing shoulders comprising a gasket disposed between the outer end of said plug member and a shoulder within said receptacle member, the members both having passages connected to said hoses.
11. The combination according to claim 1, said elongated member comprising a cable, said receptacle members also being attached to a cable.
12. The combination according to claim 1, said annular coupling sleeve being annularly closed.
13. The combination according to claim 1, the intermediate portions of said fingers being offset radially inwardly from their end portions and disposed in a plug member groove to yieldably retain the sleeve thereon but being substantially shorter than the axial extent of said groove, whereby both locking and unlocking of said members may be accomplished by movement of said coupling sleeve alone.
14. The combination according to claim 13, said fingers and plug member groove having additional surfaces coacting in response to withdrawal of said sleeve after separation of the members to flex said fingers outwardly and permit continued withdrawal of the sleeve in an uncoupling direction, all other parts of said plug member being in non-obstructing relation with said sleeve whereby the sleeve is withdrawable from the plug member in either direction when the plug and receptacle members are separated.
15. A coaxial plug connector for use in conjunction with a receptacle member having an inwardly facing annular surface with an annular locking shoulder, said connector comprising an annular plug member having an outwardly facing groove, means securing an elongated element to said plug member, a coupling sleeve having an annularly closed portion slidably mounted on said plug member, the sleeve having a plurality of axially extending resilient fingers, said fingers having intermediate portions disposed in said groove to releasably retain the sleeve on said plug member, and flared end portions, the internal diameter of said annularly closed portion of the sleeve being greater than the external diameter of any portion of said plug member or element securing means, whereby said sleeve is removable from and replaceable on the plug member from the front or back thereof but only by axial sliding movement relative thereto.
16. The combination according to claim 15, said fingers having first portions of relatively large diameter and inwardlysloping portions extending therefrom to said intermediate portions.

Claims (16)

1. A connector comprising detachably interfitting plug and receptacle members having radially spaced confronting annular surfaces provided with inner and outer facing locking shoulders, an annular coupling sleeve slidable on said plug member, means attaching an elongated element to said plug member, said sleeve having axially extending, radially flexible spring fingers disposed between said annular surfaces when the members interfit and formed with flared ends insertable between said facing locking shoulders, whereby to resist axial separating forces applied to said members and to lock said members securely together, said finger ends being deflectable radially by one of said locking shoulders upon axial sliding movement of said sleeve relative to the plug member, thus uncoupling said members so they may be separated, the sleeve being completely withdrawable from said plug member at least in an uncoupling direction past said attaching means after the members have been separated, and facing abutment means on said plug and receptacle members separate from said annular surfaces and said sleeve and directly engageable when the plug member is inserted in the receptacle member to limit their relative movement in an engaging direction independently of said sleeve.
2. The combination according to claim 1, intermediate portions of said spring fingers being bent inwardly and disposed in an annular groove of the plug member to retain the coupling sleeve thereon.
3. The combination according to claim 1, said locking shoulders forming the ends of grooves, the locking ends of said grooves being forMed by surfaces at least one of which is angularly related to said spring finger ends.
4. The combination according to claim 3, the angle of said receptacle member surface being less than the angle of said spring finger ends and the angle of said plug member surface being greater than the angle of said spring finger ends, whereby withdrawal frictional resistance of said spring ends will be minimized, permitting uncoupling of the connector despite relatively large axial separating forces applied to said plug and receptacle members.
5. The combination according to claim 3, the angle of one of said groove end surfaces being substantially the same as said spring finger ends, the angle of the other surface being less than said spring finger ends, whereby uncoupling of said connector will be permitted despite moderate axial separating forces being applied to said plug and receptacle members.
6. The combination according to claim 3, the angle of one of said groove end surfaces being substantially the same as said spring finger ends, the angle of the other surface being greater than said spring finger ends, whereby uncoupling of said connection will be prevented when moderate to heavy axial separating forces are applied to said plug and receptacle members.
7. The combination according to claim 3, the angles of said groove end surfaces being greater than said spring finger ends, whereby uncoupling of said connection will be prevented when relatively light axial separating forces are applied to said plug and receptacle members.
8. The combination according to claim 1, said elongated member comprising an electrical conduit having a pin, the receptacle being secured to a female contact.
9. The combination according to claim 8, said electrical conduit comprising a coaxial cable, said receptacle member being panel mount.
10. The combination according to claim 1, said elongated member comprising a hose, said receptacle member also being attached to a hose, said facing shoulders comprising a gasket disposed between the outer end of said plug member and a shoulder within said receptacle member, the members both having passages connected to said hoses.
11. The combination according to claim 1, said elongated member comprising a cable, said receptacle members also being attached to a cable.
12. The combination according to claim 1, said annular coupling sleeve being annularly closed.
13. The combination according to claim 1, the intermediate portions of said fingers being offset radially inwardly from their end portions and disposed in a plug member groove to yieldably retain the sleeve thereon but being substantially shorter than the axial extent of said groove, whereby both locking and unlocking of said members may be accomplished by movement of said coupling sleeve alone.
14. The combination according to claim 13, said fingers and plug member groove having additional surfaces coacting in response to withdrawal of said sleeve after separation of the members to flex said fingers outwardly and permit continued withdrawal of the sleeve in an uncoupling direction, all other parts of said plug member being in non-obstructing relation with said sleeve whereby the sleeve is withdrawable from the plug member in either direction when the plug and receptacle members are separated.
15. A coaxial plug connector for use in conjunction with a receptacle member having an inwardly facing annular surface with an annular locking shoulder, said connector comprising an annular plug member having an outwardly facing groove, means securing an elongated element to said plug member, a coupling sleeve having an annularly closed portion slidably mounted on said plug member, the sleeve having a plurality of axially extending resilient fingers, said fingers having intermediate portions disposed in said groove to releasably retain the sleeve on said plug member, and flared end portions, the internal diameter of said annularly closed portion of the sleeve being greater than the externaL diameter of any portion of said plug member or element securing means, whereby said sleeve is removable from and replaceable on the plug member from the front or back thereof but only by axial sliding movement relative thereto.
16. The combination according to claim 15, said fingers having first portions of relatively large diameter and inwardly sloping portions extending therefrom to said intermediate portions.
US00326987A 1973-01-26 1973-01-26 Connector locking mechanism Expired - Lifetime US3810073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00326987A US3810073A (en) 1973-01-26 1973-01-26 Connector locking mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00326987A US3810073A (en) 1973-01-26 1973-01-26 Connector locking mechanism

Publications (1)

Publication Number Publication Date
US3810073A true US3810073A (en) 1974-05-07

Family

ID=23274639

Family Applications (1)

Application Number Title Priority Date Filing Date
US00326987A Expired - Lifetime US3810073A (en) 1973-01-26 1973-01-26 Connector locking mechanism

Country Status (1)

Country Link
US (1) US3810073A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954321A (en) * 1975-08-13 1976-05-04 The United States Of America As Represented By The United States Energy Research And Development Administration Miniature electrical connector
US4002389A (en) * 1975-07-11 1977-01-11 Bell Telephone Laboratories, Incorporated Self latching and unlatching connector assembly
US4076361A (en) * 1975-12-17 1978-02-28 Gulton Industries, Inc. Electrical connector assembly for use with remote manipulator
US4153320A (en) * 1976-12-21 1979-05-08 Plessey Handel Und Investments Ag Connector for a cable, hose or the like
US4169793A (en) * 1977-07-11 1979-10-02 Tolo, Incorporated Tank drain assembly for swimming pool filters
US4453793A (en) * 1982-04-05 1984-06-12 International Telephone And Telegraph Corporation Locking mechanism for rectangular electrical connector
EP0195432A2 (en) * 1985-03-19 1986-09-24 Sumitomo Electric Industries Limited Optical connector
US4708665A (en) * 1984-06-06 1987-11-24 Esge-Marby Gmbh & Co. Kg Environmentally protected electrical contact terminal arrangement for a plastic-metal-plastic laminated cycle fender
US4828297A (en) * 1988-06-27 1989-05-09 General Motors Corporation Fluid coupling
US5029908A (en) * 1989-01-04 1991-07-09 Legris Sa Clip for instant connection device for a fluid conduit and devices having such a clip
US5039138A (en) * 1990-02-26 1991-08-13 Ford Motor Company Cable joining assembly and method for joining cables
US5067750A (en) * 1989-12-05 1991-11-26 Minneman Timothy A Coaxial cable screw connector attachment
US5295866A (en) * 1990-10-09 1994-03-22 Kroger Roy E Insert retention gas tight seal for electrical connector and method of making same
US6039685A (en) * 1998-09-14 2000-03-21 St. Croix Medical, Inc. Ventable connector with seals
US6447024B1 (en) 2001-06-08 2002-09-10 Dana Corporation Spring retainer clip for a quick-connect coupling
US20040157499A1 (en) * 2003-02-07 2004-08-12 Hypertronics Corporation Connecting device
US20050161938A1 (en) * 2004-01-27 2005-07-28 Dahms Jason W. Coupling assembly with latching sleeve
US20050184518A1 (en) * 2004-02-19 2005-08-25 Anis Muhammad Connector assembly for male and female members
US20050202706A1 (en) * 2004-03-09 2005-09-15 Neal Bonavia Snap ring connector system
US20070059962A1 (en) * 2003-07-17 2007-03-15 Gabrielsson Per G Locking element
US20070207654A1 (en) * 2005-11-04 2007-09-06 Xi'an Connector Technology, Ltd. (Cnt) Snap-on and self-lock RF coaxial connector
WO2009139836A1 (en) * 2008-05-16 2009-11-19 Corning Gilbert Inc. Snap-on coaxial cable connector
US20100225104A1 (en) * 2009-03-05 2010-09-09 Hutchinson Coupling Device For Transferring Fluid, Circuit Incorporating and Fitting/Removing It
ES2346276A1 (en) * 2007-09-28 2010-10-13 Melchor Daumal Castellon Terminal casing designed for assembling cables
US20110162190A1 (en) * 2005-09-01 2011-07-07 The Gates Corporation Quick Connect Coupling Stabilization Apparatus
US20120208390A1 (en) * 2009-11-05 2012-08-16 Ab Connectors Limited Connector assembly and a connector part thereof
USD787448S1 (en) 2014-08-18 2017-05-23 Interlemo Holding S.A. Electrical connector
US10267444B2 (en) * 2013-09-19 2019-04-23 Merlo Galfré Innovation Lab S.r.l. Rapid engagement/release coupling
USD863221S1 (en) 2015-09-04 2019-10-15 Interlemo Holding Sa Illuminable female connector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477849A (en) * 1946-11-12 1949-08-02 American Phenolic Corp Contact for multiple connectors
US2695394A (en) * 1953-08-06 1954-11-23 Aircraft Marine Prod Inc Plug contactor
US2877437A (en) * 1955-10-19 1959-03-10 United Carr Fastener Corp Connector
US3091749A (en) * 1959-06-01 1963-05-28 Microdot Inc Connector device
US3136366A (en) * 1958-08-22 1964-06-09 Brown Coupling devices
US3160457A (en) * 1961-12-02 1964-12-08 Fischer Walter Electrical connecting device
US3297978A (en) * 1964-09-18 1967-01-10 Amp Inc Cable connector
US3601361A (en) * 1968-08-09 1971-08-24 Wolf Geraete Gmbh Plug-in coupling for garden and other hoses
US3603621A (en) * 1969-10-27 1971-09-07 Frederick L Parsons Hose coupling
US3639890A (en) * 1970-06-09 1972-02-01 Bendix Corp Locking connector assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477849A (en) * 1946-11-12 1949-08-02 American Phenolic Corp Contact for multiple connectors
US2695394A (en) * 1953-08-06 1954-11-23 Aircraft Marine Prod Inc Plug contactor
US2877437A (en) * 1955-10-19 1959-03-10 United Carr Fastener Corp Connector
US3136366A (en) * 1958-08-22 1964-06-09 Brown Coupling devices
US3091749A (en) * 1959-06-01 1963-05-28 Microdot Inc Connector device
US3160457A (en) * 1961-12-02 1964-12-08 Fischer Walter Electrical connecting device
US3297978A (en) * 1964-09-18 1967-01-10 Amp Inc Cable connector
US3601361A (en) * 1968-08-09 1971-08-24 Wolf Geraete Gmbh Plug-in coupling for garden and other hoses
US3603621A (en) * 1969-10-27 1971-09-07 Frederick L Parsons Hose coupling
US3639890A (en) * 1970-06-09 1972-02-01 Bendix Corp Locking connector assembly

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002389A (en) * 1975-07-11 1977-01-11 Bell Telephone Laboratories, Incorporated Self latching and unlatching connector assembly
US3954321A (en) * 1975-08-13 1976-05-04 The United States Of America As Represented By The United States Energy Research And Development Administration Miniature electrical connector
US4076361A (en) * 1975-12-17 1978-02-28 Gulton Industries, Inc. Electrical connector assembly for use with remote manipulator
US4153320A (en) * 1976-12-21 1979-05-08 Plessey Handel Und Investments Ag Connector for a cable, hose or the like
US4169793A (en) * 1977-07-11 1979-10-02 Tolo, Incorporated Tank drain assembly for swimming pool filters
US4453793A (en) * 1982-04-05 1984-06-12 International Telephone And Telegraph Corporation Locking mechanism for rectangular electrical connector
US4708665A (en) * 1984-06-06 1987-11-24 Esge-Marby Gmbh & Co. Kg Environmentally protected electrical contact terminal arrangement for a plastic-metal-plastic laminated cycle fender
EP0195432A3 (en) * 1985-03-19 1987-10-28 Sumitomo Electric Industries Limited Optical connector
EP0195432A2 (en) * 1985-03-19 1986-09-24 Sumitomo Electric Industries Limited Optical connector
US4828297A (en) * 1988-06-27 1989-05-09 General Motors Corporation Fluid coupling
US5029908A (en) * 1989-01-04 1991-07-09 Legris Sa Clip for instant connection device for a fluid conduit and devices having such a clip
US5067750A (en) * 1989-12-05 1991-11-26 Minneman Timothy A Coaxial cable screw connector attachment
US5039138A (en) * 1990-02-26 1991-08-13 Ford Motor Company Cable joining assembly and method for joining cables
US5295866A (en) * 1990-10-09 1994-03-22 Kroger Roy E Insert retention gas tight seal for electrical connector and method of making same
US6039685A (en) * 1998-09-14 2000-03-21 St. Croix Medical, Inc. Ventable connector with seals
US6447024B1 (en) 2001-06-08 2002-09-10 Dana Corporation Spring retainer clip for a quick-connect coupling
US20100144183A1 (en) * 2003-02-07 2010-06-10 Hypertronics Corporation Method of mounting a connector assembly
US7326091B2 (en) 2003-02-07 2008-02-05 Hypertronics Corporation Connecting device
US7938670B2 (en) 2003-02-07 2011-05-10 Hypertronics Corporation Method of mounting a connector assembly
US20040157499A1 (en) * 2003-02-07 2004-08-12 Hypertronics Corporation Connecting device
US7661995B2 (en) 2003-02-07 2010-02-16 Hypertronics Corporation Connecting device
US20080166906A1 (en) * 2003-02-07 2008-07-10 Hypertronics Corporation Connecting device
US7285005B2 (en) * 2003-07-17 2007-10-23 Fci Locking element for an electrical connector
US20070059962A1 (en) * 2003-07-17 2007-03-15 Gabrielsson Per G Locking element
US20050161938A1 (en) * 2004-01-27 2005-07-28 Dahms Jason W. Coupling assembly with latching sleeve
US7543854B2 (en) * 2004-01-27 2009-06-09 Eaton Corporation Coupling assembly with latching sleeve
US20050184518A1 (en) * 2004-02-19 2005-08-25 Anis Muhammad Connector assembly for male and female members
US7249788B2 (en) * 2004-02-19 2007-07-31 Dana Canada Corporation Connector assembly for male and female members
US7866710B2 (en) 2004-02-19 2011-01-11 Dana Canada Corporation Two piece quick connect retainer
US20050202706A1 (en) * 2004-03-09 2005-09-15 Neal Bonavia Snap ring connector system
US8375550B2 (en) * 2005-09-01 2013-02-19 The Gates Corporation Quick connect coupling stabilization method
US20110162190A1 (en) * 2005-09-01 2011-07-07 The Gates Corporation Quick Connect Coupling Stabilization Apparatus
US20070207654A1 (en) * 2005-11-04 2007-09-06 Xi'an Connector Technology, Ltd. (Cnt) Snap-on and self-lock RF coaxial connector
US7291033B2 (en) * 2005-11-04 2007-11-06 Xi'an Connector Technology, Ltd. (Cnt) Snap-on and self-lock RF coaxial connector
ES2346276A1 (en) * 2007-09-28 2010-10-13 Melchor Daumal Castellon Terminal casing designed for assembling cables
WO2009139836A1 (en) * 2008-05-16 2009-11-19 Corning Gilbert Inc. Snap-on coaxial cable connector
US20100225104A1 (en) * 2009-03-05 2010-09-09 Hutchinson Coupling Device For Transferring Fluid, Circuit Incorporating and Fitting/Removing It
US8336924B2 (en) * 2009-03-05 2012-12-25 Hutchinson Coupling device for transferring fluid, circuit incorporating and fitting/removing it
US20120208390A1 (en) * 2009-11-05 2012-08-16 Ab Connectors Limited Connector assembly and a connector part thereof
US10267444B2 (en) * 2013-09-19 2019-04-23 Merlo Galfré Innovation Lab S.r.l. Rapid engagement/release coupling
USD810029S1 (en) 2014-02-18 2018-02-13 Interlemo Holding Sa Electrical connector
USD787448S1 (en) 2014-08-18 2017-05-23 Interlemo Holding S.A. Electrical connector
USD863221S1 (en) 2015-09-04 2019-10-15 Interlemo Holding Sa Illuminable female connector

Similar Documents

Publication Publication Date Title
US3810073A (en) Connector locking mechanism
US4017139A (en) Positive locking electrical connector
US3885851A (en) Push-pull connector
US6692285B2 (en) Push-on, pull-off coaxial connector apparatus and method
US9203167B2 (en) Coaxial cable connector with conductive seal
US2567727A (en) Connector having an automatic locking sleeve
CN102742086B (en) Integrated guide electric lock determines coaxial connector
US3745514A (en) Coaxial connector
US6409534B1 (en) Coax cable connector assembly with latching housing
US3455580A (en) Locking device in bayonet electrical connector
US4941846A (en) Quick connect/disconnect microwave connector
US3793610A (en) Axially mating positive locking connector
US6019636A (en) Coaxial cable connector
US5938465A (en) Machined dual spring ring connector for coaxial cable
US3781762A (en) Connector assembly
CA1315857C (en) Coaxial connector assembly
US7160149B1 (en) Coaxial connector and method of connecting a two-wire cable to a coaxial connector
US5984709A (en) Electric connector
US3100655A (en) Bayonet type coupling with pivoted segment release means
GB2324204A (en) Connector locking mechanism
US8657623B2 (en) Connect/disconnect connector for coaxial cable
US5366383A (en) Connector assemblies
US4236787A (en) Optical fiber connector
US8591249B2 (en) Flexible breakaway connector
US3611260A (en) Coupling device having a captivated nut

Legal Events

Date Code Title Description
AS Assignment

Owner name: M/A-COM OMNI SPECTRA, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:OMNI SPECTRA, INC.;REEL/FRAME:004458/0310

Effective date: 19850325

Owner name: M/A-COM OMNI SPECTRA, INC., A CORP. OF DE.

Free format text: MERGER;ASSIGNOR:OMNI SPECTRA, INC.,;REEL/FRAME:004458/0308

Effective date: 19850325